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Abstract The Quadratic Eigenvalue Complementarity Problem (QEiCP)is an ex-
tension of the Eigenvalue Complementarity Problem (EiCP) that has been introduced
recently. Similar to the EiCP, the QEiCP always has a solution under reasonable hy-
potheses on the matrices included in its definition. This hasbeen established in a
previous paper by reducing a QEiCP of dimensionn to a special 2n-order EiCP. In
this paper we propose an enumerative algorithm for solving the QEiCP by exploiting
this equivalence with an EiCP. The algorithm seeks a global minimum of a special
Nonlinear Programming Problem (NLP) with a known global optimal value. The al-
gorithm is shown to perform very well in practice but in some cases terminates with
only an approximate optimal solution to NLP. Hence, we propose a hybrid method
that combines the enumerative method with a fast and local semi-smooth method to
overcome the latter drawback. This algorithm is also shown to be useful for com-
puting a positive eigenvalue for an EiCP under similar assumptions. Computational
experience is reported to demonstrate the efficacy and efficiency of the hybrid enu-
merative method for solving the QEiCP.
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1 Introduction

Given matricesB, C ∈ R
n×n, the Eigenvalue Complementarity Problem (denoted

EiCP(B,C); see, e.g., [21] and [22]), consists of finding(λ ,x,w) ∈R×R
n×R

n such
that

w = λ Bx−Cx (1)

w ≥ 0,x ≥ 0 (2)

x⊤w = 0 (3)

e⊤x = 1, (4)

with e = (1,1, . . . ,1)⊤ ∈ R
n, where constraint (4) is introduced, without loss of gen-

erality, to prevent thex-component of a solution to vanish. Usually, the matrixB is
assumed to be positive definite (PD). This problem has many applications in engi-
neering (see [19], [22]). If a triplet(λ ,x,w) solves EiCP, then the scalarλ is called a
complementary eigenvalue andx is a complementary eigenvector associated withλ
for the pair(B,C). The conditionx⊤w = 0 and the nonnegativity requirements onx
andw imply that eitherxi = 0 or wi = 0 for 1≤ i ≤ n. These pairs of variables are
called complementary. The EiCP always has a solution provided that the matrixB is
PD [13].

If the matricesB andC are both symmetric, then EiCP is called symmetric and
reduces to the problem of finding astationary point (SP) of the so-called Rayleigh
Quotient function on the simplexΩ (see, e.g. [21], [22]), which is essentially a SP of
the following standard quadratic fractional program:

Maximize
x⊤Cx
x⊤Bx

subject toe⊤x = 1 (5)

x ≥ 0.

A number of techniques have been proposed for solving EiCP and its extensions;
see, e.g., [1], [2], [9], [10], [11], [12], [13], [14], [18],[20], and [24]. As expected,
the symmetric EiCP is easier to solve.

Recently an extension of the EiCP has been introduced in [23], where some re-
lated applications are highlighted, which is called theQuadratic Eigenvalue Com-
plementarity Problem (QEiCP). This problem differs from the EiCP through the
existence of an additional quadratic term inλ . Its formal definition follows. Given
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A,B,C ∈ R
n×n, QEiCP(A,B,C) consists of finding(λ ,x,w) ∈ R×R

n ×R
n such that

w = λ 2Ax+λ Bx+Cx, (6)

w ≥ 0,x ≥ 0, (7)

x⊤w = 0, (8)

e⊤x = 1, (9)

where, as before,e = (1,1, . . . ,1)⊤ ∈ R
n. Note that QEiCP(A,B,C) reduces to

EiCP(B,−C) whenA = 0. Furthermore, finding a positive complementary eigenvalue
for EiCP(B,C) is equivalent to computing a nonzero quadratic complementary eigen-
value of QEiCP(B,0,−C). Theλ -component of a solution to QEiCP(A,B,C) is called
a quadratic complementary eigenvalue for A,B,C, and thex-component is called a
quadratic complementary eigenvector for A,B,C associated withλ .

The case of the symmetric QEiCP, i.e., whenA,B, andC are symmetric matri-
ces, andC = −I, whereI is the identity matrix, has been analyzed in [8], where
each instance of QEiCP withn× n matrices is related to an instance of EiCP with
2n×2n matrices. In this paper, we remove the symmetry assumption,and focus on
the general QEiCP. In [3], a relation between ann-dimensional QEiCP and certain 2n-
dimensional instances of EiCP was introduced. This “reduction” of QEiCP to EiCP
was suggested mainly with a theoretical purpose in mind, namely, to establish nec-
essary and/or sufficient conditions onA,B,C that ensure the existence of solutions
to QEiCP(A,B,C). In particular, QEiCP has positive and negative quadraticcomple-
mentary eigenvalues ifA∈ PD andC is not anS0-matrix, i.e., there exists no 06= x≥ 0
such thatCx ≥ 0 [3]. Note that these considerations should be considered as an ex-
tension of the sufficient conditions for the symmetric QEiCP, asC = −I is not anS0

matrix. Furthermore, these conditions imply that a non-symmetric EiCP(B,C) has at
least a positive complementary eigenvalue ifB ∈ PD andC⊤ is anS-matrix, i.e., there
exists ax ≥ 0 such thatC⊤x > 0. This result is proved later in this paper along with
a discussion on its importance in practice. Recall that someapplications of the EiCP
require the complementary eigenvalue to be positive [19].

Another set of sufficient conditions for the existence of solutions to QEiCP, called
co-regularity and co-hyperbolicity, was proposed in [23]. An enumerative method
and a hybrid algorithm for QEiCP, combining this enumerative method with a semi-
smooth approach, have been introduced in [9] and [10]. Thesemethods are able
to solve the QEiCP when the co-regularity and co-hyperbolicity conditions are as-
sumed to hold. In [3], the numerical solution of QEiCP by solving its equivalent
2n-dimensional EiCP referred to above has been discussed. Variational Inequality
(VI) and Nonlinear Programming (NLP) formulations have been introduced for this
purpose. Numerical experiments reported in [3] clearly indicate that the NLP formu-
lation seems to be more effective, particularly since the global optimal value is known
to be zero. In this paper, we propose an enumerative method for finding a global min-
imum of such an NLP that exploits this desirable feature of NLP. This algorithm is
based on ideas similar to the ones discussed in [9] and it computes stationary points
of the objective function of NLP until it finds one that achieves the known zero op-
timal value. As in [10], this method can be combined with the semi-smooth method
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similar to the one introduced in [23] in order to enhance its computational efficiency.
Numerical results included in the paper indicate the efficacy and efficiency of the hy-
brid (enumerative plus semi-smooth) method for the solution of the QEiCP whenA ∈
PD andC is not anS0-matrix.

The organization of the remainder of this paper is as follows. In Section 2, the
2n-dimensional EiCPs that are equivalent to the QEiCP and their NLP formulations
are introduced. The enumerative method is described in Sections 3 and 4. The semi-
smooth algorithm for the 2n-dimensional EiCPs is introduced in Section 5. The hy-
brid approach combining the enumerative and the semi-smooth methods is discussed
in Section 6. The computation of a positive complementary eigenvalue for an EiCP
is discussed in Section 7. Numerical results are reported inSection 8, and some con-
cluding comments are given in Section 9.

2 A Nonlinear Programming Formulation

Consider QEiCP(A,B,C) with A,B,C ∈ R
n×n and assume thatA is a PD matrix and

C is not anS0-matrix, that is

(i) x⊤Ax > 0 for all x 6= 0
(ii) there is no 06= x ≥ 0 such thatCx ≥ 0.

Note that it is relatively easy to verify whether a given matrix is PD orS0. TheLDL⊤

decomposition of the symmetric form ofA is required for checking the first property
while the solution of a linear program suffices for checking the second property.

As in [3], we introduce the 2n-dimensional EiCP(D,G) and EiCP(D,H) formula-
tion, where

D =

[
A 0
0 I

]
, G =

[
−B −C

I 0

]
, H =

[
B −C
I 0

]
, (10)

with I being the identity matrix of ordern. Note that the matrixD of theλ -term of
the two EiCPs is PD. This means that these EiCPs have at least one solution [13].

In order to see the implementation of solving QEiCP by findinga solution to these
EiCPs, we write the EiCP(D,G) as follows:

λ
[

A 0
0 I

][
y
x

]
−
[
−B −C
I 0

][
y
x

]
=

[
w
t

]
(11a)

e⊤y+ e⊤x = 1 (11b)

y⊤w = x⊤t = 0 (11c)

x,y,w, t,λ ≥ 0. (11d)

Then the following result holds:

Theorem 1 Let A ∈ PD and C /∈ S0. If (λ̄ , x̄, ȳ) is a solution of EiCP(D,G) then:

(i) λ̄ > 0 and ȳ = λ̄ x̄.
(ii) λ̄ is a quadratic complementary eigenvalue of QEiCP and (1+ λ̄ )x̄ is an asso-

ciated eigenvector.
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Proof See Proposition 1 in [3].

