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Abstract The Quadratic Eigenvalue Complementarity Problem (QEiGR)n ex-
tension of the Eigenvalue Complementarity Problem (Ei@B) has been introduced
recently. Similar to the EiCP, the QEICP always has a salutieder reasonable hy-
potheses on the matrices included in its definition. This een established in a
previous paper by reducing a QEICP of dimensioio a special B-order EIiCP. In
this paper we propose an enumerative algorithm for sohiedJEICP by exploiting
this equivalence with an EiCP. The algorithm seeks a globalmum of a special
Nonlinear Programming Problem (NLP) with a known globalimat value. The al-
gorithm is shown to perform very well in practice but in sonases terminates with
only an approximate optimal solution to NLP. Hence, we pegpa hybrid method
that combines the enumerative method with a fast and loaailsenooth method to
overcome the latter drawback. This algorithm is also shawhe useful for com-
puting a positive eigenvalue for an EiCP under similar aggions. Computational
experience is reported to demonstrate the efficacy andeaféigiof the hybrid enu-
merative method for solving the QEICP.

A. N. lusem

Instituto de Matematica Pura e Aplicada (IMPA), Estradax®&astorina 110, Rio de Janeiro, RJ, CEP
22460-320, Brazil, E-mail: iusp@impa.br. The work of thigteor was partially supported by CNPq grant
no. 301280/86.

J. J. Judice

Instituto de Telecomunicagdes, Portugal, E-mail: joagudice@co.it.pt. In the scope of R&D Unit
50008, financed by the applicable financial framework (FCE@through national funds and when ap-
plicable co-funded by FEDER PT2020 partnership agreement)

V. Sessa

Instituto de Matematica Pura e Aplicada (IMPA), Estradax®&astorina 110, Rio de Janeiro, RJ, CEP
22460-320, Brazil, E-mail: valsessa@impa.br. The workhef author was supported by CNPq grant no.
150606/2014-1.

H. D. Sherali
Grado Department of Industrial & Systems Engineering, Mieg Tech, Blacksburg, VA, USA E-mail:
hanifs@vt.edu.



2 Alfredo N. lusem et al.

Keywords Eigenvalue Problems Complementarity Problems Nonlinear
Programming Global Optimization.

Mathematics Subject Classification (200065F15- 90C33- 90C30- 90C26

1 Introduction

Given matricesB, C € R"™", the Eigenvalue Complementarity Problem (denoted
EiCP@®,C); see, e.g.[121] and[22]), consists of findiflg x,w) € R x R" x R" such
that

w = ABx—Cx (1)
w>0,x>0 (2)
x'w=0 (3)
e'x=1, (4)

withe=(1,1,...,1)" € R", where constrainf{4) is introduced, without loss of gen-
erality, to prevent th&-component of a solution to vanish. Usually, the maBiis
assumed to be positive definite (PD). This problem has maplicagpions in engi-
neering (se€ [19][22]). If a tripldtA ,x, w) solves EiCP, then the scalaris called a
complementary eigenvalue andx is a complementary eigenvector associated with

for the pair(B,C). The conditiorx"w = 0 and the nonnegativity requirementsn
andw imply that eithern; =0 orw; = 0 for 1 <i < n. These pairs of variables are
called complementary. The EiCP always has a solution peavitlat the matriB is

PD [13].

If the matricesB andC are both symmetric, then EiCP is called symmetric and
reduces to the problem of findingstationary point (SP) of the so-called Rayleigh
Quotient function on the simple® (see, e.gl[121][122]), which is essentially a SP of
the following standard quadratic fractional program:

.
X" Bx

subject toe' x= 1 (5)
x> 0.

Maximize

A number of techniques have been proposed for solving EiCRtaextensions;
see, e.g.[[1]12],19],[110],111],112],[1213] [ T14]  T18]20], and [24]. As expected,
the symmetric EiCP is easier to solve.

Recently an extension of the EiCP has been introduced in @%re some re-
lated applications are highlighted, which is called @eadratic Eigenvalue Com-
plementarity Problem (QEICP). This problem differs from the EiCP through the
existence of an additional quadratic termAinlts formal definition follows. Given
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A,B,C € R™" QEICPA,B,C) consists of findingA,x,w) € R x R" x R" such that

W= A2Ax+ A Bx+Cx, (6)
w>0,x>0, (7
x'w=0, (8)
e'x=1, 9)

where, as beforee = (1,1,...,1)" € R". Note that QEICP%,B,C) reduces to
EiCP®B, —C) whenA = 0. Furthermore, finding a positive complementary eigerezalu
for EICP(B,C) is equivalent to computing a nonzero quadratic complenngeigen-
value of QEICPB, 0, —C). TheA -component of a solution to QEICR(B,C) is called

a quadratic complementary eigenvalue for A, B,C, and thex-component is called a
guadratic complementary eigenvector for A, B,C associated witi .

The case of the symmetric QEICP, i.e., wh&iB, andC are symmetric matri-
ces, andC = —I, wherel is the identity matrix, has been analyzed [in [8], where
each instance of QEICP withx n matrices is related to an instance of EiCP with
2n x 2n matrices. In this paper, we remove the symmetry assumiuthfocus on
the general QEICP. In[3], a relation betweemadimensional QEiCP and certain2
dimensional instances of EICP was introduced. This “radntif QEICP to EiCP
was suggested mainly with a theoretical purpose in mind,ahgrto establish nec-
essary and/or sufficient conditions #nB,C that ensure the existence of solutions
to QEICPA, B,C). In particular, QEICP has positive and negative quadatiople-
mentary eigenvalues# € PD andC is not anSy-matrix, i.e., there exists no®x> 0
such thatCx > 0 [3]. Note that these considerations should be consideseoha&x-
tension of the sufficient conditions for the symmetric QEI&SC = —I is not anS
matrix. Furthermore, these conditions imply that a non+syatric EICRB,C) has at
least a positive complementary eigenvalug & PD andC ' is anS-matrix, i.e., there
exists ax > 0 such thaC' x > 0. This result is proved later in this paper along with
a discussion on its importance in practice. Recall that sappications of the EICP
require the complementary eigenvalue to be posifive [19].

Another set of sufficient conditions for the existence ofiiohs to QEICP, called
co-regularity and co-hyperbolicity, was proposed in [23]. An enumerative method
and a hybrid algorithm for QEICP, combining this enumemativethod with a semi-
smooth approach, have been introduced_in [9] [10]. Thesdénods are able
to solve the QEICP when the co-regularity and co-hyperhiglzonditions are as-
sumed to hold. In[]3], the numerical solution of QEICP by $ujvits equivalent
2n-dimensional EiCP referred to above has been discussethtigaal Inequality
(VI) and Nonlinear Programming (NLP) formulations have h@groduced for this
purpose. Numerical experiments reported.in [3] clearlydatk that the NLP formu-
lation seems to be more effective, particularly since tiodgl optimal value is known
to be zero. In this paper, we propose an enumerative methdidding a global min-
imum of such an NLP that exploits this desirable feature oPNLhis algorithm is
based on ideas similar to the ones discussed in [9] and it ctemstationary points
of the objective function of NLP until it finds one that achesvthe known zero op-
timal value. As in[[10], this method can be combined with taenssmooth method
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similar to the one introduced ih [23] in order to enhance @putational efficiency.
Numerical results included in the paper indicate the effiead efficiency of the hy-
brid (enumerative plus semi-smooth) method for the saotutithe QEICP whe €
PD andC is not anS-matrix.

The organization of the remainder of this paper is as folldwsSectior 2, the
2n-dimensional EiCPs that are equivalent to the QEICP and MigP formulations
are introduced. The enumerative method is described inddsf} and¥. The semi-
smooth algorithm for ther2dimensional EiCPs is introduced in Sectidn 5. The hy-
brid approach combining the enumerative and the semi-dmmoethods is discussed
in Sectior[ 6. The computation of a positive complementagg®yalue for an EiCP
is discussed in Sectidr 7. Numerical results are report&gatior{ 8, and some con-
cluding comments are given in Sect[dn 9.

2 A Nonlinear Programming Formulation

Consider QEICPA,B,C) with A,B,C € R™" and assume tha is a PD matrix and
C is not ang-matrix, that is

(i) x"Ax>0forallx#0
(i) thereis no G x> 0 such thaCx > 0.

