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Introduction

Bridging the communication gap between engineers and mathematicians is a well-known

and old problem. Suffice to recall Oliver Heaviside the engineer who, in spite of being the

creator of operational calculus, was unable to demonstrate it in a manner that was acceptable

to the mathematicians of his time. The result was that operational calculus was regarded

with suspicion and was only fully accepted many years later.

Another example, now in the opposite direction, involves Claude Shannon, the mathe-

matician known as the father of information theory. Given the considerable difficulties many

telecommunication engineers found in understanding his papers, particularly the later ones,

only recently and 40 years after being published are Shannon results being fully understood

and applied.

It is widely recognized that most problems telecommunication engineers face, present a

wide range of mathematical difficulties spanning from calculus to number theory, from statis-

tics to topology, from transforms to heuristics. In order to create and diffuse new knowledge

in the field of telecommunications and to foster a much required and fruitful cooperation

between mathematicians and telecommunications engineers, “Instituto de Telecomunicações”

organized in Tomar, from 8 to 12 of September 2003, the Summer School “MTPT – Mathe-

matical Techniques and Problems in Telecommunications”.

MTPT model was drawn from an earlier event that took place in 1997 and consisted of a

competition of mathematical problems in telecommunications, which, after refereeing and se-

lection, were made available to the community of mathematicians with a request for solutions.

The presentation and discussion of the selected problems and solutions was complemented by

a set of lectures, which introduced some of the newer mathematical techniques with potential

applications in telecommunications.

This time, with the generous support of the “Centro Internacional de Matemática” (CIM)

and “Instituto Politécnico de Tomar”, it was possible to extend the duration of MTPT to

a full working week and to format it as a Summer School. Each day of this school was

concerned with an area of mathematics that finds important applications in telecommuni-

cations: Stochastic Processes, Transforms, Partial Differential Equations, Optimization and

Evolutionary Computing. The morning session of 3 hours was devoted to an extended lec-

ture by an expert (usually a mathematician), aiming to introduce the subject to an audience

of engineers and mathematicians. The afternoon session started with the presentation and



discussion of two problems and their solutions (when available) and ended with a one-hour

conference on applications in telecommunications of the techniques discussed in the morning

session.

This volume contains a number of articles concerning some of the morning and afternoon

lectures and the solutions of a few problems that have been presented at the MTPT Summer

School. We sincerely hope that it can help to bridge the gap between mathematicians and

telecommunication engineers. Special thanks should be given to the invited speakers, to the

authors of the problems and to all participants that worked on the problems and presented

and discussed possible solutions to them. We are also quite grateful to “Instituto Politécnico

de Tomar” and to “Centro Internacional de Matemática” for providing the opportunity to

organize such an interesting event. Finally, our warmest thanks to Lúıs Merca Fernandes and

João Patŕıcio for their excellent work in the organization of the School and of this volume.

The Editors



Programme

Monday, 8

Topic: Stochastic Processes

Chairman: Carlos Belo

09:00 - 09:30 Welcome Session (CIM Director, Lúıs Trabucho

and School Director, Carlos Salema).

09:30 - 11:00 Ivette Gomes, Course on Stochastic Processes, Part 1.

11:00 - 11:30 Coffee Break.

11:30 - 13:00 Ivette Gomes, Course on Stochastic Processes, Part 2.

13:00 - 15:00 Lunch Break.

15:00 - 16:30 Discussion of Problems 1 and 2.

16:30 - 17:00 Coffee Break.

17:00 - 18:00 Conference: Rui Valadas, Statistical Characterization and Modelling

of IP Traffic.

18:45 Reception by the Mayor of Tomar.

Tuesday, 9

Topic: Transforms

Chairman: Mário Figueiredo

09:30 - 11:00 Joana Soares, Course on Transforms, Part 1.

11:00 - 11:30 Coffee Break.

11:30 - 13:00 Joana Soares, Course on Transforms, Part 2.

13:00 - 15:00 Lunch Break.

15:00 - 16:30 Discussion of Problems 3 and 4.

16:30 - 17:00 Coffee Break.

17:00 - 18:00 Conference: Ańıbal Ferreira, Dynamic Window Switching in Audio

Coding Using the MDCT Transform.
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Wednesday, 10

Topic: Partial Differential Equations

Chairman: Carlos Fernandes

09:30 - 11:00 Enrique Zuazua, Course on Partial Differential Equations, Part 1.

11:00 - 11:30 Coffee Break.

11:30 - 13:00 Enrique Zuazua, Course on Partial Differential Equations, Part 2.

13:00 - 15:00 Lunch Break.

15:00 - 16:30 Discussion of Problems 5 and 6.

16:30 - 17:00 Coffee Break.

17:00 - 18:00 Conference: Carlos Alves, Mathematical and Numerical Problems

on Wave Scattering.

20.00 School Dinner

Thursday, 11

Topic: Optimization

Chairman: Joaquim Júdice

09:30 - 11:00 Mauŕıcio Resende, Course on Optimization, Part 1.

11:00 - 11:30 Coffee Break.

11:30 - 13:00 Mauŕıcio Resende, Course on Optimization, Part 2.

13:00 - 15:00 Lunch Break.

15:00 - 16:30 Discussion of Problems 7 and 8.

16:30 - 17:00 Coffee Break.

17:00 - 18:00 Conference: José Craveirinha, Application of Multicriteria Analysis

to Planning and Design Problems – Issues and Trends.

Friday, 12

Topic: Evolutionary Computing

Chairman: Pedro Oliveira

09:30 - 11:00 Eckart Zitzler, Course on Evolutionary Computing, Part 1.

11:00 - 11:30 Coffee Break.

11:30 - 13:00 Eckart Zitzler, Course on Evolutionary Computing, Part 2.

13:00 - 15:00 Lunch Break.

15:00 - 16:30 Discussion of Problems 9 and 10.

16:00 - 17:00 Conference: Agostinho Rosa, Application of Evolutionary Computing

to Games and Scheduling.
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Courses

• Ivette Gomes (DEIO Univ. Lisboa), Stochastic Processes in Telecommunication Traffic.

• Joana Soares (DM Univ. Minho), Transforms, Algorithms and Applications.

• Enrique Zuazua (Universidad Autonoma, Madrid), Propagación numérica de ondas:

Una introducción.

• Mauŕıcio Resende (ATT, USA), Some Applications of Combinatorial Optimization in

Telecommunications.

• Eckart Zitzler (Comp. Eng. Comm. Network Lab, Zurich), Evolutionary Algorithms,

Multiobjective Optimization, and Applications.

Problems

1. Adolfo Cartaxo, Efficient and Accurate Numerical Solution of Stochastic Partial Dif-

ferential Equations.

2. Bárbara Coelho, António Navarro, Optimal M-QAM/DAPSK Allocation in Narrowband

OFDM Radio Channels.

3. Vitor Silva, Fernando Perdigão, Computational Complexity of Discrete Fourier Trans-

form.

4. Henrique Silva, Optimization of the Dispersion Profile in Solution Links With Dispersion-

Varying Compensating Fiber.

5. António Almeida, Finding a Stability Region for a Congestion Control Algorithm.

6. Mário Silveirinha, Carlos Fernandes, Band Structure of Media With Highly Localized

Permittivity Distributions.

7. Paulo Monteiro, Luis Sá, Optimal Globality in Time-Domain Digital Arma Filter De-

sign.

8. Victor Anunciada, Cost Minimization of a Multiple Section energy Cable Supplying

Remote Telecom Equipments.

9. Carlos Salema, Numeric Integration of Rapidly Oscillating Functions.

10. Antoni Zabludowski, Analysis of Chordal Rings.
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Stochastic Processes in Telecommunication Traffic

M. Ivette Gomes
∗

Abstract

The main goal of this paper is to review various recent models, within the queueing

framework, which have been suggested for teletraffic data. Those models intend to capture

the specific features of the data, such as variability of arrival rates, heavy-taildeness of

on-periods and off-periods, as well as long-range dependence in teletraffic transmission.

1 Specific features of the data: an introduction

The statistical properties of computer network traffic seem to differ significantly from the

voice traffic in the telephone system (see, e.g., Fowler and Leland, 1991, or Willinger and

Paxson, 1998), and have revealed to be a great challenge to engineers and statisticians.

Telephone calls can be modeled by a Poisson process, i.e., their inter-arrival times are

roughly exponentially distributed. The lengths of telephone calls have an exponentially

bounded right tail. This implies that the autocorrelations of the network workload decrease

exponentially in the time between observations. Moreover, on a sufficiently large time scale

the workload smooths out, i.e., the number of call arrivals is approximately equal to the

long-term arrival rate of the Poisson process.

But these properties are not usually observed in computer network traffic. On the con-

trary, file lengths, transmission durations and connection lengths are heavy-tailed, workload

processes exhibit long-range dependence (LRD) and show “burstiness” across an extremely

wide range of time scales (i.e., traffic does not smooth out). Workload measurements in

computer networks (i.e., packet or byte counts) show a high level of variability on every

time scale that is considered, from milliseconds to minutes. For instance, for the Bellcore

measurements, such a conclusion has been drawn by several authors. In Leland et al.

(1994) and Willinger et al. (1995) the variability of the workload on the Bellcore Local Area

Networks (LANs) is shown to be roughly the same on five different time scales. And this

invariance under scaling in time and space is taken to be evidence of self-similarity in the

workload measurements. That’s why computer networks are a far greater challenge to an

∗
DEIO Universidade de Lisboa. E-mail:ivette.gomes@fc.ul.pt

7



engineer than the telephon system.

In these notes we shall briefly review, in section 2, some concepts in the general field

of stochastic processes, together with some classical short-range dependent models for

inter-arrival times. Since empirical studies of computer network traffic suggest that there

are three properties always present in the data, heavy tails, long-range dependence and

self-similarity, we shall discuss these three concepts in Section 3. Finally, in section 4 we

review the ON-OFF and the infinite source Poisson processes, which exhibit LRD.

2 A brief introduction to stochastic processes

A stochastic process is a collection of random variables (r.v.’s) {Xt}t≥0, usually indexed in a

time t. More specifically:

Definition 1. A stochastic process with parameter space T is a collection of r.v.’s {Xt}t∈T

defined on the same sample space Ω. If T is an interval of real numbers, the process is said

to have a continuous time space; if T is a sequence of integers, the process is said to have a

discrete time space.

The possible values of Xt are the states of the process. The set S of all possible states is the

state space. The state space may also be either discrete or continuous.

Possible realizations or sample paths of the same stochastic process are different, but it

is possible to detect a clear pattern in their behaviour, i.e., their behaviour is governed by a

predictable random mechanism.

We next introduce some standard definitions:

Definition 2. A stochastic process {Xt}t≥0 has independent increments if and only if for

all 0 ≤ t1 ≤ t2 ≤ t3, Xt3 − Xt2 and Xt2 − Xt1 are independent r.v.’s (occurrence in disjoint

intervals are independent of each other).

Definition 3. A stochastic process {Xt}t≥0 has stationary increments if and only if for all

t ≥ 0 and h ≥ 0, Xt+h − Xt and Xh are equally distributed r.v.’s (the distribution of the

increments depends only on the difference in time).

2.1 Markov processes

Definition 4. Let {Xt}t≥0 be a time continuous stochastic process which assumes non-

negative integer values. The process is called a discrete Markov process if for every n ≥ 0,
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time points 0 ≤ t0 ≤ t1 · · · ≤ tn ≤ tn+1 and states i0, i1, · · · , in, in+1,

P
(
Xtn+1 = in+1|Xtn = in, · · · ,Xt0 = i0

)
= P

(
Xtn+1 = in+1|Xtn = in

)
,

holds, i.e., the future (tn+1), given the present (tn) and the past (t0, t1, · · · , tn−1), depends

only on the present.

We shall here be essentially interested in time-homogeneous stochastic processes:

Definition 5. Let {Xt}t≥0 be a discrete Markov process. If the conditional probabilities

P (Xt+s = j|Xs = i), s, t ≥ 0 do not depend on s, the process is said to be time homogeneous.

Let us then define the transition probabilities

pij(t) = P (Xt = j|X0 = i).

The n × n matrix P(t) = [pij ] is the so-called transition matrix.

Note that pii(0) = 1 and pij(0) = 0 for i 6= j. Consequently P(0) = I, the identity matrix.

Notice also that the rows of the transition matrix P sum up to one — this is what we call a

stochastic matrix.

Definition 6. Occurrence times of our Markov stochastic process {Xt}t≥0 are the random

times 0 ≤ T1 < T2 < T3 · · · where the process makes a transition from one state to another.

The duration between occurrences are the r.v.’s Yn = Tn − Tn−1, n ≥ 1 (T0 = 0).

Another characteristic of a Markov process is its intensity or generator matrix.

Definition 7. Let {Xt}t≥0 be a discrete time Markov process. Assume there exists qij =

p′ij(0) ≥ 0 for i 6= j, and qii ≤ 0 such that, as h → 0,

pij(h) = qijh + o(h) and 1 − pii(h) = −qiih + o(h) =: qih + o(h), j 6= i,

where qi = −qii =
∑
j 6=i

qij. The probability qij, i 6= j is called the transition intensity from

state i to state j. The intensity matrix (or generator matrix) is the matrix Q(t) = [qij ].

The rows of Q sum up to zero.

Remark 1. Notice that the concept of intensity matrix is related to the concept of instan-

taneous failure rate in Reliability Theory. Such a concept comes to give an answer to the

question: “If a system is still working at time t what is the probability that it fails immedi-

ately?” In the context of streams of events, we may place the question: “If we know that an

event has not yet occurred at time t, what is the probability λ(t) that it occurs immediately?”.

Mathematically, denoting T the time of occurrence of the event:

λ(t) = lim
dt→0

1

dt
P (T ≤ t + dt|T > t).
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The notion of conditional probability enables us to write,

P (T ≤ t + dt|T > t) =
P (t < T ≤ t + dt)

P (T > t)
=

F (t + dt) − F (t)

1 − F (t)
.

If F is differentiable with probability density function f = F ′, then

λ(t) =
f(t)

1 − F (t)
.

The instantaneous failure rate in Reliability Theory is here called the intensity function for

T . Intuitively, if the event does not occur up to time t, the probability that such an event is

going to occur in the interval (t, t + dt] for small dt is approximately proportional to dt, with

a proportionality constant given by λ(t).

2.2 Birth-and-death processes

These processes have revealed to be a useful class of Markov processes whenever we need to

analyze queueing systems. In this kind of processes the only possible state transitions are

from i to i − 1 or from i to i + 1. The transition intensity from state i to i + 1 (a birth) is

usually denoted λi ≥ 0 for i ≥ 0, and the transition intensity from i to i − 1 (a death) is

denoted µi ≥ 0 for i ≥ 1.

The state space of a birth process is Ω = {0, 1, 2, · · · }. The intensity matrix of such a

process is thus given by:

Q =




−λ0 λ0 0 0 0 · · ·

µ1 −(λ1 + µ1) λ1 0 0 · · ·

0 µ2 −(λ2 + µ2) λ2 0 · · ·
...

...
...

...
...

...




A great diversity of queueing systems are suitably modelled by birth-and-death processes.

The numbers {λi} and {µi} are interpreted as the arrival rate of the queue and the server

rate, respectively.

2.3 Poisson arrivals

For a complete description of Poisson processes see for instance Gut (1995). A Poisson process

is a counting process:

Xt = number of occurrences in the interval (0, t],

which may be formally defined in the following way:
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Definition 8. A stochastic process {Xt}t≥0 is a Poisson process with intensity λ > 0, and

we use the notation Xt _ Poisson(λ) if and only if

(a) {Xt}t≥0 is integer-valued, increasing and X0 = 0;

(b) {Xt}t≥0 has independent and stationary increments;

(c) P (Xt = x) = e−λt (λt)x/x! for x = 0, 1, 2, · · · , and for every t ≥ 0.

We shall briefly refer some of the properties of a Poisson process:

1. E[Xt] = V ar[Xt] = λ t;

2. Let s ≥ 0 be a fixed point of time. Then Zt = Xt+s − Xs
d
= Xt, a Poisson(λt) r.v., for

all s, t ≥ 0.

Remark 2. Notice that the Poisson process, with intensity λ is a Markovian process, with

state space S = {0, 1, · · · }, parameter space T = R
+, and such that

(a’) pk,k+1(h) = λ h + o(h).

(b’) pk,k(h) = 1 − λ h + o(h).

(c’) pk(0) =

{
1 if k = 0

0 if k 6= 0
.

Consequently, the Poisson process is a pure birth-process, with constant birth-rate equal to λ,

the intensity of the process.

An important property of the Poisson process, that we shall present without proof, is the

following:

Theorem 1. {Xt}t≥0 is a Poisson process with intensity λ if and only if the inter arrival

times are independent exponential r.v.’s with mean value equal to 1/λ.

In other words, if we denote T1, T2, · · · the times of occurence of the Poisson events, the

r.v.’s Yj = Tj − Tj−1, j ≥ 1 (T0 = 0) are independent, identically distributed (i.i.d.), with

distribution function (d.f.) FY (t) = 1 − e−λt, t ≥ 0. The converse also holds true.

The Poisson process exhibits thus a lack of memory property (directly related to the

exponential inter-arrival times. Indeed:

Theorem 2. If T is Exponential (1/λ), then

P (T > t + s|T > s) = e−λ t = P (T > t).
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2.3.1 Superposition of Poisson processes

It is a straighforward result that the superposition of Poisson processes is still a Poisson

process. Indeed,

Theorem 3. Let {Xi(t)}t≥0, i = 1, 2, · · · , k, denote k independent Poisson processes with

intensities λ1, λ2, · · · , λk. Then the superposition

Z(t) =
∑k

i=1 Xi(t) is a Poisson process with intensity λ =
k∑

i=1
λi.

2.4 Renewal arrival streams

A large class of stochastic processes are renewal processes.

Definition 9. Let Y1, Y2, · · · be i.i.d. and positive r.v.’s, and let Tn = Y1 + Y2 + · · ·+ Yn and

Xt := max{n : Tn ≤ t}.

Then, the process {Xt}t≥0 is called a renewal process.

Remark 3. It is obvious that such a simple definition leads to the possible description of many

types of stochastic processes as renewal processes. It is often true that a complex stochastic

model has one or more embedded renewal processes: this is indeed the basic idea of regenera-

tion, which allows a process to be decomposed into i.i.d. blocks of random length.

The name “renewal process” is motivated by the fact that every time there is an

occurence, the process “starts over again”, i.e., it renews itself.

It is possible to prove some important results for renewal processes, as t → ∞. Among

them, we state the following ones (Taylor and Karlin, 1998):

Theorem 4. Let {X(t)}t≥0 be a renewal process with durations Y , with finite variance σ2 =

Var Y . Let us denote µ = E Y . Then:

X(t)

t

a.s.
−→
t→∞

1

µ
,

E X(t)

t
−→
t→∞

1

µ
,

Var X(t)

t
−→
t→∞

Var Y

E3 Y
.

Remark 4. Note that the Poisson(λ) process is obviously a renewal process, where the gen-

erators Yi are exponentially distributed with mean value equal to 1/λ.

Remark 5. Although the superposition of Poisson processes is a Poisson process, the super-

position of renewal processes is not necessarily a renewal process.
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2.5 Arrivals and the ON/OFF periods

2.5.1 Deterministic inter-arrivals

Sometimes, the inter-arrivals may be considered deterministic, being T the inter-arrival time.

In the ON -periods, the busy periods in which arrivals happen, let us denote Nb the number

of arrivals. It is often assumed that Nb is geometrically distributed, with probability function

P (Nb = k) = pk−1(1 − p), k = 1, 2, · · · . (2.1)

We then have ENb = 1/(1 − p), and consequently the ON -periods have an expectation

α = T/(1 − p) =: nT,

where T is the fixed inter-arrival time, and n is the expected number of arrivals in an ON -

period.

It is also often assumed that the OFF -periods (period of time without arrivals) are ex-

ponentially distributed with mean 1/β, and such a source may be viewed as a two state

birth-and-death process.

2.5.2 Exponentially distributed inter-arrivals

To be coherent with the deterministic source, we shall assume that in the ON -periods the

times Y between consecutive events are exponentially with mean value T = 1/λ. This means

that the events occur according to a Poisson Process with intensity λ. Let Nb denote the

number of arrivals in an ON -period, and let us assume that Nb is geometrically distributed

with mean n = 1/(1− p). Let us also assume that Y and Nb are independent. It is then easy

to show that the ON -periods U are also exponential distributed. Indeed, the conditional r.v.,

U |Nb=k =
k∑

i=1

Yi
d
= Gama(k, T ),

with p.d.f.

fU |Nb=k
(t) =

1

Γ(k)

tk−1

T k
e−t/T , t ≥ 0.

Consequently, the law of total probability enables us to write

fU (t) =
∑

k≥1

P (Nb = k)fU |Nb=k
(t) = (1 − p) e−t/T

∑

k≥1

(pt)k−1

(k − 1)! T k

=
(1 − p) e−t/T

T
ept/T =

1 − p

T
e−t(1−p)/T , t > 0,

i.e., U is an exponential r.v. with mean value T/(1−p) = nT , the same as in the deterministic

inter-arrival source.

We have here again an underlying birth-and-death process. The deterministic source of

events is now replaced by a Poisson source.
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2.5.3 A more general source of events

Let us introduce the r.v. W , exponentially distributed with mean value 1/β, which also

describes the length of the OFF -periods. Let us also assume that the inter-arrival time in

the ON -period, Z, is such that

Z =

{
T with probability p = n−1

n

T + W with probability p = 1
n

,

whenever we have deterministic inter-arrivals, and

Z =

{
Y with probability p = n−1

n

Y + W with probability p = 1
n

,

whenever we have exponential inter-arrivals Y .

The consideration of sequences of i.i.d. r.v.’s distributed as Z leads us to a single source

of events, which can be seen as a renewal process, generalizing the cases considered before.

2.5.4 The superposition of independent sources

The superposition of arrival sources can be viewd as a birth-and-death process where the

states represent the number of sources that are currently in the ON -state. Consequently,

state i represents that i sources are active. Such a birth-and-death process is often referred

in the literature as the Phase Process, J(t). The birth rate is again given by the mean 1/β

of exponentially distributed iddle periods. The death rate is usually denoted 1/α, and the

probability that the source is ON is p
ON

= α/(α + β).

The limiting probabilities πi, that the Phase Process is in state i is obviously Binomial,

πi =

(
N

i

)
pi

ON
(1 − p

ON
)N−i , i = 0, 1, · · · , N, (2.2)

where N is the number of superpositioned sources. The intensity matrix of the Phase process

is given by

Q =




−Nβ Nβ 0 0 0 · · ·

α −(α + (N − 1)β) (N − 1)β 0 0 · · ·

0 2α −(2α + (N − 2)β) (N − 2)β 0 · · ·
...

...
...

...
. . .

...

· · · · · · · · · · · · 0 Nα




Markov Modulated Rate Process (MMRP )

The MMRP process is a superposition of sources with deterministic inter-arrival times.

When the phase process is at state i we have an arrival rate equal to i/T per second, let us

say.
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This process is difficult to describe mathematically, because the different sources may be

unsynchronized, and consequently, we no longer have a deterministic equal inter-arrival time

property.

Markov Modulated Poisson Process (MMPP )

The MMPP is a widely used tool for the analysis of teletraffic data. Since the

superposition of Poisson processes is also a Poisson Process, this process is much simpler to

be treated mathematically than the MMRP .

2.5.5 Index of Dispersion

To describe the dependence between successive arrivals of an arrival process it is usual to

consider the following Index of Dispersion (ID), a measure of burstiness of a signal. Let

Yk, k ≥ 1 denote the inter-arrival times associated to our arrival stream. Let us assume that

the process of inter-arrival times is stationary, and let Tk = Y1 +Y2 + · · ·+Yk denote the time

of occurrence of the k-th event.

Definition 10. The Index of Dispersion (ID) of the arrival stream is defined as

IDk :=
k Var Tk

E2 Tk

For a Poisson arrival stream, we may state:

Theorem 5. The ID of a Poisson process is equal to 1, for all k ≥ 1.

More generally,

Theorem 6. The ID of a renewal process is constant and equal to ID = VarY/E
2Y for all

k ≥ 1.

Theorem 5 leads us to the use of the indicaror IDk as a measure of deviation from a

Poisson process. Also, Theorem 6 enables the same relatively to a general renewal process

— fluctuation in the IDk sequence enable us to detect deviations from the renewal property.

3 Heavy tails, long-range dependence and self-similarity

Empirical studies of computer network traffic suggest that there are three properties always

present in the data: heavy tails, long-range dependence and self-similarity. We shall here

briefly review these three concepts, following closely Stegeman (2002).

Let F be the d.f. of a positive r.v. X. We shall denote F = 1 − F the tail function of F .
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3.1 Regularly varying tails

Definition 11. The d.f. F (or the r.v. X) has a heavy tail, as x → ∞, if and only if

F (x) = P (X > x) = x−αL(x) (α > 0), (3.1)

where L(x) is a slowly varying function, i.e.

L(tx)

L(t)
−→
t→∞

1, for all x > 0.

Remarks:

1. The function F in (3.1) is said to be regularly varying with index of regular variation

equal to −α.

2. A slowly varying function is a regularly varying function with index of regular variation

equal to 0.

3. If α < 2 the variance of X is infinite. Indeed, some authors consider that a model is

heavy-tailed only if α ∈ (0, 2).

4. If α < 1 the mean value is infinite.

5. A particular important case of the model in (3.1) is provided by the the slowly varying

functions L(x) = C(1 + o(1)), i.e. L(x) → C, 0 < C < ∞, as x → ∞. Notice however

that a slowly varying function may converge to zero, like 1/ lnx, or diverge to infinity,

like lnx.

Examples of heavy-tailed models

1. The clasical heavy-tailed model is the Pareto model, with a d.f.

F (x) = 1 −
(
1 +

x

δ

)−α
, x ≥ 0 (α, δ > 0).

2. Another important heavy-tailed model is the Fréchet model, with a d.f.

F (x) = exp

{
−
(x

δ

)−α
}

x ≥ 0 (α, δ > 0).

3. Some other models, also common in the literature related to heavy tails, are the so

called stable models, which appear as limits related to sum’s schemes.
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Definition 12. A stable d.f., Sα(σ, β, µ), is characterized by four parameters: the index

of stability α ∈ (0, 2], a scale parameter σ > 0, a skewness parameter β ∈ [−1, 1] and a

location parameter µ ∈ R. The characteristic function E
(
eitx
)

of a stable r.v. is given

by

exp {−σα|t|α(1 − iβ sign(t) tan(πα/2)) + iµt} if α 6= 1

exp
{
−σ|t|(1 + 2iβπ−1sign(t) ln |t|) + iµt

}
if α = 1

Although any stable distribution has a density, in general an explicit expression of

the density in terms of elementary functions is unknown. Exceptions (excluding the

degenerate case) are the Lévy distribution S1/2(σ, 1, µ), the Cauchy d.f. S1(σ, 0, µ) and

the Gaussian d.f. S2(σ, 0, µ) ≡ N(µ, 2σ2).

The parameter β is a skewness parameter, and if β = 0 the distribution is symmetric

around µ. The mean of of a stable r.v. is µ if α ∈ (1, 2], and for α ≤ 1, E|X| = ∞.

For α ∈ (0, 2) the variance is infinite. Then (Samorodnitsky and Taqqu, 1994, Property

1.2.15), as x → ∞, Sα has tails given by

P (X > x) ∼ Cασα 1 + β

2
x−α, and P (X ≤ x) ∼ Cασα 1 − β

2
x−α,

where

Cα =

{
1−α

Γ(2−α) cos(πα/2) if α 6= 1
2
π if α = 1

.

Consequently, if α < 2 a stable d.f. has heavy tails.

3.2 Sub-exponential tails

Some authors consider a class of heavy-tailed distributions, much larger than the class of reg-

ularly varying functions with a negative index of regular variation, the class of sub-exponential

distribution functions:

Definition 13. The d.f. F (or the r.v. X) is sub-exponential if

lim
x→∞

P (X1 + · · · + Xn > x)

P (max(X1, · · · ,Xn) > x)
= 1 for some (equivalently all) n ≥ 2. (3.2)

Remark 6. This is a much larger class of models, containing the class of regularly varying

tails. Further examples of sub-exponential d.f.’s are the lognormal and the Weibull d.f.’s,

F (x) = 1 − exp(−xβ), x ≥ 0, β ∈ (0, 1).

Remark 7. Equation (3.2) has a possible physical interpretation: the sum of i.i.d. subexpo-

nential r.v.’s is likely to be large if and only if their maximum is. This fact accounts for large

values in subexponential samples.
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For relations among different classes of heavy-tailed distributions see Embrechts et al.

(1997), section 1.4. A full treatment of regular variation may be found in Bingham et al.

(1987).

3.3 How to detect heavy tails?

We may use different graphical tools, usually based on the notion of regularly varying tails.

We shall refer two of those methods:

1. The log-log cumulative distribution plot (LLCD plot) is frequently used. The idea is to

plot 1− F̂n on log-log scales, where F̂n is the empirical cumulative distribution function,

F̂n(x) =
1

n

n∑

i=1

I
{Xi≤x}

.

If the theoretical d.f. has a heavy right tail, for large n and moderately large values of x,

the LLCD plot should consist of points randomly scattered around a straight line with

slope equal to −α. An estimate of α may be obtained through least squares regression.

2. The most frequently used method for estimating the tail parameter α is the Hill esti-

mator

α̂n(k) :=

(
1

k

k∑

i=1

ln
Xn−i+1:n

Xn−k:n

)−1

,

where (X1:n ≤ X2:n ≤ · · · ≤ Xn:n) denotes the sample of the ascending order statistics

associated to our sample (X1,X2, · · · ,Xn). In case of a heavy tail, the plot of ln k

versus α̂n(k) for small k will stabilize around a value α > 0. For other alternatives to

Hill’s estimator of γ = 1/α, which exhibit smaller bias for large k, enabling thus their

plot as functions of k, see for instance Gomes and Martins (2002).

3.4 Long-range dependence

Whenever we are working with a weakly stationary (finite variance) stochastic process

{Xt} , t = 0, 1, 2, · · · , dependence between observations at times t and t + k is usually mea-

sured by the autocorrelation function (ACF ) ρ(k) at lag k, given by

ρ(k) =
Cov(Xt,Xt+k)

V ar(Xt)
=

Cov(X0,Xk)

V ar(X0)
, k = 0, 1, 2, · · · . (3.3)

The plotting of ρ(k) versus k gives us an idea of the second order structure of the process.

We obviously expect |ρ(k)| to be decreasing in k. The notion of LRD (long-range dependence)

depends on the size of ρ(k) for large k. A possible definition of LRD (Beran, 1994) is,
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Definition 14. The stationary process {Xt} exhibits LRD if, as k → ∞, the ACF in (3.3)

is such that

ρ(k) ∼ C k−β, (3.4)

where C is a positive constant and β ∈ (0, 1). Equivalently, we may say that
∑
k

ρ(k) is not

summable.

This property contrasts to short-range dependent processes like the autoregressive (AR)

or more generally the autoregressive moving average (ARMA) processes, where ρ(k) decays

at an exponential rate. Popular processes, like the fractional ARIMA (Brockwell and Davis,

1991, section 13.2) and the fractional Gaussian noise, introduced later on, satisfy (3.4) with

positive values ρ(k).

3.4.1 Dectection of long-range dependence

Several heuristic graphical tools may be used to detect LRD in a time series. A statistical

evaluation of these exploratory methods may be found in Taqqu and Teverovsky (1995, 1996).

LRD seems to be present in most of the teletraffic data.

We shall here describe essentially two methods:

1. Suppose we have observed a stationary time series (Xt, t = 1, 2, · · · , n). One way to

detect LRD makes use of the sample autocorrelations

ρ̂(k) =
γ̂(k)

γ̂(0)
, γ̂(k) =

1

n

n−k∑

t=1

(
Xt − Xn

) (
Xt+k − Xn

)
, 0 ≤ k ≤ n − 1.

If LRD is present, a plot ln ρ̂(k) agains ln k (the log-log correlogram) will provide points

randomly scattered around a straight line with slope −β for appropriate values of k and

large n. A disadvantage of this method is that the estimate ρ̂(k) is unreliable for large

k with respect to n (see Brockwell and Davis, Section 7.2)

2. The oldest and perhaps better known LRD technique detection is the R/S method.

This method has its origins in the field of hydrology and was first used by Hurst when

he discovered LRD-like features in the yearly minimal water levels of the Nile river

(Hurst, 1951). For a stationary process (Xt, t = 1, 2, · · · , n), let us consider partial

sums Yk =
∑k

t=1 Xt and the sample variance S2
k =

∑k
t=1 X2

t /k − (Yk/k)2. The R/S

statistic is

(R/S)(k) :=
1

Sk

{
max
0≤t≤k

(
Yt −

tYk

k

)
− min

0≤t≤k

(
Yt −

tYk

k

)}
.

It can be shown that if Xt is Gaussian, stationary, ergodic and (3.4) holds, then, with

H = 1 − β/2,

k−H (R/S) (k)
d

−→Z, as k → ∞, (3.5)

19



where Z is a non-degenerate r.v. (see Mandelbrot, 1975, Theorems 5 and 11, as well as

Taqqu, 1975). The parameter H is the so-called Hurst parameter and is frequently used

as a measure of strength of the LRD present in the data: H close to 1 corresponds to a

strong presence of LRD. For various short memory processes, (3.5) holds with H = 1/2.

For fractional Gaussian noise and fractional ARIMA (with gaussian innovations),

E(R/S)(k) ∼ c kH , as k → ∞ (c > 0). (3.6)

For an observed time series (Xt, t = 1, 2, · · · , n) one can try to verify (3.6) as follows:

• partition the series in [n/m] blocks of size m;

• then, for each k, compute (R/S)mi
(k), starting at points mi = im+1, i = 0, 1, · · · ,

such that mi + k ≤ n;

• for values of k ≤ m we get [n/m] different estimates of (R/S)(k). For values of k

approaching n, we get fewer values, as few as 1 as k ≥ n − m;

• next plot ln(R/S)mi
(k) against ln k and get, for each k several values on the plot;

• for large k, the points shoud lie around a straight line with slope H.

Another popular method to detect LRD (see Brockwell and Davis, 1975, section 10.3) is

based on the periodogram

I(λ) =
1

2π n

∣∣∣∣∣

n∑

t=1

Xt e−itλ

∣∣∣∣∣ , λ ∈ [−π, π]. (3.7)

It is common use to evaluate the periodogram at the Fourier frequencies λj = 2πj/n, j =

−[(n − 1)/2], · · · , [n/2]. If LRD is present, a plot of ln I(λj) against ln(λj) would result in

an approximately straight line with slope β − 1 for small frequencies λj .

3.4.2 Long-range dependence or non-stationarity?

It is clear that the concept of LRD, as given in (3.4), applies only to stationary processes,

and we may say that no general test for the stationarity of an observed time series is indeed

available in the literature. More than that: the graphical methods used to detect LRD in a

time series are not fully reliable, and it has been observed that non-stationarities, like shifts in

the mean or a slowly decaying trend can also be the cause of slowly decaying autocorrelations.

It seems sensible to assume that “traffic is stationary only over short periods”: at different

time scales different factors may induce non-stationarities in the measurement series. Usually

a portion of measurements containing not more than one hour of data traffic is considered

and the workload is defined per second. We shall come to this feature later on.
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3.4.3 ARIMA models and long-range dependence

The class of auto-regressive moving averages (ARMA) processes is the class of models most

frequently applied to time series that exhibit no apparent deviations from stationarity and

have rapidly decreasing autocorrelations. ARMA processes are defined as follows: for non-

negative integers p and q, let the polynomials φ and θ be given by

φ(z) = 1 − φ1z − · · · − φpz
p and θ(z) = 1 + θ1(z) + · · · + θqz

q.

Let us define the backward shift operator B, by

BjXt = Xt−j, j = 0, 1, 2, · · · .

Definition 15. The process {Xt, t = ±1,±2, · · · } is an ARMA(p, q) process if {Xt} is sta-

tionary and if for every t

Xt − φ1Xt−1 − · · · − φpXt−p = Zt + θ1Zt−1 + · · · + θqZt−q, (3.8)

where {Zt, t = ±1,±2, · · · } is a sequence of white noise, i.e., uncorrelated and identically

distributed r.v.’s with mean 0 and variance σ2
Z
. Compactly we may write (3.8) as

φ(B)Xt = θ(B)Xt,

where φ is the autoregressive part and θ the moving average part of the process.

Notice that the ARMA process has mean equal to 0. We say that {Xt} is an ARMA(p, q)

with mean µ if {Xt − µ} satisfies (3.8).

Definition 16. An ARMA(p, q) process is called casual if the polynomials φ and θ have no

common zeros and φ has no zeros inside or on the unit circle in the complex plane. A causal

ARMA process can be written as an infinite moving average

Xt =

(
θ

φ

)
(B)Zt,

which is the unique stationary solution of (3.8).

An ARMA process has short memory in the sense that the autocorrelation function ρ(k)

satisfies

|ρ(k)| ≤ bak, for some constants b ∈ (0,∞) and a ∈ (0, 1). (3.9)

The ARMA class is very convenient for modelling stationary short memory time series.

However, in practice, stationarity of a time series is not always observed. Often, the series is
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transformed to “make it look more stationary”. A frequently applied method is differencing,

i.e., instead of the original series one looks at the series

(1 − B)Xt = Xt − Xt−1,

which will usually remove a global linear trend. Differencing twice will remove second degree

polynomials, and usually we stop here, because, on a finite interval, many functions can be

well approximated by polynomials of a reasonably low degree.

Definition 17. A process that, after differencing finitely many times, reduces to an ARMA

process, is called an autoregressive integrated moving average (ARIMA) process. An ARIMA

process that is ARMA(p, q) after d times differencing is denoted ARIMA(p, d, q), i.e., if {Xt}

is ARIMA(p, d, q) then (1 − B)dXt is ARMA(p, q).

Note that if d ≥ 1 the ARIMA process is not stationary, and may appear as a model for

series exhibiting a “LRD” type property.

3.4.4 Fractional Brownian motion

The fractional Brownian motion is a stochastic process exhibiting LRD in the sense of (3.4):

Definition 18. A process {σ0BH
(t), t ≥ 0} with σ0 > 0 is called a fractional Brownian

motion if

1. B
H

(t) ∼ N
(
σ2t2H

)
.

2. Cov (B
H

(s), B
H

(t)) = 1
2

(
s2H + t2H − |t − s|2H

)
for some H ∈ (0, 1).

3. B
H

has continuous sample paths a.s.

Since fractional Brownian motion is a Gaussian process, its finite-dimensional distributions

are completely determined by 1. and 2. Using 2. it can be shown that for s < t,

Var(B
H

(t) − B
H

(s)) = Var(B
H

(t − s)).

Hence, fractional Brownian motion has stationary increments. Notice that for H = 1/2,

B
H

is an ordinary Brownian motion. Fractional Brownian motions have continuous sample

paths which become smoother as H increases.