Note that a similar result holds for EiCP(D,H) with −λ̄ instead of̄λ in (ii) (however,
the eigenvector has the same form). Therefore, ifA ∈ PD andC /∈ S0, the QEiCP
has at least a positive and a negative quadratic complementary eigenvalue, which can
be computed by solving EiCP(D,G) and EiCP(D,H), respectively. In this paper, we
concentrate our attention solely on the computation of a positive quadratic comple-
mentary eigenvalue since the case of a negative eigenvalue is similar.

Consider again the EiCP (11). By Theorem 1,t = 0 in any solution of the EiCP.
If we introduce the vectorv such thatv = λ y, then we get the following Nonlinear
Programmming Formulation of the EiCP (11) introduced in [3]:

NLP1 :Minimize f (x,y,v,w,λ ) = (y−λ x)⊤(y−λ x)+ (v−λ y)⊤(v−λ y)

+ (x+ y+ v)⊤w (12a)

subject to w = Av+By+Cx (12b)

e⊤y+ e⊤x = 1 (12c)

e⊤v+ e⊤y = λ (12d)

x,y,v,w ≥ 0. (12e)

Furthermore, the following result holds [3]:

Theorem 2 Let A be strictly copositive and C /∈ S0. Then the nonlinear problem
NLP1 in (12) has a global minimum (x̄, ȳ, v̄, w̄, λ̄ ) such that f (x̄, ȳ, v̄, w̄, λ̄ ) = 0 and
(λ̄ ,(1+ λ̄)x̄) is a solution of QEiCP.

Proof See Proposition 7 in [3]. ⊓⊔

In the next two sections, we introduce an enumerative methodfor finding a global
minimum for NLP1. Since the global optimal value ofNLP1 is equal to zero, the
algorithm computes stationary points forNLP1 in a systematic way until finding one
with a null objective function value (or a value smaller thana prescribed tolerance).
These stationary points are associated with the nodes of a binary tree that is generated
according to the branching strategy defined in [13]. Bounds on the complementary
eigenvalue are required in order to generate constraints based on the Reformulation-
Linearization Technique (RLT) [25] that facilitates the search for a global minimum
of NLP1. In the next section, we discuss how these bounds and RLT constraints are
generated. The enumerative algorithm is then described in Section 4.

3 Lower and upper bounds for a quadratic complementary eigenvalue

3.1 Computing an upper bound

The next theorem provides an upper boundu for a quadratic complementary eigen-
valueλ .
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Theorem 3 Let pi = 1+∑n
j=1 (max{0,−bi j}+max{0,−ci j}) for all i = 1, . . . ,n,

and let p ∈ R
n be a vector with components pi. Then we can take

u =
p⊤ȳ

ȳ⊤Aȳ+ x̄⊤x̄
, (13)

where (x̄,ȳ) is a stationary point of the following nonlinear problem:

NLP2 :Maximize
p⊤y

y⊤Ay+ x⊤x

subject to e⊤y+ e⊤x = 1

x,y ≥ 0.

Proof If λ is a solution of EiCP(D,G), given by (11), then

∃z ∈ ∆ : λ =
z⊤Gz
z⊤Dz

, (14)

with ∆ = {z ∈ R
2n : e⊤z = 1,z ≥ 0}, z = (x,y), and withG andD given by (10).

Hence,

z⊤Gz =−y⊤By− y⊤Cx+ x⊤y = y⊤(−By−Cx+ x) (15a)

z⊤Dz = y⊤Ay+ x⊤x. (15b)

But

(−By−Cx+ x)i =
n

∑
j=1

(−bi jy j − ci jx j)+ xi

≤
n

∑
j=1

max{0,−bi j}y j +max{0,−ci j}x j + xi

≤ pi, ∀i = 1, . . . ,n,

wherepi (pi, i = 1, . . . ,n) is defined in the theorem. Since 0≤ yi ≤ 1 and 0≤ xi ≤ 1
for all i = 1, . . . ,n, thenz⊤Gz ≤ p⊤y. Now, consider the function

f (x,y) =
p⊤y

y⊤Ay+ x⊤x
. (16)

SinceA is positive definite then the expression in the denominator of (16) is strictly
convex on the simplex∆ . Hencef is pseudo-concave, [1], and any stationary point
(x̄, ȳ) of f in ∆ is a global maximum. Thus, an upper bound can be computed as
in (13). ⊓⊔
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3.2 Computing a lower bound

Consider the constraint set ofNLP1. Sinceλ is given by (12d), then a lower boundl
for λ can be computed by considering the following linear program:

LP : Minimize e⊤v+ e⊤y

subject to Av+By+Cx≥ 0

e⊤y+ e⊤x = 1

x,y,v ≥ 0.

An optimal solution toLP provides a positive lower boundl for λ , as established by
Theorems 4 and 5 below.

Theorem 4 If A is PD, then LP has an optimal solution.

Proof Let x̄, ȳ ≥ 0 such thateT x̄+ eT ȳ = 1. SinceA is PD, the system

Av+(Bȳ+Cx̄)≥ 0

v ≥ 0

has a solution [6]. HenceLP has an optimal solution, since it is feasible and the
objective function is bounded from below on its feasible set. ⊓⊔

Theorem 5 If C /∈ S0, then LP has a positive optimal value.

Proof LP has a zero optimal value if and only ify = v = 0 in any optimal solution. In
this case, there must exist anx ≥ 0 such thatCx ≥ 0 ande⊤x = 1. This is impossible
becauseC /∈ S0. ⊓⊔

Thus, the lower boundl, defined by the optimal value ofLP, exists and is strictly
positive whenA ∈ PD andC /∈ S0.

3.3 Reformulation-Linearization Technique (RLT) constraints

Based on the lower and the upper bounds onλ derived above, an additional constraint
l ≤ λ ≤ u can be added to the nonlinear problemNLP1. Furthermore, sincey = λ x
andv = λ y, the following RLT bound-factor constraints [25] can also be added:

lxi ≤ yi ≤ uxi (17a)

lyi ≤ vi ≤ uyi (17b)

l(1− xi)≤ (λ − yi)≤ u(1− xi) (17c)

l(1− yi)≤ (λ − vi)≤ u(1− yi) (17d)

for eachi = 1, . . . ,n. In (17), we consider the nonnegative product of each of the two
bound-factors associated with the variableλ (i.e., (λ − l) and(u−λ )) with each of
the two bound-factors associated with the variablexi (i.e., (xi −0) and(1− xi) for
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eachi = 1, . . . ,n), which are subsequently linearized using the substitution y = λ x. In
the same way, we consider the nonnegative products of the bound-factors associated
with the variableλ with the bound-factors of the variableyi (i.e.,(yi−0) and(1−yi)
for eachi= 1, . . . ,n) along with the substitutionv = λ y. (The bounds for the variables
x andy are derived from (11b) and (11d).) By incorporating these constraints, we
obtain the following augmented nonlinear program:

NLP3 :Minimize f (x,y,v,w,λ ) = (y−λ x)⊤(y−λ x)+ (v−λ y)⊤(v−λ y)

+ (x+ y+ v)⊤w (18a)

subject to w = Av+By+Cx (18b)

e⊤y+ e⊤x = 1 (18c)

e⊤v+ e⊤y = λ (18d)

l ≤ λ ≤ u (18e)

lxi ≤ yi ≤ uxi, ∀ i = 1, . . . ,n (18f)

lyi ≤ vi ≤ uyi, ∀ i = 1, . . . ,n (18g)

l(1− xi)≤ (λ − yi)≤ u(1− xi), ∀ i = 1, . . . ,n (18h)

l(1− yi)≤ (λ − vi)≤ u(1− yi), ∀ i = 1, . . . ,n (18i)

x,y,v,w ≥ 0. (18j)

4 An enumerative algorithm for QEiCP

In this section, we introduce an enumerative algorithm for solving the nonlinear prob-
lemNLP3, which explores a binary tree that is constructed under two jointly managed
branching strategies. The first is based on the complementarity conditions between
the variablesw andx, i.e., eitherwi = 0 or xi = yi = vi = 0 for eachi = 1, . . . ,n as
yi = λ xi andvi = λ yi for eachi = 1, . . . ,n. The second branching strategy consists
of partitioning the interval[l,u] for λ . This algorithm is based on ideas similar to the
enumerative algorithm of EiCP proposed in [13].