Note that it is relatively easy to verify whether a given mais PD orS. TheLDL "
decomposition of the symmetric form &fis required for checking the first property
while the solution of a linear program suffices for checkimg $econd property.

As in [3], we introduce the i2dimensional EICHD, G) and EiCPD, H) formula-
tion, where

D[ﬁﬂ’ G[|Bcﬂ’ H{?cﬂ’ (10)

with | being the identity matrix of ordem. Note that the matriD of the A-term of
the two EiCPs is PD. This means that these EiCPs have at leasiotution[[183].

In order to see the implementation of solving QEICP by findirsplution to these
EiCPs, we write the EiCRY, G) as follows:

BN e

e'y+e'x=1 (11b)
y'w=x"t=0 (11c)
XY, W,t,A > 0. (11d)

Then the following result holds:

Theorem1 LetAc PDandC ¢ . If (X,)T,ﬂ isa solution of EiCP(D, G) then:
(i) A>0andy=AX B
(ii) A isaquadratic complementary eigenvalue of QEICP and (1 + A)Xis an asso-
ciated eigenvector.
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Proof See Proposition 1 in[3].

Note that a similar result holds for EiCP(H) with —A instead ofA in (ii) (however,
the eigenvector has the same form). Thereforé\ & PD andC ¢ &, the QEICP
has at least a positive and a negative quadratic complenyexitgenvalue, which can
be computed by solving EICB(G) and EiICPD,H), respectively. In this paper, we
concentrate our attention solely on the computation of éigesjuadratic comple-
mentary eigenvalue since the case of a negative eigensadimilar.

Consider again the EICP_({11). By Theorght % 0 in any solution of the EiCP.
If we introduce the vectov such thatv = Ay, then we get the following Nonlinear
Programmming Formulation of the EiCP{11) introducedin [3]

NLP1:Minimize  f(xy,y,W,A) = (y—AX)' (y—AX)+ (V=Ay) (v—Ay)

+ (x+y+v)'w (12a)

subjectto  w= Av+ By+Cx (12b)
e'y+e'x=1 (12c)
e'v+e'y=2 (12d)

X, Y, V,w > 0. (12e)

Furthermore, the following result holds [3]:

Theorem 2 Let A be strictly copositive and C ¢ S. Then the nonlinear problem
NLP; in_(I2) has a global minimum (x,y,v,w,A ) such that f(x,y,v,w,A) =0 and
(A, (1+2)X) isa solution of QEiCP.

Proof See Proposition 7 in[3]. O

In the next two sections, we introduce an enumerative mefhrdichding a global
minimum for NLP;. Since the global optimal value ®LP; is equal to zero, the
algorithm computes stationary points fdLP; in a systematic way until finding one
with a null objective function value (or a value smaller tteaprescribed tolerance).
These stationary points are associated with the nodes obayltiree that is generated
according to the branching strategy defined’in [13]. Bound¢he complementary
eigenvalue are required in order to generate constraistsban the Reformulation-
Linearization Technique (RLT) [25] that facilitates theasgh for a global minimum
of NLP1. In the next section, we discuss how these bounds and RLTreants are
generated. The enumerative algorithm is then describeddtich 4.

3 Lower and upper bounds for a quadratic complementary eigemalue
3.1 Computing an upper bound

The next theorem provides an upper bourfdr a quadratic complementary eigen-
valueA.
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Theorem 3 Let pi = 1+ 37 (max{0, —bij} + max{0,—¢;j}) for al i =1,...,n,
and let p € R" be a vector with components p;. Then we can take

U= —————— (13)
where (X,y) is a stationary point of the following nonlinear problem:
p'y
yT Ay +XxTx

subjectto e'y+e'x=1
Xy> 0.

NLP, :Maximize

Proof If A is a solution of EICPD, G), given by [11), then

_7'Gz

JdzeA: A =——
< z'DZ’

(14)

with A = {ze R :e'z=1,2> 0}, z= (x,y), and withG and D given by [10).
Hence,

2'Gz=—-y'By—y'Cx+x"y=y' (~By - Cx+x) (15a)
z'Dz=y Ay+x'x (15b)
But
n
(=By—Cx+x)i= 3 (=bijyj —Gijxj) +%
=1
n
< > max{0, —bij}y; + max{0, —cij }x; + X
=1

Sph Vizlw"vnv

wherep; (pi, i =1,...,n) is defined in the theorem. SinceVy; <1 and 0< x; <1
foralli=1,...,n,thenz'Gz< p'y. Now, consider the function

Py
f(xy) = VAL XX (16)

SinceA is positive definite then the expression in the denominatd®) is strictly
convex on the simpleAd. Hencef is pseudo-concave,|[1], and any stationary point
(x,y) of f in A is a global maximum. Thus, an upper bound can be computed as

in (13). O
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3.2 Computing a lower bound

Consider the constraint set NLP;. SinceA is given by [12H), then a lower bouhd
for A can be computed by considering the following linear program

LP: Minimize  e'vte'y
subject to Av+By+Cx>0
e'ly+e'x=1
X, y,v>0.

An optimal solution td_P provides a positive lower bouridor A, as established by
Theorem§&4 and 5 below.

Theorem 4 If AisPD, then LP hasan optimal solution.
Proof Letx, y> 0 such thae"x+e"y= 1. SinceAis PD, the system

Av+ (By+Cx) >0
v>0

has a solution[J6]. HenceP has an optimal solution, since it is feasible and the
objective function is bounded from below on its feasible set O

Theorem 5 If C ¢ &, then LP has a positive optimal value.

Proof LP has a zero optimal value if and onlyif= v = 0 in any optimal solution. In
this case, there must exist a2 0 such thaCx > 0 ande' x = 1. This is impossible
becaus€ ¢ S. O

Thus, the lower bound, defined by the optimal value afP, exists and is strictly
positive wherA € PD andC ¢ .

3.3 Reformulation-Linearization Technique (RLT) constts
Based on the lower and the upper boundd aterived above, an additional constraint

| <A < ucan be added to the nonlinear probldaP 1. Furthermore, sincg = Ax
andv = Ay, the following RLT bound-factor constrain{s |25] can alsoduided:

Ixi <yi <ux (17a)
lyi <vi <uy (17b)
I(1-x)<(A-y)<u(l-x) (17¢)
I(1-y) <(A=vi)<u(l-y) (17d)

for eachi = 1,...,n. In (I7), we consider the nonnegative product of each ofithoe t
bound-factors associated with the variablé.e., (A —I) and(u— A)) with each of
the two bound-factors associated with the variablé.e., (x; —0) and (1 —x;) for
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eachi=1,...,n), which are subsequently linearized using the substitytie Ax. In
the same way, we consider the nonnegative products of thedsfactors associated
with the variabled with the bound-factors of the variabje(i.e., (yi —0) and(1—y;)
foreachi=1,...,n) along with the substitutiom= Ay. (The bounds for the variables
x andy are derived from (11b) and (11d).) By incorporating thesest@ints, we
obtain the following augmented nonlinear program:

NLP3z:Minimize  f(X,y,\,W,A) = (y—AX) " (y—AX)+ (V—Ay) (v—Ay)

+ (x+y+v)'w (18a)

subjectto w= Av+ By+Cx (18b)
e'y+e'x=1 (18c)
e'v+e'y=2 (18d)

I <A<u (18e)

Ix <yi<ux, Vi=1...,n (18f)

lyi <vi<uy;,, Vi=1...,n (189)
[(1-x)<A—-y)<u(dl-x), Vi=1...,n (18h)
l(1-y) <A -v)<u(l-y), Vi=1,...,n (18i)

X, Y, V,w > 0. (18))

4 An enumerative algorithm for QEICP

In this section, we introduce an enumerative algorithmédviag the nonlinear prob-
lemNLP 3, which explores a binary tree that is constructed underaivitly managed
branching strategies. The first is based on the complenmigntanditions between
the variablesv andx, i.e., eitherw; =0 orx; =y; =Vv; = 0 for eachi = 1,...,n as
yi = AX andv; = Ay; for eachi = 1,...,n. The second branching strategy consists
of partitioning the intervall,u] for A. This algorithm is based on ideas similar to the
enumerative algorithm of EiCP proposed[in][13].