The increment process Yt = B
H

(t) − B
H

(t − 1), t = 1, 2, · · · , of a fractional Brownian

motion is called a fractional Gaussian noise. It is a mean-zero stationary Gaussian process

with ACF

ρ
Y
(k) =

1

2

(
|k + 1|2H − 2|k|2H + |k − 1|2H

)
, k = 0, 1, 2, · · · .
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For H = 1/2, Y is a sequence of i.i.d. N(0, σ2) variables. If H 6= 1/2, Y is a dependent

sequence. It has been shown (Samorodnitsky and Taqqu, 1994, Proposition 7.2.10) that for

H 6= 1/2, as k → ∞,

ρ
Y
(k) ∼ H(2H − 1)k2H−2.

Hence, for H ∈ (1/2, 1) the fractional Gaussian noise exhibits LRD. If H ∈ (0, 1/2) the

autocorrelations ρ
Y
(k) are absolutely summable, i.e., the process has short memory.

3.5 Self-similarity

3.5.1 Distributional self-similarity

Definition 19. A stochastic process {Xt}t≥0 is said to be self-similar if the finite-dimensional

distributions of {Xat} and
{
aHXt

}
are identical for any a > 0 and some H ∈ (0, 1), i.e., if

Xat
d
= aHXt ∀t ≥ 0. (3.10)

The parameter H is called the index of self-similarity.

The concept of self-similarity became popular due to the work of Mandelbrot and van Ness

(1968). A thorough mathematical description of self-similarity is given by Samorodnitsky

and Taqqu (1994).

An important stochastic processes in this area is the stable Lévy motion, directly related

to a stable d.f.:

Definition 20. A process {Λα,σ,β(t), t ≥ 0} is a α-stable Lévy motion if

1. Λα,σ,β has independent increments.

2. Λα,σ,β has stationary increments.

3. Λα,σ,β
d
_ Sα(σt1/α, β, 0), with Sα a stable d.f. for sums for some α ∈ (0, 2], β ∈ [−1, 1]

and σ > 0.

4. Λα,σ,β has right-continuous sample paths a.s.

Examples.

(a) The α-stable Lévy motion is self-similar with H = 1/α.

(b) The fractional Brownian motion is self-similar with index H and, obviously, the

Brownian motion is self-similar with H = 1/2.
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3.5.2 Second-order self-similarity

A different notion of self-silimarity is given by Cox (1984): given a stochastic process

{Xt, t ≥ 0}, consider its averaging through adjacent blocks of size m, i.e., consider

X
(m)
t :=

1

m
(Xtm−m+1 + · · · + Xtm) , m ≥ 1.

Definition 21. The weakly stationary stochastic process {Xt, t ≥ 0} is second-order self-

similar if X and X(m) have the same ACF for every m ≥ 1. If the autocorrelation structures

are equal only when m → ∞, the process is called asymptotically second-order self-similar.

The fractional Gaussian noise is second-order self-similar. If the ACF shows a slow

decay, in the sense of (3.4), the associated stochastic process is asymptotically second-order

self-similar; this is the case of the fractional ARIMA.

3.5.3 Self-similarity “by picture”

It is sometimes tempting to argue that a sample path of a self-similar process, with index H,

on [0,1] will look qualitatively as a sample path on [0,100] where the realizations are divided

by 100H . Notice however that self-similarity means that the distribution of the process is

invariant under the transformation, and not necessarily the sample paths. For instance in

Leland et al. (1994) and Willinger et al. (1995) a time series of measured packet arrivals per

time unit in the Ethernet LAN at Bellcore is plotted on five different time scales, the time

units ranging from 0.01 till 100 seconds. From the plots it can be seen that the relative

variability of the arrival process remains roughly the same in four of the five plots. The

authors conclude then that evidence has been found of “self-similarity” of the measured

Ethernet traffic. However, the same conclusion can be drawn for an appropriate time series,

which is not self-similar, in the way it is done by Stegeman (2001). This author starts with

a realization from an ARIMA(1,1,1) model with φ1 = 0.4, θ1 = −0.95 and σ2
Z

= 800, with a

length n = 10, 000.000. From this sequence he constructs four new sequences by taking sums

over consecutive blocks of sizes n = 10, 100, 1000 and 10000, respectively. He then notices

that the relative variability of the four plots remains roughly the same, but the realization is

from an ARIMA model, which is not self-similar. There may however exhist an explanation

for this fact: the ARIMA model is asymptotically second-order self-similar in the sense of

Cox.
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4 Modeling the workload in computer networks

At the application level, file sizes, connection lengths and transmission durations are found

to be heavy-tailed. Also, the heavy-tailed file sizes are related to the LRD observed in

packet inter-arrival times, silent times and packet sizes. For example, suppose a source

is transmitting an extremely large size file to a destination host. Due to the observed

heavy-tails the probability of extremely large files is non-negligible. Before transmission,

the file is decomposed into small packets, on which the bandwidth of physical medium

imposes a certain maximum packet size. Since the file is extremely long it is more efficient

if it is decomposed into packets of this maximum size. Hence, a long stream of packets of

the same size occurs. Moreover, if there is no interference from other transmissions, the

inter-arrival times and silence times between the packets will also be the same. This explains

how the transmission of extremely large files causes dependence over a long range of obser-

vations (i.e. LRD) in the sequences of packet inter-arrival times, silent times and packet sizes.

The idea of heavy tails as the cause of LRD in workload measurements has been captured

in two popular models:

1. The ON/OFF model proposed by Willinger et al. (1995). Here, traffic is generated by

M i.i.d. ON/OFF sources. If a source is ON it transmits data at unit rate (e.g. 1 byte

per time unit). If it is OFF it remains silent.

In this way, an individual ON/OFF source generates a binary ON/OFF process Wt,

where

Wt =

{
1 if the source is ON at time t

0 if the source is OFF at time t
.

The lengths of periods in which the source is ON , the ON -periods Xi, are independently

drawn from a heavy-tailed distribution. Analogously, the OFF -periods Yi are also

heavy-tailed. The X and Y sequences are assumed to be independent.

It has been shown by Heath et al. (1998) that the stationary version of the ON/OFF

process Wt exhibits LRD. Moreover, since the M sources are independent, the sum

of their ON/OFF processes, i.e., the total workload generated by the M sources, also

exhibits LRD.

2. The infinite source Poisson model, sometimes called the M/G/∞ input model. Here, the

number of sources in the network is taken infinite. Traffic is generated by independent

connections arriving according to a Poisson process, i.e., with exponential inter-arrival

times. During a connection, traffic is generated at a unit rate. The lengths of the

connections are independent and taken from a heavy-tailed distribution. Also, the
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connection lengths are independent from the connection inter-arrival times. Cox (1984)

shows that the workload process generated by this model exhibits LRD.

4.1 The ON/OFF model

Consider first a single ON/OFF source such as a workstation. During an ON -period, the

source generates traffic at a constant rate 1, e.g., 1 byte per unit time. During an OFF -

period, the source remains silent; we assign the value 0 to it. Let X0,X1,X2, · · · be i.i.d.

non negative rvs representing the lengths of the ON -periods, Xon, and Y0, Y1, Y2, · · · be i.i.d.

non-negative rvs representing the lengths of the OFF -periods, Xoff . We also write

Zi = Xi + Yi, i ≥ 0.

The X and Y sequences are supposed to be independent. For any df F we write F = 1 − F .

We denote Fon/Foff the distribution of ON/OFF periods, and we shall assume that

1 − Fon ∈ RV−αon and 1 − Foff ∈ RV−αoff
, αon, αoff ∈ (1, 2).

Consequently, both distributions Fon and Foff have finite means µon and µoff , respectively,

but infinite variances.

It is often assumed that α := αon < αoff . And this assumption makes the results for

Models 1. and 2. almost identical.

Consider the renewal sequence generated by the alternating ON - and OFF -periods. Re-

newals happen at the beginnings of the ON -periods, the interarrival distribution is the con-

volution Fon ∗ Foff and the mean inter-arrival time

µ = EZ1 = µon + µoff .

To make the renewal sequence stationary (see Resnick, 1992, page 224, for a definition), we

need to introduce a delay rv T0, which is independent of the Xi’s and the Yi’s. A stationary

version of the renewal sequence {Tn} is then given by

T0, Tn = T0 +

n∑

i=1

Zi, n ≥ 1. (4.1)

One way to construct the delay variable T0 is as follows. Let B, X
(0)
on and Y

(0)
off be independent

r.v.s, independent of {Xn}, {Yn}, such that B is Bernoulli with

P (B = 1) =
µon

µ
= 1 − P (B = 0),
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and

P
(
X(0)

on ≤ x
)

=
1

µon

∫ x

0
F on(s)ds =: F (0)

on (x),

P
(
Y

(0)
off ≤ x

)
=

1

µoff

∫ x

0
F off (s)ds =: F

(0)
off (x).

Define

T0 = B
(
X(0)

on + Y
(0)
off

)
+ (1 − B) Y

(0)
off .

The renewal sequence (4.1) is then stationary.

The ON/OFF process W is a binary process with Wt = 1 if t is in an ON -period and

Wt = 0 if t is in an OFF -period. The stationarity of the renewal sequence (4.1) implies strict

stationarity of the process W with mean

EWt = P (Wt = 1) = µon/µ.

The precise rate of decay for γ
W

(k), the covariance function of the stationary process W ,

under the regular variation assumptions and αon < αoff , is, as k → ∞,

γ
W

(k) := Cov(Wt,Wt+k) ∼
µ2

offk−(α−1)Lon(k)

(α − 1)µ3
= C k F on(k). (4.2)

The process W exhibits LRD in the sense that
∑

k

|γ
W

(k)| = ∞,

which is equivalent to (3.4). Intuitively, this can be explained in the following way: since

the lengths of the ON and OFF periods follow a heavy tailed distribution, they can assume

extremely large values with non-negligible probability. Such an extremely large ON or OFF

periods may contain both W (t) and W (t + k), even if k is extremely large, yielding the

non-negligible covariance in (4.2).

Now consider a superposition of M i.i.d. ON/OFF sources feeding a server,(
W

(m)
t , m = 1, · · · ,M ; t ≥ 0

)
. The number of active sources at time t, or equivalently,

the total traffic at the network at time t, is

N(t) = M
M

(t) =
M∑

m=1

W
(m)
t , t ≥ 0.

Note that N(t) is the input rate to the server at time t and is usually referred to as the

workload processs. Since the sources are i.i.d., (4.2) implies that N exhibits LRD in the spirit

of (3.4), since the stationary version of N satisfies

γ
N

(k) =
M∑

i=1

γ
W (i)

(k) = CMkF on(k).
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The cumulative input of work to the server or total accumulated work by time t is

A(t) = A
M

(t) =

∫ t

0
N(s)ds, t ≥ 0.

The behaviour of the cumulative input process A(t) for the superposition of a large

number of i.i.d. ON/OFF sources has already been studied by Willinger at al. (1995) and

Taqqu et al. (1997), and it has been found that the cumulative input process (properly

normalized) of an increasing number of i.i.d. ON/OFF sources converges to a fractional

Brownian motion in the sense of convergence of the finite dimensional distributions. Their

result is formulated as a double limit: first, the number M of sources goes to infinity and

then the time-scaling parameter T converges to infinity. This order of taking limits is crucial

for obtaining fractional Brownian motion as limit. When limits are taken in the reversed

order, the limits of the finite-dimensional distributions are those of an infinite variance stable

Lévy motion. Indeed, Mikosch et al. (2002?) consider the ON/OFF model when M and T

go simultaneously to infinity and they get, after adequate normalization, α-stable Lévy motion.

4.1.1 Local Area Networks (LANs) traffic: the ON/OFF model and reality

The introduction of the ON/OFF model into the networking community has been accompa-

nied by a detailed statistical analysis at the source level of traffic generated in the Ethernet

LAN at Bellcore. ON and OFF periods are defined for the traffic between individual source-

destination pairs. It is found, using the LLCD plot and the Hill plot that the distributions of

the lengths of ON and OFF periods are heavy tailed, with parameter between 1 and 2. Also

it is mentioned that no evidence is found for dependence in (or between) the sequences of ON

and OFF periods. The other independence assumption, of the M sources in the model, is

less likely to hold in a real-life network. Also, the ON/OFF model does not involve queuing

or congestion control, which make it seem simplistic. However, this model seems to have been

successful in capturing some of the characteristics of real-life LAN traffic.

4.2 The infinite source Poisson model

This is a common model of incoming traffic to a communication network. We have a homoge-

neous Poisson process on [0,∞) with rate λ, and let Ti, i ≥ 1 denote the times of occurrence

of such a process, so the Ti−Ti−1, i ≥ 1, (T0 ≡ 0) are i.i.d. exponential r.v.’s with mean value

1/λ. We imagine that a communication system has an infinite number of nodes, sometimes

called sources. Suppose that at time Ti, some node turns on and begins a transmission, or

a source starts a transmission to the server, and continues to transmit for a period of length

Li, at a possibly time varying rate. It is often assumed a constant rate, taken equal to unity,

and we shall do it here. As said before, heavy tails are common for this type of data, i.e.,
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it is sensible to assume that the tail function of Li is regularly varying with index of regular

variation equal to −α, i.e.,

P (Li > x) = 1 − Fon(x) = x−α L(x), 1 < α < 2, x > 0, (4.3)

for some slowly varying function L(x).

The first quantity of interest is N(t), the number of active sources at time t. For each t,

N(t) is a Poisson r.v. with parameter λµon, where µon = EL. Due to the memoryless property

of the exponential distribution and the independence between the Poisson process and the

connection lengths, the process N(t) is stationary. The process is considered on large time

scales, i.e., for large T , we consider N(t) = N
T
(t), a family of Poisson processes with intensity

λ = λT → ∞ as T → ∞. The intensity λ = λT is often referred as the connection rate.

During a transmission, the transmitting node is sending data to the server at unit rate.

The total accumulated input in [0, t] for the T -th model is

A(t) = A
T
(t) =

∫ t

0
N(s)ds.

Again, heavy tailed transmission time Lk induce LRD in N . It can be shown (Cox, 1984)

that

Cov(N(t), N(t + k)) = C k−(α−1)L(k), as k → ∞.

Mathematically speaking: If F on is regularly varying with index −α, 1 < α < 2, a slow

growth condition may be written as

lim
T→∞

λTF on(T ) = 0.

The fast growth condition may be written as

lim
T→∞

λTF on(T ) = ∞.

The cumulative input is well approximated by a stable Lévy motion, a process with inde-

pendent increments, when the connection rate is ”slow”, or equivalently when the dependence

in the T -th model disappears as T → ∞.

If the connection rate is ”fast”, or equivalently the dependence in the T -th model remains

strong as T → ∞, the fractional Brownian motion is the adequate approximation.

4.2.1 Wide Area Networks (WANs) traffic: the infinite source Poisson model

and reality

The construction of superimposed connections resembles traffic generation in a WAN : first

a connection is set up, and afterwards data is transmitted. The assumptions of Poisson

29



connection arrivals and heavy-tailed connection lengths are consistent with the findings of

Paxson and Floyd (1995), in their analysis of WAN traffic. More recently, Guerin et al.

(2000) consider HTTP sessions at different universities and find evidence for heavy-tailed

connection lengths with tail parameter between 1 and 2. But the data are inconclusive

regarding the assumption of exponential inter-arrival times. In general, they state that the

infinite source Poisson model does not adequately describe some of the datasets considered.

They refer to the assumption of a constant transfer rate as the center of the problem. Indeed,

their measurements show widely varying transfer rates. The assumption of a constant

transfer rate has been relaxed in Kurtz (1996) and in several recent papers, among which

we refer Resnick and van den Berg (2000). Resnick and Rootzén (2000) consider the infinite

source Poisson model for very heavy-tailed connection lengths, with tail parameter between

0 and 1.
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Transforms, Algorithms and Applications

M. J. Soares∗

Abstract

Fourier transforms and other related transforms are an essential tool in applications

of science, engineering and technology. In fact, much of the work currently being done in

mathematics, physics and engineering has its roots in Fourier’s pioneering idea of repre-

senting an arbitrary function as the sum of a trigonometric series. The main purpose of

these notes is to give a brief overview of some Fourier-related transforms, namely: contin-

uous Fourier transform, Fourier series, discrete Fourier transform, fast Fourier transform

(FFT), sine and cosine transforms, Z-transform, Laplace transform, windowed Fourier

transform, continuous and discrete wavelet transforms. Our aim is simply to present a

summary of these transforms and to describe their main properties and possible applica-

tions, and so most of the results are presented with no proof. References containing the

proofs and other details about the transforms are always indicated.

Keywords : Fourier transforms, Fourier series, FFT, wavelet transforms.

1 Notations

We start by introducing the main notations that will be used throughout these notes.

• If X is a measurable subset of the real line R, in particular the whole of R, we denote by

Lp(X) (0 < p <∞), the Banach space of the (equivalence classes of) measurable functions f

defined in X such that

‖f‖p :=

(∫

X
|f(t)|pdt

)1/p

<∞. (1)

When p = 2, this is a Hilbert space with respect to the inner product

〈f, g〉 :=

∫

X
f(t)g(t)dt. (2)

(Here and throughout, u denotes the complex conjugate of u.)

• When X is a finite interval X = [a, a+Ω] of length Ω, Ω > 0, we can identify the above

space with the space of functions which are periodic of period Ω, i.e. satisfy f(t+kΩ) = f(t),
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for all k ∈ Z and for almost all t, and are such that
∫ a+Ω
a |f(t)|pdt < ∞. In fact, any

Ω-periodic function is totally determined by its behaviour on any interval of length Ω and,

reciprocally, any function which is only defined on an interval of length Ω can always be

periodically extended (with period Ω) to the whole line. We can also think of this space as

a space of functions defined on the Ω-torus TΩ = R/ΩZ; see Section IV if you are unfamiliar

with this type of notation. In this case, it is more convenient to normalize the inner product

(2) as

〈f, g〉 =
1

Ω

∫ a+Ω

a
f(t)g(t)dt. (3)

The norm ‖.‖p will also be redefined as

‖f‖p :=

(
1

Ω

∫ a+Ω

a
|f(t)|pdt

)1/p

. (4)

In order to simplify the notation, we will always write
∫

TΩ
to designate 1

Ω

∫ a+Ω
a . This means,

for example, that the inner product (3) will be written simply as

〈f, g〉 =

∫

TΩ

f(t)g(t)dt. (5)

• When X is the discrete set Z, the functions defined on X will simply be two-sided

sequences, and we use for them a notation of the type f = (f [k])k∈Z, following the tradition

of signal processing literature of using square brackets around a discrete variable. In this

case, the integrals in (1) and (2) should be understood with respect to the discrete measure,

i.e. the norm and inner product are defined, respectively, by

‖f‖p :=

(∑

k∈Z

|f [k]|p
)1/p

(6)

and

〈f, g〉 :=
∑

k∈Z

f [k]g[k]. (7)

These spaces are referred to as the spaces of p-summable sequences and denoted by `p(Z).

• Finally, when the set X is discrete and finite, e.g. X = {0, 1, . . . , N − 1}, the functions

on X, which are simply vectors f = f([k])N−1
k=0 , can also be “viewed” as N -periodic sequences

on `p(Z) (any p) if we define, for k ∈ Z, f [k] = f [k mod N ], where k mod N denotes the

remainder of the division of k by the integer N . This space can be identified with the space

`(ZN ) with ZN = Z/NZ; more details, again, in Section IV. Here, naturally, the inner product

and norm are the usual Euclidean inner product and norm of vectors in CN , i.e. they are,

respectively

〈f, g〉 :=

N−1∑

k=0

f [k]g[k] (8)
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and

‖f‖ := {
N−1∑

k=0

|f [k]|2}1/2. (9)

• A family {ek : k ∈ Z} of elements in a Hilbert space H (with inner product 〈·, ·〉 and

corresponding norm ‖ · ‖) is said to be an orthogonal basis of H if it satisfies:

1. 〈ei, ej〉 = 0, i 6= j;

2. for any x ∈ H, there is a unique sequence of scalars x̂[k] such that

lim
N→∞

‖x−
N∑

k=−N

x̂[k]ek‖ = 0. (10)

The orthogonality condition implies that the coefficients x̂[k] are necessarily given by

x̂[k] =
〈x, ek〉
‖ek‖2

,

and we will write (10) simply as

x =
∑

k∈Z

〈x, ek〉
‖ek‖2

ek. (11)

When each vector ek has unit norm, the basis is said to be orthonormal (o.n.). In this case,

Plancherel formula, which sates an energy conservation, holds:

‖x‖2 =
∑

k∈Z

| 〈x, ek〉 |2. (12)

We will frequently refer to Fourier transform to designate several different mathematical

transformations, depending on the nature of the spaces on which they are defined (in other

words, depending on the type of signals on which they are acting). When necessary, we will be

more specific and use terms like continuous time Fourier transform, continuous time Fourier

series, etc. A small table summarizing the Fourier transforms for various settings is given

below.
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Table of Fourier Transforms

Name Domain Transform F = f̂ Domain

of f (and Inverse) of f̂

CTFT R f̂(ω) =
∫

R
f(t)e−2πiωtdt R

f(t) =
∫

R
f̂(ω)e2πitωdω

CTFS TΩ f̂ [k] =
∫

TΩ
f(t)e−2πikt/Ωdt Z

f(t) =
∑

k∈Z
f̂ [k]e2πikt/Ω

DTFT Z f̂(ω) =
∑

k∈Z
f [k]e−2πikω/Ω TΩ

f [k] =
∫

TΩ
f̂(ω)e2πiktω/Ωdω

DTFS ZN f̂ [n] =
∑N−1

k=0 f [k]e−2πikn/N ZN

f [k] = 1
N

∑N−1
n=0 f̂ [n]e2πikn/N

CT-continuous time; DT-discrete time; FT-Fourier transform; FS-Fourier series

In Section IV, we wil give a more unified view of these different transforms, briefly describ-

ing how they all fit in the more general framework of Fourier transforms on groups. For the

moment, we will study in more detail each of the above transforms, discussing, in particular

the conditions (and the different interpretations) for the inverse formulas to hold.

2 Continuous Time Fourier Transform (CTFT)

2.1 Fourier transform in L
1(R)

We start by defining the Fourier transform of functions in the space L1(R).

The Fourier transform (also called continuous-time Fourier transform or integral Fourier

transform) of a function f ∈ L1(R) is the function f̂ defined by

f̂(ω) :=

∫

R

f(t)e−2πiωtdt, ω ∈ R. (13)

For simplicity, to indicate the correspondence between a function f and its Fourier transform,

we use the notation f −→ F .
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We consider the following three operators, defined for a ∈ R:

Translation: Taf(t) = f(t− a)

Modulation: Eaf(t) = e2πiatf(t)

Dilation: Daf(t) = |a|−1/2f(t/a), (a 6= 0).

The main algebraic and analytic properties of the Fourier transform are summarized in

the following two theorems; the proofs can be seen, e.g. in [1].

Theorem 1

1. Linearity c1f1 + c2f2 −→ c1F1 + c2F2.

2. Conjugation f(t) −→ F (−ω).

3. Time shifting Taf −→ E−aF.

4. Modulation Eaf −→ TaF.

5. Time dilation Daf −→ D1/aF.

Theorem 2

Let f ∈ L1(R) and let F be its Fourier transform. Then, we have

1. Boundedness For each ω ∈ R, |F (ω)| ≤ ‖f‖1.

2. Continuity F is (uniformly) continuous on R.

3. Riemann-Lebesgue Lemma lim
|ω|→∞

F (ω) = 0.

4. Time differentiation Let f ∈ Cm(R) ∩ L1(R) be such that f (k); k = 1 . . . ,m, are in

L1(R). Then

f (k)(t) −→ (2πiω)kF (ω).

5. Frequency differentiation Suppose that tmf(t) ∈ L1(R). Then, F (k); k = 1, . . . ,m, exist

and

(−2πit)kf(t) −→ F (k)(ω).

Another important property of Fourier transform is its behaviour with respect to convo-

lution. Recall that the convolution f ∗ g of two functions f and g is the function defined

by

f ∗ g(t) =

∫

R

f(u)g(t− u)du. (14)

We then have the following result:
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Theorem 3 (Convolution) If f, g ∈ L1(R), then f ∗ g ∈ L1(R) and

f ∗ g −→ FG.

2.2 Inversion

Given a function g ∈ L1(R), we define its inverse Fourier transform ǧ by

ǧ(t) :=

∫

R

g(ω)e2πiωtdω, t ∈ R,

i.e. ǧ(t) is simply ĝ(−t). The name inverse Fourier transform is justified by the following

theorem, which shows that the function f can be recovered from its Fourier transform, by

applying to it the inverse Fourier transform.

Theorem 4 Let f ∈ L1(R) and let f̂ denote its Fourier transform. If f̂ ∈ L1(R), then f is

continuous and f =
ˇ̂
f , i.e.

f(t) =

∫

R

f̂(ω)e2πiωtdω. (15)

Note: This theorem establishes a pointwise inversion formula for the Fourier transform under the

assumption that f̂ ∈ L1(R). It should be interpreted in the following sense: the integral on the r.h.s.

is defined for every t ∈ R and defines a continuous function which coincides with f almost everywhere

(a.e.); the pointwise equality is valid for the continuous representative of f .

2.3 Fourier transform in L
2(R)

The formula (13) as it stands can not be applied directly to functions in the space L2(R) (if

they are not in L1(R)), so the definition of the Fourier transform for functions in this space

(the important space of signals of finite energy) has to be suitably adapted.

The following result is essential for establishing a natural definition for the Fourier trans-

form in L2(R).

Theorem 5 (Plancherel-Parseval) If f, g ∈ L1(R) ∩ L2(R), then

〈f, g〉 = 〈f̂ , ĝ〉 (Parseval identity). (16)

In particular, we have

‖f‖ = ‖f̂‖ (Plancherel formula). (17)

The extension of the Fourier transform to L2(R) is based on the use of the above formulae and

the fact that L1(R)∩L2(R) is dense in L2(R). This means that, given a function f ∈ L2(R),

there is a sequence of functions (fn)n∈N in L1(R) ∩ L2(R) converging to f (with convergence
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taken with respect to the norm in L2(R)). This implies that ‖fm−fn‖2 → 0 when m,n→ ∞.

By the linearity of the Fourier transform and the Plancherel formula, we immediately conclude

that the sequence (f̂n)n∈Z converges to a certain function in L2(R). This limit function will

be called the Fourier transform of f (sometimes called the Plancherel transform) and will also

be denoted, as before, by f̂ or F . It can be shown that the limit function F does not depend

on the choice of the sequence fn converging to f and, naturally, that it coincides with the

usual Fourier transform of f when f ∈ L1(R). A standard way of selecting the sequence fn is

to take fn = f 1[−n,n], where 1[a,b] denotes the characteristic function of the interval [a, b], i.e.

1[a,b](t) =





1, t ∈ [a, b]

0, otherwise.

If we write l.i.m.gn(t) = g(t) to indicate that ‖gn− g‖2 → 0 when n→ ∞, we can thus write,

for f ∈ L2(R),

f̂(ω) := l.i.m.

∫ n

−n
f(t)e−2πiωtdt. (18)

Note: With a convenient abuse of notation we will still write, when f ∈ L2(R),

f̂(ω) =

∫

R

f(t)e−2πiωtdt,

with the understanding that this is a limiting process as defined above.

It is important to observe that the main properties stated for the Fourier transform of

functions in L1(R) also hold for this extension to L2(R). The extension of the definition of the

inverse Fourier transform ǧ to functions g ∈ L2(R) is, naturally, done in manner analogous

to the process described for the Fourier transform, and we also have an inversion theorem for

this case.

Theorem 6 (Inversion in L2(R)) The Fourier transform is a bijective linear operator from

L2(R) into L2(R). Given f ∈ L2(R), we have

f =
ˇ̂
f.

The definition of the Fourier transform can also be extended to a wider class of “objects”,

the so-called tempered distributions; as an example of a tempered distribution we have the

Dirac-delta δ. This is a linear functional which acts on a (sufficiently well-behaved function)

f by giving its value at zero, i.e.

δ(f) := f(0).

The Fourier transform of a tempered distribution is another tempered distribution. In the

case of the Dirac-delta, the Fourier transform can be identified with the constant function 1,

i.e

δ̂ = 1.
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For more details on Fourier transforms of tempered distributions, see, e.g. [2] or [1].

3 Continuous Time Fourier Series (CTFS)

We now consider the case where the function f to be transformed is in L2(TΩ), where TΩ =

R/ΩZ is the Ω-torus (Ω > 0). It can be shown that the set of functions

γk(t) := e2πikt/Ω, k ∈ Z, (19)

is an orthonormal basis of L2(TΩ) (with respect to the inner product defined by (5)). This

means that every function f ∈ L2(TΩ) can be written as

f(t) =
∑

k∈Z

f̂ [k]e2πikt/Ω, (20)

where the coefficients f̂ [k] are given by

f̂ [k] =〈f, γk〉

=

∫

TΩ

f(t)e−2πikt/Ωdt. (21)

The coefficients f̂ [k], k ∈ Z given by (21), are called the Fourier coefficients of the function

f and the series on the r.h.s. of (20) is the called the Fourier series of f .

The equality (20) is to be interpreted as (cf. 10)

lim
N→∞

∫ Ω

0
|f(t) −

N∑

k=−N

f̂ [k]e2πikt/Ω|2dt = 0

and does not necessarily mean that, for every t ∈ R, the series on the r.h.s. of (20) converges

to the value f(t). The problems associated with the pointwise (and uniform) convergence of

Fourier series, namely the discussion of the minimum conditions which ensure this type of

convergence, have attracted the attention of mathematicians for more than two centuries and

had a profound impact on the evolution of the foundations of Analysis; an accessible reference

on this subject, with an interesting historical perspective, is [3].

The equality (20) is also known to hold for almost all t; moreover, if the function f is

sufficiently well-behaved (e.g. piecewise smooth) then the series converges, at every point t,

to the average value
f(t+) + f(t−)

2
.

The Fourier series has a typical behaviour near the points of discontinuity; its partial sums

overshoot and undershoot the true values f(t+) and f(t−), respectively, by about 9% of the

total jump f(t+)−f(t−). This is the famous Gibbs phenomenon, and was observed by Gibbs,

for a particular function, in a letter to Nature (vol.59, p.606), in 1899.
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Note: In fact, this phenomenon had already been described by H. Wilbraham, 51 years earlier

[4], although Gibbs was not aware of this. In 1906, M. Bôcher, an American mathematician, proved

that this behaviour is a general property of Fourier series in the vicinity of a jump discontinuity; [5].

The computation of the sequence of the Fourier coefficients f̂ [k] in the case where f is a

periodic function can be seen as the analogue of the computation, for a function f with no

periodicity, of f̂(ω), for all ω ∈ R. This corresponds, in both cases, to the analysis phase of

the given signal f ; the inversion formula (15) and the series expansion (20) then correspond

to the synthesis or reconstruction phase of the signal.

Since γk(t) = e2πikt/Ω form an orthonormal basis of L2(TΩ), Pareseval’s identity gives us

∑

k∈Z

|〈f, γk〉|2 =
∑

k∈Z

|f̂ [k]|2 = ‖f‖2
2. (22)

It is also important to state the following result (which should be compared with the result

3. in Theorem 2).

Lemma 1 (Riemann-Lebesgue) If f ∈ L2(TΩ), then its Fourier coefficients f̂ [k] satisfy

lim
|k|→∞

f̂ [k] = 0. (23)

Note: The above result is also valid for functions in the wider class L1(TΩ.)

The analogies between the Fourier transforms and series can also be extended to results on

convolutions, provided an appropriate definition for convolution is given. Given two functions

f, g ∈ L1(TΩ) we define its convolution as

f ∗ g(t) =

∫

TΩ

f(u)g(t− u)du.

We then have the following result (cf. Theorem 3).

Theorem 7 Let f, g ∈ L1(TΩ), with corresponding sequences (f̂ [k])k∈Z and (ĝ[k])k∈Z of

Fourier coefficients. Then, f ∗ g ∈ L1(TΩ) and the sequence of its Fourier coefficients is

the product of the two sequences (f̂ [k])k∈Z and (ĝ[k])k∈Z, i.e.

f̂ ∗ g [k] = f̂ [k] ĝ[k], k ∈ Z.

4 Discrete Time Fourier Transform (DTFT)

The equality (22) shows that, given a function in L2(TΩ), the sequence of its Fourier coeffi-

cients is in the space `2(Z). One can also “move” the other way around. Let f = (f [k])k∈Z

be a given sequence in `2(Z). Then, for any chosen Ω > 0, the trigonometric series

∑

k∈Z

f [k]e−2πikω/Ω (24)

41



converges (with respect to the ‖ · ‖2 norm defined by (4)), to a certain function in the space

L2(TΩ). We call this function the discrete time Fourier transform (corresponding to Ω) of the

sequence f = (f [k]) and denote it by f̂(ω). That is, we have

f̂(ω) =
∑

k∈Z

f [k]e−2πikω/Ω. (25)

One can show that the Fourier coefficients of this function f̂ are precisely the given numbers

f [k], that is, we have
∫

TΩ

f̂(ω)e2πikω/Ωdω = f [k], (26)

which can be seen as an inversion result. The equality (25) is also known to hold for almost

all ω. Moreover, if the given sequence is known to decrease “faster” than just being in `2(Z),

namely if f = (f [k])k∈Z ∈ `1(Z), then the series on the r.h.s. of (25) converges uniformly and

defines a continuous function f̂(ω), for all ω ∈ R.

If f, g ∈ `1(Z), we define the convolution f ∗ g of these two sequences by

(f ∗ g)[k] :=
∑

l∈Z

f [l]g[k − l]. (27)

We again have a result concerning the behaviour of the (discrete) Fourier transform with

respect to convolution.

Theorem 8 Let f, g ∈ `1(Z) and let f̂ , ĝ denote their discrete Fourier transforms. Then,

f ∗ g ∈ `1(Z) and

f̂ ∗ g(ω) = f̂(ω) ĝ(ω) (28)

5 Discrete Fourier Transform (DFT)

We now concentrate on the case where our signal is simultaneously discrete in time and

finite, f = (f [k])N−1
k=0 . As already mentioned, we can also think of f as a periodic sequence

f = (f [k])k∈Z of period N (i.e. as an element in `(ZN )) by letting f [k] = f [k mod N ], for all

k ∈ Z.

It is easy to show that the set of N vectors γk; k = 0, . . . , N − 1, defined by

γk[n] := e2πikn/N ; n = 0, . . . , N − 1, (29)

is an orthogonal basis of `(ZN ) and that ‖γk‖2 = N . Hence, any signal f ∈ `(ZN ) admits the

following expansion

f [n] =
1

N

N−1∑

k=0

f̂ [k]e2πikn/N ; n = 0, 1, . . . , N − 1, (30)
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where the coefficients f̂ [k] are given by

f̂ [k] = 〈f, γk〉

=

N−1∑

n=0

f [n]e−2πikn/N ; k = 0, 1, . . . , N − 1. (31)

Formula (31) defines the so-called discrete time Fourier series or discrete Fourier transform

(DFT) of f and formula (30) the inverse discrete transform. Naturally, the following Parseval’s

identity holds
N−1∑

k=0

|f [k]|2 =
1

N

N−1∑

k=0

|f̂ [k]|2.

Because of the N -periodicity of the functions e−2πikn/N , we can also see (31) as a function

defined on ZN . This means that the discrete Fourier transform can be seen either as a map

from CN into CN or as a map from `(ZN ) into `(ZN ). Let’s introduce the following standard

notation

WN := e−2πi/N . (32)

Then, the discrete Fourier transform of f = (f [n])N−1
n=0 can be defined by

f̂ [k] =
N−1∑

n=0

f [n]W kn
N . (33)

The discrete Fourier transform (as a linear transformation from CN into CN ) can also be

defined using the N ×N matrix (called the N th order DFT matrix),

M = (mkn), mkn = W kn
N ; k, n = 0, . . . , N − 1.

It is simply given by

f̂ = Mf.

Given two sequences f, g ∈ `(ZN ), we define its convolution by

(f ∗ g)[k] =

N−1∑

l=0

f [l]g[k − l], k = 0, 1, . . . , N − 1. (34)

(Recall that the sequences are periodic of period N , i.e. g[k] = g[kmodN ].)

Once more, we have the usual property relating the Fourier transform of convolutions and

the product of Fourier transforms.

Theorem 9 Let f, g ∈ `(ZN ) and let f̂ and ĝ denote their DFT’s. Then, we have

f̂ ∗ g[k] = f̂ [k]ĝ[k].
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• Relation of DFT to Fourier coefficients

Assume that we know the period Ω of a certain function f as well as N of its values

y[n] := f(tn) at the equally spaced points

tn := n
Ω

N
;n = 0, 1 . . . , N − 1, (35)

and that we want to make use this information to approximate the Fourier coefficients f̂ [k]

of f . In other words, we want to compute

f̂ [k] =
1

Ω

∫ Ω

0
f(t)e−2πikt/Ωdt. (36)

If we approximate the integral in (36) by a left-endpoint, uniform Riemann sum, based on

the points tn, we obtain

f̂ [k] ≈ 1

Ω

N−1∑

n=0

f(tn)e
−2πiktn/Ω × Ω

N

=
1

N

N−1∑

n=0

y[n]e−2πikn/N . (37)

The above formula shows that the kth Fourier coefficient of the function f is approximately

given by 1
N ŷ[k], where (ŷ[k])N−1

k=0 is the N -point discrete Fourier transform of the vector

(y[n])N−1
n=0 = (f(n Ω

N ))N−1
n=0 .

Note: The approximation described by the formula (37) has to be interpreted very carefully.

Note that the r.h.s of (37) has period N in the variable k and the same is not true for the sequence

(f̂ [k]) (typically, f̂ [k] → 0, as k → ∞). The approximation (37) will usually be used only to calculate

coefficients f̂ [k] for |k| << N , e.g. for |k| ≤ N/8; for a justification of this “rule of thumb”, see e.g.

[6].

6 Transforms in several dimensions

All the transforms referred so far were given for the one-dimensional case, i.e. for functions of

a single variable. The extension of these transforms to higher dimensions is straightforward.

For example, the Fourier transform of a function f ∈ L1(Rd) is defined by

f̂(ωωω) =

∫

Rd

f(xxx)e−2πi〈ωωω,xxx〉dxxx, ωωω ∈ Rd. (38)

In the particular case of dimension d = 2 (this is of special importance due to its applications

in image processing), we have

f̂(ω, ξ) =

∫

R

∫

R

f(x, y)e−2πi(ωx+ξy)dx dy, (ω, ξ) ∈ R2. (39)
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The evaluation of the Fourier transform of a 2D-function is especially simple when the function

is separable, i.e. can be written as

f(x, y) = g(x)h(y).