Define the setsI andJ that record thewi- and(xi,yi,vi)-variables that are cur-
rently set to zero, respectively. At each node of the tree we examine NLP3 with λ
constrained in the interval[l̄, ū]⊆ [l,u] along with the following constraints:

l̄xi ≤ yi ≤ ūxi, ∀ i ∈ J̄

l̄yi ≤ vi ≤ ūyi, ∀ i ∈ J̄

l̄(1− xi)≤ (λ − yi)≤ ū(1− xi), ∀ i ∈ J̄

l̄(1− yi)≤ (λ − vi)≤ ū(1− yi), ∀ i ∈ J̄

vi = yi = xi = 0, ∀i ∈ J

wi = 0, ∀i ∈ I,

wherel ≤ l̄ ≤ ū ≤ u, I ⊆ {1, . . . ,n}, J ⊆ {1, . . . ,n}, J̄ = {1, . . . ,n} \ J andI ∩ J = /0.
Consider also the setsK = I ∪ J, K̄ = {1, . . . ,n} \K and Ī = {1, . . . ,n} \ I. Then, at



On the Numerical Solution of the Quadratic Eigenvalue Complementarity Problem 9

each nodek of the binary tree, we examine the following nonlinear problem:

NLP4(k) :Minimize f (x,y,v,w,λ ) = (y−λ x)⊤(y−λ x)+ (v−λ y)⊤(v−λ y)

+ (x+ y+ v)⊤w (19a)

subject to w = Av+By+Cx (19b)

e⊤y+ e⊤x = 1 (19c)

e⊤v+ e⊤y = λ (19d)

l̄ ≤ λ ≤ ū (19e)

l̄xi ≤ yi ≤ ūxi, ∀ i ∈ J̄ (19f)

l̄yi ≤ vi ≤ ūyi, ∀ i ∈ J̄ (19g)

l̄(1− xi)≤ (λ − yi)≤ ū(1− xi), ∀ i ∈ J̄ (19h)

l̄(1− yi)≤ (λ − vi)≤ ū(1− yi), ∀ i ∈ J̄ (19i)

x,y,v,w ≥ 0 (19j)

vi = yi = xi = 0, ∀i ∈ J (19k)

wi = 0, ∀i ∈ I. (19l)

The steps of the algorithm are as follows:
—————————————————————————————————–
Algorithm 1 Enumerative algorithm
—————————————————————————————————–
⊲ Step0 (Initialization)

Set ε1 and ε2 such that 0< ε1 < ε2. Set k = 1, I = /0, J = /0 and find a sta-
tionary point(x̄, ȳ, v̄, w̄, λ̄ ) of NLP4(1). If NLP4(1) is infeasible, then QEiCP
has no solution; terminate. Otherwise, letL = {1} be the set of open nodes, set
UB(1) = f (x̄, ȳ, v̄, w̄, λ̄ ) and letN = 1 be the number of generated nodes.

⊲ Step1 (Choice of node)
If L = /0 terminate; QEiCP has no solution. Otherwise, selectk ∈ L such that
UB(k) = min{UB(i) : i ∈ L}, setL = L\{k}, and let(x̄, ȳ, v̄, w̄, λ̄ ) be the station-
ary point that was previously found at this node.

⊲ Step2 (Branching rule)
Let

θ1 = max{w̄ix̄i : i ∈ K̄}= w̄rx̄r (20)

θ2 = max{|v̄i − λ̄ ȳi|, |ȳi − λ̄ x̄i| : i ∈ J̄}. (21)

(i) If θ1 ≤ ε1 andθ2 ≤ ε2 thenλ̄ yields a quadratic complementary eigenvalue
within the toleranceε2 with (1+ λ̄ )x̄ being a corresponding quadratic eigen-
vector.

(ii) If θ1 > θ2 then branch on the complementary variables ¯wr and (x̄r, ȳr, v̄r)
associated withθ1 and generate two new nodesN +1 andN +2.
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(iii) If θ1 ≤ θ2 then partition the interval[l̄, ū] for λ̄ at nodek into [l̄, λ̃ ] and[λ̃ , ū]
to generate two new nodesN +1 andN +2, where

λ̃ =

{
λ̄ if min{(λ̄ − l̄),(ū− λ̄)} ≥ 0.1(ū− l̄)
ū+l̄
2 otherwise.

⊲ Step3 (Solve, Update and Queue)
For each ofp = N + 1 and p = N + 2, find a stationary point(x̃, ỹ, ṽ, w̃, λ̃ ) of
NLP4(p), where, ifNLP4(p) is feasible, setL= L∪{p} andUB(p)= f (x̃, ỹ, ṽ, w̃, λ̃ ).
Return to Step 1.

We remark that if the algorithm terminates successfully, then λ̄ is a quadratic
complementary eigenvalue for (A,B,C) (within the toleranceε2) and(1+ λ̄ )x̄ is the
corresponding quadratic complementary eigenvector. The convergence of Algorithm
1 follows from Theorem 4.1 in [13].

Another strategy for selecting the branching decision at each iteration could be
to compareθ1 with ε1/ε2 θ2 instead of comparing it directly withθ2. Such a scaling
strategy could help make the comparison betweenθ1 andθ2 commensurable. How-
ever, our computational experience has revealed that the proposed unscaled strategy
seems to work better for the typical practical values of the tolerancesε1 andε2 as
delineated in Section 8. Moreover, the chosen values ofε1 < ε2 induce a limited
priority-type branching strategy that suitably favors branching on the complementar-
ity restrictions to some extent, which promotes computational effectiveness.

5 A semi-smooth algorithm for QEiCP

We begin by writing the system (11) as follows:

λ
[

A 0
0 I

][
y
x

]
−
[
−B −C
I 0

][
y
x

]
=

[
w
t

]
(22a)

e⊤y+ e⊤x = 1 (22b)

yi ≥ 0, wi ≥ 0, yiwi = 0, i = 1, . . . ,n (22c)

xi ≥ 0, ti ≥ 0, xiti = 0, i = 1, . . . ,n. (22d)

SinceA ∈ PD andC /∈ S0, Theorem 1 implies thatλ > 0 in any solution, whence
λ ≥ 0 does not need to be included in the solution. Furthermore, the constraints (22c)
and (22d) are a consequence of the complementarity conditions (11c).

It is well known that complementarity constraints can be transformed into equal-
ity constraints by using suitable semi-smooth functions. We apply such a transfor-
mation to our system of inequalities, by using themin function and theFischer-
Burmeister function.

Themin function ϕmin : R2 →R is defined as

ϕmin(a,b) = min{a,b}. (23)
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This function satisfies the relation

ϕmin(a,b) = 0⇔ a ≥ 0, b ≥ 0, ab = 0. (24)

As a consequence, the complementarity constraints (22c) and (22d) can be repre-
sented by setting to zero the functionsΦ1 : R2n → R

n andΦ2 : R2n → R
n defined

by

Φ1(x, t) =




ϕmin(x1, t1)
...

ϕmin(xn, tn)


 and Φ2(y,w) =




ϕmin(y1,w1)
...

ϕmin(yn,wn)


 . (25)

Then, the system (22) is equivalent to the following system of equations:

Ψmin(x,y,w, t,λ ) = 0 (26)

with

Ψmin(x,y,w, t,λ ) =




Φ1(x, t)
Φ2(y,w)

(λ A+B)y+Cx−w
λ x− y− t

e⊤y+ e⊤x−1



. (27)

Since the functionΨmin(x,y,w, t,λ ) is semi-smooth, a solution of the system of equa-
tions can be found as in the previous approach by applying thesemi-smooth Newton
method until the following conditions are satisfied:

max{‖w̄− (λ̄A+B)ȳ−Cx̄‖,‖t̄ − λ̄ x̄+ ȳ‖}< ε1,max{‖Φ1(x̄, t̄)‖,‖Φ2(ȳ, w̄)‖}< ε2,
(28)

whereΦ1 andΦ2 are given by (25), and(x̄, ȳ, w̄, t̄, λ̄ ) is the current iterate satisfying
e⊤ȳ+ e⊤x̄ = 1. At each Newton iteration a new direction is computed via

GJ(x̄, ȳ, w̄, t̄, λ̄ )




dx

dy

dw

dt

dλ



=




−min{x, t}
−min{y,w}

w̄− (λ̄ A+B)ȳ−Cx̄
t̄ − λ̄ x̄+ ȳ

0



. (29)

The Clarke generalized JacobianGJ(x̄, ȳ, w̄, t̄, λ̄ ) is given by

GJ(x̄, ȳ, w̄, t̄, λ̄ ) =




Ẽ 0 0 F̃ 0
0 Ê F̂ 0 0
C (λ̄ A+B) −In 0 Aȳ

λ̄ In −In 0 −In x̄
e⊤ e⊤ 0 0 0



∈R

(4n+1)×(4n+1), (30)
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whereIn is the identity matrix of ordern, and wherẽE, F̃ , Ê, F̂ ∈ R
n×n are diagonal

matrices with the following diagonal elements:

(Ẽii, F̃ii) =






(1,0) if x̄i < t̄i
(0,1) if t̄i < x̄i

(ν̃i,1− ν̃i) if x̄i = t̄i

∀i = 1, . . . ,n, (31)

with ν̃i ∈ [0,1], and where

(Êii, F̂ii) =





(1,0) if ȳi < w̄i

(0,1) if w̄i < ȳi

(ν̂i,1− ν̂i) if ȳi = w̄i

∀i = 1, . . . ,n, (32)

with ν̂i ∈ [0,1]. In practice we usẽνi = 0 andν̂i = 0 for all 1, . . . ,n.
If GJ(x̄, ȳ, w̄, t̄, λ̄ ) is singular, then the algorithm terminates unsuccessfully. Oth-

erwise, the direction(dx,dy,dw,dt ,dλ ) is uniquely determined by (29) and the new
iterate is defined by

x̃ = x̄+ dx, ỹ = ȳ+ dy, w̃ = w̄+ dw, t̃ = t̄ + dt , andλ̃ = λ̄ + dλ , (33)

which satisfiese⊤x̃+ e⊤ỹ = 1.