Define the set$ andJ that record thew- and (X, Vi, vi)-variables that are cur-
rently set to zero, respectively. At each node of the tree xegenéne NLR with A
constrained in the intervdl, U] C [I,u] along with the following constraints:

I <yi<x, Vied

lyi <wi < 0y, Vied
(1-x)<(A-y)<UWl-x), Vied
(1-y) <(A-w) <UWil-y), Vied

Vi=yi=x=0, Viel
w =0, Viel,

wherel <1 <U<u,l C{1,...,n},JC{1,...,n},J={1,....n}\Jandl NJ =0.
Consider also the seks=1UJ, K = {1,...,n} \K andl = {1,...,n}\I. Then, at
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each nodé of the binary tree, we examine the following nonlinear peobi

NLP4(K) :Minimize  f(xy,vy,W,A) = (y—AX) " (y—=AX) + (V= Ay) (v—Ay)

+ (x+y+Vv)'w (19a)

subjectto w= Av+ By+Cx (19b)
e'y+e'x=1 (19c)
e'v+e'y=2 (19d)
l<A<U (19¢)
Ix <y <Ox, Vied (19f)
lyy<vi <y, Vied (199)
(1-x)<(A-y) <ul-x), Vied (19h)
(1-y)<(A-v)<Ul-y), Vied (19i)
XY, V,w > 0 (29j)
Vi=yi=x=0, Vield (19k)
wW=0, Viel. (191)

The steps of the algorithm are as follows:

Algorithm 1 Enumerative algorithm

> StepO (Initialization)
Setg; and & such that O< €1 < &. Setk=1,1 =0,J =0 and find a sta-
tionary point(X,y,v,w,A) of NLP4(1). If NLP4(1) is infeasible, then QEICP
has no solution; terminate. Otherwise, let {1} be the set of open nodes, set
UB(1) = f(x,y,v,w,A) and letN = 1 be the number of generated nodes.

> Stepl (Choice of node)
If L =0 terminate; QEICP has no solution. Otherwise, sekegtlL such that
UB(K) =min{UB(i) :i € L}, setL =L\ {k}, and let(x,y,v,w,A) be the station-
ary point that was previously found at this node.

> Step2 (Branching rule)
Let

01 = max{wix; : i € K} = WX (20)
8 = max{|Vi — AVi|, [yi — AXi| ;i € J}. (21)

@) If 61 <& andB, < & thenA yields a quadratic complementary eigenvalue
within the tolerance; with (1+ A )xbeing a corresponding quadratic eigen-
vector.

(i) If 61 > 6 then branch on the complementary variablgsand (X, yr, V)
associated witl®, and generate two new nodis+ 1 andN + 2.
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(iii) If 6, < 6, then partition the intervdl , ] for A at nodek into [I,A] and[A, 0]
to generate two new nodék+ 1 andN + 2, where

i A ifmin{(A —1),(G—A)} > 0.1(T—1)
| Y otherwise

> Step3 (Solve, Update and Queue) .
For each ofp =N+ 1 andp = N+ 2, find a stationary pointX,y,v,Ww,A) of_
NLP4(p), where, iNLP4(p) is feasible, sdt = LU{p} andUB(p) = f(X,¥,V,W,A).
Return to Step 1.

We remark that if the algorithm terminates successfullgnth is a quadratic
complementary eigenvalue foAB,C) (within the tolerance) and(1+ A)xis the
corresponding quadratic complementary eigenvector. dheargence of Algorithm
1 follows from Theorem 4. in [13].

Another strategy for selecting the branching decision aheteration could be
to compared; with €1/¢& 6, instead of comparing it directly witB,. Such a scaling
strategy could help make the comparison betw&eand 6, commensurable. How-
ever, our computational experience has revealed that yped unscaled strategy
seems to work better for the typical practical values of tilerances; and &, as
delineated in Sectiohn] 8. Moreover, the chosen values, 6f &, induce a limited
priority-type branching strategy that suitably favorsrmiaing on the complementar-
ity restrictions to some extent, which promotes computeti@ffectiveness.

5 A semi-smooth algorithm for QEICP

We begin by writing the systeri (L1) as follows:

BN e

e'lyte'x=1 (22b)
Yi>0,w>0,yw=0,i=1,...,n (22c¢)
X>0,t>0 xt=0,i=1,...,n (22d)

SinceA € PD andC ¢ &, Theorenfll implies that > 0 in any solution, whence
A > 0 does not need to be included in the solution. Furthermibessanstraint$ (22c)
and [224) are a consequence of the complementarity conslifidE).

It is well known that complementarity constraints can besfarmed into equal-
ity constraints by using suitable semi-smooth functions. &dply such a transfor-
mation to our system of inequalities, by using tmen function and theFischer-
Burmeister function.

Themin function ¢min : R? — R is defined as

®min(a,b) = min{a, b}. (23)
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This function satisfies the relation
Pmin(a,b)=0<a>0,b>0,ab=0. (24)

As a consequence, the complementarity constraintd (22t){Zd) can be repre-
sented by setting to zero the functiofs : R2" — R" and @, : R?" — R" defined

by

Gmin(Xa,t1) Pmin(Y1,W1)
Py (x,t) = : and @ (y,w) = : . (25)
¢min(Xn7tn) ¢min(Yn,Wn)

Then, the systeni (22) is equivalent to the following systéeuations:

wmin(x7y7wat7A) = O (26)
with
(Dl(xat)
Do (y,w)
Wnin(X,y,w,t,A) = | (AA+B)y+Cx—w| . (27)
AX—y—t

elyt+elx—1

Since the functio®nin(x,y,W,t, A) is semi-smooth, a solution of the system of equa-
tions can be found as in the previous approach by applyingah@-smooth Newton
method until the following conditions are satisfied:

max{[W— (AA+B)y—CX]|, [{— AX+ Y|} < &1, max{|| 21X, )|, | @2(7:W) |} < &,
(28)

where®; and @, are given by[(2b), an¢k,y, w, t_,)T) is the current iterate satisfying
e'y+e'x= 1. At each Newton iteration a new direction is computed via

dx —min{x,t}
_|dy —min{y,w}
GI(X,y,W,t,A) [dw| = |W— (AA+B)y—Cx]| . (29)
o t—AX+y
dy 0

The Clarke generalized Jacobi@d(x,y,w,t,A) is given by

0

0
A)T c IR(4I’1+1)><(4FI+1)7 (30)
X

0
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wherel, is the identity matrix of orden, and whereE,F,E,F € R™" are diagonal
matrices with the following diagonal elements:
(1,0) if X <ti
(Ei,Fi) =< (0,1) iff <% Yi=1,...n, (31)
(i, 1-vy) ifx=t

with v; € [0,1], and where

(1,0) ifyi <w
(Ei,Fi) = < (0,2) ifwi <y, Yi=1,...,n, (32)
(Ui, 1-0) ifyi=w

with U; € [0,1]. In practice we use; = 0 andV; =0 forall 1,...,n.

If GJ(X,y,W,t,A) is singular, then the algorithm terminates unsuccessfollly-
erwise, the directiorfdy, dy, dw, i, d, ) is uniquely determined by (29) and the new
iterate is defined by

K =X+ 0y, §=y+dy, W=W+dy, f =T+, andA = A +d,, (33)
which satisfiee' X +e'§= 1.

The complementarity constrainfs (22c¢) ahd (22d) can beralsiaced by using
the Fischer-Burmeister functiayg : R? — R defined as

¢FB(a, b) = O,

where¢rg = a+ b — va? + b?, which is equal to zero if and only &> 0, b > 0,
andab = 0. The semi-smooth Newton algorithm presented above carsée by
substituting the minimum function by the Fischer-Burmaigtinction. In this case,
for the definition of the Clarke generalized Jacob@lx, y,w,t,A) given in [30), the
following diagonal elements of the matricesF, E,F ¢ R™" are considered:

- 1- ) iR
(Ei,Fi) = (1/yvﬁfl v%h?) 1070 Vi=1,....n (34)

(1*Ei71*ﬁi) if (x,t)=0

with £2+4+ 72 =1,

.. 1- 41— M) if (Yi,Wi) # 0
(Eii, Fi) = ( V22T O ) # Vi=1,....n, (35)
(1—Ei71_ﬁi) if (yi,wi) =0
with 3i2+ fi? = 1. In practice we uséa,ﬁi) = (1,0) and (&, Ai) = (1,0) for all
i=1,...,n
We present below the proposed semi-smooth algorithm fafirsplthe system
(22), which is valid for both the min and Fischer-Burmeigtarction approaches.
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Algorithm 2 Semi-smooth Newton algorithm

> StepO (Initialization)
Let (X,y,W,t,A) be an initial point such that'y+e’x = 1 and let§; and&, be
selected positive tolerances.