In that case, its Fourier transform is simply given by

f̂(ω, ξ) = ĝ(ω)ĥ(ξ),

where ĝ and ĥ are the one-dimensional transforms of g and h. The basic transformational

properties of a d-dimensional Fourier transform are essentially the same as in one dimension,

with one new feature: the Fourier transform commutes with rotations, i.e. if R denotes a

rotation in Rd, then

f(Rxxx) −→ f̂(Rωωω).

• Fourier transforms of radial functions

The fact that the Fourier transform commutes with rotations has the following interesting

consequence. A function f defined in Rd is called radial if f(Rxxx) = f(xxx) for all rotations R,

i.e. f(xxx) depends only on |xxx|, where we used the simplified notation | · | for the Euclidean

norm‖ · ‖2 in Rd. If f is radial – say f(xxx) = g(|xxx|) – then so is its Fourier transform –

f̂(ωωω) = h(|ωωω|), say. In this case the integral formula relating f and f̂ can be written in polar

coordinates to yield h directly in terms of g. Let us illustrate with the two-dimensional case.

With xxx = r(cos θ, sin θ) and ωωω = ρ(cosφ, sinφ), we have 〈x, ω〉 = rρ cos(θ − φ), and hence

f̂(ω) =

∫

R2

f(xxx)e−2πi〈x,ω〉dxxx

=

∫ ∞

0

∫ 2π

0
g(r)e−2πirρ cos(θ−φ)rdθdr

=

∫ ∞

0
g(r)

[∫ 2π

0
e−2πiρr cos θdθ

]
rdr

By recalling the definition of the zero-order Bessel function of the first kind

J0(z) =
1

2π

∫ 2π

0
e−iz cos θdθ,

we obtain

h(ρ) = 2π

∫ ∞

0
g(r)J0(2πρr)rdr. (40)

The integral on the r.h.s (without the factor 2π) is called the Hankel transform of order zero

of g.
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• Projection

Suppose that we project a two-dimensional function f(x, y) onto the x-axis, i.e we form

p(x) =

∫

R

f(x, y)dy

Then, the (one-dimensional) Fourier transform of p is

p̂(ω) =

∫

R

[∫

R

f(x, y)dye−2πiωx

]
dx

=

∫

R

∫

R

f(x, y)e−2πi(ωx+0y)dxdy = f̂(ω, 0)

So, the transform of the projection of f(x, y) onto the x-axis is f̂(ω, ξ) evaluated along the

ω-axis. This, together with the rotation property, implies that the Fourier transform of the

projection onto a a line at an angle θ with the x-axis is just the Fourier transform computed

along a line at an angle θ with the ω-axis. This projection property can be used e.g. in

computerized axial tomography; see, e.g. [7].

7 Fourier Transform on Groups

It is possible to give a unified view of all of the different Fourier transforms described above.

This is done by considering them as particular cases of a more general theory of Fourier

transforms on groups. To present this theory in full detail requires ideas from topology and

measure theory which are beyond the scope of these notes. We will, however, try to give a

very brief idea of the main points (for simplicity, we will concentrate in the 1-D case).

7.1 Groups, Subgoups, Cosets

We start by recalling the notion of a group. A set G forms a group with respect to a certain

binary operation ⊕, if the following properties hold:

1. Closure ∀f, g ∈ G, f ⊕ g ∈ G

2. Associativity ∀f, g, h ∈ G, (f ⊕ g) ⊕ h = f ⊕ (g ⊕ h)

3. Identity ∃0G ∈ G : ∀g ∈ G 0G + g = g + 0G = g

4. Inverse ∀g ∈ G∃ − g ∈ G : g ⊕−g = −g ⊕ g = 0G

As examples of groups especially important for our work, we have:

1. the set of real numbers R, under addition;

2. the set of integers Z, under addition;
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3. the set NZ, N fixed integer, under addition;

4. the set ΩZ, Ω > 0, under addition;

5. the unit circle S1 in the complex plane (i.e. the set of complex numbers of modulus 1),

under multiplication.

A group is called Abelian if the operation ⊕ is commutative, i.e. f ⊕ g = g ⊕ f , for all

f, g ∈ G.

A group G is locally compact if it has a topological structure such that the map (f, g) →
f ⊕ −g is continuous and every point in G has a compact neighbourhood. The group R is

naturally a locally compact group (with the usual topology on R). In fact, all the groups

referred to in our examples are locally compact Abelian (LCA) groups.

A subgroup K of G is a subset of G which is also a group with respect to the same group

operation. We use the notation K ≤ G (respectively K < G) to indicate that H is a subgroup

of G (not equal to G itself). For example, for any N , NZ is a subgroup of Z; the integers Z

also form a subgroup of the additive group R.

If K < G and g ∈ G, we define the coset g ⊕K of K in G as the set

g ⊕K = {g + k : k ∈ K}.

If G is an Abelian group with subgroup K < G, then the set of all cosets of K in G is a

group under the following operation inherited from ⊕ (for which we use the same symbol ⊕):

(f ⊕K) ⊕ (g ⊕K) := (f ⊕ g) ⊕K. (41)

This group is denoted by G/K (the quotient group of G modulo K).

It is easy to see that the group Z/NZ is finite and has exactly N distinct elements. A

set of coset representatives of G/K is a set S of elements of G such that every coset in G/K

contains exactly one element of S. For example, a set of coset representatives of Z/NZ can

be taken to be {0, 1, . . . , N − 1}. When we use coset representatives instead of writing the

full coset notation itself, we must remember that the operation involved is modular. In this

sense, we can identify the group Z/NZ with the group formed by the set {0, 1, . . . , N − 1}
with the operation of addition modulo N . Similarly, the group TΩ := R/ΩZ can be identified

with the group whose set of elements is [0,Ω) (or any other interval of length Ω) and whose

operation is addition modulo Ω.

Let G and H be two groups with operations ⊕G and ⊕H , respectively. A homomorphism

from G to H is a map φ : G→ H such that

φ(f ⊕G g) = φ(f) ⊕H φ(g), ∀f, g ∈ G.

Is the homomorphism is bijective, we call it an isomorphism. For example, the function

φ : TΩ → S1 defined by

φ(t+ ΩZ) = e2πit/Ω, t ∈ R
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is an isomorphism between the additive group TΩ and the multiplicative group S1. In some

sense, we can view the two groups S1 and TΩ as the same group. Another important example

of two isomorphic groups is given by the group Z/NZ and the group SN of all the N th roots

of unity,

SN := {1,WN ,W
2
N , . . . ,W

N−1
N }, WN := e2πi/N ,

under multiplication. An isomorphism between the two groups is given by

φ(k +NZ) = e2πik/N = W k
N .

7.2 Characters of a group

For any Abelian group G, a character γ of G is a homomorphism of G into the group S1. The

set of all continuous characters of G is denoted by Ĝ and is itself an Abelian group under the

operation of pointwise multiplication. This is called the dual group of G.

For example, when G is the additive group R, one can show that the characters are the

functions

γω(x) = e2πiωx, x ∈ R,

for all ω ∈ R.

Note: The choice of the exponent 2π associated with the “index” ω is just for convenience; any

other real number would do, which would correspond to a simple renaming of the functions γ.

This is easily seen to be isomorphic to R itself (the mapping ω 7→ γω defining an isomor-

phism). In that sense, we say tat R is self-dual and write R̂ = R. One can also identify the

characters of the group ZN = Z/NZ : they are the functions γk; k = 0, 1 . . . , N − 1 defined

by

γk[m] = e2πikm/N , m ∈ {0, . . . , N − 1}.

The function φ : k 7→ γk is an isomorphism between ZN and ẐN and, in that sense, ZN is

also self-dual.

Finally, we describe the characters of the group TΩ. They are the functions

γk(t) := e2πikt/Ω, t ∈ [0,Ω),

for all k ∈ Z. The dual group of TΩ is thus isomorphic to Z, the mapping φ : k 7→ γk defining

an isomorphism.

Since the dual group is also an Abelian group it is possible to define its set of characters,

i.e. to define its dual
ˆ̂
G. It turns out that this group is always isomorphic to G. Hence,

the dual group of Z is (isomorphic) to the Ω-torus TΩ (the particular choice of Ω > 0 is not

important, since all these groups are isomorphic to each other).
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7.3 Integration on groups and Fourier transform

In order to be able to give an adequate definition of the Fourier transform on a (LCA) group,

one has to introduce an appropriate concept of measure and corresponding integration on the

group. It can be shown that in every LCA group, there exists a non-negative and regular

measure, which is not identically zero and is translation invariant. This measure is unique (up

to the multiplication by a positive constant) and is called the Haar measure of G. Integration

on the group G will always be understood with respect to such measure. For the construction

of such a measure, see e.g. [8] or [9]. In our cases, we simply refer that this measure is:

1. the usual Lebesgue measure, for the cases G = R and G = TΩ (with the “normalization”

constant 1
Ω in the latter case) ;

2. the usual counting measure for the discrete cases G = Z and G = Z/NZ.

Having defined integration on G, we can also introduce, in a natural way, the Lp(G) spaces.

We can then define the Fourier transform of any function f ∈ L1(G): it is the function f̂ ,

defined on Ĝ by

f̂(γ) =

∫

G
f(t)γ(t)dt, γ ∈ Ĝ. (42)

Note that the Fourier transform of a function defined on G is actually a function defined on

Ĝ. This means, for example, that in the case of G = R, we should have written the Fourier

transform of a function f as f̂(γω). However, due to the identification of R with R̂, this is

naturally shortened to f̂(ω).

Having identified previously the characters γ ∈ Ĝ for all the cases G = R, G = TΩ, G = Z

and G = ZN , it is now simple to verify that the definitions (13), (21) , (25) and (31) all fit

into this framework.

We also have an inversion theorem (cf. formulae (15), (20), (26) and (30)).

Theorem 10 Let f ∈ L1(G) be such that f̂ ∈ L1(Ĝ). If the Haar measure of G is fixed, the

Haar measure of Ĝ can be normalized so that the following inversion formula holds

f(t) =

∫

Ĝ
f̂(γ)γ(t)dγ, t ∈ G.

If we define the convolution of any two functions f, g ∈ L1(G) by

f ∗ g(t) =

∫

G
f(u)g(t− u)du

we have the following result from which the results of theorems 3,7,8 and 9 are specific

examples:
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Theorem 11 Let f, g ∈ L1(G) and let f̂ , ĝ be their Fourier transforms. Then, f ∗ g ∈ L1(G)

and

f̂ ∗ g(γ) = f̂(γ)ĝ(γ).

Finally, we would like to remark that there is a natural way of extending the definition of

the Fourier transform from L1(G) to L2(G) and that the Parseval formula holds

∫

G
f(t)g(t)dt =

∫

bG
f̂(γ)ĝ(γ)dγ.

For more details on this fascinating topic of Fourier transforms on groups see, e.g. [10]. We

now turn to the problem of describing efficient algorithms for the computation of Fourier

transforms.

8 Fast Fourier Transform

The Fast Fourier Transform – the most valuable algorithm of our lifetime.

Strang, 1993

A direct calculation of a N -point DFT requires (N − 1)2 multiplications and N(N − 1)

additions, i.e. it involves a number of operations of order O(N 2). For large N , this can

be extremely time consuming. In 1965, Cooley and Tukey [11] proposed an algorithm to

compute the DFT reducing the number of operations involved to O(N log2N), when N = 2r.

This algorithm, which has become known as the Fast Fourier Transform, had a tremendous

impact and is responsible for the widespread use of DFT’s in almost all branches of scientific

computation, with particular emphasis on digital signal processing.

Note: In fact, as referred in [12], the basic idea of the FFT had already been discovered by Gauss,

in 1805, as an efficient means of interpolating asteroid orbits. However, it was the Cooley and Tukey

publication which popularized the use of the discrete Fourier transform; see [13].

Many variants of the basic FFT algorithm have also appeared subsequently. Here, we will

briefly describe one of the most widely used of these algorithms, the so-called decimation in

time, radix 2 FFT; for other variants the reader is referred to, e.g. [6], [14] or [15]. FTT

programs in various computer languages can be found in [16]. The article by Burrus [17] gives

an excellent summary and contains an extensive list of references on efficient algorithms to

compute the DFT. A compiled bibliography on this topic (with more than 3400 entries!) is

given in [18].
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8.1 Decimation in Time Radix 2 FFT

We will assume that N is a power of 2, say N = 2r, where r is a positive integer. Let us start

by recalling the formula for the N -point DFT transform of a sequence f = (f [k])N−1
k=0 ,

f̂ [n] =

N−1∑

k=0

f [k]W kn
N , (43)

where WN = e2πi/N . For simplicity, we will introduce the notation Fn := f̂ [n]. We can halve

the N-point DFT in (43) in two sums, each of which is a N/2-point DFT:

Fn =

N/2−1∑

k=0

f [2k]W 2kn
N +

N/2−1∑

k=0

f [2k + 1]W 2kn
N Wn

N

=

N/2−1∑

k=0

f [2k]W kn
N/2 +

N/2−1∑

k=0

f [2k + 1]W kn
N/2W

n
N

We can thus write

Fn = F 0
n +Wn

NF
1
n

Fn+N/2 = F 0
n −Wn

NF
1
n





;n = 0, . . . , N/2 − 1, (44)

where, for j = 0, 1,

F jn =

N/2−1∑

k=0

f [2k + j](WN/2)
kn, (45)

and where we have used the fact that W
j(N/2)+n
N = ±Wn

N , depending on wether j = 0, 1. The

DFT (Fn)
N−1
n=0 written in terms of the calculations (44)-(45) can be visualized as

F 0
n −→F 0

n +Wn
NF

1
n

↘↗ (46)

F 1
n −→F 0

n −Wn
NF

1
n

where n = 0, 1, . . . , N/2 − 1. This diagram is called a butterfly. The butterfly (46) can be

viewed as a construction of the DFT in ZN in terms of two DFTs, F 0 and F 1, on ZN/2. In

the same way, each F 0 and F 1 can be constructed in terms of a pair of two of DFTs on ZN/4.

For example,

F 0
n = F 00

n +Wn
N/2F

01
n

and

F 0
n+N/4 = F 00

n −Wn
N/2F

01
n ,
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for n = 0, 1, . . . , N/4 − 1, where F 00 is the DFT of (f [0], f [4], . . . , f [N − 4]) and F 01 is the

DFT of (f [2], f [6], . . . , f [N − 2]). Since N = 2r, this procedure can be repeated and after

r = log2N − 1 stages we reach a point where we are performing N/2 2-point DFTs, which

consist of adding and subtracting two points. Computationally, it is convenient to compute

the 2-point DFTs first, then the 4-point DFts, etc.

8.2 Bit Reversal

Let f : ZN → C be given and suppose we want to compute the DFT F in the natural

ordering (F0, . . . , FN ). From (45), it is clear that if we begin with the DFTs of the pairs

(f [0], f [1]), (f [2], f [3]), . . . we will not obtain F in the natural ordering. For example, when

N = 8, the input indices must be ordered as (0, 4, 2, 6, 1, 5, 3, 7) so that the output sequence

will appear in the natural order. This ordering is obtained by bit reversal. Bit reversal (at

level r or of order r) is defined recursively as follows. For r = 1, the bit reversal ordering (of

the set {0, 1}) is the ordered pair (0, 1). At level r; r = 2, 3, . . ., the bit reversal ordering of

the set {0, 1, . . . , 2r − 1} is the 2r-tuple

(2b0, . . . , 2bM−1, 2b0 + 1, . . . , 2bM−1 + 1), (47)

where M = 2r−1 and (b0, b1, . . . , bM−1) is the bit reversal ordering at level r−1. For example,

bit reversal orderings at levels 2 and 3 are (0, 2, 1, 3) and (0, 4, 2, 6, 1, 5, 3, 7), respectively. The

term bit reversal comes from the following observation. If k ∈ {0, 1, . . . , 2r−1} has the binary

expansion

k =
r−1∑

j=0

εj2
j

then the number in the position k; k = 0, . . . , 2r−1 of the bit reversal ordering is obtained by

“reversing” the order of the coefficients εj in the above expansion. It is important to observe

that there are efficient algorithms for obtaining bit-reversed indices; see e.g. [14] or [6]. This

last reference also describes efficient ways of performing the butterfly calculations involved in

each step of the FFT algorithm.
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9 Fourier Related Transforms

9.1 Cosine and Sine Transforms

9.1.1 Fourier Sine and Cosine Transform

Using Euler’s formula, we can write the Fourier transform of f as

f̂(ω) =

∫

R

f(t)e−2πiωtdt

=

∫

R

f(t) cos(2πωt)dt− i

∫

R

f(t) sin(2πωt)dt

:= Cf(ω) − iSf(ω), (48)

where Cf(ω) and Sf(ω) are called, the Fourier cosine transform and Fourier sine transform

of f , respectively. Observe that if the function f is real-valued, then its Fourier transform

can found by evaluating two real integrals. Also, if f is an even function, then the Fourier

transform of f is simply its Fourier cosine transform and can be computed simply

f̂(ω) =

∫

R

f(t) cos(2πωt)dt

= 2

∫ ∞

0
f(t) cos(2πωt)dt.

Similarly, if f is an odd function,

f̂(ω) = −i
∫

R

f(t) sin(2πωt)dt

= −2i

∫ ∞

0
f(t) sin(2πωt)dt.

9.1.2 Fourier Sine and Cosine Series

It is simple to establish that the set of functions

γn(t) := cos(πnt/Ω), n ∈ N0,

is an orthogonal basis of the space L2(TΩ), and that ‖γ0‖2
2 = 1 and ‖γn‖2

2 = 1/2, n ∈ N.

Hence, every function f ∈ L2(TΩ) admits an expansion

f(t) =
1

2
A0 +

∞∑

n=1

An cos(πnt/Ω) , (49)

where

An =
2

Ω

∫ Ω

0
f(t) cos(πnt/Ω)dt. (50)
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The series (49), with the coefficients given by (50), is called the Fourier cosine series of f .

Note: The above series is, in fact, the Fourier series of the even extension of f to L2(T2Ω).

In a similar manner, we define the Fourier sine series of f :

f(t) =
∞∑

n=1

Bn sin(πnt/Ω)dt,

where

Bn =
2

Ω

∫ Ω

0
f(t) sin(πnt/Ω)dt.

9.1.3 Discrete Cosine Transforms

There are also discrete versions of the sine and cosine transforms. Here, we refer to four

established discrete cosine transforms (DCT-I through DCT-IV). The (two-dimensional ver-

sion) of DCT-II and DCT-IV are constantly applied in image processing and have a FFT

implementation, which makes them especially useful. The DCTs (in fact DCT-II) was only

discovered in 1974, [19]. All four types of DCT are orthogonal transforms and use bases

for the space CN (or `(ZN )) that involve only cosines. For k, n = 0, 1, . . . , N − 1 the nth

component of the kth basis vector is

DCT-I cos
(
nk π

N−1

)
(divide by

√
2 when k, n = 0, N − 1)

DCT-II cos
(
(n+ 1

2)k πN
)

(divide by
√

2 when k = 0)

DCT-III cos
(
n(k + 1

2) πN
)

(divide by
√

2 when n = 0)

DCT-IV cos
(
(n+ 1

2)(k + 1
2) πN

)

If we consider the matrices CI, CII, CIII and CIV whose columns are the above vectors,

then each of the DCT-T transforms f̂T of a vector f ∈ CN is defined by

f̂T = CT f ; T = I, II, III, IV. (51)

All vectors have norm
√
N/2; hence, we have, for example (using the DCT-IV transform),

that any vector f ∈ CN can be written as

f [n] =
2

N

N−1∑

k=0

f̂IV[k] cos

(
(n+

1

2
)(k +

1

2
)
π

N

)

where

f̂IV[k] =
N−1∑

n=0

f [n] cos

(
(n+

1

2
)(k +

1

2
)
π

N

)
.

Similar expressions for the transform and corresponding inverse for the DCT-I – DCT-III are

easily written.
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9.2 Hartley Transform

The Hartley transform Hf is obtained by combining the sine and cosine transforms replacing

−i by 1, i.e.

Hf(ω) = Cf(ω) + Sf(ω)

=

∫

R

f(t)cas(2πωt)dt, (52)

where cas(t) := cos t + sin t. The Hartley transform was initially proposed by Hartley in

1942 [20], but was virtually ignored until it was reintroduced by Bracewell [21] in 1983. The

Hartley transform has the advantage that is real-valued for a real-valued signal, but it lacks

some of the important properties of the Fourier transform; a thorough investigation of Hartley

transforms can be found in [22]. There is also a discrete version of the Hartley transform and

fast algorithms for its computation (Fast Hartley Transform).

9.3 Laplace Transform

Fourier transforms were defined for real values of the frequency variable. A more general class

of transforms can be obtained if the frequency variable is allowed to be complex.

We define the (bilateral) Laplace transform of a function f by

Lf(s) =

∫

R

f(t)e−stdt (53)

where s ∈ C. Note that, when s = 2πiω, Lf(s) = f̂(ω) and so, as it might be expected, the

Laplace transforms has many important properties similar to those of the Fourier transform.

When s = σ + 2πiω, then Lf(s) is the Fourier transform of g(t) = f(t)e−iσt, i.e. is the

transform of an exponentially weighted signal.

Note: The more frequently used unilateral Laplace transform can be defined as the Laplace

transform of f(t)u(t), where u(t) is the unit-step function defined by u(t) = 1, for t ≥ 0 and u(t) = 0

otherwise.

The above transform does not, in general, converge for all values of s. The set of values for

which (53) converges is called the region of convergence (ROC). The ROC has the following

important poperties:

1. it consists of strips in the complex plane parallel to the to the iω axis i.e. is of the form

A ≤ Re (s) ≤ B where A and B may be −∞ and +∞, respectively; (In the extreme

cases, the ≤ sign might have to be replaced by <);

2. if f(t) is right-sided (left-sided), i.e. is zero for t < T0 (i.e is zero for t > T1), then

B = +∞ (A = −∞).
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3. if f(t) is time-limited (i.e. f(t) = 0 for T0 < t < T1, then its ROC is the whole complex

plane (provided it converges at some point);

4. if the iω axis is contained in the ROC, then the Fourier transform of f exists.

The Laplace transform can be inverted. Its inverse is given by

f(t) =
1

2πi

∫ σ+i∞

σ−i∞
estLf(s)ds,

where σ is chosen inside the ROC.

The (unilateral) Laplace transform is particularly useful for solving initial value problems.

For a comprehensive treatment of the Laplace transforms and its applications, we refer the

reader to [23] or [24].

9.4 z-Transform

Just as the Laplace transform was a generalization of the Fourier transform, the z-transform

can also be introduced as a generalization of the discrete time Fourier transform. For a given

sequence f = (f [k])k∈Z, we define its z-transform as

Z(f [k]) := F (z) :=
∑

k∈Z

f [k]z−k, (54)

where z ∈ C. Again, the transform is only defined for the values of z for which the above

series converges, these values defining its region of convergence (ROC). On the unit circle

z = e2πiω, this is the discrete-time Fourier transform (Ω = 1), and for z = ρe2πiω, it is the

discrete-time Fourier transform of the sequence f [k]ρ−k. The ROC of the z-transform has

properties “analogous” to the ROC of Laplace transforms:

1. it consists of a ring in the complex plane, i.e. is a set of the form A ≤ |z| ≤ B, where A

may be zero and B may be +∞. (In the extreme cases, the ≤ sign might have to be replaced

by <).

2. if the sequence f([k]) is causal (i.e. f [k] = 0 for k < 0), then B = +∞ (≤ possibly

replaced by <); if the sequence is anti-causal (i.e f [k] = 0 for k > 0), then A = 0 (≤
possibly replaced by <);

3. if the sequence is of finite length and causal, the ROC is the entire plane, except possibly

z = 0;

4. if the sequence is of finite length and anti-causal, the ROC is the entire z-plane except,

possibly, the “point” z = ∞;

5. the discrete time Fourier transform of the sequence f([k]) converges absolutely if and

only the ROC contains the unit circle.
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The inverse z-transform involves the contour integration in the ROC and Cauchy’s integral

theorem. We have

f [n] =
1

2πi

∮

C
Z(f [k])zn−1dz

where C denotes a contour around the origin lying in the ROC. The z-transform is very useful

for the study of difference equations and discrete-time filters; more details can be seen, e.g.

in [25] or [26].

9.5 Mellin Transform

The Mellin transform Mf of a function f is defined by

Mf(z) =

∫ ∞

0
f(t)tz−1dt. (55)

If we make the change of variable x = log t, we find that

Mf(z) =

∫

R

f(ex)exzdx (56)

which shows that Mf(−2πiω) is the Fourier transform (at ω) of the composition f ◦ exp; a

good reference to read about Mellin transforms is the book by Bracewell [27].

9.6 Hilbert Transform

The Hilbert transform Hf of f ∈ L2(R) is defined by

Hf(t) =
1

π

∫ ∞

−∞

f(u)

t− u
du, (57)

interpreting the integral as a Cauchy principal value, i.e. as

lim
ε→0

∫

|t−u|>ε

f(u)

t− u
du.

This transform is invertible, its inverse being simply −H, i.e.

f(t) =
1

π

∫ ∞

−∞

Hf(u)

u− t
dt. (58)

• Analytic signals and Hilbert transform

A function f ∈ L2(R) is said to be a (strong) analytic signal if its Fourier transform is

zero for negative frequencies, i.e f̂(ω) = 0 for ω < 0. If f is real valued, one can associate

with f an analytic signal fa in the following manner: fa is the signal whose Fourier transform

is given by

f̂a(ω) =





2f̂(ω), ω ≥ 0

0, ω < 0.
(59)
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One can show that if fa if is the analytic signal associated with the real signal f , then

Re fa = f and Im fa = Hf , i.e.

fa = f + iHf. (60)

Let

fa(t) = A(t)eiφ(t)

The envelope E(t) of the signal f(t) is defined as |A(t)| =
√
f(t)2 + Hf(t)2 and E(t)2 is the the

so-called instantaneous power; the instantaneous frequency ω(t) is defined by ω(t) = φ′(t).

Hence, Hilbert transform analysis provides a method of determining the “instantaneous”

frequency and power of a signal. This technique is widely used in communications systems

analysis; see, e.g. [28].

9.7 Haar and Walsh Transforms

We consider again the space L2(TΩ) and take, for simplicity, Ω = 1, i.e. consider functions

in the space L2[0, 1]. Besides the basis functions γk(t) := e2πikt, k ∈ Z, used in the Fourier

series expansion, one may consider the use of other orthonormal bases for this space. We

describe here two such bases, consisting of step functions.

Let H(t) be the function defined by

H(t) =





1, 0 < t < 1
2

−1, 1/2 ≤ t < 1
(61)

This is called the Haar function. Then, the set of functions obtained by dyadic dilation and

translation of this function, i.e.

Hjk(t) := 2j/2H(2jt− k), j ≥ 0, k = 0, 1, . . . , 2j − 1, (62)

together with the function H0 := 1[0,1) (the characteristic function on the interval [0, 1)),

form an orthonormal basis for L2[0, 1]. Thus, every function f ∈ L2[0, 1] admits a Haar series

expansion

f(t) = fH [0] +
∑

j≥0

2j−1∑

k=0

fH [j, k]Hjk(t)

where the Haar coefficients fH [0] and fH [j, k] are given by

fH [0] =

∫ 1

0
f(t)H0(t)dt; fH [j, k] =

∫ 1

0
f(t)Hjk(t)dt

To introduce the other basis consisting of step functions, we start by defining the so-

called Rademacher functions rn. For n ≥ 0, consider the division of the interval [0, 1] into 2n

subintervals of equal length. Then, rn(t) is the function which takes the values +1 and −1,
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alternately, in each of these subintervals, starting with +1; in other words, if dn(t) is the nth

digit in the binary representation of t (0 ≤ t < 1), then

rn(t) = (−1)dn(t).

If n ≥ 0 and b1, . . . , bk are the digits in the binary representation of n, i.e. n = (bk . . . b2b1)2,

then the nth Walsh function wn is defined by

wn(t) = r1(t)
b1r2(t)

b2 . . . rk(t)
bk .

Then, the set of Walsh functions {wn;n ≥ 0} is an orthonormal basis of L2[0, 1]. For an

account of the applications of the Haar and Walsh functions in signal and image processing

and other related fields see, e.g. [29]. Naturally, there are are also discrete versions of these

transforms.

The Haar function is the first example (constructed by Haar in 1910 [30]) of an orthogonal

wavelet, i.e. of a function ψ ∈ L2(R) whose dyadic dilations and translations ψjk = 2j/2ψ(2jt−
k); j, k ∈ Z constitute an orthonormal basis of L2(R); we will come back to this topic of

wavelets in a little more detail in Section XI.

10 Windowed Fourier Transform

Recalling the expression for the Fourier transform

f̂(ω) =

∫

R

f(t)e−2πiωtdt,

we see that f̂(ω) depends on the values f(t) for all time t ∈ R. Hence, it is difficult to read any

local behaviour of f from f̂ . In many applications, such as analysis of non-stationary signals

or real time signal processing, the simple use of a Fourier transform may not be appropriate.

In fact, one would like to dispose of an analytic tool that provides information both in time

and frequency. One of the first ideas was simply to truncate the signal and to analyze only

what happens on a finite interval [−A,A]. Mathematically, this corresponds to multiplying

f by the characteristic function of this interval, 1[−A,A], and taking the Fourier transform of

the product. We then have

̂1[−A,A]f(ω) = (SA ∗ f̂)(ω),

where SA(ω) = sin 2πAω
πω . Thus, truncating the function results in convolving its spectrum with

a cardinal sine. However, the cardinal sine decays slowly and has important lobes near the

origin (hence there is poor localization in frequency). To avoid these problems, we can replace

1[−A,A] with more regular functions W (t), called windows. Some typical choices include:

Bartlett or triangle window

W (t) = (1 − |t|
A )1[−A,A]
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Hamming and Hanning windows

W (t) = [α+ (1 − α) cos(πt/A)]1[−A,A]

For α = 0.54 we have Hamming’s window and for α = 0.50 we have Hanning’s window.

Blackman window

W (t) = [0.42 + 0.5 cos(πt/A) + 0.08 cos(2πt/A)]1[−A,A]

Gaussian window

W (t) = Ce−αt
2

(C,α > 0).

For more details and other choices of window functions, see e.g. [31] or [16]. All the windows

described above are concentrated around the origin. We can then “slide” the window along

the real axis and analyze the whole function. We then define the so-called windowed Fourier

transform or short time Fourier transform (associated with the specific window W ) as:

FW f(ω, τ) =

∫

R

f(t)W (t− τ)e−2πiωtdt. (63)

Note: When a Gaussian window is used in the short time Fourier transform, this is usually referred

as Gabor transform. If we define the family of functions Wω,τ by the result of two simple

operations – translation by τ and modulation by ω – on the basic window W , i.e.

Wωτ (t) := W (t− τ)e2πiωt, (64)

we can view the windowed Fourier transform simply as the inner product of f with each of

these functions:

FW f(ω, τ) = 〈f,Wω,τ 〉. (65)

We then also have, by Plancherel formula,

FW f(ω, τ) = 〈f̂ , Ŵω,τ 〉. (66)

If W and Ŵ are localized around the origin, then Wω,τ is localized around the instant

τ , while Ŵω,τ is localized around the frequency ω. The value FW f(ω, τ) thus provides an

indication of how the function behaves around time τ and frequency ω.

The function f can always be recovered (in the L2 sense), by a double integral

f(t) =

∫ ∫

R2

FW f(ω, τ)Wωτ(t)dω dτ, (67)

where we have assumed that the window W was chosen satisfying ‖W‖2 = 1. There is also

an energy conservation property for the windowed Fourier transform:
∫ ∫

R2

|FW f(ω, τ)|2dωdτ = ‖f‖2
2. (68)
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The windowed Fourier transform is even more familiar to signal analysis in its discrete

version, where τ and ω are assigned regularly spaced values: τ = nτ0 and ω = mω0, where

m,n ∈ Z and τ0, ω0 > 0 are fixed. That is, we let

Wm,n(t) := e2πimω0tW (t− nτ0) (69)

and compute the values

Cm,n = 〈f,Wm,n〉. (70)

The question naturally arises of whether it is possible to reconstruct the given function f

from its transform coefficients Cm,n in a numerically stable way (i.e. in a manner not too

“sensitive” to the unavoidable errors in the computed values). The answer is positive, provided

the functions Wm,n given by (69) constitute a frame, i.e. satisfy

A‖f‖2
2 ≤

∑

m,n∈Z

|〈f,Wm,n〉|2 ≤ B‖f‖2
2, (71)

for all f ∈ L2(R), with constants 0 < A ≤ B < ∞. The following theorem, whose proof can

be seen, e.g. in [32], establishes necessary conditions on the parameters ω0 and τ0 for the set

functions {Wm,n : m,n ∈ Z} to be a frame of L2(R).

Theorem 12 Let W ∈ L2(R) be such that ‖W‖2 = 1. The windowed Fourier family {Wm,n :

m,n ∈ Z} can only be a frame if

ω0τ0 ≤ 1. (72)

The frame bounds A and B necessarily satisfy

A ≤ 1

ω0τ0
≤ B. (73)

In particular, a necessary condition for the functions (69) to be an orthonormal basis of L2(R)

is that ω0τ0 = 1.

We also have the following important theorem, whose proof can again be seen in [32].

Theorem 13 (Balian-Low) If ‖W‖2 = 1 and {Wm,n : m,n ∈ Z} is a windowed Fourier

frame with ω0τ0 = 1, then

∫

R

t2|W (t)|2dt = +∞ or

∫

R

ω2|Ŵ (ω)|2dω = +∞.

This theorem shows, in particular, that we can not construct an ortogonal windowed Fourier

basis with a differentiable window of compact support.
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11 Wavelet Transform

11.1 Continuous Wavelet Transform

The windowed Fourier transform computes the inner product of the function f with a family

of functions Wω,τ obtained by translating and modulating the basic window W . The func-

tions of this family are all of the “same size” (i.e. they all have the same spread in time and

frequency). If the signal to be studied has components which are almost stationary associated

with sudden variations, then the windowed Fourier analysis is not the appropriate tool, due

the above fixed size of the windows. We now study a different transform which overcomes the

above limitations, by using windows whose size naturally adjusts to frequencies. The idea of

the continuous wavelet transform is again to compute the inner product of the function to be

analyzed with a family of functions ψa,τ dependent on two parameters. In this case, however,

these functions are obtained from a basic function (the analyzing or mother wavelet) by con-

tractions or dilations (i.e. changes of scale)– controlled by the parameter a, and translations

– controlled by the parameter τ . The mother wavelet ψ used for the analysis has to satisfy a

certain technical condition, known as the admissibility condition. More precisely, we say that

ψ ∈ L2(R) is a wavelet if it satisfies

Cψ :=

∫

R

|ψ̂(ω)|2
|ω| dω < +∞ (74)

In practice, we want to use a function ψ which behaves like a time window, i.e. we select ψ

with a fast decay property in time (e.g. ψ and tψ(t) ∈ L1(R)). In this case, the admissibility

condition (74) turns out to be equivalent to the condition
∫

R

ψ(t)dt = 0. (75)

This indicates that ψ must “oscillate” above and below the t axis, i.e. must behave like a

wave; this, together with the constraint that ψ decays fast (i.e. is “small”) justifies the name

wavelet adopted for these functions. Given a certain wavelet ψ (normalized so that ‖ψ‖2 = 1),

we define the family of functions

ψa,τ (t) :=
1√
|a|
ψ(
t− τ

a
); a ∈ R∗ = R \ {0}, τ ∈ R. (76)

Then, the continuous wavelet transform (associated with the wavelet ψ) of f is defined by

Wψf(a, τ) = 〈f, ψa,τ 〉

=
1√
|a|

∫

R

f(t)ψ(
t− τ

a
)dt, a ∈ R∗, τ ∈ R. (77)

As in the windowed Fourier case, there is an inversion formula and a conservation of energy

result, which can be stated as follows:
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f(t) =
1

Cψ

∫ ∫

R2

Wψf(a, τ)ψa,τ (t)
da dτ

a2
(78)

and

1

Cψ

∫ ∫

R2

|Wψf(a, τ)|2da dτ
a2

= ‖f‖2
2. (79)

If the function ψ is localized around t = 0 and ψ̂ is localized around ω = 1, then ψa,τ will be

localized around τ whilst ψ̂a,τ will be localized around ω = 1
a . When |a| > 1 (|ω| = | 1a | < 1),

the function ψa,τ becomes a stretched version of ψ (less localized in time, more localized

in frequency); on the contrary, when |a| < 1 (|ω| = | 1a | > 1), ψa,τ will be a function more

localized in time (a compressed version of ψ) and less localized in frequency; this is the already

mentioned flexibility of the wavelet windows: their size naturally adjusts to the frequencies.

11.2 Multiresolution Analysis (MRA)

As usual, we might like to use a discretized version of the wavelet transform, i.e. to compute

Wψ(a, τ) only for a discrete set of values of a and τ . A very common choice is to take the

dyadic points in the plane

a = 2−j , τ = 2−jk; j, k ∈ Z. (80)

For the above choice of values, we thus consider the family of functions

ψj,k(t) := 2j/2ψ(2jt− k); j, k ∈ Z (81)

and compute the wavelet values

Cj,k = 〈f, ψj,k〉. (82)

A natural challenge for the earlier researchers was to find ψ such that the corresponding set

of functions (81) was an orthonormal basis of L2(R), in which case every function f ∈ L2(R)

could be decomposed in a double series

f(t) =
∑

j,k∈Z

Cj,kψj,k(t), (83)

with the coefficients Cj,k given by (82). A function with this property is called an orthogonal

wavelet. In section VIII, we already mentioned the existence of one such function: the Haar

wavelet (61). This is, however, a discontinuous function, and the converge of the series (83) is

extremely slow. In the 80’s, other orthogonal wavelets, with better properties, were discovered

by J. O. Strömberg [33], Y. Meyer [34], G. Battle [35] and P. G. Lemarié [36].

63



These first constructions of wavelets seem a bit “miraculous”; Y. Meyer confesses “I found

my wavelets by trial and error; there was no underlying concept.” In the end of 1986, Stéphane

Mallat, in collaboration with Yves Meyer, introduce the important concept of multiresolution

analysis (MRA). This structure gives a complete understanding of all the wavelet construc-

tions obtained up to then, and allows the construction of new orthogonal wavelets. It is

based on this concept, that I. Daubechies introduces a new class of wavelets (the so called

Daubechies wavelets) which became of great importance in applications; these wavelets have

important properties: they have compact support, are smooth (smoothness increasing with

the size of support) and have a certain number of zero moments.

Another important consequence of the introduction of the AMR paradigm was the dis-

covery of efficient computational algorithms for the decomposition and reconstruction of a

function in a wavelet basis, the fast wavelet transforms.