The complementarity constraints (22c) and (22d) can be alsoreplaced by using
the Fischer-Burmeister functionϕFB : R2 → R defined as

ϕFB(a,b) = 0,

whereϕFB = a+ b−
√

a2+ b2, which is equal to zero if and only ifa ≥ 0, b ≥ 0,
and ab = 0. The semi-smooth Newton algorithm presented above can be used by
substituting the minimum function by the Fischer-Burmeister function. In this case,
for the definition of the Clarke generalized JacobianGJ(x̄, ȳ, w̄, t̄, λ̄ ) given in (30), the
following diagonal elements of the matricesẼ, F̃ , Ê, F̂ ∈ R

n×n are considered:

(Ẽii, F̃ii) =





(
1− x̄i√

x̄i
2+t̄i

2
,1− t̄i√

x̄i
2+t̄i

2

)
if (x̄i, t̄i) 6= 0

(
1− ξ̃i,1− η̃i

)
if (x̄i, t̄i) = 0

∀i = 1, . . . ,n, (34)

with ξ̃ 2
i + η̃2

i = 1,

(Êii, F̂ii) =





(
1− ȳi√

ȳi
2+w̄i

2
,1− w̄i√

ȳi
2+w̄i

2

)
if (ȳi, w̄i) 6= 0

(
1− ξ̂i,1− η̂i

)
if (ȳi, w̄i) = 0

∀i = 1, . . . ,n, (35)

with ξ̂ 2
i + η̂2

i = 1. In practice we use(ξ̃i, η̃i) = (1,0) and (ξ̂i, η̂i) = (1,0) for all
i = 1, . . . ,n.

We present below the proposed semi-smooth algorithm for solving the system
(22), which is valid for both the min and Fischer-Burmeisterfunction approaches.
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—————————————————————————————————–
Algorithm 2 Semi-smooth Newton algorithm
—————————————————————————————————–

⊲ Step0 (Initialization)
Let (x̄, ȳ, w̄, t̄, λ̄ ) be an initial point such thate⊤ȳ+ e⊤x̄ = 1 and letε̃1 andε̃2 be
selected positive tolerances.

⊲ Step1 (Newton direction)
Compute the diagonal matricesÊ, F̂ , Ẽ, F̃ ∈R

n×n given by (35) and (34) (or (32)
and (31)). Compute the Clarke generalized Jacobian GJ at(x̄, ȳ, w̄, t̄, λ̄ ) by using

GJ(x̄, ȳ, w̄, t̄, λ̄ ) =




Ẽ 0 0 F̃ 0
0 Ê F̂ 0 0
C (λ̄ A+B) −In 0 Aȳ

λ̄ In −In 0 −In x̄
e⊤ e⊤ 0 0 0




If GJ(x̄, ȳ, w̄, t̄, λ̄ ) is singular, stop, and terminate with an unsuccessful termina-
tion. Otherwise, find the semi-smooth Newton direction

GJ(x̄, ȳ, w̄, t̄, λ̄ )




dx

dy

dw

dt

dλ



=




−Φ1(x̄, t̄)
−Φ2(ȳ, w̄)

w̄− (λ̄A+B)ȳ−Cx̄
t̄ − λ̄ x̄+ ȳ

0




with Φ1 andΦ2 given in (25).

⊲ Step3 (Update)
Compute the new point

x̃ = x̄+ dx, ỹ = ȳ+ dy, w̃ = w̄+ dw, t̃ = t̄ + dt , andλ̃ = λ̄ + dλ

and let(x̄, ȳ, w̄, t̄, λ̄ ) = (x̃, ỹ, w̃, t̃, λ̃ ). If the conditions (28) hold, then stop with̄λ
being a quadratic complementary eigenvalue, and(1+ λ̄)x̄ being a corresponding
quadratic complementary eigenvector. Otherwise, go to Step 1.

6 A hybrid algorithm for QEiCP

As discussed in [10], the enumerative algorithm is globallyconvergent to a solution
of QEiCP. However, in many cases, the algorithm is only able to terminate with a
near-solution to QEiCP. On the other hand, the semi-smooth method is a fast local
algorithm, but lacks the global convergence feature. Hence, we can combine the good
features of both algorithms in a hybrid method based on the same ideas of a similar
procedure discussed in [10]. The steps of the hybrid method are presented below.
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—————————————————————————————————–
Algorithm 3 Hybrid algorithm
—————————————————————————————————–
⊲ Step0 (Initialization)

Let ε̄1 and ε̄2 be two positive tolerances for switching from the enumerative
method to the semi-smooth. Apply Step 0 of Algorithm 1 and letε1 < ε̄1 and
ε2 < ε̄2, whereε1 andε2 are the tolerances used in Algorithm 1. Letnmaxit be
the maximum number of iterations allowed to be performed by the semi-smooth
method (whenever it is called).

⊲ Step1 (Choice of node)
Apply Step 1 of Algorithm 1.

⊲ Step2 (Decision step)
Let (x̄, ȳ, v̄, w̄, λ̄ ) be the stationary point associated with the selected nodek and
computeθ1 andθ2 in (20) and (21), respectively.
(i) If θ1 ≤ ε1 andθ2 ≤ ε2 stop with a solution of QEiCP.
(ii) If θ1 ≤ ε̄1 andθ2 ≤ ε̄2 then apply Algorithm 2. If Algorithm 2 terminates with

a solution(x∗,y∗,w∗, t∗,λ ∗) then stop and set̄λ = λ ∗ andx̄ = x∗. Otherwise,
Algorithm 2 terminates without success (GJ(x̄, ȳ, w̄, t̄, λ̄ ) is singular or the
number of iterations is equal tonmaxit); go to Step 2(iii).

(iii) Apply Steps 2 and 3 of Algorithm 1 by continuing with thenodek and the
solution(x̄, ȳ, v̄, w̄, λ̄ ) given at the beginning of this step, but skip Step 2(i)
and the last instruction of Step 3 of Algorithm 1. Return to Step 1.

7 Computing a positive complementary eigenvalue for EiCP

Consider the EiCP (1)–(4). In this section, we address the problem of the existence
and computation of a positive complementary eigenvalueλ for this EiCP. In prac-
tice, such a demand occurs quite often [19]. If EiCP is symmetric, i.e.,B andC are
symmetric matrices (B is PD), then the problem can be solved as in [21]. Hence, we
consider the non-symmetric case, where at least one of the matricesB or C is not
symmetric. Furthermore, we consider the following classesof matrices:

(i) C is aV -matrix (C ∈V ) if and only if there exists an ¯x > 0 such that ¯x⊤Cx̄ > 0
(ii) C is anS-matrix (C ∈ S) if and only if there exists an ¯x ≥ 0 such thatCx̄ > 0.

The following properties hold between the above classes andthe PD andS0 classes:

Theorem 6 (i) C ∈ PD ⇒ C ∈ S ⇒ C ∈V.
(ii) C ∈ S ⇔ −C⊤ /∈ S0.

Due to this property, verifying thatC is not anS-matrix reduces to solving a linear
program. Furthermore, showing that a matrixC ∈V is equivalent to showing that the
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following nonlinear program has a feasible point ¯x with f (x̄)> 0:

Maximize
1
2

x⊤(C+C⊤)x = f (x)

subject to e⊤x = 1

x ≥ 0,

wheree is a conformable vector of ones. Despite the fact that this problem belongs
to the class of NP-hard problems [15], it is in many cases veryeasy to verify whether
a matrix belongs to the classV [11], [21]. Moreover, the following result has been
established in [21]:

Theorem 7 If C is symmetric and B ∈ PD, then EiCP(B,C) has a positive eigenvalue
if and only if C ∈V.

Furthermore, such a positive complementary eigenvalue canbe computed by apply-
ing an ascent nonlinear programming algorithm with an initial point x̄ satisfying
x̄⊤Cx̄ > 0 in order to find a stationary point to the quadratic fractional program (5)
(see [11], [21]).

Consider now the case ofB orC or both being non-symmetric. ThenC ∈V is still
a necessary condition for a positive complementary eigenvalue for EiCP, but it is no
longer sufficient. In fact,

C =

[
2 −3
1 −1

]
∈V

and the EiCP(B,C) with B being the identity matrix has no positive complementary
eigenvalue. Theorems 1 and 6 provide a sufficient condition for the existence of such
an eigenvalue, as the following result holds:

Theorem 8 If B ∈ PD and C⊤ ∈ S, then EiCP(B,C) has a positive complementary
eigenvalue.