> Stepl (Newton direction)
Compute the diagonal matricesF, E,F € R™" given by [35) and{34) (of(32)
and [31)). Compute the Clarke generalized Jacobian Gdyatw,t,A) by using

E 0 0 Fo

N 0 E F 00

GI(X,Y;W,t,A)= | C (AA+B) —I, 0 Ay]

Aln —lp 0 —Ip x

el el 0 00O

If GJ()?,;T,VV,EX) is singular, stop, and terminate with an unsuccessful teami
tion. Otherwise, find the semi-smooth Newton direction

dx *(Dl()zt)
__ |dy —®,(y,w)
GIXY.W.EA) |dw| = |W— (AA+B)y—CX|
ck t—AX+y
d, 0

with @, and @, given in [25).

> Step3 (Update)
Compute the new point

R =X+ dy, Y=Y+ 0y, W=W+0dy, {=t+d, andA = A +d,

and Iet(Z)T,vV,E)T) = ()?,V,W,f,;\). If the conditions[(ZB) hold, then stop with
being a quadratic complementary eigenvalue,@ngA )x being a corresponding
quadratic complementary eigenvector. Otherwise, go tp Ste

6 A hybrid algorithm for QEICP

As discussed i [10], the enumerative algorithm is globedipvergent to a solution
of QEICP. However, in many cases, the algorithm is only ableetminate with a

near-solution to QEICP. On the other hand, the semi-smoethad is a fast local

algorithm, but lacks the global convergence feature. Hameecan combine the good
features of both algorithms in a hybrid method based on theesdeas of a similar
procedure discussed in[10]. The steps of the hybrid metheogr@sented below.
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Algorithm 3 Hybrid algorithm

> StepO (Initialization)
Let &; and & be two positive tolerances for switching from the enumeeati
method to the semi-smooth. Apply Step 0 of Algorithm 1 andelet & and
£ < &, whereg; ande, are the tolerances used in Algorithm 1. Ingbaxit be
the maximum number of iterations allowed to be performechigysemi-smooth
method (whenever it is called).

> Step1 (Choice of node)
Apply Step 1 of Algorithm 1.

> Step2 (Decision step)

Let (x,y,v,w,A) be the stationary point associated with the selected kel

computed; and6; in (20) and[(211), respectively.

(i) If 61 <& andb, < & stop with a solution of QEICP.

(i) If B, < g and6, < & then apply Algorithm 2. If Algorithm 2 terminates with
a solution(x*,y*, w*,t*, A*) then stop and sét = A* andx = x*. Otherwise,
Algorithm 2 terminates without success (&J,Ww,t,A) is singular or the
number of iterations is equal tonaxit); go to Step 2iii).

(iif) Apply Steps 2 and 3 of Algorithm 1 by continuing with the@dek and the
solution (x,y,v,w,A) given at the beginning of this step, but skip Step 2(i)
and the last instruction of Step 3 of Algorithm 1. Return tef5t.

7 Computing a positive complementary eigenvalue for EIiCP

Consider the EICHI1)E(4). In this section, we address tbblpm of the existence
and computation of a positive complementary eigenvalder this EiCP. In prac-
tice, such a demand occurs quite often| [19]. If EICP is symiméte., B andC are
symmetric matrices (B is PD), then the problem can be solged 21]. Hence, we
consider the non-symmetric case, where at least one of tiwcesB or C is not
symmetric. Furthermore, we consider the following clasdesatrices:

(i) CisaV-matrix (C € V) if and only if there exists ar > 0 such thak"Cx > 0
(i) CisanS-matrix (C € §) if and only if there exists ar > 0 such thaCx > 0.

The following properties hold between the above classedl@BD andy, classes:

Theorem6 (i) CePD=CeS=CeV.
(i) CeSe C' ¢S

Due to this property, verifying tha is not anS-matrix reduces to solving a linear
program. Furthermore, showing that a ma@ix V is equivalent to showing that the
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following nonlinear program has a feasible poiwith f(x) > O:

Maximize %XT (C+CHx= f(x)

subjectto e'x=1
x>0,

wheree is a conformable vector of ones. Despite the fact that thablem belongs
to the class of NP-hard problems[15], it is in many cases gasy to verify whether
a matrix belongs to the class [11], [21]. Moreover, the following result has been
established in[21]:

Theorem 7 If Cissymmetric and B € PD, then EiCP(B, C) has a positive eigenvalue
ifand only if Ce V.

Furthermore, such a positive complementary eigenvaludeatomputed by apply-
ing an ascent nonlinear programming algorithm with an ahigoint x satisfying
X' Cx > 0 in order to find a stationary point to the quadratic fractiogprogram[(b)
(seel[11],[21]).
Consider now the case Bfor C or both being non-symmetric. Théhe V is still
a necessary condition for a positive complementary eigaavar EiCP, but it is no
longer sufficient. In fact,
2-3
C= [1 B 1] ev
and the EiCHg,C) with B being the identity matrix has no positive complementary

eigenvalue. Theorers$ 1 and 6 provide a sufficient conditothfe existence of such
an eigenvalue, as the following result holds:

Theorem 8 If Be PD and C" € S, then EiCP(B,C) has a positive complementary
eigenvalue.

Proof If CT € S, then by Theoreml6;C ¢ S. SinceB € PD, then QEICF8,0, —C)
has a positive (and a negative) eigenvaluélence A = p? is a positive complemen-
tary eigenvalue of EiCP. O

This condition is sufficient, but not necessary. In fact far following matrices:

10 1 -2
= [o o= 5]

the EiCPB,C) has a positive complementary eigenvalue,®ut S.
The following example shows that an Ei@RC) with B € PD andC' € Smay
have a negative eigenvalue. Consider the matrices