A multiresolution analysis (MRA)(Vj, φ) of L2(R) is a sequence of closed subspaces of

L2(R) and an associated function φ, called the generator or scaling function, satisfying:

1. Vj ⊂ Vj+1, ∀j ∈ Z

2.
⋂

j∈Z

Vj = {0}

3.
⋃

j∈Z

Vj = L2(R)

4. v(t) ∈ Vj ⇐⇒ v(2t) ∈ Vj+1

5. The integer translates of φ, φ(t− k), k ∈ Z, form an orthonormal basis of the space V0.

Note: The concept here introduced is sometimes referred as orthogonal AMR; in fact, Condition

5. can be replaced by the less stringent assumption that the φ(t− k) are a Riesz basis of V0; in that

case, an “orthogonalized” function φ⊥ such that φ⊥(t− k) forms an o.n. basis of V0 can always been

obtained by a well-defined procedure; see, e.g. [32, pp. 139-140].

It follows from the properties of an AMR that, for each j, the set of functions {φj,k :=

2j/2φ(2j .− k) : k ∈ Z} is an o.n. basis for the space Vj (the so-called nodal basis). Wavelets

are associated with detail spaces, i.e. with complementary spaces Wj satisfying Vj+1 =

Vj ⊕Wj , where ⊕ denotes the orthogonal complement of Vj in Vj+1. The properties of the

multiresolution analysis imply that
⊕

j∈Z
Wj = L2(R). Hence, if we can find a function ψ

whose integer translates form an o.n. basis of W0, then the collection {ψj,k := 2j/2ψ(2j ·−k) :

j, k ∈ Z} will be an o.n. basis for the space L2(R) (a so-called wavelet basis), i.e. ψ will

be an orthogonal wavelet. The basic principle of a multiresolution analysis is that ψ always

exists and can be explicitly determined (from φ). In fact, we have the following theorem.
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Theorem 14 Let (Vj)j∈Z be a MRA of L2(R) with scaling function φ. Then

1. there exists a sequence of scalars (hk) ∈ `2(Z) such that

φ(t) =
√

2
∑

k∈Z

hkφ(2t− k) (84)

2. the function ψ defined by

ψ(t) =
√

2
∑

k∈Z

gkφ(2t− k) (85)

where the coefficients gk are given by

gk = (−1)kh1−k (86)

is an orthogonal wavelet., i.e. the set of functions {ψj,k(t) := 2j/2ψ(2jt− k), j, k ∈ Z}
is an o.n. basis of L2(R).

Notes:

1. Equation (84), which is known as the refinement equation or the two-scale equation for

the scaling function φ follows immediately by observing that
√

2φ(2t−k) is an o.n. basis

of V1 and hence the function φ ∈ V0 ⊂ V1 must have a representation in that basis.

2. The sequence of coefficients (hk)k ∈ Z in (84) is called the filter of φ. These coefficients

are, naturally, given by

hk = 〈f, φ1,k〉 =
√

2

∫

R

f(t)φ(2t− k)dt. (87)

3. tThere are other possible ways to define the coefficients gk (in terms of hk) so that (85)

is an orthogonal wavelet; the different wavelets are, however, all closely related to each

other; further details can be seen, e.g. in [32, pp. 135-136].

11.3 Fast Wavelet Transforms

We now show how the MRA structure leads to a very efficient iterative scheme for computing

the coefficients of the expansion of a function f in a wavelet basis.

Let (Vj)j∈Z be a MRA of L2(R), with scaling function φ and corresponding wavelet ψ.

Properties 1. and 2. of the MRA show that any function f ∈ L2(R) can be arbitrarily well

approximated by a function vj in a certain space Vj , provided j is taken sufficiently large, i.e.

∀ε > 0 ∃J ∈ Z ∃vJ ∈ VJ : ‖f − vJ‖2 < ε. (88)
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Let, as before, denote by Wj the orthogonal complement of Vj into Vj+1 and let Pj and Qj

denote the orthogonal projectors of L2(R) into Vj and Wj , respectively; since Vj ⊂ Vj+1, we

have that Qj = Pj+1 − Pj. Moreover, PjPj+1 = Pj and QjPj+1 = Qj .

For each j, let vj and wj be the projections of f into Vj and Wj, respectively, i.e. let vj

and wj be given by

vj = Pjf and wj = Qjf. (89)

We thus have,

vJ = PJf = PJ−1f + (PJ − PJ−1)f

= vJ−1 + wJ−1

= vJ−2 + wJ−2 + wJ−1

= · · · = vJ−M + wJ−M + · · · + wJ−1, M > 0, (90)

Property 2. of AMR ensures that, provided M is sufficiently large, one has

‖vJ−M‖2 < ε. (91)

We can therefore conclude that any function in L2(R) can be reasonably well represented as

a finite sum of functions belonging to the subspaces Wj and a remainder vJ−M in a space

VJ−M which can be interpreted as a very coarse version of f . The decomposition (90) tells us

the details that must be added to this blurred version of f to obtain the fine approximation

vJ to f .

Let us assume that we know the approximation vJ = PJf ∈ VJ to f and that we want

to obtain the decomposition (90). Since, for every j, {φj,k : k ∈ Z} and {ψj,k : k ∈ Z} are

o.n. bases of Vj and Wj , respectively, to know the functions vJ and vJ−M , wJ−M , . . . , wJ−1,

is equivalent to know their coefficients in these bases. Let cccj = (cjk)k∈Z be the sequence of the

coefficients of vj = Pjf in the basis {φj,k : k ∈ Z}, i.e. let

cjk = 〈f, φj,k〉, k ∈ Z, (92)

and let dddj = (djk)k∈Z be the sequence of the coefficients of wj = Qjf in the basis {ψjk : k ∈ Z},
i.e. let

djk = 〈f, ψjk〉, k ∈ Z. (93)

Hence, we aim to obtain the decomposition

vJ =
∑

k∈Z

cJ−Mk φJ−M,k +
J−1∑

j=J−M

∑

k∈Z

djkψj,k. (94)
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Recall that φ satisfies the dilation equation, i.e. that

φ(t) =
∑

n∈Z

hnφ1,n(t)

Hence, we have

φj−1,k(t) = 2(j−1)/2φ(2j−1t− k)

= 2(j−1)/2
∑

n∈Z

hnφ1,n(2
j−1t− k)

= 2j/2
∑

n∈Z

hnφ(2jt− (2k + n))

=
∑

n∈Z

hnφj,2k+n(t)

=
∑

n∈Z

hn−2kφj,n(t). (95)

Thus, one gets

cj−1
k = 〈f, φj−1,k〉

= 〈f,
∑

n∈Z

hn−2kφj,n〉

=
∑

n∈Z

hn−2k 〈f, φj,n〉

=
∑

n∈Z

hn−2k c
j
n. (96)

In a totally similar manner, by making use of the equations (85) and (86), one gets

dj−1
k =

∑

n∈Z

gn−2k c
j
n. (97)

Starting from the sequence cccJ = (cJn), formulae (96) and (97)above can be used, recursively,

to obtain the sequences cccJ−M , dddJ−1, . . . , dddJ−M , i.e. to obtain the desired decomposition for

vj ; see the scheme in Figure 1.

cccJ → cccJ−1 → cccJ−2 → · · · → cccJ−M

↘ ↘ ↘
dddJ−1 dddJ−2 dddJ−M

Figure 1: Decomposition Scheme

The above transform can be easily inverted; starting from the sequences cccJ−M , dddJ−1, . . . , dddJ−M ,
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we can obtain the initial sequence of coefficients cccJ . We have, for each j,

Pjf = vj = vj−1 + wj−1

=
∑

l∈Z

cj−1
l φj−1,l +

∑

l∈Z

dj−1
l ψj−1,l

Therefore,

cjk = 〈f, φj,k〉
= 〈Pjf, φj,k〉
=
∑

l∈Z

cj−1
l 〈φj−1,l, φj,k〉 +

∑

l∈Z

dj−1
l 〈ψj−1,l, φj,k〉. (98)

But,

〈φj−1,l, φj,k〉 = 〈
∑

n∈Z

hn−2lφj,n, φj,k〉

=
∑

n∈Z

hn−2l〈φj,n, φj,k〉

=
∑

n∈Z

hn−2lδn,k = hk−2l. (99)

On the other hand,

〈ψj−1,l, φj,k〉 = 〈
∑

n∈Z

gn−2lφj,n, φj,k〉 = gk−2l. (100)

Hence, we get

cjk =
∑

l∈Z

hk−2lc
j−1
l +

∑

l∈Z

gk−2ld
j−1
l

=
∑

l∈Z

(
hk−2lc

j−1
l + gk−2ld

j−1
l

)
; (101)

see the scheme in Fig.2.

dddJ−M dddJ−M+1 dddJ−1

↘ ↘ ↘
cccJ−M → cccJ−M+1 → · · · → cccJ−1 → cccJ

Figure 2: Reconstruction Scheme
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Notes

1. Naturally, when implementing the algorithms, all the infinite sequences have to be trun-

cated. Hence, when we apply the decomposition scheme, the initial sequence is always a

finite sequence, i.e. a vector of certain lengthN , (cJ0 , c
J
1 , . . . , c

J
N−1). Also, either the filter

(hk)k∈Z is finite or, if we are working with wavelets that do not have compact support,

will have to be truncated for a vector of a certain size L: (h−m, h−m+1, . . . , h−m+L−1).

2. Since the initial sequence has finite length it is necessary to know how to deal with the

boundary points. For example, the formulae for cJ−1
0 and cJ−1

N/2−1 are

cJ−1
0 =

−m+L−1∑

n=−m

hnc
J
n

and

cJ−1
N/2−1 =

n=N+L−m−3∑

n=−m+N−2

hn−N+2c
J
n

Hence, it is necessary to add m components at the left of the vector cccJ and L− 2 −m

components at the end. This can be done in several ways; see, e.g. [37, pp. 282-290]

for a discussion on different choices of these boundary conditions.

3. With an appropriate choice of the boundary conditions, formulae (96) and (97) show

that in the first step of the decomposition we compute approximately N/2 coefficients

cJ−1
k and N/2 coeficientes dJ−1

k . The next decomposition step is only applied to the

coefficients cJ−1
k which represnt the part in VJ−1 and so on. Hence, as the decomposition

proceeds, less operations are involved If the filter length is L, the number of operations

involved is of the order of

L×
(
N +

N

2
+
N

4
+ · · ·

)
< 2NL.

Hence, the number of operations involved in the fast wavelet transform is O(N); cf.

with O(N logN) for the FFT.

There are many important variants of the basic wavelet theory. Since it is impossible to

present here a reasonable description (even very brief) of these variants, we just refer to some

of these developments and indicate some references for the interested reader:

• Biorthogonal wavelets, introduced by Cohen, Daubechies and Feaveau in [38];
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• wavelet-packets, introduced in [39] and applied in signal compression in [40]; we also

recommend the book by Wickerhauser [41] and the article [42];

• Wilson bases– [43];

• local sine and co-sine bases – [44], [45];

• multiwavelets – [46];

• interpolatory wavelets – [47];

• lifting scheme and second generation wavelets – [48, 49, 50].

12 Conclusion

The idea of transforming or decomposing an object (e.g. a function) in order to extract more

“relevant” (for a specific purpose) information, and then reconstituting it, pervades all the

areas of mathematics. This makes the subject of mathematical transforms extremely vast

and impossible to cover, even in condensed form, in a set of notes. We were, therefore, forced

to make a personal selection of topics. Our idea has been to focus on the most popular

transforms, having also in mind their relevance in applied areas, such as signal processing.

We sincerely hope that these notes can be useful as a quick reference and a starting point

for studying, more deeply, this fascinating area of mathematics.
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Propagación y aproximación numérica de ondas:

Una introducción

Enrique Zuazua*

Resumen

En estas notas introducimos la ecuación de transporte y la ecuación de ondas en una

dimensión espacial. Se trata de modelos sumamente simples de propagación de ondas

pero tales que muchas de sus propiedades cualitativas más importantes son ubicuas en

prácticamente todos los modelos más sofisticados. Realizamos un análisis cuidadoso de sus

propiedades cualitativas más importantes para después abordar el problema del análisis

numérico a través de la transformada discreta de Fourier. La dificultad de los esquemas

discretos para reproducir las propiedades de propagación de los modelos continuous a

altas frecuencias queda claramente de manifiesto a través del estudio cuidadoso de las

velocidades de fase y de grupo que ilustran la dispersión numérica que estos esquemas

introducen.

1. La ecuación de ondas

En esta sección mencionamos la ecuación de ondas y sus variantes y algunos contextos de

la Mecánica y de la Ingenieŕıa en los que intervienen. Normalmente cuando nos referimos a

la ecuación de ondas la incógnita es una función escalar u = u(x, t) que depende tanto del

espacio x = (x1, · · · , xn) ∈ R
n como de la variable tiempo t ∈ R. En las aplicaciones más

relevantes las dimensiones que intervienen son n = 1, 2 y 3. La ecuación de ondas es

utt − ∆u = 0, (1.1)

donde ut = ∂u/∂t denota la derivación temporal y ∆ es el clásico operador de Laplace:

∆ =
n∑

i=1

∂2

∂x2
i

. (1.2)

La ecuación de ondas en dimensiones n = 1 y 2 describe las vibraciones de cuerdas y mem-

branas mientras que en n = 3 es válida para la propagación de ondas acústicas.

*DM Universidade Autonoma, Madrid. E-mail:enrique.zuazua@uam.es
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Para simplificar la presentación en esta sección introduciremos las ecuaciones en su forma

más sencilla. En particular, supondremos que los coeficientes son constantes (lo cual equivale

a suponer que el medio considerado es homogéneo) y los normalizamos al valor unidad, lo cual

en este caso no supone ninguna pérdida de generalidad como se puede comprobar mediante

una simple dilatación/contracción de la variable temporal o espacial.

En el ámbito de las frecuencias, como es habitual en acústica y en el estudio de las

vibraciones, la ecuación de ondas puede también reducirse a la ecuación de Helmholtz

−∆u = λu. (1.3)

La ecuación de transporte lineal

ut +
n∑

i=1

biuxi = 0 (1.4)

y la ecuación de Liouville

ut −
n∑

i=1

(biu)xi
= 0 (1.5)

están también intimamente ligadas a la ecuación de ondas. En efecto, en una dimensión

espacial, la ecuación de ondas

utt − uxx = 0 (1.6)

puede también escribirse como

(∂t + ∂x) (∂t − ∂x)u = 0, (1.7)

o

(∂t − ∂x) (∂t + ∂x)u = 0, (1.8)

o, lo que es lo mismo, el operador de d’Alembert

∂2
t − ∂2

x (1.9)

puede factorizarse de las dos siguientes maneras

∂2
t − ∂2

x = (∂t + ∂x) (∂t − ∂x) = (∂t − ∂x) (∂t + ∂x) . (1.10)

Vemos pues que el operador de d’Alembert es la composición de dos operadores de transporte.

Conviene también señalar que, cuando los coeficientes bi son constantes, la ecuación de

transporte y de Liouville sólo difieren en un signo, diferencia que puede ser eliminada invir-

tiendo el sentido del tiempo.

Utilizando las notaciones habituales

∇u = (∂1u, · · · , ∂nu) (1.11)

div ~u =
n∑

i=1

∂ui

∂xi
(1.12)
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para los operadores gradiente y divergencia y denotando mediante · el producto escalar en

R
n las ecuaciones de transporte y Liouville se pueden escribir respectivamente como

ut +~b · ∇u = 0 (1.13)

y

ut − div
(
~bu

)
= 0. (1.14)

La ecuación de Schrödinger de la Mecánica Cuántica, que también interviene en el estudio

de fibras ópticas es también una ecuación que, en muchos sentidos, se asemeja a la ecuación

de ondas:

iut + ∆u = 0. (1.15)

En este caso, la incógnita u toma valores complejos.

La ecuación de las placas vibrantes

utt + ∆2u = 0 (1.16)

es también muy similar a la ecuación de ondas. Además puede factorizarse en dos operadores

de Schrödinger conjugados

∂2
t + ∆2 = − (i∂t + ∆) (i∂t − ∆) . (1.17)

En una dimensión espacial la ecuación

∂2
t + ∂4

xu = 0 (1.18)

describe las vibraciones de una viga.

Las siguientes son también variantes de la ecuación de ondas:

utt − uxx + d ut = 0 (ecuación del telégrafo) (1.19)

ut + uxxx = 0 (ecuación de Airy), (1.20)

utt − ∆u+ u = 0 (ecuación de Klein-Gordon), (1.21)

El sistema de Lamé para las vibraciones de un cuerpo tridimensional elástico puede tam-

bién entenderse como un sistema de ecuaciones de ondas acopladas:

utt − λ∆u− (λ+ µ)∇divu = 0. (1.22)

En este caso la incógnita u es un vector de tres componentes u = (u1, u2, u3) que describe las

deformaciones del cuerpo elástico.
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Las ecuaciones que hemos descrito son lineales y provienen de ecuaciones y sistemas más

complejos de la Mecánica, de carácter no-lineal, a través de linealizaciones, lo cual las hace

válidas sólo para pequeños valores de la incógnita u.

El sistema de Maxwell para las ondas electromagnéticas posee también muchas de las

caracteŕısticas de las ecuaciones de ondas:




Et = rotB

Bt = − rotE

divB = divE = 0.

(1.23)

Aqui rot denota el rotacional de un campo de vectores.

Con el objeto de entender la semejanza de este sistema con la ecuación de ondas (1.6) con-

viene observar que esta última también puede escribirse en la forma de un sistema hiperbólico

de ecuaciones de orden uno: {
ut = vx

vt = ux.
(1.24)

Sin embargo, muchas ecuaciones relevantes que intervienen en el estudio de las ondas

tienen un carácter no-lineal. Por ejemplo, la ecuación eikonal

| ∇u |= 1 (1.25)

interviene en el cálculo de soluciones de ecuaciones de ondas mediante métodos de la Óptica

Geométrica.

Lo mismo ocurre con ecuación de Hamilton-Jacobi:

ut +H(∇u, x) = 0. (1.26)

La ecuación de Korteweg-de Vries (KdV) es una versión no-lineal de la ecuación de Airy que

permite analizar la propagación de ondas en canales:

ut + uux + uxxx = 0 (1.27)

y da lugar a los célebres solitones.

En el contexto de la Mecánica de Fluidos los dos ejemplos más relevantes son sin duda las

ecuaciones de Navier-Stokes para un fluido viscoso incompresible

{
ut − ∆u+ u · ∇u = ∇p
divu = 0

(1.28)

y las ecuaciones de Euler para fluidos perfectos

{
ut + u · ∇u = ∇p
divu = 0.

(1.29)
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En estos sistemas u denota el campo de velocidades del fluido y p es la presión.

Las siguientes ecuaciones, conocidas como de Burgers viscosa e inviscida son, en algún

sentido, versiones unidimensionales de estas ecuaciones

ut + uux − uxx = 0, (1.30)

ut + uux = 0. (1.31)

En esta última las soluciones desarrollan ondas de choque en tiempo finito.

Las ecuaciones que hemos citado, aunque numerosas, no son más que algunos de los

ejemplos más relevantes de ecuaciones en las que intervienen de un modo u otro fenómenos de

propagación de ondas y en las que los contenidos que desarrollaremos en este curso resultarán

de utilidad.

2. La fórmula de D’Alembert

Consideramos la ecuación de ondas unidimensional (1 − d) en toda la recta real

utt − uxx = 0, x ∈ R, t > 0. (2.1)

D’Alembert observó que las soluciones de (2.1) pueden escribirse como superposición de dos

ondas de transporte

u(x, t) = f(x+ t) + g(x− t). (2.2)

Es fácil comprobar que toda función de la forma (2.2) es solución de (2.1).

La fórmula (2.2) muestra que la velocidad de propagación en el modelo (2.1) es uno. En

efecto, según (2.2), las soluciones de (2.1) son superposición de ondas de transporte que viajan

en el espacio R a velocidad uno a izquierda y derecha.

Para comprobar que toda solución de (2.1) es de la forma (2.2) basta observar que el

operador de d’Alembert ∂2
t − ∂2

x puede descomponerse del modo siguiente:

utt − uxx = (∂t − ∂x) (∂t + ∂x)u = 0. (2.3)

Introduciendo la variable auxiliar

v = (∂t + ∂x)u (2.4)

la ecuación se escribe como

(∂t − ∂x) v = vt − vx = 0 (2.5)

de modo que

v = h(x+ t) (2.6)
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La ecuación (2.4) se reduce entonces a

ut + ux = h(x+ t). (2.7)

Para su resolución observamos que la función

w(t) = u(t+ x0, t)

verifica

w′(t) = h(2t+ x0)

cuya solución es

w(t) =
H(2t+ x0)

2
+ w(0) =

H(2t+ x0)

2
+ u(x0, 0), (2.8)

donde H es una primitiva de h.

Por lo tanto, como

u(x, t) = w(t)

con x0 = x− t obtenemos

u(x, t) =
H(x+ t)

2
+ u(x− t, 0) (2.9)

lo cual confirma la expresión (2.2).

Esta fórmula permite calcular expĺıcitamente la solución del problem de Cauchy:

{
utt − uxx = 0, x ∈ R, t > 0

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x ∈ R.
(2.10)

En efecto, en vista de la expresión (2.2), e identificando los perfiles f y g en función de los

datos iniciales ϕ y ψ obtenemos que

u(x, t) =
ϕ(x+ t) + ϕ(x− t)

2
+

1

2

∫ x+t

x−t
ψ(y)dy (2.11)

es la única solución de (2.10).

3. Resolución de la ecuación de ondas mediante series de Fouri-

er

Consideramos la ecuación de ondas unidimensional (1 − d):





utt − uxx = 0, 0 < x < π, t > 0

u(0, t) = u(π, t) = 0, t > 0

u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 < x < π.

(3.1)

80



Se trata de un modelo sencillo para las vibraciones de una cuerda unidimensional flexible de

longitud π, fijada en sus extremos x = 0, π.

Es fácil representar las soluciones de (3.1) mediante series de Fourier. Para ello escribimos

el desarrollo de Fourier de los datos iniciales:

u0(x) =
∞∑

k=1

ak sen(kx), u1(x) =
∞∑

k=1

bk sen(kx) (3.2)

donde los coeficientes de Fourier vienen dados por las clásicas fórmulas:

ak =
2

π

∫ π

0
u0(x) sen(kx)dx; bk =

2

π

∫ π

0
u1(x) sen(kx)dx, k ≥ 1. (3.3)

La solución de (3.1) viene entonces dada por la fórmula

u(x, t) =

∞∑

k=1

(
ak cos(kt) +

bk
k

sen(kt)

)
sen(kx). (3.4)

Conviene observar que la evolución temporal de cada uno de los coeficientes de Fourier

uk(t) = ak cos(kt) +
bk
k

sen(kt) (3.5)

obedece la ecuación del muelle

u′′k + k2uk = 0. (3.6)

Para cada una de estas ecuaciones la enerǵıa

ek(t) =
1

2

[
| u′k(t) |2 +k2 | uk(t) |2

]
(3.7)

se conserva en tiempo.1

Superponiendo cada una de las leyes de conservación de las enerǵıas ek, k ≥ 1, de las

diferentes componentes de Fourier de la solución obtenemos la ley de conservación de la

enerǵıa de las soluciones de (3.1):

E(t) =
1

2

∫ π

0

[
|ux(x, t)|2 + |ut(x, t)|2

]
dx. (3.8)

Se trata de la enerǵıa total de la vibración, suma de la enerǵıa potencial y de la enerǵıa

cinética.

Se cumple efectivamente que

E(t) = E(0), ∀t ≥ 0 (3.9)

para las soluciones de (3.1).

Esta ley de conservación de enerǵıa puede probarse de, al menos, dos modos distintos:

1Para comprobarlo basta multiplicar (3.6) por u′

k y observar que u′′

ku′

k = 1
2

`
(u′

k)2
´
′

y uku′

k = 1
2

`
u2

k

´
′

.
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• Series de Fourier:

Si utilizamos las propiedades clásicas de ortogonalidad de las funciones trigonométricas
∫ π

0
sen(kx) sen(jx)dx =

π

2
δjk,

∫ π

0
cos(kx) cos(jx) =

π

2
δjk, (3.10)

donde δjk denota la delta de Kronecker, la ley de conservación (3.9) se deduce efectivamente

de la conservación de las enerǵıas ek de (3.7) para cada k ≥ 1.

• Método de la enerǵıa:

La ley de conservación (3.9) puede también obtenerse directamente de (3.1). Basta para

ello multiplicar por ut e integrar con respecto a x ∈ (0, π). Tenemos entonces

∫ π

0
(utt − uxx)utdx = 0.

Por otra parte, ∫ π

0
uttutdx =

1

2

d

dt

∫ π

0
|ut(x, t)|2 dx

y

−
∫ π

0
uxxutdx =

∫ π

0
uxuxtdx =

1

2

d

dt

∫ π

0
|ux(x, t)|2 dx.

En la última identidad hemos utilizado la fórmula de integración por partes y las condiciones

de contorno de modo que, como u(·, t) = 0 para x = 0, π, necesariamente también se tiene

ut(·, t) = 0 para x = 0, π.

Los argumentos anteriores son formales pero la ley de conservación y la estructura de la

enerǵıa E en (3.8) indican en realidad cual es el espacio natural para resolver la ecuación de

ondas. En efecto, se trata del espacio de Hilbert, también denominado espacio de enerǵıa,

H = H1
0 (0, π) × L2(0, π). (3.11)

La norma natural en este espacio es

|(f, g)|H =
[
‖ f ‖2

H1
0 (0,π) + ‖ g ‖2

L2(0,π)

]1/2
=

[∫ π

0

(
f2

x + g2
)
dx

]1/2

. (3.12)

Conviene observar que, salvo un factor multiplicativo 1/2 la enerǵıa E coindice con el

cuadrado de la norma H de (u, ut).

Deducimos que la norma H de la solución2 (u, ut) se conserva a lo largo del tiempo. Esto

sugiere que H es el espacio natural para resolver el sistema (3.1). Esto es aśı y se tiene el

siguiente resultado de existencia y unicidad:

2En este punto abusamos un tanto de la terminoloǵıa. En efecto, la solución de (3.1) es la función u = u(x, t).

Ahora bien, como (3.1) es una ecuación de orden dos en tiempo es natural escribirla como un sistema de dos

ecuaciones de orden uno en tiempo, con dos incógnitas. En este caso el par (u, ut) puede ser considerado como

la solución, lo cual es coherente con el hecho de haber introducido dos datos iniciales en el sistema (3.1).
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“Para todo par de datos iniciales (u0, u1) ∈ H, i.e. u0 ∈ H1
0 (0, π) y u1 ∈ L2(0, π), existe

una única solución (u, ut) ∈ C([0,∞);H) de (3.1). Esta solución pertenece por tanto a la

clase

u ∈ C
(
[0,∞); H1

0 (0, π)
)
∩ C1

(
[0,∞); L2(0, π)

)
(3.13)

y la enerǵıa correspondiente E(t) de (3.8) se conserva en el tiempo”.

En lo que respecta al desarrollo en serie de Fourier (3.2)-(3.3) de los datos iniciales, el hecho

de que estos pertenezcan a H1
0 (0, π) × L2(0, π) significa que

∞∑

k=1

[k2|ak|2 + |bk|2] <∞. (3.14)

De hecho

E(0) =
1

2

∫ π

0
[|u0,x|2 + |u1|2]dx =

π

4

∞∑

k=1

[k2|ak|2 + |bk|2] <∞. (3.15)

Este resultado de existencia y unicidad puede probarse de al menos dos maneras adi-

cionales, además del método de series de Fourier que acabamos de desarrollar:

• la teoŕıa de semigrupos;

• el método de Galerkin.

El mismo tipo de análisis puede ser desarrollado con muy pocas modificaciones en el

caso de varias dimensiones espaciales. Basta para ello utilizar los resultados clásicos sobre la

descomposición espectral de la ecuación de Laplace.

Con el objeto de presentar los resultados fundamentales en el caso de varias dimensiones

consideramos un abierto Ω de R
n, n ≥ 1. En este punto la regularidad de Ω no es relevante.

Con el objeto de desarrollar las soluciones en series de Fourier es sin embargo importante

suponer que Ω es acotado.

Consideramos entonces la ecuación de ondas




utt − ∆u = 0, x ∈ Ω, t > 0

u = 0, x ∈ ∂Ω, t > 0

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω.

(3.16)

Aqúı y en lo sucesivo ∆ denota el clásico operador de Laplace

∆u =
n∑

i=1

∂2u

∂x2
i

. (3.17)

Para n ≥ 1, (3.16) es claramente una generalización de la ecuación de la cuerda vibrante (3.1).

Cuando n = 2, (3.16) es un modelo para las vibraciones de una membrana que, en reposo,

ocupa el dominio Ω del plano. Cuando n = 3, (3.16) describe la propagación de la presión
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de las ondas acústicas. Sin embargo, desde un punto de vista matemático, la ecuación (3.16)

puede tratarse de modo semejante en cualquier dimensión espacial.

Consideramos ahora el problema espectral:

{
−∆ϕ = λϕ en Ω

ϕ = 0 en ∂Ω.
(3.18)

Es bien sabido (véase [2] o [6], por ejemplo) que los autovalores {λj}j≥1 de (3.18) consti-

tuyen una sucesión creciente de números positivos que tiende a infinito

0 < λ1 < λ2 ≤ λ3 ≤ · · · ≤ λn ≤ · · · → ∞.

El primero de los autovalores es simple. Es habitual repetir el resto de acuerdo a su multiplici-

dad. De este modo existe una sucesión de autofunciones {ϕj}j≥1, donde ϕj es una autofunción

asociada al autovalor λj , que constituye una base ortonormal de L2(Ω). Es decir, se tiene, en

particular, ∫

Ω
ϕjϕkdx = δjk. (3.19)

De acuerdo a (3.19), multiplicando la ecuación (3.18) correspondiente a λk por ϕj e integrando

en Ω, gracias a la fórmula de Green obtenemos que

∫

Ω
∇ϕj · ∇ϕkdx = λj

∫

Ω
ϕjϕkdxδjk = λk

∫

Ω
ϕjϕkdxδjk. (3.20)

De este modo se deduce que las autofunciones son también ortogonales en H1
0 (Ω). Más conc-

retamente, la sucesión
{
ϕj/

√
λj

}
j≥1

constituye una base ortonormal de H1
0 (Ω).

Utilizando esta base de funciones propias del Laplaciano podemos resolver la ecuación

de ondas (3.16) como lo hicimos en una variable espacial. Para ello desarrollamos los datos

iniciales (u0, u1) de (3.16) del modo siguiente

u0(x) =

∞∑

k=1

akϕk(x); u1(x) =

∞∑

k=1

bkϕk(x). (3.21)

Buscamos entonces la solución u de (3.16) en la forma

u(x, t) =
∞∑

k=1

uk(t)ϕk(x). (3.22)

Observamos entonces que los coeficientes {uk} han de resolver la ecuación diferencial:

u′′k(t) + λkuk(t) = 0, t > 0, uk(0) = ak, u
′
k(0) = bk, (3.23)

de modo que

uk(t) = ak cos
(√

λkt
)

+
bk√
λk

sen
(√

λkt
)
. (3.24)
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De este modo obtenemos que la solución u de (3.16) admite la expresión

u(x, t) =
∞∑

k=1

(
ak cos

(√
λkt

)
+

bk√
λk

sen
(√

λkt
))

ϕk(x). (3.25)

La similitud de la expresión (3.4) del caso de una dimensión espacial con la fórmula (3.25)

del caso general es evidente. En realidad (3.4) es un caso particular de (3.25). Basta observar

que cuando Ω = (0, π), el problema de autovalores para el Laplaciano se convierte en un

problema clásico de Sturm-Liouville. El espectro es por tanto expĺıcito:

λk = k2, k ≥ 1; ϕk(x) =

√
2

π
sen(kx), k ≥ 1. (3.26)

Con estos datos las expresiones (3.4) y (3.25) coinciden efectivamente.

La enerǵıa de las soluciones de (3.16) es en este caso

E(t) =
1

2

∫

Ω

[
| ∇u(x, t) |2 + |ut(x, t)|2

]
dx (3.27)

y también se conserva en tiempo. Nuevamente la enerǵıa es proporcional al cuadrado de la

norma en el espacio de la enerǵıa H = H1
0 (Ω) × L2(Ω).

En este caso el resultado básico de existencia y unicidad de soluciones dice que:

“Si (u0, u1) ∈ H1
0 (Ω) × L2(Ω), existe una única solución (u, ut) ∈ C([0,∞); H), i.e.

u ∈ C
(
[0,∞); H1

0 (Ω)
)
∩ C1

(
[0,∞); L2(Ω)

)
(3.28)

de (3.16). La enerǵıa E(t) en (3.27) es constante en tiempo”.

Conviene también señalar que, si bien la regularidad (3.28) de las soluciones débiles per-

mite interpretar la ecuación de ondas en un sentido débil, el hecho que u sea solución con

la regularidad (3.28), junto con la propiedad del operador de Laplace con condiciones de

contorno de Dirichlet de constituir un isomorfismo de H1
0 (Ω) en H−1(Ω), permite deducir

que u ∈ C2
(
[0,∞); H−1(Ω)

)
. De este modo se concluye que la ecuación (3.16) tiene sentido

para cada t > 0 en el espacio H−1(Ω). Acabamos de ver cómo se puede aplicar el método de

Fourier para la resolución de la ecuación de ondas. Basta para ello conocer la descomposición

espectral del Laplaciano con condiciones de Dirichlet (3.18).

El método de Fourier puede ser adaptado a muchas otras situaciones:

• Condiciones de contorno de Neumann, o mixtas en las que la condición de Dirichlet y

Neumann se satisfacen en subconjuntos complementarios de la frontera.

• Ecuaciones más generales con coeficientes dependientes de x de la forma:

ρ(x)utt − div(a(x)∇u) + q(x)u = 0
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donde ρ, a y q son funciones medibles y acotas y ρ y a son uniformemente positivas, i.e.

existen ρ0, a0 > 0 tales que

ρ(x) ≥ ρ0, a(x) ≥ a0, p.c.t.x ∈ Ω.

Pero es cierto también que el método de Fourier tiene sus limitaciones. En particular

no permite abordar ecuaciones no lineales, con coeficientes que dependen de x y t, etc.

En estos últimos casos los métodos de Galerkin y la teoŕıa de semi-grupos se muestran

mucho más flexibles y útiles.

4. Series de Fourier como método numérico

En la sección anterior hemos visto que la ecuación de ondas puede ser resuelta mediante

series de Fourier obteniéndose la expresión

u(x, t) =
∞∑

k=1

[
ak cos

(√
λkt

)
+

bk√
λk

sen
(√

λkt
)]
ϕk(x), (4.1)

siendo {ϕk}k>1 y {λk}k>1 las autofunciones y autovalores del Laplaciano. Como vimos, es

conveniente elegir {ϕk}k>1 de modo que constituyan una base ortonormal de L2(Ω).

Vimos asimismo que la enerǵıa

E(t) =
1

2

∫

Ω

[
| ∇u(x, t) |2 + | ut(x, t) |2

]
dx (4.2)

se conserva a lo largo de las trayectorias.

La enerǵıa inicial de las soluciones viene dada por

E(0) =
1

2

∞∑

k=1

[
| λkak |2 + | bk |2

]
. (4.3)

Aśı, la hipótesis de que los datos iniciales sean de enerǵıa finita

(u0, u1) ∈ H1
0 (Ω) × L2(Ω) (4.4)

es equivalente a que las sucesiones
{
ak

√
λk

}
k>1

, {bk} pertenezcan al espacio de las sucesiones

de cuadrado sumable `2.

En vista del desarrollo en serie (4.1) de las soluciones, parece natural construir un método

numérico en el que la aproximación venga dada, simplemente, por las sumas parciales de la

serie:

uN (x, t) =
N∑

k=1

[
ak cos

(√
λkt

)
+

bk√
λk

sen
(√

λkt
)]
ϕk(x). (4.5)
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La suma finita de uN en (4.5) proporciona, efectivamente, una aproximación de la solución

u representada en la serie de Fourier (4.1). Para comprobarlo consideremos el resto

εN = u− uN =
∑

k>N+1

[
ak cos

(√
λkt

)
+

bk√
λk

sen
(√

λkt
)]
ϕk(x). (4.6)

Teniendo en cuenta que

∫

Ω
∇ϕk · ∇ϕjdx =

{
0, si k 6= j

λk, si k = j,

es fácil comprobar que
∣∣∣
∣∣∣∇εN (t)

∣∣∣
∣∣∣
2

L2(Ω)
=

∑

k>N+1

λk

[
ak cos

(√
λkt

)
+

bk√
λk

sen
(√

λkt
) ]2

(4.7)

6 2
∑

k>N+1

[
λk | ak |2 + | bk |2

]
.

Como la serie (4.3) de la enerǵıa inicial es convergente, en virtud de (4.7) deducimos que

uN (t) → u(t) en C
(
[0,∞); H1

0 (Ω)
)
, (4.8)

cuando N → ∞.

El mismo argumento permite probar que

uN,t → ut(t) en C
(
[0,∞); L2(Ω)

)
. (4.9)

De (4.8)-(4.9) deducimos que, cuando los datos iniciales están en el espacio de la enerǵıa

H1
0 (Ω)×L2(Ω), las sumas parciales (4.5) proporcionan una aproximación eficaz de la solución

en dicho espacio, uniformemente en tiempo t > 0.

Cabe por tanto preguntarse sobre la tasa o velocidad de la convergencia. El argumento

anterior no proporciona ninguna información en este sentido puesto que la mera convergencia

de la serie (4.3) no permite decir nada sobre la velocidad de convergencia de sus sumas

parciales.

Con el objeto de obtener tasas de convergencia es necesario hacer hipótesis adicionales

sobre los datos iniciales. Supongamos por ejemplo que

(u0, u1) ∈
[
H2 ∩H1

0 (Ω)
]
×H1

0 (Ω). (4.10)

En este caso tenemos ∑

k>1

[
λ2

k | ak |2 +λk | bk |2
]
<∞. (4.11)

En efecto, tal y como véıamos anteriormente en el caso de u0, el que u1 ∈ H1
0 (Ω) se caracteriza

porque sus coeficientes de Fourier (bk)k>1 satisfacen

∞∑

k>1

λk | bk |2<∞. (4.12)
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Por otra parte, ‖ ∆ϕ ‖L2(Ω) define una norma equivalente a la inducida por H2(Ω) en el

subespacio H2 ∩H1
0 (Ω)3. Por otra parte, se tiene

∫

Ω
∆ϕk∆ϕjdx =

{
0 si k 6= j

λ2
k si k = j.

(4.13)

Deducimos por tanto que ∣∣∣
∣∣∣∆u0

∣∣∣
∣∣∣
2

L2(Ω)
=

∑

k>1

λ2
k |ak|2 (4.14)

y, de este modo, observamos que, efectivamente, la serie (4.11) converge.

La información adicional que (4.11) proporciona sobre los coeficientes de Fourier permite

obtener tasas de convergencia de uN hacia u en el espacio de la enerǵıa. Por ejemplo, volviendo

a (4.7) tenemos

∣∣∣
∣∣∣∇εN(t)

∣∣∣
∣∣∣
2

L2(Ω)
6 2

∑

k>N+1

[
λk |ak|2 + |bk|2

]

6 2
∑

k>N+1

1

λk

[
λ2

k |ak|2 + λk |bk|2
]

6
2

λN+1

∑

k>N+1

[
λ2

k |ak|2 + λk |bk|2
]

6
C

λN+1

∣∣∣
∣∣∣ (u0, u1)

∣∣∣
∣∣∣
2

H2∩H1
0 (Ω)×H1

0 (Ω)
.