Proof If C⊤ ∈ S, then by Theorem 6,−C /∈ S0. SinceB ∈ PD, then QEiCP(B,0,−C)
has a positive (and a negative) eigenvalueµ . Hence,λ = µ2 is a positive complemen-
tary eigenvalue of EiCP. ⊓⊔

This condition is sufficient, but not necessary. In fact for the following matrices:

B =

[
1 0
0 1

]
, C =

[
1 −2
−3 0

]
,

the EiCP(B,C) has a positive complementary eigenvalue, butC⊤ /∈ S.
The following example shows that an EiCP(B,C) with B ∈ PD andC⊤ ∈ S may

have a negative eigenvalue. Consider the matrices

B =

[
1 0
−1 1

]
, C =

[
−1 1

1
2 1

]
.
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Problem λ f l u Nodes CPU
RAND( 0, 1, 3) 0.540591 8.55776e-17 2.88722e-01 7.24264e+00 0 9.43264e-02
RAND( 0, 1, 5) 0.579740 1.63562e-16 2.50875e-01 1.20711e+01 0 1.08970e-01
RAND( 0, 1, 10) 0.353326 2.54107e-16 1.21939e-01 2.41421e+01 0 1.17104e-01
RAND( 0, 1, 20) 0.216038 2.72803e-15 7.61078e-02 4.82843e+01 0 1.77654e-01
RAND( 0, 1, 30) 0.152153 9.71651e-12 4.98635e-02 7.24264e+01 0 2.99098e-01
RAND( 0, 1, 50) 0.071278 2.31483e-10 3.08149e-02 1.20711e+02 0 1.02978e+00
RAND( 0, 1, 100) 0.029856 2.32097e-09 1.70235e-02 2.41421e+02 0 2.94410e+00
RAND( 0, 10, 3) 0.064433 6.17703e-16 4.41922e-02 7.24264e+00 0 3.71968e-02
RAND( 0, 10, 5) 0.181341 7.09644e-15 3.26178e-02 1.20711e+01 0 8.36979e-02
RAND( 0, 10, 10) 0.031470 5.08357e-08 1.40437e-02 2.41421e+01 0 2.00814e-01
RAND( 0, 10, 20) 0.037200 4.74654e-14 8.17101e-03 4.82843e+01 0 7.75963e-01
RAND( 0, 10, 30) 0.021879 9.05131e-08 5.80691e-03 7.24264e+01 0 4.16905e-01
RAND( 0, 10, 50) 0.005521 1.44288e-09 3.48749e-03 1.20711e+02 0 9.68685e-01
RAND( 0, 10, 100) 0.004779 1.41496e-09 1.82554e-03 2.41421e+02 0 2.89875e+00
RAND( 0, 100, 3) 0.006558 4.76544e-12 5.07979e-03 7.24264e+00 0 1.06655e-01
RAND( 0, 100, 5) 0.004492 1.13846e-11 2.62532e-03 1.20711e+01 0 2.52097e-01
RAND( 0, 100, 10) 0.002790 5.87198e-11 1.50881e-03 2.41421e+01 0 1.78784e-01
RAND( 0, 100, 20) 0.010015 2.01563e-09 7.45363e-04 4.82843e+01 0 1.81592e-01
RAND( 0, 100, 30) 0.005434 1.29756e-08 5.56813e-04 7.24264e+01 0 6.95276e-01
RAND( 0, 100, 50) 0.005470 1.07865e-08 3.34757e-04 1.20711e+02 0 4.45850e+00
RAND( 0, 100, 100) 0.001888 2.29598e-09 1.76797e-04 2.41421e+02 0 9.19532e+00
RAND( 0, 300, 3) 0.002392 2.27355e-11 2.19802e-03 7.24264e+00 0 8.54462e-02
RAND( 0, 300, 5) 0.001428 5.69616e-11 1.06026e-03 1.20711e+01 0 1.19519e-01
RAND( 0, 300, 10) 0.000664 1.20981e-10 5.50475e-04 2.41421e+01 0 1.68899e-01
RAND( 0, 300, 20) 0.000647 8.75978e-09 2.72983e-04 4.82843e+01 0 1.50398e-01
RAND( 0, 300, 30) 0.000671 2.67442e-08 1.63560e-04 7.24264e+01 0 6.04931e-01
RAND( 0, 300, 50) 0.000622 9.60127e-09 1.14939e-04 1.20711e+02 1 8.93506e-01
RAND( 0, 300, 100) 0.001598 6.58115e-08 5.96871e-05 2.41421e+02 1 4.03082e+01

Table 1 Performance of the enumerative method for solving Test Problems 1.

Then it is easy to see thatB ∈ PD andC⊤ ∈ S. By Theorem 8, EiCP(B,C) has at
least a positive complementary eigenvalue. However, this EiCP also has the nega-
tive complementary eigenvalueλ = −1. If we apply an ordinary algorithm to com-
pute a solution to the EiCP, then this procedure may find the negative eigenvalue.
Instead of solving the EiCP(B,C) directly, it is more advisable to find a solution to
QEiCP(B,0,−C) in order to guarantee the computation of a positive complementary
eigenvalueλ for EiCP(B,C), that is, to findλ = µ2 > 0, with µ being the quadratic
complementary eigenvalue computed by the hybrid enumerative algorithm discussed
in this paper.

8 Computational experience

In this section, we discuss the numerical performance of theproposed algorithms
for computing quadratic complementary eigenvalues. The enumerative algorithm has
been implemented in MATLAB [16] and the IPOPT (Interior Point OPTimizer) solver
[27] has been used to find a (local) solution to the nonlinear problemNLP4(k) in (19)
at each nodek.

We consider two sets of test problems withA ∈ PD andC /∈ S0. The first set of
problems, called Test Problems 1, deal with co-regular and co-hyperbolic QEiCPs,
which always have a solution. The matricesA and−C were both chosen as the iden-
tity matrix, while the matrixB was randomly generated with elements uniformly
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Problem λ f l u Nodes CPU
RAND( 0, 1, 3) 0.553862 6.14338e-15 2.90421e-01 8.68486e+00 6 3.08398e-01
RAND( 0, 1, 5) 0.820148 1.36299e-16 4.35208e-01 2.07633e+01 0 1.22634e-01
RAND( 0, 1, 10) 0.703165 5.17996e-15 3.91192e-01 6.09473e+01 11 3.04822e+00
RAND( 0, 1, 20) 1.157398 1.81742e-14 4.68243e-01 2.62835e+02 89 1.24254e+01
RAND( 0, 1, 30) 0.987340 1.83278e-10 4.63858e-01 5.76074e+02 0 1.66142e+00
RAND( 0, 1, 50) 1.077929 6.24270e-09 4.87771e-01 1.60032e+03 5 1.48014e+01
RAND( 0, 1, 100) 1.067021 3.50061e-07 4.81082e-01 6.10757e+03 34 2.20742e+02
RAND( 0, 10, 3) 1.440810 1.11071e-16 4.61292e-01 7.09787e+01 0 4.24581e-02
RAND( 0, 10, 5) 1.715031 1.35236e-15 5.11997e-01 1.86675e+02 1 1.42548e-01
RAND( 0, 10, 10) 0.899639 5.72321e-13 4.06875e-01 5.77397e+02 19 3.12358e+00
RAND( 0, 10, 20) 1.922596 1.22525e-13 4.72350e-01 2.42768e+03 28 1.98347e+01
RAND( 0, 100, 30) 4.313552 4.09191e-11 4.31941e-01 5.13388e+03 66 2.11926e+02
RAND( 0, 10, 50) 1.432682 2.80619e-11 4.77837e-01 1.53907e+04 32 1.59750e+02
RAND( 0, 10, 100) 1.786507 7.19200e-12 4.77161e-01 6.07160e+04 34 5.00920e+02
RAND( 0, 100, 3) 0.537246 1.91113e-16 2.89377e-01 3.47188e+02 0 6.04616e-02
RAND( 0, 100, 5) 1.078916 1.02845e-12 3.87015e-01 1.37712e+03 20 1.48914e+00
RAND( 0, 100, 10) 1.161560 1.02364e-11 4.43875e-01 6.17575e+03 23 1.47605e+01
RAND( 0, 100, 20) 1.760194 2.31492e-09 4.74284e-01 2.42205e+04 33 5.53303e+01
RAND( 0, 100, 30) 1.231730 5.09885e-09 4.72373e-01 5.35977e+04 261 2.74036e+02
RAND( 0, 100, 50) 1.359856 6.97896e-09 4.81880e-01 1.52454e+05 77 4.26262e+02
RAND( 0, 100, 100) 1.081376 4.76065e-05 4.79115e-01 6.01687e+05 173 6.17715e+03
RAND( 0, 300, 3) 1.100964 9.26871e-17 4.52189e-01 1.73694e+03 17 9.45302e-01
RAND( 0, 300, 5) 0.814907 1.63479e-08 4.03250e-01 3.64533e+03 24 5.98033e+00
RAND( 0, 300, 10) 4.927159 7.82831e-13 4.41231e-01 1.81971e+04 24 4.83416e+01
RAND( 0, 300, 20) 2.295587 2.25558e-06 4.51253e-01 7.10335e+04 72 1.28525e+02
RAND( 0, 300, 30) 1.310145 1.80424e-08 4.67756e-01 1.64262e+05 76 1.44973e+02
RAND( 0, 300, 50) * [4.05705e-01]
RAND( 0, 300, 100) * [2.48154e-01]