10 11
S EHA Pl



16 Alfredo N. lusem et al.

Problem A f | u Nodes CPU

RAND(O, 1, 3) 0.540591 8.55776e-17 2.88722e-01  7.24264e+00 0 9.432B4e-
RAND( O, 1, 5) 0.579740 1.63562e-16  2.50875e-01  1.20711le+01 0 1.08%70e-
RAND( 0, 1, 10) 0.353326  2.54107e-16  1.21939%e-01  2.41421e+01 0 1.170D4e-
RAND( 0, 1, 20) 0.216038 2.72803e-15 7.61078e-02  4.82843e+01 0 1.77@b4e-
RAND( 0, 1, 30) 0.152153 9.71651e-12  4.98635e-02  7.24264e+01 0 2.990D8e-
RAND( 0, 1, 50) 0.071278  2.31483e-10  3.08149e-02  1.20711le+02 0 1.02008¢+
RAND( 0, 1, 100) 0.029856 2.32097e-09  1.70235e-02  2.41421e+02 0 2.94000¢e+
RAND( 0, 10, 3) 0.064433 6.17703e-16  4.41922e-02  7.24264e+00 0 3.71w58e-
RAND( 0, 10, 5) 0.181341  7.09644e-15 3.26178e-02  1.20711le+01 0 8.36W 9e-
RAND( 0, 10, 10) 0.031470 5.08357e-08  1.40437e-02  2.41421e+01 0 2.00B14e-
RAND( 0, 10, 20) 0.037200 4.74654e-14  8.17101e-03  4.82843e+01 0 7.75963e-
RAND( 0, 10, 30) 0.021879 9.05131e-08 5.80691e-03  7.24264e+01 0 4.169D5¢-
RAND( 0, 10, 50) 0.005521  1.44288e-09  3.48749e-03  1.20711le+02 0 9.68BB5e-
RAND( 0, 10, 100) | 0.004779 1.41496e-09 1.82554e-03  2.41421e+02 0 2.89805¢+
RAND( 0, 100, 3) 0.006558 4.76544e-12  5.07979e-03  7.24264e+00 0 1.06Bb5e-
RAND( 0, 100, 5) 0.004492  1.13846e-11  2.62532e-03  1.2071le+01 0 2.520D7¢-
RAND( 0, 100, 10) | 0.002790 5.87198e-11  1.50881e-03  2.41421e+01 0 1.787B4e-
RAND( 0, 100, 20) | 0.010015 2.01563e-09 7.45363e-04 4.82843e+01 0 1.81BD2e-
RAND( 0, 100, 30) | 0.005434 1.29756e-08 5.56813e-04  7.24264e+01 0 6.952776¢-
RAND( 0, 100, 50) | 0.005470 1.07865e-08 3.34757e-04  1.20711e+02 0 4.458B0e+
RAND( 0, 100, 100) | 0.001888 2.29598e-09 1.76797e-04  2.41421e+02 0 9.19882¢+
RAND( 0, 300, 3) 0.002392 2.27355e-11  2.19802e-03  7.24264e+00 0 8.5452e-
RAND( 0, 300, 5) 0.001428 5.69616e-11  1.06026e-03  1.20711le+01 0 1.19%51 9e-
RAND( 0, 300, 10) | 0.000664 1.20981e-10 5.50475e-04  2.41421e+01 0 1.688D9%-
RAND( 0, 300, 20) | 0.000647 8.75978e-09 2.72983e-04  4.82843e+01 0 1.50BB8e-
RAND( 0, 300, 30) | 0.000671 2.67442e-08 1.63560e-04  7.24264e+01 0 6.042B1e-
RAND( 0, 300, 50) | 0.000622 9.60127e-09  1.14939e-04 1.20711e+02 1 8.93BD6E-
RAND( 0, 300, 100) | 0.001598 6.58115e-08 5.96871e-05 2.41421e+02 1 4.03082e+

Table 1 Performance of the enumerative method for solving Test/Enab 1.

Then it is easy to see th& < PD andC' < S. By TheoreniB, EiCHg,C) has at
least a positive complementary eigenvalue. However, tii@PEalso has the nega-
tive complementary eigenvalue= —1. If we apply an ordinary algorithm to com-
pute a solution to the EiCP, then this procedure may find tlyatiee eigenvalue.
Instead of solving the EICIB(C) directly, it is more advisable to find a solution to
QEICP@,0,—C) in order to guarantee the computation of a positive complaary
eigenvalue\ for EICP@,C), that s, to findA = p? > 0, with u being the quadratic
complementary eigenvalue computed by the hybrid enumveratgorithm discussed
in this paper.

8 Computational experience

In this section, we discuss the numerical performance ofptloposed algorithms
for computing quadratic complementary eigenvalues. Thenamative algorithm has
been implemented in MATLAE[16] and the IPOPT (Interior PddPTimizer) solver
[27] has been used to find a (local) solution to the nonlineablemMNLP 4(k) in (19)
at each node.

We consider two sets of test problems wite PD andC ¢ &. The first set of
problems, called Test Problems 1, deal with co-regular antyperbolic QEICPs,
which always have a solution. The matrideand—C were both chosen as the iden-
tity matrix, while the matrixB was randomly generated with elements uniformly
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Problem A f | u Nodes CPU
RAND(O, 1, 3) 0.553862 6.14338e-15 2.90421e-01  8.68486e+00 6 3.08RD8e-
RAND( O, 1, 5) 0.820148 1.36299e-16  4.35208e-01  2.07633e+01 0 1.228B4e-
RAND( 0, 1, 10) 0.703165 5.17996e-15 3.91192e-01  6.09473e+01 11 3.04602¢
RAND( 0, 1, 20) 1.157398 1.81742e-14  4.68243e-01  2.62835e+02 89 1.240%4¢
RAND( 0, 1, 30) 0.987340 1.83278e-10  4.63858e-01  5.76074e+02 0 1.66002¢+
RAND( 0, 1, 50) 1.077929 6.24270e-09 4.87771e-01  1.60032e+03 5 1.48014¢+
RAND( 0, 1, 100) 1.067021 3.50061e-07 4.81082e-01 6.10757e+03 34 2.20022¢
RAND( 0, 10, 3) 1.440810 1.11071e-16 4.61292e-01  7.09787e+01 0 4.245381e-
RAND( 0, 10, 5) 1.715031 1.35236e-15 5.11997e-01  1.86675e+02 1 1.42548e-

RAND(0,10,10) | 0.899639 5.72321e-13 4.06875e-01 5.77397e+02 19  3.12088
RAND(0,10,20) | 1.922596 1.22525e-13 4.72350e-01 2.42768e+03 28  1.98047
RAND(0, 100, 30) | 4.313552 4.09191e-11 4.31941e-01 5.13388e+03 66  2.14026
RAND(0,10,50) | 1.432682 2.80619e-11 4.77837e-01 1.53907e+04 32  1.59030
RAND(0, 10, 100) | 1.786507 7.19200e-12 4.77161e-01 6.07160e+04 34 508020
RAND(0, 100, 3) | 0537246 1.01113e-16  2.89377e-01 _ 3.47188e+02 0 6.04516,
RAND(0,100,5) | 1.078916 1.02845e-12 3.87015e-01 1.37712e+03 20  1.48004
RAND(0, 100, 10) | 1.161560 1.02364e-11 4.43875e-01 6.17575e+03 23  1.47605
RAND(0, 100, 20) | 1.760194 2.31492e-09 4.74284e-01  2.42205e+04 33 553003
RAND(0,100,30) | 1.231730 5.00885e-09 4.72373e-01 5.35077e+04 261  2.84036
RAND(0, 100, 50) | 1.359856 6.97896e-09 4.81880e-01 1.52454e+05 77  4.26082
RAND(0, 100, 100) | 1.081376 4.76065e-05 4.79115e-01 6.01687e+05 173  6.67035
RAND(0, 300, 3) | 1.100964 9.26871e-17 4.52180e-01  1.73694e+03 17  0.48ED2
RAND(0,300,5) | 0.814907 1.63479e-08 4.03250e-01  3.64533e+03 24 598083
RAND( 0,300, 10) | 4.927159 7.82831e-13 4.41231e-01 1.81971e+04 24  4.83016
RAND(0, 300, 20) | 2.295587 2.25558e-06 4.51253e-01 7.10335e+04 72  1.28625
RAND(0,300,30) | 1.310145 1.80424e-08 4.67756e-01 1.64262e+05 76  1.44023
RAND( 0, 300, 50) * [4.05705e-01]

RAND( 0, 300, 100) * [2.48154e-01]

W 0 (D D

[1]
T

™ D D

143
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Table 2 Performance of the enumerative method for solving TestIEnab 2.

distributed in the interval§0, 1], [0,10], [0,100, and[0,300. These problems are
denoted by RANDO, m,n), where 0 andn are the end-points of the interval, and
represents the dimension of the problem, i.e., the matAcB8sC € R™". We have
considerech = 3,5, 10,20,30,50, and 100. For the second test, called Test Problems
2,C ¢ Swas chosen such that the resulting QEICP is not co-hyperbolparticular,
C has the following structure:
—E —h
C= |:_gT Cnn:| )

whereE € R("1x(-1) js 3 square matrix with randomly generated elements in the
interval[0,m], h € R"~! andg € R"~! are vectors with randomly generated elements
in the same interval, and the element = (m/2)? + 1. The matriceA andB were
chosen as in the first case.