El mismo argumento puede ser utilizado para estimar la norma de εN,t en L2(Ω). De este

modo deducimos que

‖ u− uN ‖L∞(0,∞; H1
0 (Ω))∩W 1,∞(0,∞; L2(Ω)) ≤ C√

λN+1

∣∣∣
∣∣∣ (u0, u1)

∣∣∣
∣∣∣
H2∩H1

0 (Ω)×H1
0 (Ω)

. (4.15)

Esta desigualdad proporciona estimaciones expĺıcitas sobre la velocidad de convergencia. En

efecto, el clásico Teorema de Weyl sobre la distribución asintótica de los autovalores del

Laplaciano asegura que

λN ∼ c(Ω)N2/n, N → ∞ (4.16)

donde c(Ω) es una constante positiva que depende del dominio y n es la dimensión espacial4.

Combinando (4.15) y (4.16) obtenemos que uN converge a u en el espacio de la enerǵıa,

uniformemente en tiempo t > 0, con un orden de O
(
N−1/n

)
.

3En este punto ultilizamos el resultado clásico de regularidad de las soluciones del problema de Dirichlet

para el Laplaciano que garantiza que, si el dominio es de clase C2 y el segundo miembro está en L2(Ω), entonces

la solución pertenece a H2 ∩ H1
0 (Ω)

4Es obvio que, por ejemplo, en una dimensión espacial n = 1, la expresión asintótica en (4.16) coincide con

lo que se observa en la expresión expĺıcita del espectro. En efecto, recordemos que, cuando Ω = (0, π), λk = k2.
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La hipótesis (u0, u1) ∈ H2∩H1
0 (Ω)×H1

0 (Ω) realizada sobre los datos iniciales es sólo una de

las posibles. De manera general puede decirse que, cuando los datos iniciales son más regulares

que lo que el espacio de la enerǵıa exige y verifican las condiciones de compatibilidad adecuadas

en relación a las condiciones de contorno, entonces, se puede establecer una estimación sobre

la velocidad de convergencia de la aproximación que las sumas parciales del desarrollo en serie

de Fourier proporcionan a la solución de la ecuación de ondas.

Este método de aproximación lo denominaremos método de Fourier. Se trata de un método

de aproximación sumamente útil en una dimensión espacial puesto que, al disponer de la

expresión expĺıcita de las autofunciones ϕk y autovalores de λk, la aproximación uN puede

calcularse de manera totalmente expĺıcita. Bastaŕıa para ello con utilizar una fórmula de

cuadratura para aproximar el valor (3.3) de los coeficientes de Fourier.

El método de Fourier es sin embargo mucho menos eficaz en varias dimensiones espa-

ciales. En efecto, en ese caso no disponemos de la expresión expĺıcita de las autofunciones y

autovalores y su aproximación numérica es un problema tan complejo como el de la propia

aproximación de la ecuación de ondas.

Otro de los inconvenientes del método de Fourier es que, cuando la ecuación es no-lineal

o tiene coeficientes que depende de (x, t), ya no se puede obtener una expresión expĺıcita de

la solución en serie de Fourier y por tanto tampoco de sus aproximaciones.

Es por eso que el método de Fourier tiene una utilidad limitada y por tanto precisamos

de métodos más sistemáticos y robustos que funcionen no sólo en casos particulares sino para

amplias clases de ecuaciones. En este marco destacan los métodos de diferencias finitas que

serán el objeto central de estas notas.

5. La ecuación de transporte lineal

Las ecuaciones que modelizan fenómenos de propagación de ondas y vibraciones son t́ıpi-

camente Ecuaciones en Derivadas Parciales (EDP) de orden dos. Sin embargo en todas ellas

subyacen las ecuaciones de transporte de orden uno que analizamos en esta sección.

El modelo más sencillo es

ut + ux = 0. (5.1)

Es fácil comprobar que u = u(x, t) es solución de esta ecuación si y sólo si es constante a

lo largo de las ĺıneas caracteŕısticas

x+ t = cte. (5.2)

De este modo deducimos que las soluciones de (5.1) son de la forma

u = f(x− t), (5.3)

donde f es el perfil de la solución en el instante inicial t = 0, i.e.

u(x, 0) = f(x). (5.4)
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La solución (5.3) es entonces una simple onda de transporte pura en la que el perfil f se

transporta (avanza) en el eje real a velocidad constante uno5 .

Al invertir el sentido del tiempo (i.e. haciendo el cambio de variable t → −t) la ecuación

(5.1) se transforma en

ut − ux = 0 (5.5)

cuyas soluciones son ahora de la forma

u = g(x+ t), (5.6)

tratándose de ondas viajeras que se propagan en dirección opuesta a velocidad uno.

Vemos por tanto que las soluciones de la ecuación de transporte pueden calcularse de

manera expĺıcita y que en ellas se observa un sencillo fenómeno de transporte lineal sin

deformación.

Esta ecuación es por tanto un excelente laboratorio para experimentar algunas de las ideas

más sencillas del análisis numérico.

Consideremos pues un paso de discretización h > 0 en la variable espacial e introduzcamos

el mallado {xj}j∈Z, xj = jh.

Buscamos una semi-discretización (continua en tiempo y discreta en espacio) que reduzca

la EDP (5.1) a un sistema de ecuaciones diferenciales cuya solución proporcione una aproxi-

mación uj(t) de la solución u = u(x, t) de (5.1) en el punto x = xj .

La manera más sencilla de construir esta semi-discretización es utilizar el desarrollo de

Taylor para introducir una aproximación de la derivación parcial en la variable espacial. Son

varias las posibilidades:

ux(xj , t) ∼
u(xj+1, t) − u(xj, t)

h
∼ uj+1(t) − uj(t)

h
, (5.7)

ux(xj , t) ∼
u(xj , t) − u(xj−1, t)

h
∼ uj(t) − uj−1(t)

h
(5.8)

ux(xj , t) ∼
u(xj+1, t) − u(xj−1, t)

2h
∼ uj+1(t) − uj−1(t)

2h
. (5.9)

Cada una de estas elecciones corresponde a un determinado sentido de avance a lo largo del eje

x. En efecto (5.7) y (5.8) y (5.9) corresponden a diferencias progresivas, regresivas y centradas

respectivamente.

5Si bien en este caso la ecuación puede resolverse expĺıcitamente, el problema (5.1) entra en el marco de la

Teoŕıa de Semigrupos. En efecto, basta considerar el espacio de Hilbert H = L2(R) y el operador A = −∂x con

dominio D(A) = H1(R) para que el problema (5.1) entre en el marco abstracto del Teorema de Hille-Yosida.

En efecto, el operador A aśı definido es maximal disipativo. Para ver que es maximal basta con observar que

< Au, u >L2(R)= −
R
R

∂xuudx = − 1
2

R
R

∂x(u2)dx = 0. Además A es maximal. En efecto, dado f ∈ L2(R),

existe una única solución u ∈ H1(R) de u + ∂xu = f . Esta solución puede calcularse expĺıcitamente y se

obtiene: u(x) =
R x

−∞
f(s)es−xds =

R 0

−∞
f(z + x)ezdz. Tomando normas en L2(R) y aplicando la desigualdad

de Minkowski se deduce fácilmente que ||u||L2(R) ≤
R 0

−∞
||f ||L2(R)e

zdz = ||f ||L2(R). Como ux = f − u vemos

inmediatamente que, efectivamente, u pertenece a H1(R).
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Cada una de estas elecciones proporciona un sistema semi-discreto diferente de aproxi-

mación de la EDP (5.1) en diferencias finitas:

• Esquema progresivo:

u′j(t) +
uj+1(t) − uj(t)

h
= 0, j ∈ Z, t > 0, (5.10)

• Esquema regresivo:

u′j(t) +
uj(t) − uj−1(t)

h
= 0, j ∈ Z, t > 0, (5.11)

• Esquema centrado:

u′j(t) +
uj+1(t) − uj−1(t)

2h
= 0, j ∈ Z, t > 0. (5.12)

Estos sistemas constituyen un conjunto numerable de ecuaciones diferenciales de orden uno

lineales acopladas. Al tratarse de sistema infinitos su resolución no entra en el marco de la

teoŕıa clásica de EDO. Sin embargo, es fácil verificar que su solución existe y es única sin

necesidad de utilizar la Teoŕıa de Semigrupos. Para ello basta considerar el espacio de Hilbert

H = `2 de las sucesiones de cuadrado sumables. La solución de cualquiera de estas ecuaciones

semi-discretas puede entonces verse como un elemento de este espacio: ~u = {uj}j∈Z ∈ `2.

Estos sistemas pueden escribirse entonces en forma abstracta

d

dt
~u = Ah~u. (5.13)

Es fácil comprobar que en cada uno de los casos anteriores el operador Ah involucrado puede

representarse a través de una matriz infinita, tridiagonal y acotada con norma 1/h. Se trata

pues de ecuaciones de evolución en espacios de Hilbert de dimensión infinita pero en las

que el generador Ah está acotado. Esto nos permite calcular el semigrupo eAht mediante la

representación en desarrollo de serie de potencias de la exponencial. Obtenemos aśı que estas

ecuaciones generan semigrupos en H = `2. De este modo deducimos que para cada dato

inicial dado en `2 cada una de estas ecuaciones admite una única solución C∞(R, `2) que

toma ese dato en el instante t = 0. Las soluciones dependen en realidad de manera anaĺıtica

con respecto a la variable temporal.

Todos estos esquemas son consistentes con la ecuación de transporte. Es decir, al llevar

a estos esquemas una solución regular de la ecuación de transporte continua vemos que se

produce un error que tiende a cero a medida que h→ 0.

La mejor manera de analizar la estabilidad es a través del método de von Neumann. Aśı,

introduciendo

ǔ(θ, t) =
∑

j∈Z

uj(t)e
iθj (5.14)
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obtenemos que ǔ, en cada uno de los casos, satisface

ǔ′(θ, t) +

(
e−iθ − 1

h

)
ǔ(θ, t) = 0, t > 0, (5.15)

ǔ′(θ, t) +

(
1 − eiθ

h

)
ǔ(θ, t) = 0, t > 0, (5.16)

ǔ′(θ, t) +

(
e−iθ − eiθ

2h

)
ǔ(θ, t) = 0, t > 0. (5.17)

La transformada discreta de Fourier no sólo tiene la virtud de transformar los sistemas

de ecuaciones semi-discretas (5.10)-(5.12) en ecuaciones diferenciales con paramétro θ (5.15)-

(5.17) que son inmediatas de resolver, sino que define también una isometŕıca de `2 a valores

en L2(0, 2π). En efecto, la fórmula (5.14) puede invertirse fácilmente. De hecho tenemos

uj(t) =
1

2π

∫ 2π

0
ǔ(θ, t)e−ijθdθ. (5.18)

Además
1

2π

∫ 2π

0
|ǔ(θ, t)|2dθ =

∑

j∈Z

|uj(t)|2. (5.19)

Obtenemos por tanto

ǔ(θ, t) = eah(θ)tǔ(θ, 0) (5.20)

donde ah(θ) vaŕıa de un caso a otro. De manera más precisa se tiene

a(θ) =





1 − e−iθ

h
, (esquema progresivo)

eiθ − 1

h
, (esquema regresivo)

eiθ − e−iθ

2h
, (esquema centrado).

(5.21)

Como es bien sabido, la convergencia de un método numérico exige su estabilidad6 y ésta

pasa por que Re ah(θ) permanezca acotada superiormente cuando h → 0 uniformemente en

θ ∈ [0, 2π). Verifiquemos si esta propiedad se cumple en cada uno de los casos:

6En este punto estamos haciendo uso del clásico Teorema de Lax que dice que la convergencia de un

esquema es equivalente a su estabilidad más consistencia. En el caso más sencillo de la resolución de un

sistema lineal Ax = b, podemos interpretar este resultado del siguiente modo. Aproximemos este problema

por otro de caracteŕısticas semejantes Aεxε = bε. Suponemos que bε → b cuando ε → 0. Deseamos probar

que xε → x. Para ello hacemos las dos siguientes hipótesis: a) Aεy → Ay para todo y (consistencia) y b) Las

matrices inversas (Aε)
−1 están uniformemente acotadas (estabilidad). Deducimos entonces la convergencia de

las soluciones: xε → x cuando ε → 0. En efecto, tenemos Aε(xε−x) = bε−b+(A−Aε)x = rε. Por las hipótesis

realizadas sobre la aproximación deducimos que rε → 0. La hipótesis de estabilidad garantiza entonces que

xε−x → 0. El Teorema de Lax generaliza este resultado al caso de las EDP y sus aproximaciones numéricas. La

ecuación Ax = b del ejemplo anterior juega el papel de la EDP, la ecuación cuya solución deseamos aproximar.

La ecuación aproximada Aεxε = bε juega el papel de la aproximación numérica, y ε es el parámetro destinado

a tender a cero, lo mismo que hace h en las aproximaciones numéricas.
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• Esquema progresivo: Tenemos

ah(θ) =
1 − eiθ

h
=

1 − cos(θ)

h
− i sen(θ)

h
. (5.22)

Por tanto

Re, ah(θ) =
1 − cos(θ)

h
.

Obviamente,

Re, ah(θ) ↗ ∞, h→ 0, ∀0 < θ < 2π, (5.23)

lo cual demuestra la falta de estabilidad y por tanto de convergencia de este esquema.

• Esquema regresivo: En este caso

ah(θ) =
e−iθ − 1

h
=

cos(θ) − 1

h
− i sen θ

h
(5.24)

de modo que

Re, ah(θ) =
cos(θ) − 1

h
≤ 0, ∀θ ∈ [0, 2π). (5.25)

La estabilidad del esquema está por tanto garantizada. Esto demuestra que el esquema

es también convergente, propiedad que analizaremos más adelante.

• Esquema centrado: En este caso

ah(θ) =
e−iθ − eiθ

2h
= − i sen θ

h
. (5.26)

Obviamente,

Re, ah(θ) = 0 (5.27)

por lo que este esquema es también estable y convergente.

En realidad bastaŕıa verificar las propiedades geométricas más elementales asociadas a la

evolución temporal que la ecuación continua y semi-discreta generan para ver que el esque-

ma progresivo no puede de ningún modo ser convergente y que, sin embargo, los otros dos

esquemas pueden perfectamente serlo.

En efecto, en virtud de la expresión expĺıcita (5.3) de la solución de la ecuación de trans-

porte (5.1), observamos que el dominio de dependencia de la solución en el punto (x, t) se

reduce al punto x−t en el instante inicial. Veamos ahora cuáles son los dominio de dependencia

en los esquemas discretos.

En el esquema progresivo, fijado un punto x = xj , vemos que la ecuación que gobierna

la dinámica de uj(t) depende de uj+1(t), la aproximación de la solución en el nodo xj+1

inmediatamente a la derecha de xj , que a su vez depende de uj+1(t), etc. Vemos pues que,

en este caso, el sistema semi-discreto depende del valor del dato inicial a la derecha de xj
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mientras que el único valor relevante para la solución real es el punto x − t que está al lado

opuesto, a la izquierda de x.

Por lo tanto el esquema semi-discreto progresivo viola la condición indispensable para la

convergencia de un esquema numérico según la cual el dominio de dependencia del esquema

numérico ha de contener el dominio de dependencia de la ecuación original7.

Sin embargo, los otros dos esquemas si que verifican esta propiedad geométrica, lo cual

garantiza su convergencia. El esquema progresivo para la ecuación de transporte que con-

sideramos suele normalmente denominarse “upwind”, que viene a significar algo asi como “a

favor de la corriente”. Con este término se pone de manifiesto que en los problemas en los que

está presente el fenómeno de transporte, el sentido y orientación del mismo ha de ser tenido

en cuenta a la hora de diseñar métodos numéricos convergentes.

El análisis que acabamos de realizar indica que:

∗ Las ondas continuas se propagan en el espacio-tiempo con una velocidad y dirección

determinadas.

∗ Los esquemas numéricos, a pesar de estar basados en un mecanismo aparentemente

coherentes de discretización, pueden generar ondas que se propagan con velocidades y

direcciones distintas y no converger a medida que el paso del mallado tiende a cero.

Los tres esquemas que hemos analizado son en principio coherentes. En realidad en la

terminoloǵıa del Análisis Numérico se dice que son esquemas consistentes. De manera más

precisa, mientras que el esquema progresivo y regresivo son consistentes de orden 1, el esquema

centrado es consistente de orden 2. En efecto, supongamos que u es una solución suficiente-

mente regular de la ecuación de transporte (5.1) (basta con que u tenga una derivada continua

en la variable tiempo y tres en la variable espacial).

Sea entonces

uj(t) = u(xj , t), (5.28)

la restricción de (5.1) a los puntos del mallado.

Para analizar la consistencia de los esquemas numéricos introducidos consideramos
(
uj

)
j∈Z

como una solución aproximada de dicho esquema8.

7Se trata efectivamente de una condición necesaria para la convergencia de un método numérico. Cuando

no se cumple, hay puntos del dominio de dependencia del problema continuo que no pertenecen al del problema

discreto. En estas circunstancias, modificando los datos iniciales en esos puntos, podemos conseguir alterar la

solución del problema continuo sin que la del problema discreto sufra ningún cambio. Esto excluye cualquier

posibilidad de convergencia del método numérico.
8Conviene subrayar que, a la hora de comprobar la consistencia de un método numérico, lo que comunmente

se hace es considerar la solución del problema continuo como una solución aproximada del esquema discreto y

no al revés, como podŕıa esperarse en la medida en que el esquema numérico tiene como objeto aproximar la

ecuación continua.
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Tenemos entonces, en el caso de esquema progresivo

u′j +
uj+1 − uj

h
= ut(xj , t) +

u(xj+1, t) − u(xj, t)

h
(5.29)

= ut(xj , t) + u(xj , t) +
hux(xj , t) +O

(
h2

)
− u(xj , t)

h
= ut(xj , t) + ux(xj , t) +O(h) = O(h),

lo cual indica que se trata efectivamente de un esquema consistente de orden 1.

Por último, el esquema centrado es consistente de orden 2:

u′j +
uj+1 − uj−1

2h
= ut(xj , t) +

u(xj+1, t) − u(xj−1, t)

2h
(5.30)

= ut(xj , t) +

[
u(xj , t) + hux(xj, t) +

h2

2
uxx(xj , t) +O(h3)

−u(xj , t) + hux(xj , t) +
h2

2
uxx(xj , t) +O

(
h3

)]/
h,

= ut(xj , t) + ux(xj, t) +O
(
h2

)
= O

(
h2

)
.

En virtud del Teorema de equivalencia de P. Lax que garantiza que la convergencia equiv-

ale a la consistencia más la estabilidad cabe entonces esperar que el esquema regresivo sea

convergente de orden 1 y que el centrado sea convergente de orden 2.

Comprobémoslo. Consideremos en primer lugar el esquema regresivo y analicemos el error

εj(t) = uj(t) − uj(t) = u(xj, t) − uj(t), (5.31)

es decir la diferencia entre la solución real y la numérica sobre los puntos del mallado. Para

simplificar la presentación suponemos que el dato inicial es continuo9, lo cual permite tomar

datos iniciales exactos en el esquema semi-discreto:

uj(0) = f(xj), j ∈ Z. (5.32)

En virtud del análisis de consistencia anterior, sustrayendo la ecuación verificada por uj

y uj deducimos que {
ε′j +

εj−εj−1

h = Oj(h), j ∈ Z, t > 0

εj(0) = 0, j ∈ Z.
(5.33)

Multiplicando en (5.33) por εj y sumando en j ∈ Z obtenemos

1

2

d

dt


∑

j∈Z

|εj(t)|2

 +

1

h

∑

j∈Z

(
ε2j − εj−1εj

)
=

∑

j∈Z

Oj(h)εj.

9Si el dato inicial no fuese continuo sino solamente localmente integrable, por ejemplo, tomaŕıamos como

dato inicial para el problema discreto una media del dato inicial f = f(x) en torno a los puntos del mallado.

Por ejemplo, uj(0) = 1
h

R xj+h/2

xj−h/2 f(s)ds.
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En este punto conviene observar que

∑

j∈Z

(
ε2j − εj−1εj

)
=

1

2

∑

j∈Z

(
ε2j + ε2j−1 − 2εj−1εj

)

=
1

2

∑

j∈Z

(εj − εj−1)
2 ≥ 0.

Por tanto la identidad de enerǵıa anterior puede reescribirse del siguiente modo

1

2

d

dt


∑

j∈Z

|εj(t)|2

 +

1

2h

∑

j∈Z

(εj(t) − εj−1(t))
2 =

∑

j∈Z

Oj(h)εj(t). (5.34)

En este punto introducimos la norma en `2, el espacio de las sucesiones de cuadrado

sumable a escala h:

|(εj)|h =


h

∑

j∈Z

|εj |2



1/2

. (5.35)

En lo sucesivo utilizaremos la notación vectorial ~ε para denotar el vector infinito numerable

de componentes (εj)j∈Z
.

Conviene observar que (5.35) es una aproximación discreta de la norma continua en L2(R)

en el mallado de paso h.

Con esta notación, y denotando mediante τ−1~ε la sucesión trasladada de una unidad con

componentes (εj−1)j∈Z
, la identidad (5.34) puede reescribirse del modo siguiente:

1

2

d

dt
|~ε(t)|2h +

1

2h
|~ε(t) − τ−1~ε(t)|2h = h

∑

j∈Z

Oj(h)εj(t) ≤
∣∣∣~O(h)

∣∣∣
h
|εj(t)|h . (5.36)

De esta desigualdad se deduce que

d

dt
|~ε(t)|h ≤

∣∣∣~O(h)
∣∣∣
h

de donde se sigue que

|~ε(t)|h ≤
∫ t

0

∣∣∣~O(h)
∣∣∣
h
ds (5.37)

puesto que ~ε(0) = 0.

En este punto tenemos que analizar el error de truncatura ~O(h). En vista del análisis de

la consistencia realizado previamente se observa que cada componente Oj(h) del error es de

la forma

Oj(h) =
h

2
uxx (ξj, t)

donde ξj es un punto en el intervalo [xj−1, xj].

96



Con el objeto de concluir la prueba de la convergencia suponemos que el dato inicial

f = f(x) es de clase C2 y de soporte compacto: f ∈ C2
c (R). Entonces, la solución u, cuya

forma expĺıcita fue derivada en (5.3), tiene la misma propiedad para todo t > 0 y además:

máx
x∈R, t≥0

|uxx(x, t)| = C <∞,

de donde, habida cuenta que el soporte de uxx está contenido en una traslación del soporte

compacto de f , se sigue que
∣∣∣~O(h)

∣∣∣
h
≤ Ch, ∀t ≥ 0, ∀h > 0. (5.38)

Combinando (5.37)-(5.38) se concluye que

|~ε(t)|h ≤ Cth, ∀t ≥ 0, ∀h > 0, (5.39)

lo cual concluye la demostración de que el método semi-discreto de diferencias finitas regresivas

es convergente de orden uno.

El método empleado en la prueba de la convergencia es el denominado método de la

enerǵıa y está basado en la siguiente ley de enerǵıa que las soluciones del problema semi-

discreto verifican
1

2

d

dt

∑

j∈Z

|uj(t)|2 + h
∑

j∈Z

{
uj(t) − uj−1(t)

h

}2

= 0

y que, con las notaciones anteriores, puede reescribirse como

1

2

d

dt
|~u(t)|2h + h |~u(t)|21,h = 0. (5.40)

Aqúı y en lo sucesivo ‖ · ‖1,h denota la versión discreta de la semi-norma

(∫

R

u2
xdx

)1/2

,

i.e.

|~u|1,h =


h

∑

j∈Z

∣∣∣∣
uj − uj−1

h

∣∣∣∣
2



1/2

. (5.41)

Conviene comparar (5.40) con la ley de conservación de la enerǵıa para la ecuación de

transporte continua (5.1) donde, multiplicando por u e integrando con respecto a x se deduce

que
d

dt
‖ u(t) ‖2

L2(R)= 0. (5.42)

Obviamente, la ley de conservación de enerǵıa (5.42) para el problema continuo (5.1) es

perfectamente coherente con la forma expĺıcita (5.3) de la solución (5.1).

Sin embargo, es de señalar que, en contraste con la ley de conservación de enerǵıa (5.42)

de la ecuación continua (5.1), la identidad (5.40) establece el carácter disipativo del esquema

semi-discreto regresivo. Este carácter disipativo no está reñido con la convergencia del esquema

cuando h→ 0, esencialmente por dos razones:
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∗ La tasa de disipación del esquema semi-discreto decrece a medida que h→ 0, tal y como

se observa con claridad en (5.40).

∗ El carácter disipativo del equema numérico contribuye a su estabilidad.

Verifiquemos la ley de enerǵıa de los otros dos esquemas considerados.

En el esquema progresivo tenemos

1

2

d

dt

∑

j∈Z

|uj(t)|2 +
∑

j∈Z

(uj+1 − uj)

h
uj =

1

2

d

dt

∑

j∈Z

|uj(t)|2 −
1

2h

∑

j∈Z

|uj+1 − uj |2 = 0. (5.43)

En esta identidad queda claramente de manifiesto el carácter anti-disipativo del método pro-

gresivo, causante de su inestabilidad.

En el caso del esquema centrado tenemos sin embargo

d

dt

∑

j∈Z

|uj(t)|2 = 0, (5.44)

identidad que garantiza su carácter puramente conservativo y su estabilidad.

Las propiedades disipativas, anti-disipativas y conservativas de los esquemas regresivo,

progresivo y centrado pueden interpretarse fácilmente de la siguiente manera.

Consideremos por ejemplo el esquema regresivo en el que hemos adoptado la siguiente

aproximación de la derivada espacial

ux(x, t) ∼ u(x, t) − u(x− h, t)

h
.

Un análisis más cuidadoso indica que, en realidad,

u(x, t) − u(x− h, t)

h
= ux(x, t) − h

2
uxx(x, t) +O(h2).

Por lo tanto, el esquema regresivo es en realidad una aproximación de orden dos de la ecuación

de transporte perturbada

ut + ux − h

2
uxx = 0. (5.45)

La ecuación (5.45) es una aproximación parabólica o viscosa de la ecuación de transporte

puro 10 (5.1). Multiplicando en (5.45) por u e integrando en x deducimos que

1

2

d

dt

∫

R

u2(x, t)dx+
h

2

∫

R

u2
x(x, t)dx = 0, (5.46)

10No es dif́ıcil comprobar que la ecuación (5.45) genera un semigrupo de contracciones en L2(R) para cada

h > 0 y que, dado un dato inicial f ∈ L2(R), la solución uh = uh(x, t) de (5.45) converge a la solución de

la ecuación de transporte puro u(x, t) = f(x − t), cuando h → 0 en L2(R) para cada t > 0. Para ello basta

observar que vh(x, t) = uh(x + t, t) es solución de la ecuación del calor vt − hvxx = 0 que, tras el cambio de

variables wh(x, t) = vh(x, t/h), se convierte en una solución de la ecuación del calor wt − wxx = 0. Aśı, vemos

que vh(x, t) = [Gh(t) ∗ f ](x) siendo Gh el núcleo del calor reescalado: Gh(x, t) = (4πht)−1/2exp(−x2/4ht). De

esta expresión se deduce fácilmente que vh(x, t) → f(x) en L2(R), para cada t > 0, o, lo que es lo mismo,

uh(x, t) → f(x − t).
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lo cual refleja el carácter disipativo del término de regularización −huxx/2 añadido en la

ecuación (5.45) y supone, claramente, la versión continua de la ley de disipación de enerǵıa

(5.40) del esquema regresivo.

El mismo argumento permite detectar el carácter inestable de la aproximación progresiva

puesto que
u(x+ h, t) − u(x, t)

h
= ux(x, t) +

1

2
uxx(x, t) +O(h2). (5.47)

En este caso, el esquema progresivo resulta ser una aproximación de orden dos de la EDP de

segundo orden

ut + ux +
h

2
uxx = 0. (5.48)

En esta ocasión (5.48) es una ecuación parabólica retrógrada de carácter inestable11 tal y

como queda de manifiesto en la ley de amplificación de la enerǵıa que las soluciones de (5.48)

satisfacen
1

2

d

dt

∫

R

u2(x, t)dx =
h

2

∫

R

u2
x(x, t)dx. (5.49)

Sin embargo, este argumento permite confirmar el carácter puramente conservativo de la

aproximación centrada. En efecto:

u(x+ h, t) − u(x− h, t)

2h
= ux(x, t) +

h2

3!
∂3

xu(x, t) + · · · + h2`

(2`+ 1)!
∂2`+1

x u(x, t) + · · · . (5.50)

Es fácil comprobar, en efecto, que cualquiera de las aproximaciones de la ecuación de

transporte (5.1) obtenidas truncando el desarrollo en serie de potencias (5.50) de la forma

ut +
L∑

`=0

h2`

(2`+ 1)!
∂2`+1

x = 0 (5.51)

Tiene un carácter puramente conservativo.

Las ecuaciones (5.51) tienen sin embargo un carácter dispersivo que analizaremos más

adelante.

En relación a la ecuación de transporte (5.5) en la que el sentido de progresión de las

ondas ha sido invertido, como es de esperar, se tiene que el esquema regresivo es inestable y

no converge mientras que el progresivo y centrado son convergentes de orden 1 y 2, respecti-

vamente.

11La inestabilidad de esta ecuación a medida que h → 0 se pone claramente de manifiesto a través del cambio

de variable vh(x, t) = uh(x + t, t). En este caso, se trata de una solución de la ecuación del calor retrógrada

vt +hvxx = 0 que, tras el cambio de variables wh(x, t) = vh(x, t/h), se convierte en una solución de la ecuación

del calor retrógrada normalizada wt +wxx = 0. Aśı, vemos que vh(x, t) = [Gh(τ −t)∗vh(·, τ)](x), para cada par

de instantes de tiempo 0 < t < τ , siendo Gh el núcleo del calor reescalado: Gh(x, t) = (4πht)−1/2exp(−x2/4ht).

De esta expresión, aplicada con t = 0 de modo que vh(x, t) = f(x), se deduce fácilmente que vh(x, t) no

está acotada en L∞(0, T ;L2(R)), para ningún T > 0.
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Para concluir esta sección consideremos el siguiente esquema completamente discreto para

la aproximación de (5.1):

uk+1
j − uk−1

j

2∆t
+
uk

j+1 − uk
j−1

2∆x
= 0. (5.52)

Aqúı y en lo sucesivo utilizamos las notaciones habituales de modo que ∆t y ∆x denotan

los pasos del mallado en la dirección temporal y espacial respectivamente. Por otra parte,

uk
j denota la aproximación de la solución continua u = u(x, t) de (5.1) en el punto (x, t) =

(xj , tk) = (j∆x, k∆t).

El esquema (5.52) está perfectamente centrado tanto en la variable espacial como temporal

y se denomina esquema “leap-frog”.

Se trata de un esquema consistente de orden 2 y puede ser escrito en la forma

uk+1
j = uk−1

j + µ
[
uk

j−1 − uk
j+1

]
(5.53)

donde µ es el número de Courant:

µ = ∆t/∆x. (5.54)

El método de von Neumann permite analizar fácilmente la estabilidad del esquema. En

este caso, la transformada de Fourier ǔk(θ) de la solución de (5.53) satisface

ǔk+1(θ) = ǔk−1(θ) + µ
[
e−iθ − eiθ

]
ǔk(θ) = ǔk−1(θ) − 2iµ sen(θ)ǔk(θ),

es decir,

ǔk+1(θ) + 2iµ sen(θ)ǔk(θ) − ǔk−1(θ) = 0. (5.55)

En (5.55) vemos que cada componente de Fourier ǔk(θ) satisface un esquema de evolución

discreto de dos pasos cuyos coeficientes dependen de θ ∈ [0, 2π). Basta por tanto verificar si se

satisface el criterio de la raiz. En este caso los ceros del polinomio caracteŕıstico del esquema

(5.55) son

λ±(θ) =
−2iµ sen(θ) ±

√
−4µ2 sen2(θ) + 4

2
. (5.56)

Conviene entonces distinguir los dos siguientes casos:

• Caso 1: µ ≤ 1.

En este caso

|λ±|2 =
1

4

[
4µ2 sen2 θ + 4 − µ2 sen2 θ

]
= 1

con lo cual la estabilidad queda garantizada al ser las raices λ± simples.

• Caso 2: µ > 1.

En este caso, cuando θ ∼ π/2 tenemos que

−4µ2 sen2(θ) + 4 < 0
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y por lo tanto los ceros son de la forma

λ±(θ) = −i
[
µ sen θ ∓

√
µ2 sen2 θ − 1

]
.

La raiz de mayor módulo es la que corresponde al signo negativo. En este caso tenemos

|λ−(θ)| = µ sen θ +
√
µ2 sen2 θ − 1 > 1

puesto que µ sen θ > 1.

El método es por tanto inestable en este caso.

De este análisis deducimos que el método completamente discreto de leap-frog es convergente

de orden dos si y sólo si µ ≤ 1.

Es fácil comprobar también que µ ≤ 1 es precisamente la condición que garantiza que el

dominio de dependencia del esquema discreto contiene el de la ecuación continua. Señalemos

por último que el método consistente en sustituir el esquema numérico por una aproximación

semejante escrita en términos de EDP puede también aplicarse en este caso. Obtendŕıamos

ahora aproximaciones conservativas pero dispersivas de la ecuación de transporte de la forma

M∑

m=0

(∆t)2m

(2m+ 1)!
∂2m+1

t +
L∑

`=0

(∆x)2`

(2`+ 1)!
∂2`+1

x = 0 (5.57)

Tomando por ejemplo L = M = 1 obtenemos la ecuación:

∂tu+ ∂xu+
(∆t)2

6
∂3

t u+
(∆x)2

6
∂3

xu = 0.

Ahora bien, la ecuación de transporte indica que ∂tu = −∂xu y por tanto ∂2
t = ∂2

x, de modo

que la ecuación anterior puede escribirse del modo siguiente:

∂t[u+
(∆t)2

6
∂2

xu] + ∂x[u+
(∆x)2

6
∂2

xu] = 0.

En esta última expresión es fácil comprobar el carácter conservativo de estas aproximaciones.

En efecto, multiplicando en la ecuación por u e integrando en R obtenemos:

∫

R

∂t

(
u+

(∆t)2

6
∂2

xu
)
udx+

∫

R

∂x

(
u+

(∆x)2

6
∂2

xu
)
udx+ 0.

Ahora bien, tenemos,

∫

R

∂tuudx =
1

2

d

dt

∫

R

u2dx;

∫

R

∂3
xuudx = −

∫

R

∂2
xu∂xu dx = 0.

∫

R

∂t∂
2
xuudx = −

∫

R

∂t∂xu∂xudx = −1

2

d

dt

∫

R

| ∂xu |2 dx;
∫

R

∂xuudx = 0.
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Obtenemos aśı la ley de conservación de la enerǵıa:

d

dt

[1

2

∫

R

[
u2 − (∆t)2

6
| ux |2

]
dx

]
= 0

Vemos sin embargo que el efecto dispersivo introducido por el esquema numérico hace que no

sea la norma de u en L2(R) la que se conserve en tiempo sino la cantidad:

∫

R

(
u2 − (∆t)2

6
| ux |2

)
dx

que, incluso puede ser negativa si la función u oscila rápidamente. Conviene sin embargo no

olvidar que en las soluciones numéricas su máxima oscilación está limitada por el paso del

mallado, por lo que esta cantidad nunca se puede hacer negativa en ellas. Son muchos los

esquemas completamente discretos que surgen de manera natural en la aproximación de la

ecuación de transporte (5.1), además del esquema “leap-frog” ya estudiado. La mayoŕıa de

ellos aparecen al realizar una aproximación discreta en tiempo de un esquema semidiscreto,

pero no siempre es aśı. Obviamente, en caso de proceder a la obtención del esquema comple-

tamente discreto mediante la discretización temporal de un esquema semi-discreto, elegiremos

uno que sea convergente puesto que si el esquema semi-discreto de partida fuese divergente, el

esquema completamente discreto obtenido tampoco convergeŕıa. En vista de este hecho, con-

viene excluir inmediatamente los esquemas completamente discretos derivados del esquema

semi-discreto progresivo (5.10) puesto que ya vimos que es inestable y por tanto divergente.

Sin embargo, como el esquema regresivo (5.11) es convergente parece natural introducir el

esquema de Euler regresivo
uk+1

j − uk
j

∆t
+
uk

j − uk
j−1

∆x
= 0 (5.58)

o su versión impĺıcita
uk+1 − uk

j

∆t
+
uk+1

j − uk+1
j−1

∆x
= 0 (5.59)

Nos referiremos a estos esquemas con ER (Euler regresivo) y ERI (Euler regresivo impĺıcito),

respectivamente. Ambos esquemas son de un paso temporal y consistentes de orden uno.