Table 2 Performance of the enumerative method for solving Test Problems 2.

distributed in the intervals[0,1], [0,10], [0,100], and [0,300]. These problems are
denoted by RAND(0,m,n), where 0 andm are the end-points of the interval, andn
represents the dimension of the problem, i.e., the matricesA, B,C ∈ R

n×n. We have
consideredn = 3,5,10,20,30,50, and 100. For the second test, called Test Problems
2,C /∈ S0 was chosen such that the resulting QEiCP is not co-hyperbolic. In particular,
C has the following structure:

C =

[
−E −h
−g⊤ cnn

]
,

whereE ∈ R
(n−1)×(n−1) is a square matrix with randomly generated elements in the

interval[0,m], h ∈R
n−1 andg ∈R

n−1 are vectors with randomly generated elements
in the same interval, and the elementcnn = (m/2)2+1. The matricesA andB were
chosen as in the first case.

8.1 Performance of the enumerative method

Tables 1 and 2 report the computational experience when solving Test Problems 1 and
2, respectively. The enumerative method was run with the tolerancesε1 = 10−5 and
ε2 = 10−4. In these tables, we have reported the computed value of the eigenvalue,
the value of the functionf derived at the solution, the value of the lower and upper
bounds computed as in Section 3, the number of nodes enumerated by the algorithm,
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and the CPU time in seconds. The symbol * indicates that the enumerative algorithm
was not able to solve the problem, i.e., the algorithm attained the maximum number
of iterations, fixed asηmax= 500. In this case we include the value of the objective
function for the best stationary point. The value zero in thecolumn titled “Nodes”
indicates that a solution to QEiCP was found at the root node as the first computed
stationary point and without applying the branching procedure. Note that the greater
computational effort, i.e., the larger number of explored nodes, in solving Test Prob-
lems 2 is due to the more complex structure of the matrixC.

As a benchmark for comparison, we solved these same problemsusing BARON
(Branch-And-Reduce Optimization Navigator; see [26]), which is an optimization
solver for the global solution of algebraic nonlinear programs and mixed-integer non-
linear programs. This software package implements a branch-and-cut algorithm, en-
hanced with a variety of constraint propagation and dualitytechniques for reducing
ranges of variables in the course of the algorithm. The code for solving the nonlinear
problemNLP1 given in (12) for both Test Problems 1 and 2 was implemented in
the General Algebraic Modeling Systems (GAMS) language (see [5]) and the solver
BARON was used with default options. The numerical results for Test Problems 1
are shown in Table 3, while those for Test Problems 2 are displayed in Table 4. We
use the notation * to indicate that BARON was not able to find a solution to QEiCP.

Tables 1 and 3 display the computational experience for TestProblems 1. All the
problems were solved efficiently with both the enumerative method and BARON.
In particular, we note in Table 1 that almost all the problemswere solved at the
root node, thus suggesting the effectiveness of the NLP formulation presented in
(18). The last two test problems were solved with only one iteration of the proposed
enumerative method.

Comparing Tables 2 and 4 for Test Problems 2, we see that the enumerative al-
gorithm fails only two times in finding a solution versus seven times for BARON.
Moreover, the computational time for the enumerative method was comparable with,
but in general smaller than, that required by BARON.

8.2 Performance of the semi-smooth method

The same test problems were solved by using the semi-smooth Newton algorithm; the
complementarity constraints were represented by using both the Fischer-Burmeister
function and the min function (see Section 5). Tables 5 and 6 present the results
for Test Problems 1 and 2, respectively. The starting point was chosen as̄λ = 1,
(x̄, ȳ) = (1/2n, . . . ,1/2n), w̄ = (Aλ̄ +B)ȳ+Cx̄, t̄ = λ x̄− ȳ. It is well-known that the
semi-smooth Newton algorithm is very sensitive to the choice of the starting point.
Thus, numerical experiments were also performed where the vertices of the simplex
were taken as starting points. In this particular case, the performance of the algorithm
turned out to be similar for all choices of the starting point, and hence we have only
reported the results for the first choice. In Tables 5 and 6, wereport the value of the
computed eigenvalue, the number of iterations taken by the algorithm to converge,
and the CPU time in seconds. The notation “GJ singular” indicates that the algorithm
terminated unsuccessfully with the singularity of the Clarke generalized Jacobian.
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Problem λ f CPU
RAND( 0, 1, 3) 0.580550 3.49656e-15 3.86000e-01
RAND( 0, 1, 5) 0.604048 8.56266e-12 1.50000e-01
RAND( 0, 1, 10) 0.638287 8.21710e-14 2.00000e-01
RAND( 0, 1, 20) 0.670098 1.76270e-13 1.62000e-01
RAND( 0, 1, 30) 0.688537 7.13992e-14 1.91000e-01
RAND( 0, 1, 50) 0.492137 1.59410e-11 2.00000e-01
RAND( 0, 1, 100) 0.020337 5.83765e-11 3.39100e+00
RAND( 0, 10, 3) 0.116253 1.93421e-12 1.84000e-01
RAND( 0, 10, 5) 0.071066 1.78546e-13 1.67000e-01
RAND( 0, 10, 10) 0.113500 6.48410e-14 2.29000e-01
RAND( 0, 10, 20) 0.105702 2.40212e-10 1.63000e-01
RAND( 0, 10, 30) 0.099982 4.04072e-12 1.93000e-01
RAND( 0, 10, 50) 0.087719 1.86553e-13 1.37000e-01
RAND( 0, 10, 100) 0.004859 1.58826e-10 1.53500e+00
RAND( 0, 100, 3) 0.020546 1.23185e-16 1.75000e-01
RAND( 0, 100, 5) 0.013835 3.51415e-19 1.73000e-01
RAND( 0, 100, 10) 0.021313 1.04600e-14 1.53000e-01
RAND( 0, 100, 20) 0.012589 1.56146e-15 1.61000e-01
RAND( 0, 100, 30) 0.008782 3.41173e-10 2.38000e-01
RAND( 0, 100, 50) 0.007166 4.50590e-10 3.17000e-01
RAND( 0, 100, 100) 0.000357 5.02497e-10 7.02000e-01
RAND( 0, 300, 3) 0.003900 4.55744e-18 1.47000e-01
RAND( 0, 300, 5) 0.004200 1.37019e-23 1.42000e-01
RAND( 0, 300, 10) 0.004485 1.50219e-12 1.49000e-01
RAND( 0, 300, 20) 0.002689 7.00246e-12 2.41000e-01
RAND( 0, 300, 30) 0.002670 5.06612e-10 1.76000e-01
RAND( 0, 300, 50) 0.005649 6.26275e-13 1.55000e-01
RAND( 0, 300, 100) 0.000205 3.09113e-10 6.45100e+00

Table 3 Performance of BARON for solving Test Problems 1.

Tables 5 and 6 also provide a comparison for the performance of the algorithm
when using the Fischer-Burmeister function versus the min function for representing
the complementarity constraints. If we consider the numberof times that a solution
was found, the use of the min function seems to be preferable for Test Problems 1,
while the use of the FB function works better in solving Test Problems 2.

Note that the semi-smooth method is faster than the enumerative algorithm for
obtaining a solution, but on the other hand, it often terminates unsuccessfully with
the singularity of the Generalized Jacobian.