8.1 Performance of the enumerative method

Tabled 1 anf]2 report the computational experience whemgphest Problems 1 and

2, respectively. The enumerative method was run with treraoices; = 10~° and

& = 107%. In these tables, we have reported the computed value ofigeewalue,
the value of the functiorf derived at the solution, the value of the lower and upper
bounds computed as in Sect[dn 3, the number of nodes enweddnathe algorithm,
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and the CPU time in seconds. The symbol * indicates that thenenative algorithm
was not able to solve the problem, i.e., the algorithm at¢hihe maximum number
of iterations, fixed agmax = 500. In this case we include the value of the objective
function for the best stationary point. The value zero in¢bkimn titled “Nodes”
indicates that a solution to QEICP was found at the root nedha first computed
stationary point and without applying the branching prazedNote that the greater
computational effort, i.e., the larger number of exploredes, in solving Test Prob-
lems 2 is due to the more complex structure of the ma&rix

As a benchmark for comparison, we solved these same prohigimg BARON
(Branch-And-Reduce Optimization Navigator; seel [26]),iakhis an optimization
solver for the global solution of algebraic nonlinear paogs and mixed-integer non-
linear programs. This software package implements a brandhcut algorithm, en-
hanced with a variety of constraint propagation and du#ithniques for reducing
ranges of variables in the course of the algorithm. The codsdlving the nonlinear
problemNLP; given in [12) for both Test Problems 1 and 2 was implemented in
the General Algebraic Modeling Systems (GAMS) language [Sp and the solver
BARON was used with default options. The numerical resudtsTest Problems 1
are shown in Tablgl3, while those for Test Problems 2 areaijspl in Tablé¥. We
use the notation * to indicate that BARON was not able to findlaton to QEICP.

Tabled1 anfll3 display the computational experience forAiegilems 1. All the
problems were solved efficiently with both the enumerativethod and BARON.
In particular, we note in Tablgl 1 that almost all the problemgse solved at the
root node, thus suggesting the effectiveness of the NLP dtation presented in
(I8). The last two test problems were solved with only onetten of the proposed
enumerative method.

Comparing Tablesl2 arid 4 for Test Problems 2, we see that tireexative al-
gorithm fails only two times in finding a solution versus sevanes for BARON.
Moreover, the computational time for the enumerative megitias comparable with,
but in general smaller than, that required by BARON.

8.2 Performance of the semi-smooth method

The same test problems were solved by using the semi-sm@owttoN algorithm; the
complementarity constraints were represented by using thet Fischer-Burmeister
function and the min function (see Sectigh 5). Talbiles 5[dndeSemt the results
for Test Problems 1 and 2, respectively. The starting poext whosen ag = 1,
(x,y) = (1/2n,...,1/2n),w= (AA +B)y+Cx, t = AX—y. Itis well-known that the
semi-smooth Newton algorithm is very sensitive to the chaitthe starting point.
Thus, numerical experiments were also performed wheredftegs of the simplex
were taken as starting points. In this particular case, énfopmance of the algorithm
turned out to be similar for all choices of the starting ppartd hence we have only
reported the results for the first choice. In Taljles 5[dnd 6repert the value of the
computed eigenvalue, the number of iterations taken by lth@ithm to converge,
and the CPU time in seconds. The notation “GJ singular” iagis that the algorithm
terminated unsuccessfully with the singularity of the &egeneralized Jacobian.
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Problem A f CPU
RAND(O, 1, 3) 0.580550 3.49656e-15  3.86000e-(
RAND( O, 1, 5) 0.604048 8.56266e-12  1.50000e-Q

RAND(0, 1, 10) 0.638287 8.21710e-14  2.00000e-Q
RAND( 0, 1, 20) 0.670098 1.76270e-13  1.62000e-Q
RAND( 0, 1, 30) 0.688537  7.13992e-14  1.91000e-Q
RAND( 0, 1, 50) 0.492137  1.59410e-11  2.00000e-Q
RAND( 0, 1, 100) 0.020337 5.83765e-11  3.39100e+
RAND( 0, 10, 3) 0.116253  1.93421e-12  1.84000e-Q
RAND( 0, 10, 5) 0.071066  1.78546e-13  1.67000e-Q
RAND( 0, 10, 10) 0.113500 6.48410e-14  2.29000e-
RAND( 0, 10, 20) 0.105702  2.40212e-10  1.63000e-Q
RAND( 0, 10, 30) 0.099982  4.04072e-12  1.93000e-(
RAND( 0, 10, 50) 0.087719  1.86553e-13  1.37000e-Q
RAND(0, 10, 100) | 0.004859 1.58826e-10  1.53500e+
RAND( 0, 100, 3) 0.020546  1.23185e-16  1.75000e-(
RAND( 0, 100, 5) 0.013835 3.51415e-19  1.73000e-Q
RAND(0, 100, 10) | 0.021313  1.04600e-14  1.53000e-Q
RAND( 0, 100, 20) | 0.012589 1.56146e-15  1.61000e-Q
RAND( 0, 100, 30) | 0.008782 3.41173e-10  2.38000e-Q
RAND( 0, 100, 50) | 0.007166 4.50590e-10  3.17000e-Q
RAND( 0, 100, 100) | 0.000357 5.02497e-10  7.02000e-(
RAND( 0, 300, 3) 0.003900 4.55744e-18  1.47000e-Q
RAND( 0, 300, 5) 0.004200 1.37019e-23  1.42000e-Q
RAND( 0, 300, 10) | 0.004485 1.50219e-12  1.49000e-Q
RAND( 0, 300, 20) | 0.002689  7.00246e-12  2.41000e-Q
RAND( 0, 300, 30) | 0.002670 5.06612e-10  1.76000e-Q
RAND( 0, 300, 50) | 0.005649 6.26275e-13  1.55000e-(
RAND( 0, 300, 100) | 0.000205 3.09113e-10  6.45100e+

SR PP PRPRPRPRPRRPRPRRPRPRRORRPRRPRRORRPRPRRPE PR

Table 3 Performance of BARON for solving Test Problems 1.

Tabledb andl6 also provide a comparison for the performahtteecalgorithm
when using the Fischer-Burmeister function versus the omiction for representing
the complementarity constraints. If we consider the nunolbéimes that a solution
was found, the use of the min function seems to be preferabl@est Problems 1,
while the use of the FB function works better in solving Tesitifems 2.

Note that the semi-smooth method is faster than the enuiveegorithm for
obtaining a solution, but on the other hand, it often terr@sainsuccessfully with
the singularity of the Generalized Jacobian.

8.3 Performance of the hybrid method

For all the test problems for which the enumerative methgdired more than one
node for finding a solution, we applied the hybrid method psmal in Sectiohl6.
This algorithm was implemented by using both the FishemBister and the min
functions. The values of the toleran@sinde, used to switch from the enumerative
method to the semi-smooth Newton method were both set td. or the semi-
smooth Newton algorithm, the values of the tolerances tmiteate the algorithm
were taken as; = 108 ande, = 10°6. The maximum number of iterations for the
semi-smooth method was fixed as 100. The results for TestdPnstd and 2 are sum-
marized in TableEl7 arld 8, respectively, where we report déheevof the computed
eigenvalue, the number of times that the semi-smooth Newtetihod was called,
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Problem A f CPU
RAND(O, 1, 3) 0.553862 1.16923e-13  4.43000e-01
RAND( O, 1, 5) 0.820147 1.84665e-11  1.53000e-01
RAND( 0, 1, 10) 0.703152 5.83075e-11  2.00000e-01
RAND( 0, 1, 20) 1.157398  7.97059e-17  7.26500e+00
RAND( 0, 1, 30) 0.987340 1.38197e-19  4.72100e+00
RAND( 0, 1, 50) *

RAND( 0, 1, 100) *

RAND( 0, 10, 3) 1.440809 5.73612e-13  1.07100e+00
RAND( 0, 10, 5) 1.713643  1.04554e-13  7.15000e-01
RAND( 0, 10, 10) 0.879084  1.54890e-11  1.96000e-01
RAND( 0, 10, 20) 1.922596  1.79492e-18  1.22591e+02
RAND( 0, 10, 30) 0.967767 6.21467e-20  9.28900e+00
RAND( 0, 10, 50) 1591280 3.48178e-10  3.88145e+(2
RAND( 0, 10, 100) *

RAND( 0, 100, 3) 0.805417 1.15432e-13  3.64000e-01
RAND( 0, 100, 5) 1597662  4.23887e-12  1.71000e-01
RAND( 0, 100, 10) | 2.386302 4.04346e-12  3.62000e-01
RAND( 0, 100, 20) | 1.751899 1.84497e-10  4.96000e-01
RAND( 0, 100, 30) | 1.218751 4.92004e-23  6.54917e+02
RAND( 0, 100, 50) *

RAND( 0, 100, 100) *

RAND( 0, 300, 3) 1.100964  1.33835e-27  2.43300e+00
RAND( 0, 300, 5) 0.814898 3.07773e-14  1.87000e-01
RAND( 0, 300, 10) | 1.325918 4.43267e-11  9.51000e-01
RAND( 0, 300, 20) | 1.684025 3.50538e-10 5.38800e+00
RAND( 0, 300, 30) | 2.043501 7.55092e-10  7.33890e+02
RAND( 0, 300, 50) *

RAND( 0, 300, 100) *

Table 4 Performance of BARON for solving Test Problems 2.

which we indicate as “Ntime”, the number of nodes enumeratethe algorithm,
and the CPU time in seconds. The symbol * indicates that ta@fithe semi-smooth
Newton method was not helpful in finding a solution.