Comprobemos pues su estabilidad. El esquema ER puede reescribirse como

uk+1
j = uk

j + µ(uk
j−1 − uk

j ). (5.60)

El análisis de von Neumann conduce al esquema discreto

ǔk+1(θ) = ǔk(θ) + µ(eiθǔk(θ) − ǔk(θ)) =
[
1 + µ(e−iθ − 1)

]
ǔk(θ) (5.61)

Para su estabilidad basta entonces comprobar si | 1 + µ(e−iθ − 1) |6 1. Como

1 + µ(e−iθ − 1) = 1 + µ[cos θ − i sen θ − 1] = 1 + µ(cos θ − 1) − iµ sen θ
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tenemos que

| 1 + µ(e−iθ − 1) |2 = (1 + µ(cos θ − 1))2 + µ2 sen2 θ

= 1 + µ2(cos θ − 1)2 + 2µ(cos θ − 1) + µ2 sen2 θ2

= 1 + µ2(cos2 θ + 1 − 2 cos θ) + 2µ(cos θ − 1) + µ2 sen2 θ = 1 − 2µ

de donde deducimos que es estable, y por tanto convergente de orden uno, si y sólo si

| 1 − 2µ |6 1 ⇔ µ 6 1. (5.62)

Es fácil comprobar que esta condición de estabilidad es precisamente la que se obtiene al

imponer que el dominio de dependencia del esquema discreto contenga al de la ecuación de

transporte continua. En el caso del ERI tenemos

uk+1
j = uk

j − µ(uk+1
j − uk+1

j−1)

que al aplicar la transformada de Fourier, se convierte en

ǔk+1(θ) = ǔk(θ) − µ(ǔk+1(θ) − eiθǔk+1(θ)), (5.63)

es decir, [
1 + µ(1 − e−iθ)

]
ǔk+1(θ) = ǔk(θ),

o

ǔk+1(θ) = [1 + µ(1 − e−iθ)]−1ǔk(θ). (5.64)

La condición de estabilidad es entonces en este caso | 1 + µ(1 − e−1θ) |> 1. Como

1 + µ(1 − e−iθ) = 1 + µ(1 − cos θ) + iµ sen θ

tenemos que

| 1 + µ(1 − e−iθ) |2 = (1 + µ(1 − cos θ))2 + µ2 sen2 θ

= 1 + µ2(1 + cos2 θ − 2 cos θ) + 2µ(1 − cos θ) = µ2 sen2 θ

= 1 + 2µ(1 − cos θ) + 2µ2(1 − cos θ) > 1

y por tanto el método es incondicionalmente estable. A primera vista puede resultar sorpren-

dente que el método ERI sea convergente para cualquier valor del número de Courant pues

cabŕıa preguntarse si la condición de inclusión de los dominios de dependencia se cumple con

independencia del valor de µ. Esto es efectivamente aśı puesto que en el esquema discreto

(5.59) el cálculo de uk+1
j involucra a uk+1

j−1 , cuyo valor a su vez involucra a uk+1
j−2 , · · · . Vemos

pues que el dominio de dependencia de ERI es el conjunto de todos los nodos del mallado, con
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independencia del valor de µ. De hecho cabe preguntarse sobre cual es el modo de resolver el

sistema (5.59). Este sistema, con la notación vectorial habitual puede escribirse en la forma

Bµ
−→u k+1 = −→u k

donde Bµ es una matriz infinita con valores 1+µ en la subdiagonal. Se trata por tanto de una

matriz infinita “triangular inferior” que define un operador acotado de `2 en `2. Pero, ¿se puede

invertir el operador Bµ? Para comprobar que esto es efectivamente aśı, conviene utilizar el

análisis de von Neumann. En efecto, el sistema equivalente (5.63) se resuelve inmediatamente

y tiene como solución (5.64). Además, tal y como hemos visto en el análisis de la estabilidad

del esquema

| ǔk+1(θ) |6| ǔk(θ) |, ∀θ ∈ [0, 2π).

Deducimos por tanto que

‖ (uk+1
j )j∈Z ‖2

`2=
∑

j∈Z

| uk+1
j |2= 1

2π

∫ 2π

0
| ǔk+1(θ) |2 dθ

6
1
2π

∫ 2π

0
| ǔk(θ) |2 dθ =

∑

j∈Z

| uk
j |2=‖ (uk

j )j∈Z ‖2
`2

de modo queB−1
µ está bien definido y es un operador acotado de `2 en `2 con norma no superior

a uno. Vemos pues que la transformada discreta de Fourier permite probar la resolubilidad

del sistema algebráico (5.59) que el método ERI plantea. Evidentemente hay muchos otros

esquemas que pueden considerarse. Por ejemplo, el esquema de Crank-Nicolson (CN) inspirado

en la regla del trapecio para la resolución de ecuaciones diferenciales y en la diferencia finita

centrada para la aproximación de la derivada espacial:

uk+1
j − uk

j

∆t
= −1

2

[uk
j+1 − uk

j−1

2∆x
+
uk+1

j+1 − uk+1
j−1

2∆x

]
. (5.65)

El método CN es convergente de orden dos para cualquier valor del parámetro de Courant

µ. Vemos pues que CN preserva la propiedad que el método ERI de converger para todo

valor de µ, pero tiene además la propiedad de ser de orden dos. El orden dos proviene de

la combinación de los dos hechos siguientes: a) La utilización de diferencias centradas en la

aproximación de la derivada espacial, lo cual da, efectivamente, una aproximación de orden

dos de la derivada espacial; b) La utilización del método del trapecio en la aproximación de

la derivada temporal, que es también un método de orden dos, aunque esta vez en tiempo.

Nuevamente (5.65) es un sistema impĺıcito. Pero se puede ver que es resoluble utilizando

el argumento que hemos usado para el método ERI, mediante la transformada discreta de

Fourier. Existen otros muchos métodos que proporcionan aproximaciones convergentes de la

ecuación de transporte. Tenemos por ejemplo de “leap-frog” de orden cuatro (LF4):

uk+1
j − uk−1

j

2∆t
= −

[4

3

[uk
j+1 − uk

j−1

2∆x

]
− 1

3

[uk
j+2 − uk

j−2

4∆x

]]
(5.66)
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que es de orden dos en tiempo y orden cuatro en espacio. En todos los métodos descritos

hasta ahora puede observarse que han sido derivados en dos pasos, discretizando primero la

variable espacial y después la temporal. Sin ir más lejos es obvio que (5.66) proviene de una

semi-discretización de la forma

u′j(t) = −
[4

3

[uj+1(t) − uj−1(t)

2∆x

]
− 1

3

[uj+2(t) − uj−2(t)

4∆x

]]
(5.67)

que es efectivamente consistente con la ecuación de transporte. El paso de (5.67) a (5.66) es

claro. Basta con utilizar el esquema de dos pasos

yk+1 − yk−1

2∆t
= f(yk)

para la resolución de la ecuación diferencial

y′(t) = f(y(t)).

Pero, como dećıamos, no todos los métodos discretos provienen de discretizar en tiempo una

semi-discretización. Por ejemplo el método de la derivada oblicua es de la forma

uk+2
j = (1 − 2µ)

(
uk+1

j − uk+1
j−1

)
+ uk

j−1. (5.68)

Se trata de un método de orden dos. Para ver que, efectivamente, es un método consistente

con la ecuación de transporte lo escribimos como

uk+2
j − uk

j−1 − uk+1
j + uk+1

j−1

∆t
= −2

(uk+1
j − uk+1

j−1)

∆x
,

o, de manera más clara aún,

1

2

[uk+2
j − uk+1

j

∆t
+
uk+1

j−1 − uk
j−1

∆t

]
+
uk+1

j − uk+1
j−1

∆x
= 0, (5.69)

expresión en la que queda claramente de manifiesto la analoǵıa del esquema discreto con la

ecuación de transporte continua. Citemos por último los esquemas de Lax-Wendroff

uk+1
j =

1

2
µ(1 + µ)uk

j−1 + (1 − µ2)uk
j − 1

2
µ(1 − µ)uk

j+1 (5.70)

y el esquema de Lax-Friedrichs

uk+1
j =

1

2
(1 − µ)uk

j−1 +
1

2
(1 + µ)uk

j+1. (5.71)

El esquema de Lax-Friedrichs puede escribirse en la forma

uk+1
j − 1

2(uk
j−1 + uk

j+1)

∆t
= −

uk
j+1 − uk

j−1

2∆x
(5.72)
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en la que queda claramente de manifiesto la consistencia con la ecuación de transporte. En esta

expresión se observa que este esquema se obtiene a partir de la semi-discretización centrada

realizando una discretización expĺıcita de la derivada temporal en la que el valor uk
j de la

discretización más t́ıpica de ut, (i.e. (uk+1
j − uk

j )/∆t) ha sido sustituido por la media de

los valores uk
j−1 y uk

j+1. Es fácil comprobar que (5.72) es una aproximación difusiva de la

ecuación de transporte. En efecto, basta aplicar formalmente en (5.72) el desarrollo de Taylor

para observar que (5.72) da lugar en realidad a la siguiente corrección difusiva de la ecuación

de transporte:

ut −
(∆x)2

2∆t
uxx + ux = 0,

que es análoga a la que obtuvimos para el esquema semi-discreto regresivo. Obviamente, se

trata de un esquema discreto. Es de orden uno y tiene la propiedad de conservar la masa de

la solución. En efecto, definimos la masa de la solución discreta como

mk =
∑

j∈Z

uk
j .

Basta entonces sumar con respecto a j ∈ Z en (5.71) para obtener que las soluciones del

esquema de Lax-Friedrichs satisfacenmk+1 = mk. Esto es una versión discreta de la propiedad

de conservación de la masa que las soluciones u(x, t) = f(x− t) de (5.1) satisfacen, i.e.
∫

R

u(x, t)dx =

∫

R

f(x)dx, ∀t ∈ R.

Esta propiedad de conservación de la masa juega un papel relevante en la aproximación

numérica de las ecuaciones de transporte no-lineales, como la ecuación de Burgers, y los

esquemas que la verifican se dicen conservativos. Es fácil comprobar que el esquema de

Lax-Friedrichs es estable (y, por tanto, convergente de orden uno) si y sólo

µ = ∆t/∆x 6 1.

El esquema de Lax-Wendroff es consistente de orden dos y es fácil comprobar que es también

un esquema conservativo y es convergente bajo la misma condición µ 6 1.

6. Dispersión numérica y velocidad de grupo

En el apartado anterior hemos estudiado la convergencia de diversos esquemas semi-

discretos y completamente discretos de aproximación de la ecuación continua (5.1). Hemos

comprobado que esquemas numéricos convergentes pueden introducir efectos disipativos o

anti-disipativos que pueden ser respectivamente la causa de su estabilidad o inestabilidad o,

por el contrario, ser puramente conservativos.

Sin embargo con independencia de su carácter convergente o divergente la mayoŕıa de los

esquemas numéricos tienen un carácter dispersivo. Por dispersión entendemos la propiedad
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de un sistema dinámico continuo o discreto en tiempo de propagar a diferentes velocidades

las diversas componentes de la solución.

La ecuación de transporte (5.1) es precisamente un ejemplo claro de sistema no dispersivo

pues, como vimos en la sección 5, todas sus soluciones son ondas de transporte puras que

se propagan en el espacio a velocidad uno. Este hecho, obvio de la expresión explicita de la

solución (5.3), puede también comprobarse a través del análisis de Fourier.

En efecto, consideremos soluciones u de (5.1) de la forma

u = eiωteiξx, (6.1)

es decir soluciones sinusoidales en variables separadas de frecuencia temporal ω y longitud de

onda espacial 2π/ξ, i.e. número de onda ξ.

Es fácil comprobar que u de la forma (6.1) es solución de (5.1) si y sólo si

ω = −ξ. (6.2)

En este caso la solución (6.1) adquiere la forma

u(x, t) = eiω(t−x) (6.3)

y se confirma lo observado en (5.3) en el sentido que las soluciones de (5.1) son meras ondas

de transporte progresivas con velocidad uno.

La relación (6.2) es la que se denomina relación de dispersión para la ecuación de trans-

porte (5.1).

Analicemos ahora, por ejemplo, el esquema semi-discreto regresivo que, como vimos en la

sección anterior, es convergente de orden uno:

u′j +
uj − uj−1

h
= 0. (6.4)

Buscamos ahora soluciones de la forma

uj(t) = eiωteiξxj . (6.5)

Llevando la expresión (6.5) a la ecuación (6.4) obtenemos la ecuación

iω +
1 − e−iξh

h
= 0,

es decir

ω =
i

h

[
1 − e−iξh

]
. (6.6)

La ecuación (6.6) es la relación de dispersión para el esquema semi-discreto (6.4).

Un simple desarrollo de Taylor permite comprobar que, en una primera aproximación,

(6.6) coincide con la relación de dispersión (6.2) de la ecuación de transporte continua. En

efecto,

i

h

[
1 − e−iξh

]
=
i

h

[
1 −

[
1 − iξh− ξ2h2

2
+O(h3)

]]
= −ξ +

iξ2h

2
+O(h2). (6.7)
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En virtud de (6.6) la solución (6.5) de (6.4) puede escribirse en la forma

uj(t) = e
iξ(xj+

ω
ξ

t)
,

de donde vemos que la solución semi-discreta es una onda de transporte progresiva que avanza

a una velocidad

ch(ξ) = −ωh(ξ)

ξ
= − i

hξ
(1 − e−iξh) = 1 − iξh

2
+O(h2), (6.8)

denominada velocidad de fase.

En la expresión (6.8) queda claramente de manifiesto el carácter dispersivo de la ecuación

semi-discreta, en la medida en que la velocidad de propagación de la onda depende de la

longitud de la misma.

Pero, cabŕıa argumentar que la expresión (6.8) es un número complejo, por lo que no

representa realmente una velocidad de transporte en el espacio fisico. Esto es debido al efecto

disipativo que el esquema (6.4) introduce y que quedó claramente de manifiesto en su análogo

continuo (5.45).

Consideremos ahora el esquema centrado

u′j +
uj+1 − uj−1

2h
= 0 (6.9)

que, como vimos en la sección 5, es convergente de orden 2 y puramente conservativo.

En este caso se obtiene la relación de dispersión

iω +
eiξh − e−iξh

2h
= 0.

Es decir,

iω +
i sen(ξh)

h
= 0

o, equivalentemente,

ω = −sen(hξ)

h
. (6.10)

Nuevamente observamos que (6.10) es una aproximación de la relación de dispersión (6.2)

de la ecuación de transporte continua. De (6.10) se deduce que la velocidad de propagación

de las ondas semi-discretas es en este caso

ch(ξ) =
sen(ξh)

ξh
= 1 − ξ2h2

3!
+O(h4). (6.11)

Comprobamos por lo tanto que las ondas en el medio semi-discreto se propagan más

lentamente que en el medio continuo si bien, fijada la longitud de onda espacial, la velocidad

de propagación ch(ξ), cuando h → 0, converge a la velocidad de propagación en el caso

continuo c ≡ 1. Obviamente, la convergencia de las velocidades de propagación está motivada

por el hecho que el esquema sea convergente. En efecto, el esquema numérico no podŕıa ser
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convergente si para algunas longitudes de onda las velocidades de propagación no convergiesen

cuando el paso del mallado tiende a cero.

Consideremos por último el esquema “leap-frog” completamente discreto (5.52). En este

caso buscamos ondas discretas de la forma

uk
j = eiω∆tkeiξxj = eiωk∆teiξj∆x. (6.12)

Obtenemos entonces la relación de dispersión:

eiω∆t − e−iω∆t

2∆t
+
eiξ∆x − e−iξ∆x

2∆x
= 0

que, en función del número de Courant µ = ∆t/∆x, puede reeescribirse como

sen(ω∆t) = −µ sen(ξ∆x),

o, de otro modo,

ω = − 1

∆t
arcsen [µ sen(ξ∆x)] . (6.13)

Nuevamente es evidente que a medida que ∆x → 0, ∆t → 0 la relación de dispersión (6.13)

se aproxima a la de la ecuación de transporte continua.

El caso

µ = 1 (6.14)

es particularmente interesante puesto que la relación de dispersión (6.13) se reduce a

ω = −ξ (6.15)

que es precisamente la correspondiente a la ecuación de transporte continua. En este caso las

ondas discretas se propagan a velocidad constante idénticamente igual a uno, como lo hacen

en el caso continuo.

Con el objeto de entender esta coincidencia de las velocidades de propagación continua y

discretas conviene reescribir el esquema discreto con µ = 1. Se obtiene en este caso

uk+1
j − uk−1

j + uk
j+1 − uk

j−1 = 0.

Es decir

uk+1
j + uk

j+1 = uk−1
j + uk

j−1. (6.16)

Habida cuenta que las soluciones de la ecuación de transporte continua son de la forma

u = f(x − t), se comprueba que, en este caso, son también soluciones exactas del esquema

discreto (6.16) con µ = 1. El esquema numérico es por tanto en este caso de orden infinito

y reproduce de manera exacta las soluciones de la ecuación de transporte continua sobre los

puntos del mallado.
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Pero esto ocurre sólo cuando µ = 1. Cuando 0 < µ < 1 el esquema es convergente pero

también dispersivo. En efecto, en este caso la velocidad de propagación es

ch(ξ) = − 1

∆tξ
arcsen [µ sen(ξ∆x)] . (6.17)

Nuevamente observamos que, para cualquier valor del número de Courant 0 < µ < 1:

• ch(ξ) → −1, h→ 0, ∀ξ;

• | ch(ξ) |< 1, ∀h > 0, ∀ξ.

La velocidad ch(ξ) describe de manera adecuada la propagación de las ondas semi-discretas

o discretas que involucran un solo modo de Fourier. Son las que llamaremos ondas monocromáticas.

Pero, cuando se superponen dos ondas con velocidades de propagación semejantes pero no

idénticas surgen paquetes de ondas que pueden propagarse a velocidades distintas. Con el

objeto de entender este fenómeno es conveniente introducir la noción de velocidad de grupo.

Para introducir esta noción consideremos cualquiera de los anteriores esquemas semi-

discretos que admite soluciones de la forma

uj(t) = eiωh(ξ)teiξxj . (6.18)

Superponiendo dos soluciones de esta forma con longitudes de ondas ξ y ξ + ∆ξ respecti-

vamente obtenemos una nueva solución

u∆ξ,j(t) =
eiωh(ξ)teiξxj − eiωh(ξ+∆ξ)tei(ξ+∆ξ)xj

∆ξ

cuyo ĺımite, cuando ∆ξ → 0, viene dado por

wj(t) = −i[ω′
h(ξ)t+ xj ]e

iωh(ξ)teiξxj .

El resultado es un nuevo tipo de onda, producto de la solución (6.18) que se propaga

a la velocidad de fase habitual ch(ξ) con la onda g(x, t) = −i[ω′
h(ξ)t + xj ] que se propaga

a velocidad ω′
h(ξ) que se denomina velocidad de grupo. La velocidad de grupo es la que

determina la propagación de paquetes de ondas conteniendo varias ondas de números de onda

semejantes. Para comprobar este hecho basta con considerar la solución que se obtendŕıa a

partir de un dato inicial f = f(x) con transformada de Fourier F (ξ). La solución tendŕıa

entonces la expresión 12:

u(x, t) =

∫ +∞

−∞

F (ξ)ei(ωh(ξ)t+ξx)dξ =

∫ +∞

−∞

F (ξ)eit(ωh(ξ)+ξx/t)dξ. (6.19)

12Evitamos aqúı las constantes multiplicativas de la transformada y antitransformada de Fourier que en

nada afectan al fenómeno cualitativo que pretendemos ilustrar.
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Supongamos ahora que fijamos el valor de x/t, lo cual corresponde a mover el origen de

referencia a velocidad x/t = cte. Evidentemente, cuando t→ ∞ la exponencial del integrando

oscila más y más con respecto a la variable ξ y tiende a cero en un sentido débil haciendo que

la integral tienda a anularse. Esta cancelación ocurre efectivamente para todos los valores de

ξ salvo para aquéllos en los que

d

dξ
(ωh(ξ) + ξx/t) = 0. (6.20)

Este hecho puede probarse de manera rigurosa mediante el Teorema de la Fase Estacionaria

(TFE) (véase [6]).

La ecuación (6.20) puede también escribirse del modo siguiente:

ω′
h(ξ) = −x/t. (6.21)

Esta relación indica que, a medida que nos trasladamos en el espacio a velocidad x/t, sólo

podemos ver las componentes cuyo número de onda ξ satisfaga la relación (6.20), o, dicho de

otro modo, la enerǵıa asociada al número de onda ξ se propaga a una velocidad de grupo

Ch(ξ) = −ω′
h(ξ). (6.22)

Conviene en este punto señalar que la velocidad de fase ch(ξ) y la velocidad de grupo Ch(ξ),

en general, no coinciden. Analicemos este hecho en los ejemplos que hemos introducido más

arriba. En el caso de la ecuación de transporte continua teńıamos que w(ξ) = −ξ para todo ξ.

En este caso, obviamente ch(ξ) ≡ Ch(ξ) ≡ 1, lo cual indica que todas las ondas se propagan

a velociad uno en este modelo. Sin embargo en el esquema semi-discreto regresivo teńıamos

que

ω =
i

h

[
1 − e−iξh

]
; ch(ξ) = −ωh(ξ)

ξ
= 1 − iξh

2
+O(h2), (6.23)

mientras la velocidad de grupo viene dada por la expresión

Ch(ξ) = −ω′
h(ξ) = e−iξh = 1 − iξh+O(h2), (6.24)

Se observa efectivamente una sutil diferencia entre las expresiones obtenidas en (6.23) y (6.24).

Consideramos ahora el esquema centrado en el que, como véıamos anteriormente,

ω = −sen(hξ)

h
; ch(ξ) =

sen(ξh)

ξh
= 1 − ξ2h2

6
+O(h4). (6.25)

En este caso la velocidad de grupo es

Ch(ξ) = cos(ξh) = 1 − ξ2h2

2
+O(h4). (6.26)
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Nuevamente se observa una ligera diferencia en las expresiones de velocidad de fase y de

grupo. Consideremos por último el esquema completamente discreto de “leap-frog”. En aquél

caso véıamos que

ωh(ξ) =
1

∆t
arcsen [µ sen(ξ∆x)] ; ch(ξ) =

1

∆tξ
arcsen [µ sen(ξ∆x)] . (6.27)

Sin embargo, la velocidad de grupo viene dada por la expresión:

Ch(ξ) =
∆xµcos(ξ∆x)

∆t
√

1 − µ2sen2(ξ∆x)
, (6.28)

que, nuevamente, difiere de la velocidad de fase, salvo en el caso µ = 1 en el que Ch(ξ) ≡ 1.

Estas, aparentemente, pequeñas diferencias entre la velocidad de fase y de grupo pueden

sin embargo ser la causa de comportamientos inesperados de las soluciones de los esquemas

numéricos.

7. Transformada discreta de Fourier a escala h

En la sección 5 hemos introducido y utilizado el método de von Neumann para el análisis de

la estabilidad de un esquema numérico que está basado en la utilización de una transformada

discreta de Fourier que permite:

∗ Definir una isometŕıa entre `2 y L2(0, 2π);

∗ Transformar un esquema en diferencias en una ecuación diferencial dependiente de un

parámetro θ ∈ [0, 2π).

La transformación de Fourier que introducimos en su momento, sin embargo, no tiene en

cuenta el paso h del mallado puesto que se aplica meramente sobre sucesiones en `2, sin tener

en cuenta el mallado al que están asociadas. Con el objeto de analizar el comportamiento de

las soluciones cuando h → 0 es conveniente introducir una transformada de Fourier a escala

h, cuyo ĺımite cuando h→ 0 sea la clásica transformada de Fourier, de modo que recuperemos

en el ĺımite la ecuación en derivadas parciales.

Recordemos en primer lugar la definición clásica de la transformada de Fourier continua

f̂(ξ) =

∫

R

f(x)e−iξxdx = F(f). (7.1)

Es bien sabido que la transformada de Fourier define una isometŕıa de L2(R) en śı mismo. La

transformada inversa de Fourier viene dada por

F−1(g)(x) =
1

2π

∫

R

g(ξ)eiξxdξ. (7.2)
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Una de las mayores utilidades de la transformada continua de Fourier es su posible utilización

para la resolución de EDP con coeficientes constantes. En esto la siguiente propiedad juega

un papel fundamental13

∂̂xf(ξ) = iξf̂(ξ). (7.3)

Por ejemplo, gracias a la propiedad (7.3), la ecuación de transporte

ut + ux = 0, (7.4)

mediante la aplicación de la transformación de Fourier en la variable x, se convierte en

ût + iξû = 0 (7.5)

de donde deducimos que

û(ξ, t) = e−iξtf̂(ξ). (7.6)

La expresión (7.6) ya nos confirma el carácter conservativo de la ecuación de transporte (7.4)

puesto que proporciona la identidad

| û(ξ, t) |=| f̂(ξ) |, ∀ξ ∈ R, ∀t > 0 (7.7)

que, tras integración en ξ ∈ R, asegura que

‖ û(t) ‖L2(R)=‖ f̂ ‖L2(R), ∀t > 0 (7.8)

lo cual, a su vez, por el carácter isométrico de la transformada de Fourier, garantiza que

‖ u(t) ‖L2(R)=‖ f ‖L2(R), ∀t > 0. (7.9)

Introduzcamos pues ahora la transformada discreta de Fourier a escala h, una de cuyas

propiedades más relevantes será que, en el ĺımite cuando h → 0, recuperaremos la transfor-

mada continua de Fourier que acabamos de definir.

Dada la sucesión (fj)j∈Z proveniente de un mallado espacial de paso h (i.e. de modo que

fj ∼ f(xj) con xj = jh), definimos la transformada discreta de Fourier a escala h como

u

f(ξ) = h
∑

j∈Z

fje
−iξhj , −π

h
6 ξ 6

π

h
. (7.10)

Denotamos la transformada discreta de Fourier mediante el śımbolo
u· para distinguirla de la

transformada continua. A pesar de que la transformación (7.10) depende del parámetro h, no

lo expresamos expĺıcitamente en la notación para aligerarla.

13El lector interesado en un estudio de las propiedades básicas de la Transformada de Fourier y su aplicación

a las EDP puede consultar los textos de F. John [12] y J. Rauch [16].
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Vemos que la imagen mediante la transformada discreta de Fourier de una sucesión de paso

h es una función continua con soporte en el intervalo [−π/h, π/h]. Obviamente, a medida que

h → 0, este soporte converge a toda la recta real. Este hecho refleja una de las propiedades

fundamentales de la transformada de Fourier, a medida que el carácter oscilante de la función

en el espacio f́ısico aumenta, su transformada de Fourier se amplifica para las altas frecuencias.

La sucesión discreta de paso h puede verse como una función que oscila a escala h (basta para

ello extender la sucesión discreta de valores a una función constante o lineal a trozos definida

en toda la recta real). El soporte de su transformada de Fourier aumenta, consecuentemente.

La transformación de Fourier discreta puede invertirse con facilidad. Tenemos

fj =
1

2π

∫ π/h

−π/h

u

f(ξ)eiξhjdξ (7.11)

La analoǵıa entre las fórmulas (7.1) y (7.2) de la transformada continua de Fourier y (7.10)-

(7.11) de la transforma discreta a escala h son evidentes. Mientras que (7.10) se asemeja a

una suma de Riemann de la integral (7.1) que define la transformada continua de Fourier

sobre la partición xj = jh, j ∈ Z, la transformada discreta inversa (7.11) es simplemente una

versión truncada de la integral (7.2) que define la transformada inversa de Fourier.

Es fácil también comprobar que la transformada discreta define una isometŕıa:

‖ ~f ‖2
h= h

∑

j∈Z

|fj|2 =
1

2π

∫ π
h

−π
h

|
u

f(ξ) |2 dξ =
1

2π

∣∣∣
∣∣∣
u

f
∣∣∣
∣∣∣
2

L2(−π
h

, π
h
)
. (7.12)

Esto, evidentemente, no es más que la versión discreta de la identidad de Parseval para la

transformada de Fourier

∣∣∣
∣∣∣f

∣∣∣
∣∣∣
2

L2(R)
=

1

2π

∫

R

| f̂(ξ) |2 dξ =
1

2π

∣∣∣
∣∣∣f̂

∣∣∣
∣∣∣
2

L2(R)
. (7.13)

La relación entre transformada continua y discreta se hace más clara aún si utilizamos la

función cardinal (también denominada función cardinal de Whittaker of función de Shannon,

por su papel relevante en teoŕıa de la comunicación):

ψ0(x) =
sen(πx/h)

πx/h
. (7.14)

Denotamos mediante ψj su trasladada al punto xj = jh, i.e.

ψj(x) =
sen(π(x− xj)/h)

π(x− xj)/h
. (7.15)

Dada una función discreta (fj)j∈Z de paso h definimos entonces la función continua

f∗(x) =
∑

j∈Z

fjψj(x). (7.16)
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Es fácil comprobar que la función continua f ∗ interpola la sucesión (fj)j∈Z. En efecto,

f∗(xj) = fj , ∀j ∈ Z. (7.17)

Esto es simplemente debido a que

ψj(xk) = δjk, ∀j, k ∈ Z. (7.18)

La función cardinal ψ0 tiene además la interesante propiedad que14

ψ̂0(ξ) = h1(−π/h, π/h)(ξ). (7.19)

Su transformada de Fourier es por tanto, módulo un factor multiplicativo h, la función car-

acteŕıstica del intervalo
(
− π

h
,
π

h

)
.

Es fácil probar que, como ψj se obtiene de ψ0 mediante una nueva traslación, entonces

ψ̂j(ξ) = e−iξjhψ̂0(ξ). (7.20)

Por otra parte, utilizando la identidad de Plancherel obtenemos que
∫

R

ψj(x)ψk(x)dx =
1

2π

∫

R

ψ̂j(ξ)ψ̂k(ξ)dξ =
h2

2π

∫ π
h

−π
h

eiξh(k−j)dξ = hδjk. (7.21)

Vemos por tanto que las funciones {ψj(x)}j∈Z son ortogonales. De esta propiedad de ortogo-

nalidad deducimos fácilmente que
∣∣∣
∣∣∣f∗

∣∣∣
∣∣∣
2

L2(R)
= h

∑

j∈Z

| fj |2 . (7.22)

Por tanto, la extensión continua f ∗ de sucesiones de paso h define en realidad una isometŕıa

de `2 en un subespacio de L2(R).

Por otra parte, la transformada continua de Fourier de la función f ∗ está ı́ntimamente

ligada a la transformada discreta de la sucesión (fj)j∈Z. En efecto,

f̂∗(ξ) =
∑

j∈Z

fjψ̂j(ξ) =
∑

j∈Z

fje
−iξjhψ̂0(ξ) = h

∑

j∈Z

fje
−iξjh1(−π/h, π/h) =

u

f(ξ).

Vemos pues que la transformada discreta de Fourier no es más que la transformada con-

tinua aplicada a la interpolación de la sucesión mediante la función cardinal.

Estos resultados, probados por Whitakker en 1915 y utilizados en 1949 por Shannon,

contribuyendo de manera decisiva a la teoŕıa de la comunicación, indican que una función

de banda limitada (cuya transformada de Fourier se anula fuera del intervalo ξ ∈ [−B, B]),

puede ser reconstruida a través de la interpolación mediante la función cardinal a partir del

muestreo de sus valores en los puntos xj = jh, siempre que h 6 π/B. Retomaremos esta

cuestión en la siguiente sección.

14Para comprobarlo observamos que ∂ξ1[−A,A] = δA − δ−A. Además F−1(∂ξ1[−A,A]) = −iξF−1(1[−A,A])

y, por otra parte, F−1(δA − δ−A) = 1
2π

(eixA − e−ixA) = i
π

sen(xA). De estas identidades deducimos (7.19)

fácilmente, utilizando el hecho que la transformada de Fourier es un isomorfismo.
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8. Revisión de la ecuación de transporte y sus aproximaciones

a través de la transformada discreta de Fourier

Consideremos el problema de Cauchy para la ecuación de transporte

ut + ux = 0, x ∈ R, t > 0; u(x, 0) = f(x), x ∈ R. (8.1)

Sabemos que la solución es una onda de transporte pura

u(x, t) = f(x− t). (8.2)

Esta expresión puede también obtenerse mediante la transformación de Fourier. En efecto,

como véıamos en (7.5),

ût + iξû = 0, ξ ∈ R, t > 0, û(ξ, 0) = f̂(ξ), ξ ∈ R, (8.3)

de donde deducimos que

û(ξ, t) = e−iξtf̂(ξ). (8.4)

Aplicando la transformada inversa obtenemos

u(x, t) = F−1(e−iξtf̂(ξ)) = f(x− t). (8.5)

En este último punto hemos usado el hecho de que la transformada de Fourier de la masa de

Dirac es la constante unidad (δ̂0 ≡ 1) o, equivalentemente, δ̂x0 ≡ e−iξx0 .

Retomemos ahora el problema de la aproximación numérica de la solución.

Suponiendo que el dato inicial f es continuo, es natural tomar los datos discretos

fj = f(xj) = f(jh), j ∈ Z, (8.6)

lo cual supone realizar un muestreo de la función f .

Gracias a la fórmula de sumación de Poisson15 es fácil comprobar que:

u

f(ξ) =
∑

k∈Z

f̂(ξ + kω0), ∀ − π/h 6 ξ 6 π/h, (8.7)

donde

ω0 = 2π/h. (8.8)

15La fórmula de sumación de Poisson asegura que
P

j∈Z
f(j) =

P
k∈Z

bf(2πk). Para comprobar esta fórmula

basta considerar la función g(x) =
P

j∈Z
f(x + j), observar que es periódica de peŕıodo uno y aplicar su

desarrollo en series de Fourier. Los términos del sumando de la derecha son precisamente sus coeficientes de

Fourier en la base ei2πkx. Al aplicar este desarrollo en x = 0 obtenemos esta fórmula de sumación de Poisson.

Al aplicar esta identidad a escala h a la función f(x)e−iξx obtenemos la identidad (8.7).
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Si el dato inicial f es de banda limitada o, más precisamente, si f̂(ξ) = 0 para todo ξ tal

que | ξ |> π/h, tenemos entonces
u

f(ξ) = f̂(ξ) (8.9)

y por tanto el muestreo del dato inicial sobre los puntos del mallado no introduce error alguno.

Sin embargo, cuando f no es de banda limitada, en virtud de (8.7), las componentes de f̂

de altas frecuencias se superponen con las de la banda principal [−π/h, π/h] dando lugar a

lo que se conoce como fenómeno de aliasing. En este caso, la tranformada discreta de Fourier

de la sucesión obtenida al muestrar f a lo largo de la sucesión xj = jh no permite recuperar

la tranformada de Fourier de f y por tanto no permite codificar todas las caracteŕısticas de

la función f . De este análisis deducimos que una función f es de banda limitada si y sólo si

se obtiene como una función de la forma f ∗ a través de las funciones de Shannon a partir de

su muestreo a lo largo de la sucesión xj = jh.

En la práctica es por tanto recomendable aproximar en primer lugar la función f(x) para

una familia de funciones de banda limitada

fh(x) = F−1
(
f̂(ξ)1(−π/h, π/h)(ξ)

)
(8.10)

que tienen la virtud de converger a f en L2(R) cuando h→ 0 y de forma que su muestreo no

introduzca ningún error.16

Pero, dejando de lado los errores introducidos por la aproximación de los datos iniciales,

consideremos el generado por los esquemas numéricos. Consideramos por tanto el esquema

semi-discreto regresivo y progresivo (5.10) y (5.11) que, como vimos, son convergentes y

divergentes respectivamente.

Revisión del esquema semi-discreto regresivo.

Consideremos en primer lugar el esquema

u′j(t) +
uj(t) − uj−1(t)

h
= 0, j ∈ Z, t > 0. (8.11)

Aplicando la transformada discreta de Fourier a escala h obtenemos

d

dt

u
u(ξ, t) +

1

h
(1 − e−iξh)

u
u(ξ, t) = 0, t > 0, ξ ∈ [−π/h, π/h]. (8.12)

En este punto hemos utilizado la siguiente propiedad fundamental de la transformada discreta

de Fourier:
u

τ−1f(ξ) = h
∑

j∈Z

fj−1e
−iξjh = e−iξhh

∑

j∈Z

fje
−iξjh = e−iξh

u

f(ξ). (8.13)

16La prueba de la convergencia de fh a f en L2(R) se realiza combinando el Teorema de la Convergencia

Dominada con el hecho de que F sea una isometŕıa en L2(R).
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La proximidad entre la ecuación de transporte continua (8.1) y la aproximación semi-discreta

regresiva (8.11) es evidente. El coeficiente

ωh(ξ) =
1

h
(1 − e−iξh) (8.14)

que interviene en la ecuación diferencial (8.12) converge, cuando h→ 0, de manera evidente,

al coeficiente

ω(ξ) = iξ (8.15)

correspondiente a la ecuación de transporte continua.

De hecho, mediante el desarrollo de Taylor se observa que

ωh(ξ) = iξ +
ξ2h

2
+ · · · . (8.16)

En la expresión (8.16) se observa que, efectivamente, para cada ξ ∈ R,

ωh(ξ) → C(ξ) cuando h→ 0. (8.17)

Además en (8.16) volvemos a constatar el carácter difusivo de la aproximación regresiva. En

efecto, esto queda de manifiesto en que el primer término corrector en (8.16) (ξ2h/2) sea real

y positivo.

Conviene sin embargo observar que la convergencia (8.17) es sólamente uniforme en con-

juntos Rh en los que

máx
ω∈Rh

ξ2h→ 0, h→ 0. (8.18)

En otras palabras, la convergencia de los śımbolos (8.17) sólo se produce en regiones en las

que

| ξ |= O(h−1/2), h→ 0. (8.19)

Sin embargo, conviene señalar que la convergencia (8.17) interesa para cualquier ξ ∈ R. En

efecto, en el ĺımite cuando h→ 0, la banda de frecuencias del dato inicial continuo f = f(x)

de la ecuación de transporte en toda la recta real. Por otra parte, a medida que h → 0, la

banda de frecuencias de los datos iniciales del problema discreto [−π/h, π/h] aumenta hasta

cubrir toda la recta real.

En virtud de que la convergencia (8.17) es uniforme en conjuntos de la forma (8.19) es

fácil ver que las soluciones del problema discreto convergen a las del continuo para datos con

una banda de frecuencias limitada, independiente de h. La estabilidad del esquema permite

después extender esta convergencia a un dato inicial cualquiera f ∈ L2(R).

En efecto, en virtud de (8.12) tenemos

u
u(ξ, t) = e−ωh(ξ)t

u

f(ξ) = e−
1
h
(1−e−iξh)t

u

f(ξ) = e−
1
h
(1−cos(ξh)t)e−i sen(ξh)t/h

u

f(ξ).

118



Aplicando la anti-transformada discreta de Fourier tenemos

uj(t) =
1

2π

∫ π/h

−π/h
e−

1
h
(1−cos(ξh)t)eiξt(jh−sen(ξh)/ξh)

u

f(ξ)dξ. (8.20)

En virtud de (8.9) sabemos que, si f es de banda acotada,
u

f ≡ f̂ , para h suficientemente

pequeño. Bajo estas hipótesis es por tanto evidente que la solución del problema numérico

puede reescribirse como

uj(t) =
1

2π

∫ B

−B
e−

1
h
(1−cos(ξh)t)eiξt(jh−sen(ξh)/ξh)tf̂(ξ)dξ, (8.21)

donde B > 0 es tal que sop(f̂) ⊂ [−B, B].

Elegimos ahora j ∈ Z de modo que jh = x0, siendo x0 ∈ R un punto fijado. Evidente-

mente, esto supone elegir j = x0/h que, para que j ∈ Z, exige a su vez tomar una sucesión

determinada de h → 0. Bajo esta condición (x0 = jh), debeŕıamos ser capaces de ver que la

expresión (8.21) converge, cuando h→ 0, al valor de la solución continua u(x0, t) = f(x0− t).
Veámos que esto es efectivamente aśı. Cuando h → 0, el integrando de (8.21) converge a

eiξ(x0−1)tf̂(ξ). La aplicación del Teorema de la convergencia dominada permite entonces ver

que el ĺımite de (8.21) es

u(x0, t) =
1

2π

∫ B

−B
eiξ(x0−1)tf̂(ξ)dξ =

1

2π

∫ B

−B
eiξx0e−iξtf̂(ξ)dξ = f(x0 − t), (8.22)

que coincide con la solución del problema continuo, gracias a la hipótesis de que f sea de

banda limitada.