8.3 Performance of the hybrid method

For all the test problems for which the enumerative method required more than one
node for finding a solution, we applied the hybrid method proposed in Section 6.
This algorithm was implemented by using both the Fisher-Burmeister and the min
functions. The values of the tolerancesε̄1 andε̄2 used to switch from the enumerative
method to the semi-smooth Newton method were both set to 10−1. For the semi-
smooth Newton algorithm, the values of the tolerances to terminate the algorithm
were taken asε1 = 10−6 andε2 = 10−6. The maximum number of iterations for the
semi-smooth method was fixed as 100. The results for Test Problems 1 and 2 are sum-
marized in Tables 7 and 8, respectively, where we report the value of the computed
eigenvalue, the number of times that the semi-smooth Newtonmethod was called,
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Problem λ f CPU
RAND( 0, 1, 3) 0.553862 1.16923e-13 4.43000e-01
RAND( 0, 1, 5) 0.820147 1.84665e-11 1.53000e-01
RAND( 0, 1, 10) 0.703152 5.83075e-11 2.00000e-01
RAND( 0, 1, 20) 1.157398 7.97059e-17 7.26500e+00
RAND( 0, 1, 30) 0.987340 1.38197e-19 4.72100e+00
RAND( 0, 1, 50) *
RAND( 0, 1, 100) *
RAND( 0, 10, 3) 1.440809 5.73612e-13 1.07100e+00
RAND( 0, 10, 5) 1.713643 1.04554e-13 7.15000e-01
RAND( 0, 10, 10) 0.879084 1.54890e-11 1.96000e-01
RAND( 0, 10, 20) 1.922596 1.79492e-18 1.22591e+02
RAND( 0, 10, 30) 0.967767 6.21467e-20 9.28900e+00
RAND( 0, 10, 50) 1.591280 3.48178e-10 3.88145e+02
RAND( 0, 10, 100) *
RAND( 0, 100, 3) 0.805417 1.15432e-13 3.64000e-01
RAND( 0, 100, 5) 1.597662 4.23887e-12 1.71000e-01
RAND( 0, 100, 10) 2.386302 4.04346e-12 3.62000e-01
RAND( 0, 100, 20) 1.751899 1.84497e-10 4.96000e-01
RAND( 0, 100, 30) 1.218751 4.92004e-23 6.54917e+02
RAND( 0, 100, 50) *
RAND( 0, 100, 100) *
RAND( 0, 300, 3) 1.100964 1.33835e-27 2.43300e+00
RAND( 0, 300, 5) 0.814898 3.07773e-14 1.87000e-01
RAND( 0, 300, 10) 1.325918 4.43267e-11 9.51000e-01
RAND( 0, 300, 20) 1.684025 3.50538e-10 5.38800e+00
RAND( 0, 300, 30) 2.043501 7.55092e-10 7.33890e+02
RAND( 0, 300, 50) *
RAND( 0, 300, 100) *

Table 4 Performance of BARON for solving Test Problems 2.

which we indicate as “Ntime”, the number of nodes enumeratedby the algorithm,
and the CPU time in seconds. The symbol * indicates that the use of the semi-smooth
Newton method was not helpful in finding a solution.

We observe that the additional use of the semi-smooth Newtonmethod allows
us to find a solution by enumerating a fewer number of nodes. For nine problems,
the semi-smooth method with the use of the Fischer-Burmeister function was called
only once. This happens seven times when the min function is chosen. However, even
when the hybrid method solves both the minimization problemNLP4(k) and applies
the semi-smooth method for somek, in general, the performance in terms of CPU
time improves.

We also note that the use of the hybrid method was not helpful in finding a so-
lution for five problems by using the Fischer-Burmeister function and in four cases
with the use of the min function. Moreover the min function was not able to solve two
problems within the given number of iterations, while this situation does not occur
for the Fischer-Burmeister function. So in general, the Fischer-Burmeister function
appears to perform better than the min function.

We conclude that the hybrid method with the Fischer-Burmeister function im-
proves over the enumerative method and is recommended in practice for solving the
QEiCP withA ∈ PD andC /∈ S0 via the equivalent EiCP.

As discussed before, the algorithm always finds a positive quadratic complemen-
tary eigenvalue for QEiCP. If we are interested in a negativeeigenvalue, then the
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FB function min function
Problem λ niter CPU λ niter CPU
RAND( 0, 1, 3) 0.540591 11 1.79230e-02 0.747744 8 1.16965e-02
RAND( 0, 1, 5) 0.832908 42 1.01189e-02 0.409159 7 1.30902e-03
RAND( 0, 1, 10) 0.305448 12 4.54200e-03 0.231762 7 1.77044e-03
RAND( 0, 1, 20) * GJ singular 0.108348 7 3.16456e-03
RAND( 0, 1, 30) 0.483898 55 6.20506e-02 0.075831 6 5.60512e-03
RAND( 0, 1, 50) * GJ singular * GJ singular
RAND( 0, 1, 100) 0.043377 37 3.33108e-01 * GJ singular
RAND( 0, 10, 3) 0.084907 17 5.12231e-03 0.054726 5 8.87787e-04
RAND( 0, 10, 5) 0.045114 20 4.22854e-03 0.942878 7 1.02378e-03
RAND( 0, 10, 10) 0.028512 26 7.31569e-03 0.082063 6 2.07664e-03
RAND( 0, 10, 20) * GJ singular 0.037174 13 6.32527e-03
RAND( 0, 10, 30) * GJ singular 0.020982 6 4.06817e-03
RAND( 0, 10, 50) * GJ singular 0.009154 5 8.86932e-03
RAND( 0, 10, 100) * GJ singular * GJ singular
RAND( 0, 100, 3) * GJ singular 0.008239 6 8.56142e-04
RAND( 0, 100, 5) 0.017293 31 5.93911e-03 0.023631 5 8.67260e-04
RAND( 0, 100, 10) * GJ singular 0.001904 6 1.49119e-03
RAND( 0, 100, 20) * GJ singular 0.000998 6 2.73863e-03
RAND( 0, 100, 30) 0.000663 16 1.44868e-02 0.001345 5 3.60375e-03
RAND( 0, 100, 50) 0.000406 16 3.86470e-02 * GJ singular
RAND( 0, 100, 100) * GJ singular * GJ singular
RAND( 0, 300, 3) 0.002543 35 7.36188e-03 0.002386 6 8.47589e-04
RAND( 0, 300, 5) * GJ singular 0.002880 5 1.12000e-03
RAND( 0, 300, 10) * GJ singular 0.000639 6 1.59596e-03
RAND( 0, 300, 20) 0.000339 17 9.84050e-03 0.000339 5 2.25753e-03
RAND( 0, 300, 30) 0.000217 16 1.47687e-02 0.000374 5 4.27258e-03
RAND( 0, 300, 50) * GJ singular 0.000289 5 8.31467e-03
RAND( 0, 300, 100) * GJ singular * GJ singular

Table 5 Performance of the semi-smooth Newton method for solving Test Problems 1.

matrix H should be used instead of the matrixG in the 2n-dimensional EiCP. The
algorithmic process is similar withB replaced by−B.

8.4 Computing a positive eigenvalue for EiCP

We present the numerical performance of the arguments presented in Section 7 for
computing a positive complementary eigenvalueλ for the EiCP (1)–(4). The enu-
merative and the hybrid methods proposed in this paper are applied for solving the
QEiCP(B,0,−C) whereB is the identity matrix and

C =

[
1 e⊤

g H

]

wheree ∈ R
n−1 is a vector of ones,H = RAND(0,m,n− 1) − (m+ 1) In−1, In−1

denotes the identity matrix of ordern−1, andg ∈R
n−1 is a null vector. Note thatB ∈

PD and−C /∈ S0, then QEiCP(B,0,−C) has a solution withλ > 0 and by Theorem 8
the EiCP(B,C) has a positive complementary eigenvalue equal to λ 2.

Tables 9 and 10 report the computational experience when solving QEiCP(B,0,−C)
by the enumerative and the hybrid methods with the same values of tolerances used
for the test problems in the previous subsections. Also in this case, the use of the
hybrid method largely reduces the number of iterations necessary to find a solution
and it is greatly recommended for computing positive eigenvalues of EiCP.
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FB function min function
Problem λ niter CPU λ niter CPU
RAND( 0, 1, 3) 0.553862 10 2.72663e-02 0.553862 20 2.97779e-02
RAND( 0, 1, 5) 0.820148 7 1.83033e-03 0.820148 4 1.35607e-03
RAND( 0, 1, 10) 0.703165 20 8.45372e-03 * GJ singular
RAND( 0, 1, 20) * GJ singular 1.157398 18 1.71405e-02
RAND( 0, 1, 30) 1.033856 26 5.98098e-02 1.033856 42 4.69800e-02
RAND( 0, 1, 50) 1.158910 97 4.71429e-01 * GJ singular
RAND( 0, 1, 100) * GJ singular * GJ singular
AND( 0, 10, 3) 1.440810 7 2.79211e-03 1.440810 7 1.17902e-03
RAND( 0, 10, 5) 1.713642 7 1.47239e-03 1.713642 5 7.19302e-04
RAND( 0, 10, 10) 0.864754 5 3.03672e-03 0.864754 4 1.61223e-03
RAND( 0, 10, 20) * GJ singular * GJ singular
RAND( 0, 10, 30) * GJ singular * GJ singular
RAND( 0, 10, 50) * GJ singular * GJ singular
RAND( 0, 10, 100) * GJ singular * GJ singular
AND( 0, 100, 3) 0.537246 11 2.76645e-03 * GJ singular
RAND( 0, 100, 5) 0.715387 4 1.02165e-03 0.715387 4 6.18377e-04
RAND( 0, 100, 10) 1.614171 7 2.23232e-03 1.614171 6 1.53910e-03
RAND( 0, 100, 20) * GJ singular * GJ singular
RAND( 0, 100, 30) * GJ singular * GJ singular
RAND( 0, 100, 50) * GJ singular * GJ singular
RAND( 0, 100, 100) * GJ singular * GJ singular
AND( 0, 300, 3) 1.100964 14 3.57641e-03 1.100963 6 2.93524e-02
RAND( 0, 300, 5) 0.814898 5 1.10761e-03 0.814898 4 4.84952e-04
RAND( 0, 300, 10) 1.513050 7 3.52424e-03 1.513050 6 1.60881e-03
RAND( 0, 300, 20) * GJ singular * GJ singular
RAND( 0, 300, 30) * GJ singular * GJ singular
RAND( 0, 300, 50) * GJ singular * GJ singular
RAND( 0, 300, 100) * GJ singular * GJ singular

Table 6 Performance of the semi-smooth Newton method for solving Test Problems 2.