We observe that the additional use of the semi-smooth Newtetihod allows
us to find a solution by enumerating a fewer number of hodesnk@ problems,
the semi-smooth method with the use of the Fischer-Bureagighction was called
only once. This happens seven times when the min functidmisen. However, even
when the hybrid method solves both the minimization probMr® 4(k) and applies
the semi-smooth method for sorkgin general, the performance in terms of CPU
time improves.

We also note that the use of the hybrid method was not helpffihding a so-
lution for five problems by using the Fischer-Burmeisterdiion and in four cases
with the use of the min function. Moreover the min functiorswet able to solve two
problems within the given number of iterations, while thisigtion does not occur
for the Fischer-Burmeister function. So in general, thelés-Burmeister function
appears to perform better than the min function.

We conclude that the hybrid method with the Fischer-Burteeiinction im-
proves over the enumerative method and is recommendeddtigardor solving the
QEICP withA € PD andC ¢ &, via the equivalent EiCP.

As discussed before, the algorithm always finds a positieeltatic complemen-
tary eigenvalue for QEICP. If we are interested in a negagigenvalue, then the
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FB function min function
Problem A niter CPU A niter CPU
RAND(O, 1, 3) 0.540591 11 1.79230e-02 0.747744 8 1.16965e-02
RAND( 0, 1, 5) 0.832908 42 1.01189e-02 0.409159 7 1.30902e-0
RAND( 0, 1, 10) 0.305448 12 4.54200e-08 0.231762 7 1.77044e-03
RAND( 0, 1, 20) * GJ singular 0.108348 7 3.16456e-0
RAND( 0, 1, 30) 0.483898 55 6.20506e-02 0.075831 6 5.60512e-0
RAND( 0, 1, 50) * GJ singular * GJ singular
RAND( 0, 1, 100) 0.043377 37 3.33108e-01 * GJ singular
RAND( 0, 10, 3) 0.084907 17 5.12231e-08 0.054726 5 8.87787e-04
RAND( 0, 10, 5) 0.045114 20 4.22854e-08 0.942878 7 1.02378e-0
RAND( 0, 10, 10) 0.028512 26 7.31569e-08 0.082063 6 2.07664e-0
RAND( 0, 10, 20) * GJ singular 0.037174 13 6.32527e-03
RAND( 0, 10, 30) * GJ singular 0.020982 6 4.06817e-0
RAND( 0, 10, 50) * GJ singular 0.009154 5 8.86932e-0
RAND( 0, 10, 100) * GJ singular * GJ singular
RAND( 0, 100, 3) * GJ singular 0.008239 6 8.56142e-04
RAND( 0, 100, 5) 0.017293 31 5.93911e-08 0.023631 5 8.67260e-04
RAND( 0, 100, 10) * GJ singular 0.001904 6 1.49119e-03
RAND( 0, 100, 20) * GJ singular 0.000998 6 2.73863e-0
RAND( 0, 100, 30) | 0.000663 16 1.44868e-02 0.001345 5 3.60375e-0
RAND( 0, 100, 50) | 0.000406 16 3.86470e-02 * GJ singular
RAND( 0, 100, 100) * GJ singular * GJ singular
RAND( 0, 300, 3) 0.002543 35 7.36188e-08 0.002386 6 8.47589e-04
RAND( 0, 300, 5) * GJ singular 0.002880 5 1.12000e-0
RAND( 0, 300, 10) * GJ singular 0.000639 6 1.59596e-0
RAND( 0, 300, 20) | 0.000339 17 9.84050e-08 0.000339 5 2.25753e-0
RAND( 0, 300, 30) | 0.000217 16 1.47687e-02 0.000374 5 4.27258e-0
RAND( 0, 300, 50) * GJ singular 0.000289 5 8.31467e-0
RAND( 0, 300, 100) * GJ singular * GJ singular

Table 5 Performance of the semi-smooth Newton method for solvirgj Peoblems 1.

matrix H should be used instead of the mat@xin the t-dimensional EiCP. The
algorithmic process is similar witB replaced by-B.

8.4 Computing a positive eigenvalue for EICP

We present the numerical performance of the argumentsmesben Sectiofl7 for
computing a positive complementary eigenvaluéor the EiCP [(1)-f(#). The enu-
merative and the hybrid methods proposed in this paper gréedfor solving the

QEICP@,0,—C) whereB is the identity matrix and

lel
©- {9 H]
wheree € R"1 is a vector of onesd = RAND(O,mn—1) — (m+1) In_1, In_1
denotes the identity matrix of order- 1, andg € R"~1 is a null vector. Note tha ¢
PD and-C ¢ &, then QEICPB,0,—C) has a solution witi > 0 and by Theorem 8
the EiCP(B,C) has a positive complementary eigenvaluelégqué.
Table$® and 10 report the computational experience whemgdDEICPB,0, —C)

by the enumerative and the hybrid methods with the same salfi®lerances used
for the test problems in the previous subsections. Also is ¢thse, the use of the

hybrid method largely reduces the number of iterations s&ag to find a solution
and it is greatly recommended for computing positive eigéres of EiCP.
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FB function min function

Problem A niter CPU A niter CPU
RAND(0, 1, 3) 0.553862 10 2.72663e-02 0.553862 20 2.97779e-02
RAND( 0, 1, 5) 0.820148 7 1.83033e-03 0.820148 4 1.35607e-0
RAND( 0, 1, 10) 0.703165 20 8.45372e-03 * GJ singular
RAND( 0, 1, 20) * GJ singular 1.157398 18 1.71405e-02
RAND( 0, 1, 30) 1.033856 26 5.98098e-02 1.033856 42 4.69800e-02
RAND( 0, 1, 50) 1.158910 97 4.71429e-01 * GJ singular
RAND( 0, 1, 100) * GJ singular * GJ singular
AND( 0, 10, 3) 1.440810 7 2.79211e-03 1.440810 7 1.17902e-0
RAND( 0, 10, 5) 1.713642 7 1.47239e-038 1.713642 5 7.19302e-04
RAND( 0, 10, 10) 0.864754 5 3.03672e-03 0.864754 4 1.61223e-0
RAND( 0, 10, 20) * GJ singular * GJ singular
RAND( 0, 10, 30) * GJ singular * GJ singular
RAND( 0, 10, 50) * GJ singular * GJ singular
RAND( 0, 10, 100) * GJ singular * GJ singular
AND( 0, 100, 3) 0.537246 11 2.76645e-03 * GJ singular
RAND( 0, 100, 5) 0.715387 4 1.02165e-03 0.715387 4 6.18377e-04
RAND( 0, 100, 10) 1.614171 7 2.23232e-03 1.614171 6 1.53910e-03
RAND( 0, 100, 20) * GJ singular * GJ singular
RAND( 0, 100, 30) * GJ singular * GJ singular
RAND( 0, 100, 50) * GJ singular * GJ singular
RAND( 0, 100, 100) * GJ singular * GJ singular
AND( 0, 300, 3) 1.100964 14 3.57641e-08 1.100963 6 2.93524e-02
RAND( 0, 300, 5) 0.814898 5 1.10761e-03 0.814898 4 4.84952e-04
RAND( 0, 300, 10) | 1.513050 7 3.52424e-03 1.513050 6 1.60881e-0
RAND( 0, 300, 20) * GJ singular * GJ singular
RAND( 0, 300, 30) * GJ singular * GJ singular
RAND( 0, 300, 50) * GJ singular * GJ singular
RAND( 0, 300, 100) * GJ singular * GJ singular

Table 6 Performance of the semi-smooth Newton method for solvirgj Peoblems 2.