En realidad, bajo estas hipótesis, se puede probar que la convergencia de la solución

discreta a la continua tiene lugar en la norma L2. Se puede ver esto de dos maneras. Tomando

normas discretas de diferencias en `2 o bien tomando normas continuas en L2(R) observando

que la expresión (8.21) de la solución del esquema numérico puede extenderse a una función

continua con respecto a la variable espacial x, dependiente del parámetro h:

uh(x, t) =
1

2π

∫ B

−B
e−

1
h
(1−cos(ξh)t)eiξ(x−sen(ξh)/ξh)tf̂(ξ)dξ. (8.23)

Combinando (8.22) y (8.23) vemos que, tanto la solución continua como la discreta pueden

ser escritas de un modo semejante mediante la transformada inversa de Fourier

uh(x, t) = F−1
[
e−

1
h
(1−cos(ξh)t)e−i sen(ξh)t/hf̂

]
(x) (8.24)

y

u(x, t) = F−1
[
e−iξtf̂

]
(x). (8.25)
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Para comprobar que uh(t) → u(t) en L2(R) cuando h→ 0 basta entonces ver que

e−
1
h
(1−cos(ξh)t)ei sen(ξh)t/hf̂(ξ) → e−iξtf̂(ξ) en L2(R)

cuando h→ 0. Teniendo en cuenta que f es, por hipótesis, de banda acotada, vemos que esto

es equivalente a que

∫ B

−B

∣∣∣e− 1
h
(1−cos(ξh)t)e−i sen(ξh)t/h − e−iξt

∣∣∣
2
| f̂(ξ) |2 dξ → 0

y esto, efectivamente, ocurre en virtud del Teorema de la convergencia dominada.

Esto confirma la convergencia del esquema regresivo para datos iniciales con banda aco-

tada. Para considerar el caso general, dado f ∈ L2(R) basta introducir su aproximación

fB(x) = F−1
(
f̂(ξ)1(−B,B)(ξ)

)

que es, por definición, una función de banda acotada tal que

fB → f en L2(R) cuando B → ∞.

Denotamos mediante u y uB la solución de la ecuación de transporte con datos f y fB

respectivamente. Como

‖ u(t) − uB(t) ‖L2(R)=‖ f − fB ‖L2(R)

vemos que

uB → u en L∞(0,∞; L2(R)), B → ∞.

Por tanto, dado ε > 0 existe B0 > 0 suficientemente grande tal que

‖ u− uB0 ‖L∞(0,∞;L2(R))6 ε/2.

Fijado este valor de B0 y resolviendo la ecuación semi-discreta con dato inicial fB0 muestreado

sobre el mallado tenemos que

uh,B0(t) → uB0(t), h→ 0, en L2(R)

para cada t > 0. Por tanto, para h suficientemente pequeño

‖ u(t) − uh,B0(t) ‖L2(R)6‖ u(t) − uB0(t) ‖L2(R) + ‖ uB0(t) − uh,B0(t) ‖L2(R)6 ε/2 + ε/2 = ε.

Esto demuestra la convergencia para datos iniciales obtenidos muestreando una aproximación

del dato inicial de banda acotada. Evidentemente, gracias a la estabilidad del esquema numéri-

co, se puede obtener el mismo resultado de convergencia para cualquier elección de la aprox-

imación de los datos iniciales que converja al dato inicial del problema continuo.
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Revisión del esquema semi-discreto progresivo.

Consideramos ahora el caso progresivo que, como vimos, es inestable y divergente. Anal-

icémoslo pues con la herramienta que las transformadas de Fourier proporcionan.

En este caso el esquema es de la forma

u′j(t) +
uj+1 − uj(t)

h
= 0, j ∈ Z, t > 0. (8.26)

Aplicando la transformada discreta de Fourier obtenemos

d

dt

u
u(ξ, t) +

1

h
(eiξh − 1)

u
u(ξ, t) = 0, t > 0, ξ ∈ [−π/h, π/h], (8.27)

de modo que
u
u(ξ, t) = e−

1
h
(eiξh−1)t

u

f(ξ) = e
1
h
(1−cos(ξh))te−i sen(ξh)t/h

u

f(ξ). (8.28)

Pretendemos ahora ilustrar de manera aún más expĺıcita la ausencia de convergencia de

este método. Para ello tomamos un dato inicial f de banda acotada de modo que
u

f ≡ f̂ para

h suficientemente pequeño.

Obtenemos aśı
u
u(ξ, t) = e

1
h
(1−cos(ξh))te−i sen(ξh)t/hf̂(ξ), (8.29)

de modo que

| u
u(ξ, t) |= e

1
h
(1−cos(ξh))t | f̂(ξ) |, (8.30)

y entonces

‖ ~uh ‖2
h=

1

2π

∫ B

−B
e

2
h
(1−cos(ξh))t | f̂(ξ) |2 dξ. (8.31)

Habida cuenta que ξ ∈ [−B, B], tenemos que

1 − cos(ξh) > cξ2h2 (8.32)

con c > 0 para todo ξ ∈ [−BB], a condición que h sea suficientemente pequeño.

Combinando (8.31) y (8.32) vemos que

‖ ~uh(t) ‖2
h>

1

2π

∫ B

−B
echξ2t | f̂(ξ) |2 dξ. (8.33)

Pero esta estimación es claramente insuficiente para concluir la divergencia del método puesto

que la integral a la derecha de (8.33) permanece acotada cuando h→ 0.

Para ilustrar la divergencia hemos considerar datos iniciales de banda más ancha. Dado

f ∈ L2(R) tal que el soporte de su transformada de Fourier sea toda la recta real (por

ejemplo la Gaussiana17), introducimos el dato inicial del esquema discreto fh(x) truncando

la transformada de Fourier de f a la banda admisible [−π/h, π/h], i.e.

fh(x) = F−1(f̂1(−π/h, π/h)(ξ)). (8.34)

17Es bien sabido que la transformada de Fourier de la función f(x) = e−x2/2 es la Gaussiana bf(ξ) =√
2πe−ξ2/2.

121



En este caso la norma de la aproximación discreta viene dada por

‖ ~uh(t) ‖2
h=

1

2π

∫ π/h

−π/h
e

2
h
(1−cos(ξh))t | f̂(ξ) |2 dξ. (8.35)

Utilizando ahora el hecho que

1 − cos(η) > cη2, ∀η ∈ [−π, π], (8.36)

vemos que

‖ ~uh(t) ‖2
h>

1

2π

∫ π/h

−π/h
echξ2t | f̂(ξ) |2 dξ. (8.37)

En esta ocasión la integral a la derecha de (8.37) puede diverger puesto que en la banda

ξ ∈ [−π/h, π/h] hay zonas donde hξ2 → ∞. Para comprobar la divergencia de esta integral

con más detalle consideremos el dato inicial f de modo que

f̂(ξ) =
∑

k∈Z

αk1Ik
(ξ) (8.38)

donde (Ik)k∈Z son intervalos disjuntos de R. Para que f = F−1(f̂) ∈ L2(R) basta entonces

con que ∑

k∈Z

α2
k | Ik |<∞, (8.39)

donde | Ik | denota la longitud del intervalo Ik.

En este caso la integral a la derecha (8.37) puede reescribirse como

1

2π

∫ π/h

−π/h
echξ2t | f̂(ξ) |2 dξ =

1

2π

∑

k∈Z

α2
k

∫

Ik∩[−π/h, π/h]
echξ2tdξ. (8.40)

Si elegimos los intervalos Ik = (k, k + 1) observamos que el último sumatorio puede acotarse

inferiormente por
1

2π
α2

k0
ech( π

h
−1)2t (8.41)

con k0 = π
h − 1.

En este caso, además, la condición (8.39) puede simplemente reescribirse como

∑

k∈Z

α2
k <∞. (8.42)

Es evidente que es perfectamente posible elegir una sucesión αk de la forma αk = 1/k, de

modo que (8.42) se cumpla y que, sin embargo, la cota inferior (8.41) de la norma `2 de la

solución discreta correspondiente diverja cuando h→ 0 con un orden ect/h.

Vemos por tanto que la utilización de la transformada de Fourier a escala h permite ilustrar

de manera mucho más cuantitativa la divergencia del método semi-discreto progresivo que
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hab́ıamos predicho mediante el análisis de von Neumann. En el caso en que el esquema es

convergente puede también aplicarse para ilustrar de un modo más claro la convergencia hacia

la solución del problema continuo.

A pesar de que en esta sección sólo hemos analizado las aproximaciones semi-discretas

progresiva y regresiva las ideas que hemos desarrollado son completamente generales y pueden

ser aplicadas al estudio de cualquier otro esquema, en particular para los completamente

discretos. Revisión del comportamiento de las velocidades de fase y grupo. Ahora que sabemos

que el rango de frecuencias relevantes para una aproximación numérica es −π/h ≤ ξ ≤ π/h,

conviene revisar los conceptos de velocidades de fase y grupo. Consideremos en primer lugar

el esquema centrado semi-discreto. En este caso la velocidad de fase viene dada por

ch(ξ) =
sen(ξh)

ξh
. (8.43)

Vemos entonces que la velocidad de fase se anula cuando ξh = ±π. Se trata evidentemente

de un fenómeno nuevo con respecto a la ecuación de transporte continua donde todas las

componentes de Fourier de las soluciones se transportan a velocidad constante uno. En virtud

de este hecho, para cada h > 0 fijo, existen soluciones del problema numérica que apenas se

tranportan. Esto no es incompatible con la convergencia de orden dos del esquema numérico

centrado que ya comprobamos. En efecto, en el problema clásico de la convergencia, el dato

inicial se supone fijo, lo cual, en la práctica, gracias a la propiedad de estabilidad del esquema,

permite filtrar las altas frecuencias del dato inicial y considerar únicamente datos cuya trans-

formada de Fourier tiene soporte compacto. El hecho de que la velocidad de propagación se

anule cuando |ξ| ∼ π/h, no tiene entonces efectos a nivel de la converegncia. Pero, insistimos,

si lo que nos interesa es la dinámica de las soluciones para h pequeño pero fijo, este hecho tiene

un gran impacto puesto que surgen soluciones que nada tienen que ver con el comportamien-

to de la ecuación de transporte continua. Se trata del mismo fenómeno que surge al estudiar

la estabilidad absoluta de los sistemas stiff de ecuaciones diferenciales ordinarias (véase por

ejemplo [11]). En el caso del sistema centrado este hecho especialmente grave puesto que el es-

quema es puramente conservativo y por tanto estas soluciones a altas frecuencias en absoluto

se disipan. Diremos que se trata de soluciones espúreas, en el sentido que son ficticias puesto

que no corresponden a la ecuación de transporte continua y sólo surgen como soluciones del

esquema numérico. Por otra parte, la velocidad de grupo en este caso toma el valor

Ch(ξ) = cos(ξh). (8.44)

Vemos que la situación es aún peor puesto que se anula cuando ξh = π/2 y tiene signo

negativo para todo ξh ∈ (π/2, π]. En este caso por tanto tendremos incluso soluciones que

se transportan en la dirección opuesta a la de la ecuación de transporte continua. Se trata

de un fenómeno de soluciones numéricas espúreas que no es incompatible con la convergencia
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del esquema numérico. Consideremos ahora el esquema numérico regresivo que, como vimos,

tiene un carácter disipativo. En este caso la velocidad de fase viene dada por:

ch(ξ) =
i(e−iξh − 1)

ξh
=

sen(ξh)

ξh
+ i

cos(ξh) − 1

ξh
. (8.45)

Vemos que la parte real de la velocidad de fase se comporta como en el caso de la aproxi-

mación centrada de modo que ésta se anula cuando ξh = ±π. Sin embargo, vemos también

que para estos valores de frecuencias la parte imaginaria de la velocidad de grupo es estric-

tamente negativa, lo cual asegura que estas componentes de Fourier de la solución decaen

exponencialmente en tiempo. Vemos pues que la aproximación regresiva, a pesar de intro-

ducir soluciones numéricas espúreas, las disipa. Es a causa de este hecho que la soluciones del

esquema regresivo para h > 0 pequeño y fijo se comportan de manera mucho más semejante

a las de la ecuación de transporte continua que las del esquema centrado. Lo mismo ocurre

con la velocidad de grupo. De este análisis concluimos que más allá de las propiedades de

convergencia clásicas de un esquema numérico, con el objeto de garantizar que para h > 0

pequeño la dinámica del esquema discreto se asemeja a la del continuo es preciso tener en

cuenta el comportamiento de las velocidades de fase y de grupo en frecuencias |ξ| del orden

de c/h con 0 < c < π.
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Some applications of combinatorial optimization in

telecommunications

Mauricio G. C. Resende∗

Abstract

Combinatorial optimization problems are abundant in the telecommunications indus-

try. In this paper, we present three real-world telecommunications applications where

combinatorial optimization plays a major role. The first problem concerns the optimal

location of modem pools for an internet service provider. The second problem deals with

the optimal routing of permanent virtual circuits for a frame relay service. The last

problem comes up when routing packets on the Internet.

Keywords: Telecommunications, combinatorial optimization, linear programming, GRASP,

local search, multi-commodity flows, genetic algorithms, OSPF routing.

1 Introduction

Combinatorial optimization problems are abundant in the telecommunications industry. In

this paper, we present three real-world telecommunications applications where combinatorial

optimization plays a major role.

In Section 2, we consider the PoP (point-of-presence) placement problem, an optimization

problem confronted by internet access providers. The most common, and potentially least

expensive, way for a customer to access the internet is with a modem by making a phone call

to a PoP of the provider. It has been conjectured that potential customers are more likely

to subscribe to internet access service if they can make a local (free unmetered) phone call

to access at least one of the internet provider’s PoPs. Given that the number of PoPs that

can be deployed is limited by a number of constraints, such as budget and office capacity,

one would like to place (or locate) the PoPs in a configuration that maximizes the number of

customers than can make local calls to at least one PoP. We call this number of customers the

coverage. A greedy randomized adaptive search procedure (GRASP) is used to find solutions

to this location problem that, in real-world situations, are shown to be near-optimal. We

follow closely the presentation given in Resende [1].

∗ATT, USA. E-mail:mgcr@research.att.com
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A Frame Relay (FR) service offers virtual private networks to customers by provisioning

a set of permanent (long-term) virtual circuits (PVCs) between customer endpoints on a

large backbone network. During the provisioning of a PVC, routing decisions are made either

automatically by the FR switch or by the network designer, through the use of preferred

routing assignments, without any knowledge of future requests. Over time, these decisions

usually cause inefficiencies in the network and occasional rerouting of the PVCs is needed.

The new PVC routing scheme is then implemented on the network through preferred routing

assignments. Given a preferred routing assignment, the FR switch will move the PVC from

its current route to the new preferred route as soon as that move becomes feasible. Section 3,

deals with a GRASP for optimal routing of permanent virtual circuits for a frame relay service.

We follow closely the presentation given in Resende and Ribeiro [2].

Intra-domain traffic engineering aims to make more efficient use of network resources

within an autonomous system. Interior Gateway Protocols such as OSPF (Open Shortest

Path First) and IS-IS (Intermediate System-Intermediate System) are commonly used to se-

lect the paths along which traffic is routed within an autonomous system. These routing

protocols direct traffic based on link weights assigned by the network operator. Each router

in the autonomous system computes shortest paths and creates destination tables used to

direct each packet to the next router on the path to its final destination. Given a set of

traffic demands between origin-destination pairs, the OSPF weight setting problem consists

in determining weights to be assigned to the links so as to optimize a cost function, typically

associated with a network congestion measure. In Section 4, we present a genetic algorithm

with a local improvement procedure for the OSPF weight setting problem. The local im-

provement procedure makes use of an efficient dynamic shortest path algorithm to recompute

shortest paths after the modification of link weights. We test the algorithm on a set of real

and synthetic test problems and show that it produces near-optimal solutions. We compare

the hybrid algorithm with other algorithms for this problem illustrating its efficiency and

robustness. We follow closely the presentation given in Buriol, Resende, Ribeiro, and Thorup

[3].

2 Pop placement for an internet service provider

In this section, we consider the PoP (point-of-presence) placement problem, an optimization

problem confronted by internet access providers. The most common, and potentially least

expensive, way for a customer to access the internet is with a modem by making a phone call

to a PoP of the provider. It has been conjectured that potential customers are more likely

to subscribe to internet access service if they can make a local (free unmetered) phone call

to access at least one of the internet provider’s PoPs. Given that the number of PoPs that

can be deployed is limited by a number of constraints, such as budget and office capacity,
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one would like to place (or locate) the PoPs in a configuration that maximizes the number of

customers than can make local calls to at least one PoP. We call this number of customers

the coverage.

A formal statement of the problem is given next. Let J = {1, 2, . . . , n} denote the set of n

potential PoP locations. Define n finite sets P1, P2, . . . , Pn, each corresponding to a potential

PoP location, such that I = ∪j∈JPj = {1, 2, . . . ,m} is the set of the m exchanges that can

be covered by the n potential PoPs. With each exchange i ∈ I, we associate a weight wi ≥ 0,

denoting for example, the number of lines served by exchange i. A cover J∗ ⊆ J covers the

exchanges in set I∗ = ∪j∈J∗Pj and has an associated weight w(J∗) =
∑

i∈I∗ wi. Given the

number p > 0 of PoPs to be placed, we wish to find the set J∗ ⊆ J that maximizes w(J∗),

subject to the constraint that |J∗| = p.

This problem, also known as the maximum covering problem (MCP) [4], has been applied

to numerous location problems, including rural health centers [5], emergency vehicles [6], and

commercial bank branches [7], as well as other applications [8, 9, 10]. It has an compact integer

programming formulation, first described by Church and ReVelle [11]. For i = 1, . . . ,m and

j = 1, . . . , n, let xj and yi be (0, 1) variables such that

xj =

{

1 if j ∈ J∗

0 otherwise

and

yi =

{

1 if i ∈ I∗

0 otherwise.

Define

aij =

{

1 if i ∈ Pj

0 otherwise.

The following is an integer programming formulation for the maximum covering problem:

max
m

∑

i=1

wiyi

subject to:
n

∑

j=1

aijxj ≥ yi, i = 1, . . . ,m,

n
∑

j=1

xj = p,

xj = (0, 1), j = 1, . . . , n

yi = (0, 1), i = 1, . . . ,m.
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The solution to the linear programming relaxation of the above integer program produces

as its optimal objective function value, an upper bound on the maximum coverage. We shall

call this bound, the LP upper bound, denoted by

UB = max{w>y | Ax ≥ y, e>x = p, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1},

where w = (w1, w2, . . . , wm), y = (y1, y2, . . . , ym), A = [a·1, a·2, . . . , a·n], x = (x1, x2, . . . , xn),

and e = (1, 1, . . . , 1) of dimension n.

In this section, we describe a greedy randomized adaptive search procedure (GRASP) for

PoP placement that finds approximate, i.e. good though not necessarily optimum, placement

configurations. GRASP [12] is a metaheuristic that has been applied to a wide range of com-

binatorial optimization problems, including set covering [13], maximum satisfiability [14], and

p-hub location [15], all three of which have some similarities with the PoP placement prob-

lem. GRASP is an iterative process, with a feasible solution constructed at each independent

GRASP iteration. Each GRASP iteration consists of two phases, a construction phase and a

local search phase. The best overall solution is kept as the result.

In the construction phase, a feasible solution is iteratively constructed, one element at a

time. At each construction iteration, the choice of the next element to be added is determined

by ordering all elements in a candidate list with respect to a greedy function. This function

measures the (myopic) benefit of selecting each element. The heuristic is adaptive because the

benefits associated with every element are updated at each iteration of the construction phase

to reflect the changes brought on by the selection of the previous element. The probabilistic

component of a GRASP is characterized by randomly choosing one of the best candidates

in the list, but not necessarily the top candidate. This choice technique allows for different

solutions to be obtained at each GRASP iteration, but does not necessarily compromise the

power of the adaptive greedy component of the method.

As is the case for many deterministic methods, the solutions generated by a GRASP

construction are not guaranteed to be locally optimal with respect to simple neighborhood

definitions. Hence, it is usually beneficial to apply a local search to attempt to improve

each constructed solution. While such local optimization procedures can require exponen-

tial time from an arbitrary starting point, empirically their efficiency significantly improves

as the initial solutions improve. Through the use of customized data structures and careful

implementation, an efficient construction phase can be created which produces good initial

solutions for efficient local search. The result is that often many GRASP solutions are gen-

erated in the same amount of time required for the local optimization procedure to converge

from a single random start. Furthermore, the best of these GRASP solutions is generally

significantly better than the solution obtained from a random starting point.

An especially appealing characteristic of GRASP is the ease with which it can be imple-

mented. Few parameters need to be set and tuned (candidate list size and number of GRASP
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procedure grasp(α,MaxIter,RandomSeed)

1 BestSolutionFound = ∅;

2 do k = 1, . . . , MaxIter →

3 ConstructGreedyRandomizedSoln(α,RandomSeed,p,J∗);

4 LocalSearch(J∗);

5 if w(J∗) > w(BestSolutionFound) →

BestSolutionFound = J∗;

6 od;

7 return(BestSolutionFound)

end grasp;

Figure 1: A generic GRASP pseudo-code

procedure ConstructGreedyRandomizedSoln(α,RandomSeed,p,J ∗)

1 J∗ = ∅;

2 do k = 1, . . . , p →

3 RCL = MakeRCL(α, J, J∗, γ);

4 s = SelectPoP(RCL,RandomSeed,J∗);

5 J∗ = J∗ ∪ {s};

6 AdaptGreedyFunction(s, J, J∗ ,Γ,Γ−1, γ);

7 od;

end ConstructGreedyRandomizedSoln;

Figure 2: GRASP construction phase pseudo-code

iterations) and therefore development can focus on implementing efficient data structures to

assure quick GRASP iterations. Finally, GRASP can be trivially implemented on a parallel

processor in an MIMD environment. For example, each processor can be initialized with its

own copy of the procedure, the instance data, and an independent random number sequence.

The GRASP iterations are then performed in parallel with only a single global variable re-

quired to store the best solution found over all processors.

The TM is organized as follows. In Subection 2.1, we describe the GRASP. In Subsec-

tion 2.2, we show how the GRASP solution is better than the pure random or pure greedy

alternatives. On a large instance arising from a real-world application, we show how the

GRASP solution is near optimal. Parallelization of GRASP is also illustrated.
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procedure MakeRCL(α, J, J∗, γ)

1 RCL = ∅;

2 γ∗ = max{γj | j ∈ J \ J∗};

3 do s ∈ J \ J∗ →

4 if γs ≥ α× γ∗ →

5 RCL = RCL ∪ {s};

6 fi;

7 od;

8 return(RCL);

end MakeRCL;

Figure 3: MakeRCL pseudo-code

procedure AdaptGreedyFunction(s, J, J∗ ,Γ,Γ−1, γ)

1 do i ∈ Γs →

2 do j ∈ Γ−1
i ∩ {J \ J∗} (j 6= i) →

3 Γj = Γj − {i};

4 γj = γj − wi;

5 od;

6 od;

end AdaptGreedyFunction;

Figure 4: AdaptGreedyFunction pseudo-code
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2.1 GRASP for PoP placement

As outlined in Section 3.2, a GRASP possesses four basic components: a greedy function,

an adaptive search strategy, a probabilistic selection procedure, and a local search technique.

These components are interlinked, forming an iterative method that, at each iteration, con-

structs a feasible solution, one element at a time, guided by an adaptive greedy function,

and then searches the neighborhood of the constructed solution for a locally optimal solution.

Figure 1 shows a GRASP in pseudo-code. The best solution found so far (BestSolution-

Found) is initialized in line 1. The GRASP iterations are carried out in lines 2 through 6.

Each GRASP iteration has a construction phase (line 3) and a local search phase (line 4). If

necessary, the solution is updated in line 5. The GRASP returns the best solution found.

In the remainder of this subsection, we describe in detail the ingredients of the GRASP

for the PoP placement problem, i.e. the GRASP construction and local search phases. To

describe the construction phase, one needs to provide a candidate definition (for the restricted

candidate list) and an adaptive greedy function, and specify the candidate restriction mecha-

nism. For the local search phase, one must define the neighborhood and specify a local search

algorithm.

2.1.1 Construction phase

The construction phase of a GRASP builds a solution, around whose neighborhood a local

search is carried out in the local phase, producing a locally optimal solution. This construction

phase solution is built, one element at a time, guided by a greedy function and randomization.

Figure 2 describes in pseudo-code a GRASP construction phase. Since in the PoP placement

problem there are p PoP locations to be chosen, each construction phase consists of p iter-

ations, with one location chosen per iteration. In MakeRCL the restricted candidate list of

PoP locations is set up. The index of the next PoP location to be chosen is determined in

SelectPoP. The PoP location selected is added to the set J∗ of chosen PoP locations in line 5

of the pseudo-code. In AdaptGreedyFunction the greedy function that guides the construc-

tion phase is changed to reflect the choice just made. As before, let J = {1, 2, . . . , n} be set

of indices of the sets of potential PoP locations. Solutions are constructed by selecting one

PoP location at a time to be in the set J∗ of chosen PoP locations. To define a restricted

candidate list, we must rank the yet unchosen PoP locations according to an adaptive greedy

function.

The greedy function used in this algorithm is the total weight of yet-uncovered exchanges

that become covered after the selection in each construction phase iteration. Let J ∗ denote

the set (initially empty) of chosen PoP locations being built in the construction phase. At

any construction phase iteration, let Γj be the set of additional uncovered exchanges that

would become covered if PoP location j (for j ∈ J \ J∗) were to be added to J∗. Define the

133



greedy function

γj =
∑

i∈Γj

wi

to be the incremental weight covered by the choice of PoP location j ∈ J \ J ∗. The greedy

choice is to select the PoP location k having the largest γk value. Note that with every

selection made, the sets Γj , for all yet unchosen PoP location indices j ∈ J \ J∗, change to

reflect the new selection. This consequently changes the values of the greedy function γj ,

characterizing the adaptive component of the heuristic.

We describe next the restriction mechanism for the restricted candidate list (RCL) used in

this GRASP. The RCL is set up in MakeRCL of the pseudo-code of Figure 3. A value restriction

mechanism is used. Value restriction imposes a parameter based achievement level, that a

candidate has to satisfy to be included in the RCL. Let

γ∗ = max{γj | PoP location j is yet unselected, i.e. j ∈ J \ J∗}

and α be the restricted candidate parameter (0 ≤ α ≤ 1). We say a PoP location j is

a potential candidate, and is added to the RCL, if γj ≥ α × γ∗. MakeRCL returns the set

RCL with the indices of all potential PoP locations that have greedy function values within

α×100% of the value of the greedy choice. Note that by varying the parameter α the heuristic

can be made to construct a set of p random PoP locations (α = 0) or act as a greedy algorithm

(α = 1).

Once the RCL is set up, a candidate from the list must be selected and made part of the

solution being constructed. SelectPoP selects, at random, the PoP location index s from the

RCL. In line 5 of ConstructGreedyRandomizedSoln, the choice made in SelectPoP is added

to the set of PoP locations J∗.

The greedy function γj is changed in AdaptGreedyFunction to reflect the choice made in

SelectPoP. This requires that some of the sets Γj as well as the values γj be updated. Let

Γ−1
i denote the set of PoP locations to which a caller in exchange i can make a local call to.

Let s be the newly added PoP location. The potential PoP locations j whose elements Γj

need to be updated are those not yet in the PoP location set J∗ for which exchanges in Ps

are covered by PoP location j.

2.1.2 Local search phase

Given a solution neighborhood structure N(·) and a weight function w(·), a local search

algorithm takes an initial solution J0 and seeks a locally optimal solution with respect to

N(·). For a maximization problem, such as the PoP placement problem, a local optimum

is a solution J∗ having weight w(J∗) greater than or equal to the weight w(J+) for any

J+ ∈ N(J∗). The local search algorithm examines a sequence of solutions J0, J1, . . . , Jk = J∗,

where J i+1 ∈ N(J i), i.e. immediately after examining solution J i, it can only examine a
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procedure LocalSearch(J0, N(·), w(·), J∗)

1 J∗ = J0;

2 do ∃ J+ ∈ N(J∗) 3 w(J+) > w(J∗) →

3 J∗ = J+;

4 od;

end LocalSearch;

Figure 5: A generic local search algorithm

procedure LocalSearch(J∗)

1 do local maximum not found →

2 do s ∈ J∗ →

3 do t ∈ J \ J∗ →

4 if WeightGain(J∗, t) > WeightLoss(J∗, s) →

5 J∗ = J∗ ∪ {t} \ {s};

6 fi;

7 od;

8 od;

9 od;

end LocalSearch;

Figure 6: The local search procedure in pseudo-code

solution J i+1 that is a neighbor of J i. Figure 5 illustrates a generic local search algorithm

that finds a local maximum of the function w(·). If in line 2 there exists a solution J+ in

the neighborhood of the current solution J∗ with a weight greater than that of the current

solution, then in line 3 the improved solution is made the current solution. The loop from

line 2 to 4 is repeated until no local improvement is possible.

A combinatorial optimization problem can have many different neighborhood structures.

For the PoP placement problem, a simple structure is 2-exchange. Two solutions (sets of PoP

locations) J1 and J2 are said to be neighbors in the 2-exchange neighborhood if they differ

by exactly one element, i.e. | J1∩∆J | = | J2∩∆J | = 1, where ∆J = (J1∪J2)\ (J1∩J2).

The local search starts with a set J∗ of p PoP locations, and at each iteration attempts to find

a pair of locations s ∈ J∗ and t ∈ J \ J∗ such that w(J∗ \ {s} ∪ {t}) > w(J∗). If such a pair

exists, then location s is replaced by location t in J∗. A solution is locally optimal with respect

to this neighborhood if there exists no pairwise exchange that increases the total weight of

J∗. This local search algorithm is described in the pseudo-code in Figure 6. Though it is not

the objective of this TM to delve into implementation details, it is interesting to observe that

135



the total weight of the neighborhood solutions need not be computed from scratch, Rather,

in line 4 of the pseudo-code, procedures WeightGain and WeightLoss compute, respectively,

the weight gained by J∗ with the inclusion of PoP location j and the weight loss by J∗ with

the removal of PoP location i from J∗. The weight gained can be computed by adding the

weights of all exchanges not covered by any PoP location in J∗ that is covered by j, while

the weight loss can be computed by adding up the weights of the exchanges covered by PoP

location i and no other PoP location in J∗.

The GRASP construction phase described in Subsection 2.1.1 computes a feasible set

of chosen PoP locations that is not necessarily locally optimal with respect the 2-exchange

neighborhood structure. Consequently, local search can be applied with the objective of

finding a locally optimal solution that may be better than the constructed solution. In fact,

the main purpose of the construction phase is to produce a good initial solution for the

local search. It is empirically known that simple local search techniques perform better if

they start with a good initial solution. This will be illustrated in the computational results

subsection, where experiments indicate that local search applied to a solution generated by

the construction phase, rather than random generation, produces better overall solutions, and

GRASP converges faster to an approximate solution.

2.2 Computing PoP placements with GRASP

In this subsection, we illustrate the use of GRASP on a large PoP placement problem. We

consider a problem with m = 18, 419 calling areas and n = 27, 521 potential PoP location.

The sum of the number of lines over the calling areas is 27,197,601. We compare an imple-

mentation of the GRASP described in Subsection 2.1 with implementations of an algorithm

having a purely greedy construction phase and one having purely random construction. All

three algorithms use the same local search procedure, described in Subsection 2.1.2. Further-

more, since pure greedy and pure random are special cases of GRASP construction, all three

algorithms are implemented using the same code, simply by setting the RCL parameter value

α to appropriate values. For GRASP, α = 0.85, while for the purely greedy algorithm, α = 1,

and for the purely random algorithm, α = 0. All runs were carried out on a Silicon Graphics

Challenge computer (196MHz IPS R10000 processor). The GRASP code is written in Fortran

and was compiled with the SGI Fortran compiler f77 using compiler flags -O3 -r4 -64.

In this experiment the number of PoPs to be place is fixed at p = 146 and the three

implementations are compared. Each code is run on 10 processors, each using a different

random number generator seed for 500 iterations of the build–local search cycle, thus each

totaling 5000 iterations. Because of the long processing times associated with the random

algorithm, the random algorithm processes were interrupted before completing the full 500

iterations on each processor. They did 422, 419, 418, 420, 415, 420, 420, 412, 411, and 410

iterations on each corresponding processor, totaling 4167 iterations.
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Figure 7: Phase 1 solution distribution for random algorithm (RCL parameter α = 0), GRASP

(α = 0.85), and greedy algorithm (α = 1)
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Figure 9: GRASP phase 1 and phase 2 solutions, sorted by phase 2, then phase 1 solutions.

RCL parameter α = 0.85

Figure 7 illustrates the relative behavior of the three algorithms. The top and middle

plots in Figure 7 show the frequency of the solution values generated by the purely random

construction and GRASP construction respectively. The plot on the bottom of Figure 7

compares the constructed solutions of the three algorithms. As can be observed, the purely

greedy algorithm constructs the best quality solution, followed by the GRASP, and then by

the purely random algorithm. On the other hand, the purely random algorithm produces

the largest amount of variance in the constructed solutions, followed by the GRASP and

then the purely greedy algorithm, which generated the same solution on all 5000 repetitions.

High quality solutions as well as large variances are desirable characteristics of constructed

solutions. Of the three algorithms, GRASP captures these two characteristics in its phase 1

solutions. As we will see next, the tradeoff between solution quality and variance plays an

important role in designing a GRASP.

The solutions generated by the purely random algorithm and the GRASP are shown

in Figures 8 and 9, respectively. The solution values on these plots are sorted according

to local search phase solution value. As one can see, the differences between the values of

the construction phase solutions and the local search phase solutions are much smaller for

the GRASP than for the purely random algorithm. This suggests that the purely random

algorithm requires greater effort in the local search phase than does GRASP. This indeed

is observed and will be shown next. Figures 10 and 11 illustrate how the three algorithms
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Figure 10: Phase 2 solutions, sorted by phase 2 for random, GRASP, and greedy algorithms

compare in terms of best solution found so far, as a function of algorithms iteration and

running time. Figure 10 shows local search phase solution for each algorithm, sorted by

increasing value for each algorithm. The solution produced by applying local search to the

solution constructed with the purely greedy algorithm is constant. Its value is only better

than the worst 849 GRASP solutions and the worst 2086 purely random solutions. This

figure illustrates well the effect of the tradeoff between greediness and randomness in terms

of solution quality as a function of the number of iterations that the algorithm is repeated.

3 GRASP with path-relinking for PVC routing

A frame relay service offers virtual private networks to customers by provisioning a set of

permanent (long-term) private virtual circuits (PVCs) between endpoints on a large backbone

network. During the provisioning of a PVC, routing decisions are made either automatically

by the frame relay switch or by the network designer, through the use of preferred routing

assignments and without any knowledge of future requests. Over time, these decisions usually

cause inefficiencies in the network and occasional rerouting of the PVCs is needed. The new

routing scheme is then implemented on the network through preferred routing assignments.

Given a preferred routing assignment, the switch will move the PVC from its current route

to the new preferred route as soon as this move becomes feasible.

One possible way to create the preferred routing assignments is to appropriately order

the set of PVCs currently in the network and apply an algorithm that mimics the routing
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and greedy algorithm (α = 1) as a function of CPU time (in seconds), running 10 processes

in parallel.

algorithm used by the frame relay switch to each PVC in that order. However, more elaborate

routing algorithms, that take into account factors not considered by the switch, could further

improve the efficiency of network resource utilization.

Typically, the routing scheme used by the frame relay switch to automatically provision

PVCs is also used to reroute them in the case of trunk or card failures. Therefore, this routing

algorithm should be efficient in terms of running time, a requirement that can be traded off

for improved network resource utilization when building preferred routing assignments offline.

In this section, we propose variants of a GRASP (greedy randomized adaptive search

procedure) with path-relinking algorithm for the problem of routing offline a set of PVC de-

mands over a backbone network, such that a combination of the delays due to propagation

and congestion is minimized. This problem and its variants are also known in the litera-

ture as bandwidth packing problems. The set of PVCs to be routed can include all or a

subset of the PVCs currently in the network, and/or a set of forecast PVCs. The explicit

handling of propagation delays, as opposed to just handling the number of hops (as in the

routing algorithm implemented in Cisco switches) is particularly important in international

networks, where distances between backbone nodes vary considerably. The minimization of

network congestion is important for providing the maximum flexibility to handle the following

situations:

• overbooking, which is typically used by network designers to account for non-coincidence
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of traffic;

• PVC rerouting, due to link or card failures; and

• bursting above the committed rate, which is not only allowed but sold to customers as

one of the attractive features of frame relay.

In Subsection 3.1, we formulate the offline PVC routing problem as an integer multicom-

modity flow problem with additional constraints and a hybrid objective function, which takes

into account delays due to propagation as well as delays due to network congestion. Minimum

cost multicommodity network flow problems are characterized by a set of commodities flowing

through an underlying network, each commodity having an associated integral demand which

must flow from its source to its destination. The flows are simultaneous and the commodities

share network resources. If the cost function in each edge is convex, then this problem can

be solved in polynomial time [16]. The problem is NP-hard if the flows are required to be

integral [17] or if each commodity is required to follow a single path from its source to its

destination [18]. In Subsection 3.2, we propose variants of a GRASP with path-relinking

heuristic for this problem. Experimental results, reported in Subsection 3.3, show that the

proposed heuristics are able to improve the solutions found with standard routing techniques

on realistic-size problems. Concluding remarks are made in Subsection 3.4.

Though we motivate the algorithm with a frame relay routing application, we note that

the algorithm can be applied to routing problems that arise in other connection-switched

protocols, such as in asynchronous transfer mode (ATM).

3.1 Problem formulation

Let G = (V,E) be an undirected graph representing the frame relay network. We denote by

V = {1, . . . , n} the set of backbone nodes where switches reside, while E is set of trunks (or

edges) that connect the backbone nodes, with |E| = m. Parallel trunks are allowed. Since G is

an undirected graph, flows through each trunk (i, j) ∈ E have two components to be summed

up, one in each direction. However, for modeling purposes, costs and capacities will always

be associated only with the ordered pair (i, j) satisfying i < j. For each trunk (i, j) ∈ E,

we denote by bij its maximum allowed bandwidth (in kbits/second), while cij denotes the

maximum number of PVCs that can be routed through it and dij is the propagation, or

hopping, delay associated with the trunk. Each commodity k ∈ K = {1, . . . , p} is a PVC

to be routed, associated with an origin-destination pair and with a bandwidth requirement

(or demand, also known as its effective bandwidth) rk. It takes into account the actual

bandwidth required by the customer in the forward and reverse directions, as well as an

overbooking factor.

The ultimate objective of the offline PVC routing problem is to minimize propagation

delays and/or network congestion, subject to several technological constraints. Queueing
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delays are often associated with network congestion and in some networks account for a large

part of the total delay. In other networks, distances may be long and loads low, causing

propagation delay to account for a large part of the total delay. For a discussion of delay

in data networks, see [19]. Two common measures of network congestion are the load on

the most utilized trunk, and the average delay in a network of independent M/M/1 queues,

as in [20]. Another measure, which we use in this section, is a cost function that penalizes

heavily loaded trunks. This function resembles the average delay function, except that it

allows loads to exceed trunk capacities. Routing assignments with minimum propagation

delays may not achieve the least network congestion. Likewise, routing assignments having

the least congestion may not minimize propagation delays. A compromising objective is to

route the PVCs such that a desired point in the tradeoff curve between propagation delays

and network congestion is achieved.