FB function min function
Problem λ Ntime Nodes CPU λ Ntime Nodes CPU
RAND( 0, 300, 50) 0.005113 1 0 7.71793e-01 0.005113 1 0 6.99095e-01
RAND( 0, 300, 100) 0.013423 1 0 3.99891e+01 0.013423 1 0 3.95370e+01

Table 7 Performance of hybrid method for solving Test Problems 1.

9 Conclusions

In this paper, we have proposed a hybrid method for solving the Quadratic Eigenvalue
Complementarity Problem QEiCP(A,B,C) (6)–(9) whenA is a PD matrix andC is not
anS0-matrix. These hypotheses seem to be quite realistic in practice. The algorithm
combines a tree search enumerative method with a fast and local semi-smooth New-
ton algorithm. The method can also be applied to compute a positive eigenvalue of
the EiCP(B,C) (1)–(4) whenB ∈ PD andC⊤ ∈ S, i.e.,−C /∈ S0. Computational expe-
rience shows that the hybrid enumerative algorithm is quiteefficient for solving the
QEiCP. As discussed in [4], the use of such an approach for QEiCP with other cones,
different fromR

n
+, is certainly an interesting subject of future research. Furthermore,

many applications lead to more general eigenvalue complementarity problems, where
the investigation of such approaches seems to be worthwhileto pursue in future stud-
ies.
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FB function min function
Problem λ Ntime Nodes CPU λ Ntime Nodes CPU
RAND( 0, 1, 3) 0.553862 1 0 2.13562e-01 0.553862 1 0 3.74785e-01
RAND( 0, 1, 10) 0.703165 1 0 5.46687e-01 0.703165 9 8 2.38656e+00
RAND( 0, 1, 20) 1.157398 1 0 4.66968e-01 1.157398 1 0 4.27643e-01
RAND( 0, 1, 50) 1.088287 1 0 4.90474e+00 1.158910 5 4 1.30513e+01
RAND( 0, 1, 100) 1.067021 34 *34 2.64755e+02 1.067021 34 *34 2.62171e+02
RAND( 0, 10, 5) 1.715031 1 0 8.62953e-02 1.715031 1 0 7.20144e-02
RAND( 0, 10, 10) 0.899637 1 0 1.89607e-01 0.864754 1 0 1.91404e-01
RAND( 0, 10, 20) 2.600551 22 22 1.86157e+01 2.600551 8 7 7.29273e+00
RAND( 0, 10, 30) 0.967767 20 19 3.57694e+01 1.055296 17 16 2.93933e+01
RAND( 0, 10, 50) 1.432682 31 *32 1.78146e+02 1.432682 31 *32 1.78071e+02
RAND( 0, 10, 100) 1.786507 33 *34 5.31730e+02 1.786507 33 *34 5.42240e+02
RAND( 0, 100, 5) 1.078917 1 0 1.75172e-01 1.597674 1 0 1.66163e-01
RAND( 0, 100, 10) 1.762110 1 0 8.72616e-01 1.573841 1 0 8.68189e-01
RAND( 0, 100, 20) 1.760173 28 32 5.96798e+01 1.496242 2 1 8.66096e+00
RAND( 0, 100, 30) 6.665640 24 26 7.90853e+01 6.665640 24 26 8.74352e+01
RAND( 0, 100, 50) 3.077892 31 36 2.41082e+02 3.077891 31 36 2.79176e+02
RAND( 0, 100, 100) 1.081376 156 *173 6.32093e+03 1.081376 156 *173 6.39869e+03
RAND( 0, 300, 3) 1.100964 6 9 6.00009e-01 1.100964 6 9 5.31684e-01
RAND( 0, 300, 5) 0.814907 12 *24 6.07113e+00 0.814898 1 0 3.85505e-01
RAND( 0, 300, 10) 1.369286 1 0 2.82615e+00 1.513050 10 9 2.32130e+01
RAND( 0, 300, 20) 1.247195 36 67 1.22568e+02 1.319769 1 1 3.57244e+00
RAND( 0, 300, 30) 1.309542 35 48 1.32772e+02 1.309542 35 48 1.32300e+02
RAND( 0, 300, 50) 1.311051 150 267 1.16466e+03 * [4.05705e-01]
RAND( 0, 300, 100) 1.303152 327 395 9.03701e+03 * [2.48154e-01]

Table 8 Performance of hybrid method for solving Test Problems 2.

Problem λ f l u Nodes CPU
RAND( 0, 1, 3) 1.000008 1.24565e-10 1.00000e+00 8.88412e+00 0 2.00879e-01
RAND( 0, 1, 5) 1.000029 6.11137e-10 1.00000e+00 1.97330e+01 0 7.12639e-02
RAND( 0, 1, 10) 1.521117 9.71181e-15 1.00000e+00 6.79853e+01 0 1.17073e-01
RAND( 0, 1, 20) 2.656284 1.10049e-15 1.00000e+00 2.51204e+02 0 4.49557e-01
RAND( 0, 1, 30) 3.493475 1.03825e-13 1.00000e+00 5.60503e+02 0 4.53038e-01
RAND( 0, 1, 50) 4.752954 7.62902e-10 1.00000e+00 1.56119e+03 0 3.40887e+00
RAND( 0, 1, 100) 6.907058 3.76504e-08 1.00000e+00 6.15504e+03 1 3.12231e+01
RAND( 0, 10, 3) 1.000009 1.24475e-10 1.00000e+00 2.20252e+01 0 7.04963e-02
RAND( 0, 10, 5) 2.446982 3.39458e-14 1.00000e+00 8.70900e+01 0 1.26205e-01
RAND( 0, 10, 10) 5.824257 6.83614e-12 1.00000e+00 4.55743e+02 0 5.67927e-01
RAND( 0, 10, 20) 9.183330 5.41627e-09 1.00000e+00 2.13455e+03 1 3.25248e+00
RAND( 0, 10, 30) 11.536522 1.93411e-08 1.00000e+00 4.98409e+03 0 2.13387e+00
RAND( 0, 10, 50) 15.243998 4.98166e-09 1.00000e+00 1.42790e+04 13 7.13160e+01
RAND( 0, 10, 100) 1.000011 6.04386e-11 1.00000e+00 5.86325e+04 21 3.59539e+02
RAND( 0, 100, 3) 2.633042 3.65720e-16 1.00000e+00 1.19520e+02 0 7.54934e-02
RAND( 0, 100, 5) 10.565073 1.40079e-08 1.00000e+00 8.37421e+02 3 9.18979e+00
RAND( 0, 100, 10) 1.000023 3.14679e-10 1.00000e+00 4.63278e+03 11 1.44446e+01
RAND( 0, 100, 20) 1.000033 6.10497e-10 1.00000e+00 2.07118e+04 15 5.68845e+01
RAND( 0, 100, 30) 1.000006 1.87741e-11 1.00000e+00 4.84755e+04 19 7.35683e+01
RAND( 0, 100, 50) 1.000046 1.10611e-09 1.00000e+00 1.40942e+05 19 2.78063e+02
RAND( 0, 100, 100) 1.000069 2.44184e-09 1.00000e+00 5.90449e+05 23 1.05961e+03
RAND( 0, 300, 3) 10.784435 1.27460e-13 1.00000e+00 6.74123e+02 0 3.88764e-01
RAND( 0, 300, 5) 1.000018 2.49321e-10 1.00000e+00 2.28424e+03 9 2.36784e+01
RAND( 0, 300, 10) 1.000071 3.08010e-09 1.00000e+00 1.34052e+04 13 4.14812e+01
RAND( 0, 300, 20) 1.000004 9.08293e-12 1.00000e+00 6.68949e+04 19 7.69437e+01
RAND( 0, 300, 30) 1.000038 7.82981e-10 1.00000e+00 1.50981e+05 19 1.31747e+02
RAND( 0, 300, 50) 1.000048 1.20049e-09 1.00000e+00 4.37408e+05 21 3.18451e+02
RAND( 0, 300, 100) 1.000065 2.20512e-09 1.00000e+00 1.76608e+06 23 8.84416e+02

Table 9 Performance of the enumerative method for solving QEiCP(B,0,−C).
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