FB function min function

Problem A Ntime  Nodes CPU A Ntime  Nodes CPU
RAND( 0, 300, 50) | 0.005113 1 0 7.71793e-01 0.005113 1 0 6.99095e-01
RAND( 0, 300, 100) | 0.013423 1 0 3.99891e+01 0.013423 1 0 3.95370e+01

Table 7 Performance of hybrid method for solving Test Problems 1.

9 Conclusions

In this paper, we have proposed a hybrid method for solvia@thadratic Eigenvalue
Complementarity Problem QEICR(B,C) (6)—(3) whem is a PD matrix an€ is not
an $-matrix. These hypotheses seem to be quite realistic irtipead he algorithm
combines a tree search enumerative method with a fast aatidemi-smooth New-
ton algorithm. The method can also be applied to compute @iygsigenvalue of
the EiCPB,C) ()-({@) wherBc PD andC' €S, i.e.,—C ¢ S. Computational expe-
rience shows that the hybrid enumerative algorithm is cefifieient for solving the
QEICP. As discussed ifi][4], the use of such an approach foE®Hiith other cones,
different fromR" , is certainly an interesting subject of future researchttfexmore,
many applications lead to more general eigenvalue compitarity problems, where
the investigation of such approaches seems to be worthtehalersue in future stud-
ies.
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FB function min function
Problem A Ntime  Nodes CPU A Ntime  Nodes CPU
RAND( 0, 1, 3) 0.553862 1 0 2.13562e-01 0.553862 1 0 3.74785e-01)
RAND( 0, 1, 10) 0.703165 1 0 5.46687e-01 0.703165 9 8 2.38656e+00
RAND( 0, 1, 20) 1.157398 1 0 4.66968e-01 1.157398 1 0 4.27643e-01
RAND( 0, 1, 50) 1.088287 1 0 4.90474e+00 1.158910 5 4 1.30513e+01
RAND( 0, 1, 100) 1.067021 34 *34 2.64755e+02 1.067021 34 *34 2.62171e+02
RAND( 0, 10, 5) 1.715031 1 0 8.62953e-02 1.715031 1 0 7.20144e-02
RAND( 0, 10, 10) 0.899637 1 0 1.89607e-01 0.864754 1 0 1.91404e-01
RAND( 0, 10, 20) 2.600551 22 22 1.86157e+0[L 2.600551 8 7 7.29273e+00
RAND( 0, 10, 30) 0.967767 20 19 3.57694e+01 1.055296 17 16 2.93933e+01
RAND( 0, 10, 50) 1.432682 31 *32 1.78146e+02 1.432682 31 *32 1.78071e+02
RAND( 0, 10, 100) 1.786507 33 *34 5.31730e+02 1.786507 33 *34 5.42240e+02
RAND( 0, 100, 5) 1.078917 1 0 1.75172e-01 1.597674 1 0 1.66163e-01
RAND( 0, 100, 10) 1.762110 1 0 8.72616e-01 1.573841 1 0 8.68189e-01]
RAND( 0, 100, 20) 1.760173 28 32 5.96798e+0[L 1.496242 2 1 8.66096e+00Q
RAND( 0, 100, 30) | 6.665640 24 26 7.90853e+0[L 6.665640 24 26 8.74352e+01
RAND( 0, 100, 50) | 3.077892 31 36 2.41082e+0R 3.077891 31 36 2.79176e+02
RAND( 0, 100, 100) | 1.081376 156 *173 6.32093e+0B3 1.081376 156 *173 6.39869e+03
RAND( 0, 300, 3) 1.100964 6 9 6.00009e-01 1.100964 6 9 5.31684e-01
RAND( 0, 300, 5) 0.814907 12 *24 6.07113e+00 0.814898 1 0 3.85505e-01]
RAND( 0, 300, 10) 1.369286 1 0 2.82615e+00 1.513050 10 9 2.32130e+01
RAND( 0, 300, 20) | 1.247195 36 67 1.22568e+0p 1.319769 1 1 3.57244e+0Q
RAND( 0, 300, 30) 1.309542 35 48 1.32772e+0R 1.309542 35 48 1.32300e+02
RAND( 0, 300, 50) | 1.311051 150 267 1.16466e+03 * [4.05705e-01]
RAND( 0, 300, 100) | 1.303152 327 395 9.03701e+03 * [2.48154e-01]
Table 8 Performance of hybrid method for solving Test Problems 2.
Problem A f | u Nodes CPU
RAND(O, 1, 3) 1.000008  1.24565e-10 1.00000e+00  8.88412e+00 0 2.00I 9e-
RAND(O0, 1, 5) 1.000029  6.11137e-10 1.00000e+00  1.97330e+01 0 7.128B3%e-
RAND( 0, 1, 10) 1521117  9.71181e-15 1.00000e+00  6.79853e+01 0 1.170173e-
RAND( 0, 1, 20) 2.656284  1.10049e-15 1.00000e+00 2.51204e+02 0 4.498b7e-
RAND( 0, 1, 30) 3.493475  1.03825e-13  1.00000e+00  5.60503e+02 0 4.530B8e-
RAND( 0, 1, 50) 4752954  7.62902e-10  1.00000e+00 1.56119e+03 0 3.40887e+
RAND( 0, 1, 100) 6.907058  3.76504e-08  1.00000e+00  6.15504e+03 1 3.12031e+
RAND( 0, 10, 3) 1.000009  1.24475e-10 1.00000e+00 2.20252e+01 0 7.04953e-
RAND( 0, 10, 5) 2.446982  3.39458e-14  1.00000e+00  8.70900e+01 0 1.2682D5e-
RAND( 0, 10, 10) 5.824257  6.83614e-12  1.00000e+00  4.55743e+02 0 5.6 7e-
RAND( 0, 10, 20) 9.183330 5.41627e-09  1.00000e+00  2.13455e+03 1 3.25088e+
RAND( 0, 10, 30) 11.536522 1.93411e-08 1.00000e+00  4.98409e+03 0 2.13687e
RAND( 0, 10, 50) 15.243998 4.98166e-09  1.00000e+00  1.42790e+04 13 7.23060
RAND( 0, 10, 100) 1.000011 6.04386e-11  1.00000e+00 5.86325e+04 21 3.59629e
RAND( 0, 100, 3) 2.633042  3.65720e-16  1.00000e+00  1.19520e+02 0 7.54984e-
RAND( 0, 100, 5) 10.565073  1.40079e-08  1.00000e+00  8.37421e+02 3 9.18009%
RAND( 0, 100, 10) 1.000023  3.14679e-10 1.00000e+00  4.63278e+03 11 1.44@16p
RAND( 0, 100, 20) 1.000033  6.10497e-10 1.00000e+00 2.07118e+04 15 5.68845e
RAND( 0, 100, 30) 1.000006  1.87741e-11  1.00000e+00  4.84755e+04 19 7.35683p
RAND( 0, 100, 50) 1.000046  1.10611e-09 1.00000e+00  1.40942e+05 19 2.78083e
RAND( 0, 100, 100) | 1.000069  2.44184e-09  1.00000e+00  5.90449e+05 23 1.05081e
RAND( 0, 300, 3) 10.784435 1.27460e-13  1.00000e+00  6.74123e+02 0 3.887b4e
RAND( 0, 300, 5) 1.000018  2.49321e-10 1.00000e+00  2.28424e+03 9 2.36084e+
RAND( 0, 300, 10) 1.000071  3.08010e-09 1.00000e+00  1.34052e+04 13 4.14812p
RAND( 0, 300, 20) 1.000004  9.08293e-12  1.00000e+00  6.68949e+04 19 7.69a37e
RAND( 0, 300, 30) 1.000038  7.82981e-10 1.00000e+00  1.50981e+05 19 1.31027e
RAND( 0, 300, 50) 1.000048  1.20049e-09 1.00000e+00  4.37408e+05 21 3.18a31e
RAND( 0, 300, 100) | 1.000065  2.20512e-09 1.00000e+00 1.76608e+06 23 8.84026p

Table 9 Performance of the enumerative method for solving QERC®(-C).
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