The upper bound on the number of PVCs allowed on a trunk depends on the port card

used to implement it. A set of routing assignments is feasible if and only if for every trunk

(i, j) ∈ E the total PVC effective bandwidth requirements routed through it does not exceed

its maximum bandwidth bij and the number of PVCs routed through it is not greater than

cij .

Let xk
ij be a 0-1 variable such that xk

ij = 1 if and only if trunk (i, j) ∈ E is used to route

commodity k ∈ K from node i to node j. The following linear integer program models the

problem:

minφ(x) =
∑

(i,j)∈E,i<j

φij(x
1
ij , · · · , x

p
ij, x

1
ji, · · · , x

p
ji) (1)

subject to
∑

k∈K

rk(x
k
ij + xk

ji) ≤ bij , ∀(i, j) ∈ E, i < j, (2)

∑

k∈K

(xk
ij + xk

ji) ≤ cij , ∀(i, j) ∈ E, i < j, (3)

∑

(i,j)∈E

xk
ij −

∑

(i,j)∈E

xk
ji = ak

i , ∀i ∈ V,∀k ∈ K, (4)

xk
ij ∈ {0, 1}, ∀(i, j) ∈ E,∀k ∈ K. (5)

Constraints of type (2) limit the total flow on each trunk to at most its capacity. Con-

straints of type (3) enforce the limit on the number of PVCs routed through each trunk.

Constraints of type (4) are flow conservation equations, which together with (5), state that

the flow associated with each PVC cannot be split, where ak
i = 1 if node i is the source for

commodity k, ak
i = −1 if node i is the destination for commodity k, and ak

i = 0 otherwise.

The cost function φij(x
1
ij , · · · , x

p
ij , x

1
ji, · · · , x

p
ji) associated with each trunk (i, j) ∈ E with

i < j is the linear combination of a trunk propagation delay component and a trunk congestion
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component. The propagation delay component is defined as

φd
ij(x

1
ij , · · · , x

p
ij , x

1
ji, · · · , x

p
ji) = dij ·

∑

k∈K

ρk(x
k
ij + xk

ji), (6)

where coefficients ρk are used to model two plausible delay functions:

• If ρk = 1, then this component leads to the minimization of the number of hops weighted

by the propagation delay on each trunk.

• If ρk = rk, then the minimization takes into account the effective bandwidth routed

through each trunk weighted by its propagation delay.

Let yij =
∑

k∈K rk(x
k
ij + xk

ji) be the total flow through trunk (i, j) ∈ E with i < j.

The trunk congestion component depends on the utilization rates uij = yij/bij of each trunk

(i, j) ∈ E with i < j. It is taken as the piecewise linear function proposed by Fortz and

Thorup [21] and depicted in Figure 12, which increasingly penalizes flows approaching or

violating the capacity limits:

φb
ij(x

1
ij , · · · , x

p
ij, x

1
ji, · · · , x

p
ji) = bij ·











































uij , uij ∈ [0, 1/3)

3 · uij − 2/3, uij ∈ [1/3, 2/3),

10 · uij − 16/3, uij ∈ [2/3, 9/10),

70 · uij − 178/3, uij ∈ [9/10, 1),

500 · uij − 1468/3, uij ∈ [1, 11/10),

5000 · uij − 16318/3, uij ∈ [11/10,∞).

(7)

The value Ω = max(i,j)∈E,i<j{uij} gives a global measure of the maximum congestion in the

network.

In this section, we use the cost function

φij(x
1
ij , · · · , x

p
ij, x

1
ji, · · · , x

p
ji) =

= (1− δ) · φd
ij(x

1
ij , · · · , x

p
ij , x

1
ji, · · · , x

p
ji) + δ · φb

ij(x
1
ij, · · · , x

p
ij , x

1
ji, · · · , x

p
ji) (8)

associated with each trunk (i, j) ∈ E with i < j, where weights (1 − δ) and δ correspond

respectively to the propagation delay and the network congestion components, with δ ∈ [0, 1].

Note that if δ > 0, then the network congestion component is present in the objective function,

which allows us to relax capacity constraints (2). This is assumed in the algorithms we

propose in Subsection 3.2. We show in Subsection 3.3 that small values, such as δ = 0.1, lead

to feasible solutions minimizing the overall propagation delays (measured in terms of either

hops or propagation) and with balanced loads on the trunks, characterized by reduced values

of the maximum congestion index Ω.
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Figure 12: Piecewise linear load balance cost component associated with each trunk.

Several heuristics have been proposed for different variants of the bandwidth packing prob-

lem. One of the first algorithms for routing virtual circuits in communication networks was

proposed by Yee and Lin [22]. Their problem is formulated as a nonlinear multicommodity

flow problem with integer decision variables. Their heuristic applies Lagrangean relaxation

and a multiplier adjustment procedure to solve a sequence of restricted problems. Computa-

tional results are illustrated for problems in three different networks. Their largest problem

had 61 nodes and 148 links. Sung and Park [23] have also developed a Lagrangean heuristic

for a similar variant of this problem. They limited its application to six small networks, the

largest of which had 20 nodes and 52 links. Laguna and Glover [24] considered a bandwidth

packing problem in which they want to assign calls to paths in a capacitated graph, such that

capacities are not violated and some measure of the total profit is maximized. They develop a

tabu search algorithm which makes use of an efficient implementation of the k-shortest path

algorithm. Computational results for small problems involving up to 31 nodes and 50 calls are

reported. Amiri et al. [25] proposed another formulation for the bandwidth packing problem.

They consider both revenue losses and costs associated with communication delays as part

of the objective. A heuristic procedure based on Lagrangean relaxation is applied for finding

bounds and solutions. Computational results are reported for problems with up to 50 nodes,

with the number of calls ranging from 50 to 90% of the maximum number of all possible

calls. Resende and Resende [26] proposed a GRASP for offline PVC rerouting in which a

different objective function is considered. Their construction and local search procedures are

different than those proposed in this section. In particular, the construction procedure often
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encountered difficulties in finding feasible solutions for tightly constrained instances. Also,

their local search procedure is much more time-consuming, limiting its application to small

instances. Shyur and Wen [27] proposed a tabu search algorithm for optimizing the system

of virtual paths. The objective function consists in minimizing the maximum link load, by

requiring that each route visits the minimum number of hubs. The load of a link is defined as

the sum of the virtual path capacities, summed over the virtual paths that traverse the link.

Computation results for problems with up to 64 nodes, 112 links, and 2048 demand pairs are

given.

A number of exact approaches for solving variants of the bandwidth packing problem

have also appeared in the literature. Parker and Ryan [28] described a branch and bound

procedure for optimally solving a bandwidth packing problem. Their objective is to allocate

bandwidth so as to maximize the total revenue. The linear relaxation of the associated

integer programming problem is solved using column generation. Computational results for 14

different networks with up to 29 nodes, 61 links, and 93 calls are presented. LeBlanc et al. [29]

addressed packet switched telecommunication networks, considering restrictions on paths and

flows: hop limits, node and link capacity constraints, and high- and low-priority flows. They

minimize the expected queueing time and do not impose integrality constraints on the flows.

Dahl et al. [30] studied a network configuration problem in telecommunications, searching for

paths in a capacitated network to accommodate a given traffic demand matrix. Their model

also involves an intermediate pipe layer. The problem is formulated as an integer linear

program, where the 0-1 variables represent different paths. An associated integral polytope is

studied and different classes of facets are described. These are embedded in a cutting plane

algorithm. Computational results for realistic-size problems, with up to 62 nodes, 81 links, and

33 origin-destination pairs are presented. Barnhart et al. [31] proposed a branch-and-cut-and-

price algorithm for origin-destination integer multicommodity flow problems. This problem is

a constrained version of the linear multicommodity network flow problem, in which each flow

may use only path from its origin to its destination. Because this model contains one variable

for each origin-destination path, for every commodity, the linear programming relaxations

are solved using column generation. New branching rules allow columns to be efficiently

generated at each node of the branch and bound tree. New cuts can also be generated at each

node of the branch and bound tree, helping to strengthen the linear programming relaxation.

Implementation details, together with computational results for problems with at most 50

nodes, 130 edges, and 585 commodities, are reported.

The model (1)–(5) proposed in this section has two distinctive features with respect to

other formulations. First, it takes into account a two component objective function which is

able to handle both delays and load balance. Second, it enforces constraints that limit the

maximum number of PVCs that can be routed through any trunk. An approximate algorithm

for its solution is described in the next section.
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3.2 Approximate algorithm for PVC routing

A GRASP is a multistart or iterative process, in which each GRASP iteration consists of two

phases, a construction phase, in which a feasible solution is produced, and a local search phase,

in which a local optimum in the neighborhood of the constructed solution is sought [32]. The

best overall solution is kept as the result. The pseudo-code in Figure 13 illustrates a general

GRASP procedure for the minimization of an objective function f(x) under constraints x ∈ X,

in which Max Iterations GRASP iterations are done.

procedure GRASP

1 f∗ ←∞;

2 for k = 1, . . . , Max Iterations do

3 Construct a greedy randomized solution x ∈ X;

4 Find y by applying local search to x;

5 if f(y) < f∗ do

6 x∗ ← y;

6 f∗ ← f(x∗);

7 end if ;

8 end for;

9 return x∗;

end GRASP;

Figure 13: Pseudo-code of a general GRASP procedure.

A feasible solution is iteratively constructed in the first phase, one element at a time.

At each construction iteration, the choice of the next element to be added is determined by

ordering all candidate elements (i.e. those that can be added to the solution) in a candidate

list with respect to its contribution to the objective function. The list of best candidates is

called the restricted candidate list (RCL). The random selection of an element from the RCL

allows for different solutions to be obtained at each GRASP iteration.

Another construction mechanism, called heuristic-biased stochastic sampling, was intro-

duced by Bresina [33]. In the construction procedure of the basic GRASP, the next element

to be introduced in the solution is chosen at random from the candidates in the RCL. The

elements of the RCL are assigned equal probabilities of being chosen. However, any probabil-

ity distribution can be used to bias the selection toward some particular candidates. Bresina

[33] introduced a family of such probability distributions. In Bresina’s selection procedure,

the candidates are ranked according to the greedy function. Binato et al. [34] use Bresina’s

selection procedure, but restricted to elements of the RCL.

Since solutions generated by a GRASP construction are not guaranteed to be locally
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optimal, it is almost always beneficial to apply a local search to attempt to improve each

constructed solution.

In the remainder of this section, we customize a GRASP for the offline PVC routing

problem. We describe construction and local search procedures, as well as a path-relinking

intensification strategy.

3.2.1 Construction phase

In the construction phase, the routes are determined, one at a time. A new PVC is selected to

be routed in each iteration. To reduce the computation times, we used a combination of the

strategies usually employed by GRASP and heuristic-biased stochastic sampling. We create

a restricted candidate list with a fixed number of elements nc. At each iteration, it is formed

by the nc unrouted PVCs pairs with the largest demands. An element ` is selected at random

from this list with probability π(`) = r`/
∑

k∈RCL rk.

Once a PVC ` ∈ K is selected, it is routed on a shortest path from its origin to its

destination. The capacity constraints (2) are relaxed and handled via the penalty function

introduced by the load balance component (7) of the edge weights. The constraints of type

(3) are explicitly taken into account by forbidding routing through trunks already using its

maximum number of PVCs. The weight ∆φij of each edge (i, j) ∈ E is given by the increment

of the cost function value φij(x
1
ij , · · · , x

p
ij , x

1
ji, · · · , x

p
ji), associated with routing r` additional

units of demand through edge (i, j).

More precisely, let K ⊆ K be the set of previously routed PVCs and K ij ⊆ K be the

subset of PVCs that are routed through trunk (i, j) ∈ E. Likewise, let K = K ∪ {`} ⊆ K be

the new set of routed PVCs and K ij = Kij ∪ {`} ⊆ K be the new subset of PVCs that are

routed through trunk (i, j). Then, we define x`
ij = 1 if PVC ` ∈ K is routed through trunk

(i, j) ∈ E from i to j, x`
ij = 0 otherwise. Similarly, we define x`

ij = 1 if PVC ` ∈ K is routed

through trunk (i, j) ∈ E from i to j, x`
ij = 0 otherwise. According with (8), the cost associated

with each edge (i, j) ∈ E in the current solution is given by φij(x
1
ij , · · · , x

p
ij , x

1
ji, · · · , x

p
ji). In

the same manner, the cost associated with each edge (i, j) ∈ E after routing PVC ` will be

φij(x
1
ij , · · · , x

p
ij , x

1
ji, · · · , x

p
ji). Then, the incremental edge weight ∆φij associated with routing

PVC ` ∈ K through edge (i, j) ∈ E, used in the shortest path computations, is given by

∆φij = φij(x
1
ij , · · · , x

p
ij , x

1
ji, · · · , x

p
ji)− φij(x

1
ij , · · · , x

p
ij , x

1
ji, · · · , x

p
ji). (9)

The enforcement of type (3) constraints may lead to unroutable demand pairs. In this

case, the current solution is discarded and a new construction phase starts.

3.2.2 Local search

Each solution built in the first phase may be viewed as a set of routes, one for each PVC. Our

local search procedure seeks to improve each route in the current solution. For each PVC
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k ∈ K, we start by removing rk units of flow from each edge in its current route. Next, we

compute incremental edge weights ∆φij associated with routing this demand through each

trunk (i, j) ∈ E according to (9), as described in Subsection 3.2.1. A tentative new shortest

path route is computed using the incremental edge weights. If the new route improves the

solution, it replaces the current route of PVC k. This is continued until no improving route

can be found.

3.2.3 Path-relinking

Path-relinking was originally proposed by Glover [35] as an intensification strategy exploring

trajectories connecting elite solutions obtained by tabu search or scatter search [36, 37, 38].

Starting from one or more elite solutions, paths in the solution space leading toward other elite

solutions are generated and explored in the search for better solutions. This is accomplished

by selecting moves that introduce attributes contained in the guiding solutions. Path-relinking

may be viewed as a strategy that seeks to incorporate attributes of high quality solutions, by

favoring these attributes in the selected moves.

The use of path-relinking within a GRASP procedure as an intensification strategy applied

to each locally optimal solution was first proposed by Laguna and Mart́ı [39], being followed

by several extensions, improvements, and successful applications [40, 41, 42].

In this context, path-relinking is applied to pairs {x1, x2} of solutions, where x1 is the

locally optimal solution obtained after local search and x2 is one of a few elite solutions

randomly chosen from a pool with a limited number Max Elite of elite solutions found along

the search. The pool is originally empty. Each locally optimal solution obtained by local

search is considered as a candidate to be inserted into the pool if it is different (by at least

one trunk in one route, in the case of the bandwidth packing problem) from every other

solution currently in the pool. If the pool already has Max Elite solutions and the candidate

is better than the worst of them, then the former replaces the latter. If the pool is not full,

the candidate is simply inserted.

The algorithm starts by computing the symmetric difference ∆(x1, x2) between x1 and

x2, resulting in a set of moves which should be applied to one of them (the initial solution)

to reach the other (the guiding solution). Starting from the initial solution, the best move

still not performed is applied to the current solution, until the guiding one is attained. The

best solution found along this trajectory is also considered as a candidate for insertion in the

pool and the incumbent is updated. Several alternatives have been considered and combined

in recent implementations to explore trajectories connecting x1 and x2:

• do not apply path-relinking at every GRASP iteration, but only periodically;

• explore two different trajectories, using first x1, then x2 as the initial solution;

• explore only one trajectory, starting from either x1 or x2; and
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• do not follow the full trajectory, but instead only part of it.

All these alternatives involve the trade-offs between computation time and solution quality.

Ribeiro et al. [42] observed that exploring two different trajectories for each pair x1 − x2

takes approximately twice the time needed to explore only one of them, with very marginal

improvements in solution quality. They have also observed that if only one trajectory is to be

investigated, better solutions are found when path-relinking starts from the best among x1

and x2. Since the neighborhood of the initial solution is much more carefully explored than

that of the guiding solution, starting from the best of them gives to the algorithm a better

chance to investigate with more details the neighborhood of the most promising solution. For

the same reason, the best solutions are usually found closer to the initial solution than to the

guiding one, allowing pruning the relinking trajectory before the latter is reached.

Computational results illustrating a trade-off between these strategies for the bandwidth

packing problem are reported later in Subsection 3.3. In this case, the set of moves corre-

sponding to the symmetric difference ∆(x1, x2) between any pair {x1, x2} of solutions is the

subset Kx1,x2
⊆ K of PVCs routed through different routes in x1 and x2. Without loss of

generality, let us suppose that path-relinking starts from any elite solution z in the pool and

uses the locally optimal solution y as the guiding solution.

The best solution y along the new path to be constructed is initialized with z. For each

PVC k ∈ Ky,z, the same shortest path computations described in Subsections 3.2.1 and 3.2.2

are used to evaluate the cost of the new solution obtained by rerouting the demand associated

with PVC k through the route used in the guiding solution y instead of that used in the

current solution originated from z. The best move is selected and removed from Ky,z. The

new solution obtained by rerouting the above selected PVC is computed, the incumbent y is

updated, and a new iteration resumes. These steps are repeated, until the guiding solution

y is reached. The incumbent y is returned as the best solution found by path-relinking and

inserted into the pool if it satisfies the membership conditions.

The pseudo-code with the complete description of the procedure GRASP+PR BPP for the

bandwidth packing problem arising in the context of offline PVC rerouting is given in Fig-

ure 14. This description incorporates the construction, local search, and path-relinking phases.

3.3 Computational experiments

The experiments were performed on an SGI Challenge computer (28 196-MHz MIPS R10000

processors) with 7.6 Gb of memory. Each run used a single processor. The algorithms were

coded in Fortran and were compiled with the SGI MIPSpro F77 compiler using flags -O3 -64

-static. CPU times were measured with the system function etime.

The experiments were run on two groups of test instances. The first one is formed by some

of the test problems from three of the classes used by Fortz and Thorup [21]. The first class

is the AT&T Worldnet backbone with projected demands, a real-world network with 90 nodes
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procedure GRASP+PR BPP;

1 φ∗ ←∞;

2 Pool← ∅;

3 for k = 1, . . . , Max Iterations do

4 Construct a greedy randomized solution x;

5 Find y by applying local search to x;

6 if y satisfies the membership conditions then insert y into Pool;

7 Randomly select an elite solution z ∈ Pool with uniform probability;

8 Compute Ky,z;

9 Let y be the best solution found by applying path-relinking to y − z;

10 if y satisfies the membership conditions then insert y into Pool;

11 if φ(y) < φ∗ do

12 x∗ ← y;

13 φ∗ ← φ(x∗);

14 end if ;

15 end for;

16 return x∗;

end GRASP+PR BPP;

Figure 14: Pseudo-code of the GRASP with path-relinking procedure for the bandwidth

packing problem
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and 274 links. The other two classes are formed by synthetic networks. More specifically,

2-level hierarchical graphs are generated using the GT-ITM generator [43], based on a model

of Calvert et al. [44] and Zegura et al. [45]. Edges are of two types: local access trunks and

long distance trunks. The capacities of edges of the same type are equal. Local access trunks

have lower capacities than long distance trunks. On Waxman graphs, the nodes are uniformly

distributed points in the unit square. The probability of having an edge between two nodes u

and v is given by ηe−δ(u,v)/2θ, where η is a parameter used to control the density of the graph,

δ(u, v) is the Euclidean distance between u and v, and θ is the maximum distance between

any two nodes [46]. All trunk capacities are equal. The demands are such that different

nodes have different levels of activity, modeling hot spots on the network. They are relatively

larger between closer pairs of nodes. We have used another problem generator [26] to create

the second group of test instances, with characteristics more similar to those of a frame-relay

network. This problem generator and the test instances are available from the authors.

Five problems were selected from each of these groups, whose characteristics are sum-

marized in Table 1. These ten instances are among the largest, to date, to appear in the

literature. They are available for download 1 from the authors. The table shows, for each

instance, its name, network type, number of nodes, number of trunks, number of demand

pairs, and the value Φuncap, which is the same normalizing scaling factor used by Fortz and

Thorup [21]. This normalization allows to compare costs across different network sizes and

topologies. This uncapacitated measure is defined as

Φuncap =
∑

k∈K

rk · hk,

where rk is the bandwidth requirement associated with pair k ∈ K and hk is the minimum

distance measured with unit weights (hop count) between the origin and destination nodes

of demand pair k.

3.3.1 Algorithm variants

In the first set of experiments, we considered four variants of the GRASP and path-relinking

schemes proposed in Subsection 3.2.3:

• G: This variant is a pure GRASP with no path-relinking.

• GPRf: This variant adds to G a one-way path-relinking starting from a locally optimal

solution and using a randomly selected elite solution as the guiding solution.

• GPRb: This variant adds to G a one way path-relinking starting from a randomly selected

elite solution and using a locally optimal solution as the guiding solution.

1http://www.research.att.com/~mgcr/data/pvc-routing.tar.gz
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Table 1: Problem characteristics.

Instance Network type |V | |E| |K| Φuncap

att AT&T Worldnet backbone 90 274 272 92,607

hier50a 2-level hierarchical 50 148 2450 113,976,500

hier100a 2-level hierarchical 100 360 9900 435,618,300

wax50a Waxman 50 476 9900 47,719,429

wax100a Waxman 100 230 2220 198,827,455

fr250 Frame-relay 60 344 250 173,194

fr500 Frame-relay 60 453 500 288,086

fr750 Frame-relay 60 498 750 448,220

fr1000 Frame-relay 60 518 1000 603,362

fr1250 Frame-relay 60 535 1250 955,568

• GPRfb: This variant combines GPRf and GPRb, performing path-relinking in both direc-

tions.

We evaluate the effectiveness of the above variants in terms of the tradeoffs between compu-

tational time and solution quality. The parameter δ was set to 1 in the objective function,

i.e. only the load balancing component is used.

To study the effect of path-relinking on GRASP, we compared the four variants on two

instances. The first is instance att from Table 1. The second is instance fr750a, derived

from instance fr750 from Table 1 by scaling all demands by a factor of 1/1.3 = 0.76923.

Two hundred independent runs for each variant were done for each problem. Execution was

terminated when a solution of value less than or equal to look4 was found. We used look4

values of 129400 and 479000 for att and fr750a, respectively. These are sub-optimal values

chosen such that the slowest variant could terminate in a reasonable amount of computation

time. Empirical probability distributions for time to target solution are plotted in Figures 15

and 16. To plot the empirical distribution for each algorithm and each instance, we follow the

procedure described in [47]. We associate with the i-th smallest running time ti a probability

pi = (i − 1
2)/200, and plot the points zi = (ti, pi), for i = 1, . . . , 200. Due to the time taken

by the pure GRASP procedure, we limited its plot in Figure 16 to 60 points.

These plots show a similar relative behavior of the four variants on the two instances.

Since instance fr750a is harder for all variants and computation times are longer, its plot is

more discerning. For a given computation time, the probability of finding a solution at least

as good as the target value increase from G to GPRf, from GPRf to GPRfb, and from GPRfb

to GPRb. For example, there is 9.25% probability for GPRfb to find a target solution in less

than 100 seconds, while this probability increases to 28.75% for GPRb. For G, there is a 8.33%
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Figure 15: Empirical distributions of time to target solution for GRASP, GRASP with forward

path-relinking, GRASP with backward path-relinking, and GRASP with back and forward

path-relinking for instance att.

probability of finding a target solution within 2000 seconds, while for GPRf this probability

increases to 65.25%. GPRb finds a target solution in at most 129 seconds with 50% probability.

For the same probability, this time increases to 172, 1727, and 10933 seconds, respectively,

for variants GPRfb, GPRf, and G.

In accordance with these results, variant GPRb, which does path-relinking backwards from

an elite solution to a locally optimal solution, is the most effective. Because of this, we limit

ourselves to only this GRASP with path-relinking variant in the remaining experiments.

3.3.2 Comparison with other heuristics

We now compare GPRb using a relatively small number of iterations, fixed at 200, with other

simpler heuristics, one of them (heuristic H1 described below) used in traffic engineering by

network planners:

• Heuristic H1 starts by sorting the pairwise demands in decreasing order and sequentially

routes each pair in this order. Each pair is assigned to a minimum hop path (a path

minimizing the number of links between the origin and destination nodes).
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Figure 16: Empirical distributions of time to target solution for GRASP, GRASP with forward

path-relinking, GRASP with backward path-relinking, and GRASP with back and forward

path-relinking for instance fr750a.

• Heuristic H2 also starts by sorting the pairwise demands in decreasing order and se-

quentially routes each pair in this order. Each pair is assigned to a route minimizing

the same cost function φ used in GPRb.

• Heuristic H3 adds to H2 the same local search procedure used in GPRb.

The heuristics above have been implemented in Fortran using the same components used to

implement the GRASP with path-relinking variants.

We considered the test problems listed in Table 1. We also wanted to compare our heuris-

tics on other test problems, and with other algorithms, described in [31, 27]. Unfortunately,

data for these problems were not available from the authors.

Table 2 summarizes the numerical results. For each algorithm and for each instance, we

give the normalized value Φ∗ = Φ/Φuncap (where Φ is the cost function value of the best

solution found), the corresponding maximum edge utilization rate Ω, and the distribution of

the number of edges that have flow in each of the intervals defining each function φb
ij . The dis-

tribution is represented by a sequence of integers, separated by slashes. Right trailing zeroes

are omitted. For example, 0/88/416/14 (results obtained by GPRb for instance fr1000) cor-
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Table 2: Numerical results for short runs.

H1 H2

Instance Φ∗ Ω distribution Φ∗ Ω distribution

att 615.34 6.079 228/17/13/1/2/13 1.4995 0.700 216/52/6

hier50a 312.03 2.355 109/21/6/4/0/8 1.2586 0.669 86/60/2

hier100a 460.48 3.151 231/54/25/12/6/39 1.4211 0.900 141/177/42

wax50a 49.048 1.290 109/79/24/3/6/9 1.7204 0.810 5/212/13

wax100a 101.01 2.026 198/218/42/4/5/9 3.8827 1.125 13/447/11/2/0/3

fr250 670.57 3.245 227/62/9/6/9/31 4.0348 1.026 62/223/44/13/2

fr500 959.05 4.119 264/68/37/13/9/62 3.6743 1.006 0/307/125/20/1

fr750 1118.5 4.749 235/98/44/12/13/96 4.3025 1.012 0/43/429/25/1

fr1000 1254.1 4.087 224/96/40/17/10/131 4.9545 0.935 0/1/454/63

fr1250 1909.5 6.420 185/77/49/20/21/183 2472.6 3.278 0/0/0/0/1/534

H3 GPRb

Instance Φ∗ Ω distribution Φ∗ Ω distribution

att 1.3682 0.689 225/46/3 1.3578 0.689 230/40/4

hier50a 1.2295 0.668 92/54/2 1.2141 0.667 103/44/1

hier100a 1.3363 0.898 202/136/22 1.3195 0.875 220/124/16

wax50a 1.4938 0.773 29/197/4 1.4467 0.772 29/197/4

wax100a 2.0175 1.087 18/451/4/0/3 1.9791 1.097 20/449/4/0/3

fr250 4.0042 1.026 69/217/43/13/2 3.3590 1.008 104/194/34/11/1

fr500 3.6270 1.006 2/315/115/20/1 3.1477 1.006 48/304/82/18/1

fr750 4.0242 1.012 1/152/316/28/1 3.5415 1.012 6/206/268/17/1

fr1000 4.6429 0.935 0/19/467/32 3.8461 0.990 0/88/416/14

fr1250 414.56 3.794 0/0/0/1/168/366 345.89 4.867 0/0/0/3/229/303

responds to a solution in which 88 edges have their utilization rates in the interval [1/3, 2/3),

416 edges have their utilization rates in the interval [2/3, 9/10), and 14 edges have their uti-

lization rates in the interval [9/10, 1). Better solutions, in general, will be characterized by

smaller cost values, smaller maximum utilization rates, and distributions skewed to the left.

Heuristic H1 does not take into account the cost function φ. As expected, for the other

heuristics, H3 systematically finds solutions with smaller costs than those found by H2, while

GPRb further improves upon H3. Though none of the heuristics considers explicitly the mini-

mization of the maximum utilization rate, this rate is systematically reduced by going from

H1 to H2, to H3, and to GPRb.

In general, both the local search in H3 and, more strongly GPRb, contribute to improve the

distribution of edges and to rerouting them on less loaded edges. As a result, the skewness to

the left is accentuated and the maximum utilization rate is reduced. Figure 17 shows plots

illustrating this for all ten test instances. Each plot has two parts. In the left, we represent

the difference between the distributions found by heuristics H2 and H3. For each interval,

we give the increase in the corresponding number of edges in the solution found by H3 with
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respect to those in the solution found by H2. Similar results are depicted in the right side of

each plot, regarding the solutions obtained by H2 and GPRb. In each case, the areas above

and below the horizontal axis are equal.

We note from these plots that both heuristics improve the greedy solution, by reducing the

number of overloaded edges and increasing the number of underutilized edges. The plots also

illustrate the general performance of GPRb with respect to H3. GPRb tends to improve trunk

utilization with respect to H3 by more strongly shifting flow from overloaded to underutilized

edges. As a consequence, it obtains solutions characterized by smaller costs and smaller

utilization rates.

Table 3: Numerical results for long runs.

computation time

Instance 25s 125s 625s 3125s 15625s 78125s Ω distribution

att 1.3607 1.3578 1.3577 1.3577 1.3562 1.3562 0.689 231/39/4

hier50a 1.2219 1.2189 1.2146 1.2136 1.2129 1.2113 0.667 98/50

wax50a 1.4849 1.4716 1.4533 1.4462 1.4412 1.4384 0.758 21/206/3

fr250 3.7091 3.3590 3.2796 3.2727 3.2497 3.2496 1.008 135/163/34/11/1

fr500 3.5496 3.3340 3.1466 3.1317 3.1306 3.0912 1.006 39/326/69/18/1

Heuristics H1, H2, and H3, which are not multi-start heuristics, are much faster than the

multi-start GPRb. However, there is a clear tradeoff in terms of solution quality when extra

time is taken by GPRb. We ran GPRb on five of the ten instances in the experiment for about

one CPU-day. Table 3 lists objective function values as a function of the running time for

these instances, as well as the maximum utilization rate and the distribution of the number

of edges that have flow in each of the intervals defining each cost function φb
ij , for the best

solution found. We notice that in most of the cases GPRb continues to improve the solution

as the running time increases. Even if the maximum utilization rate does not change, the

distribution of the number of edges does. For example, on instance hier50a, the improved

solution shifted several edges into the lowest range with respect to the solution in Table 2.

3.3.3 Variation of the hybrid objective function parameter

In this last experiment, we investigate the behavior of the hybrid objective function φ with

the variation of the parameter δ, used to weigh the network congestion and propagation delay

components. We ran GPRb for 2000 iterations on instance att using 41 different values of δ,

ranging from 0 to 1. For each value of δ (with the exception of δ = 0 which cannot be plotted

on a log scale), the plot in Figure 18 shows the delay and the maximum utilization rate of the

best solution found. We note that although the maximum utilization rate is not explicitly

considered in the objective function, it appears to be inversely correlated with the parameter
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Figure 17: Number of arcs with loads in intervals [0, .33), [.33, .67), [.67, .9), [.9, 1), [1, 1.1),

and [1.1,∞) of trunk capacity, for heuristics H3 (greedy with local search) and GPRb (GRASP

with backward path-relinking). Plots show difference with respect to solution found with

heuristic H2 (pure greedy).
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Figure 18: Delay and maximum utilization as a function of objective function parameter δ

on instance att with unit edge delays.

δ of the objective function. Delays were computed using ρk = rk (see Subsection 3.1) and

using unit delays, i.e. dij = 1, for every (i, j) ∈ E.

We first notice from this figure that there is a range of small values of δ, for which the

delay is kept at a low value without serious overload. When the value of δ approaches 1, the

maximum utilization rate is strongly reduced at the cost of larger delays. Likewise, when

the value of δ approaches 0, the delay is strongly reduced at the expense of higher utilization

rates. The extreme case, where δ = 0, corresponds to using the purely greedy heuristic H1.

In this case, the utilization rate is 6.08, and the delay is 92607, which is a lower bound on the

value of optimal solution of the capacity constrained delay minimization problem. Since the

resulting utilization rate is high, this is an indication that one should use a strictly positive

value of δ.

We also observe that, as the value of δ increases from 0 to 1, the maximum utilization rate

decreases, following approximately a step function taking values equal to those appearing in

the definition of the functions φb
ij , i.e. 1.1, 1.0, 0.9, and 0.67. As the value of δ increases,

the minimization of the maximum utilization rate dominates the objective function. As a

consequence, the algorithm attempts to reduce the flow on edges with higher loads. To
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balance this reduction, flows on less loaded edges are increased up to the next breakpoint

in its cost function. Therefore, the flows have a tendency to concentrate around breakpoint

levels. This characteristic provides a useful strategy for setting the appropriate value of

parameter δ of the objective function, to achieve some quality of service (QoS) level defined

by a desired balance between propagation delay and delay due to network congestion.

3.4 Concluding remarks

In this section, we presented a new formulation for the bandwidth packing problem arising

in the context of offline PVC routing. This formulation uses an objective function that

simultaneously takes into account propagation delays and network congestion. Emphasis on

either component is controlled by a single parameter. We proposed a family of heuristics for

finding approximate solutions to this problem, ranging from a simple greedy algorithm (H2)

and its improved version using local search (H3), to an elaborate combination of GRASP and

path-relinking.

Experimental results on realistic-size test problems show that even the simplest greedy

heuristic (H2) is able to improve on a heuristic used in traffic engineering by network planners

(H1). The two new simple heuristics (H2 and H3) are fast and find good approximate solutions.

The GRASP with path-relinking variants are able to significantly improve upon these simple

heuristics, at the expense of additional computation time. GRASP with path-relinking has

been shown to be efficiently implemented in parallel with approximate linear speedups in the

number of processors [40] and such a strategy could be applied to accelerate GPRb and its

variants.

The structure of the objective function proposed in this section is such that as the weight of

its network congestion component increases, the maximum utilization rate decreases, following

approximately a step function. As a consequence, this structure provides a useful strategy

for setting the appropriate value of the weight parameter of the objective function, to achieve

some quality of service (QoS) level defined by a desired balance between propagation delay

and delay due to network congestion.

4 A hybrid GA for OSPF routing

The Internet is divided into many routing domains, called autonomous systems (ASes). These

ASes interact to control and deliver IP traffic. They typically fall under the administration of

a single institution, such as a company, a university, or a service provider. Neighboring ASes

use the Border Gateway Protocol (BGP) to route traffic [48].

The goal of intra-domain traffic engineering [49] consists in improving user performance

and making more efficient use of network resources within an AS. Interior Gateway Pro-

tocols (IGPs) such as OSPF (Open Shortest Path First) and IS-IS (Intermediate System-
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Intermediate System) are commonly used to select the paths along which traffic is routed

within an AS.

These routing protocols direct traffic based on link weights assigned by the network op-

erator. Each router in the AS computes shortest paths and creates destination tables used

to direct each IP packet to the next router on the path to its final destination. OSPF cal-

culates routes as follows. To each link is assigned an integer weight ranging from 1 to 65535

(= 216−1). The weight of a path is the sum of the link weights on the path. OSPF mandates

that each router computes a graph of shortest paths with itself as the root [50]. This graph

gives the least weight routes (including multiple routes in case of ties) to all destinations in

the AS. In the case of multiple shortest paths originating at a router, OSPF is usually imple-

mented so that it will accomplish load balancing by splitting the traffic flow over all shortest

paths leaving from each router [51]. In this section, we consider that traffic is split evenly

between all outgoing links on the shortest paths to the destination IP address. OSPF re-

quires routers to exchange routing information with all the other routers in the AS. Complete

network topology knowledge is required for the computation of the shortest paths.

Given a set of traffic demands between origin-destination pairs [52], the OSPF weight

setting problem consists in determining weights to be assigned to the links so as to optimize

a cost function, typically associated with a network congestion measure.

The NP-hardness of the OSPF weight setting problem was established in [21]. Previous

work on optimizing OSPF weights have either chosen weights so as to avoid multiple shortest

paths from source to destination or applied a protocol for breaking ties, thus selecting a unique

shortest path for each source-destination pair [53, 54, 55]. Fortz and Thorup [21] were the

first to consider even traffic splitting in OSPF weight setting. They proposed a local search

heuristic and tested it on a realistic AT&T backbone network and on synthetic networks.

Ericsson, Resende, and Pardalos [56] proposed a genetic algorithm and used the set of test

problems considered in [21]. Sridharan, Guérin, and Diot [57] developed another heuristic

for a slightly different version of the problem, in which flow is split among a subset of the

outgoing links on the shortest paths to the destination IP address.

In this section, we propose a hybrid genetic algorithm incorporating a local improvement

procedure to the crossover operator of the genetic algorithm proposed in [56]. The local im-

provement procedure makes use of an efficient dynamic shortest path algorithm to recompute

shortest paths after the modification of link weights. We compare the hybrid algorithm with

the genetic algorithm as well as with the local search procedure in [21].

In the next subsection, we give the mathematical formulation of the OSPF weight set-

ting problem. The hybrid genetic algorithm is described in Subsection 4.2 and the local

improvement procedure in Subsection 4.3. Subsection 4.4 describes efficient algorithms for

solution update used in the local improvement procedure. Computational results are reported

in Subsection 4.5. Concluding remarks are made in the last subsection.
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4.1 Problem formulation

In a data communication network, nodes and arcs represent routers and transmission links,

respectively. Let N and A denote, respectively, the sets of nodes and arcs. Data packets are

routed along links, which have fixed capacities. Consider a directed network graph G = (N,A)

with a capacity ca for each a ∈ A, and a demand matrix D that, for each pair (s, t) ∈ N ×N ,

gives the demand dst in traffic flow from node s to node t. Then, the OSPF weight setting

problem consists in assigning positive integer weights wa ∈ [1, wmax] to each arc a ∈ A, such

that a measure of routing cost is optimized when the demands are routed according to the

rules of the OSPF protocol. The OSPF protocol allows for wmax ≤ 65535.

For each pair (s, t) and each arc a, let f
(st)
a indicate how much of the traffic flow from s

to t goes over arc a. Let la be the total load on arc a, i.e. the sum of the flows going over

a, and let the trunk utilization rate ua = la/ca. The routing cost in each arc a ∈ A is taken

as the piecewise linear function Φa(la), proposed by Fortz and Thorup [21] and depicted in

Figure 19, which increasingly penalizes flows approaching or violating the capacity limits:

Φa(la) =











































ua, ua ∈ [0, 1/3)

3 · ua − 2/3, ua ∈ [1/3, 2/3),

10 · ua − 16/3, ua ∈ [2/3, 9/10),

70 · ua − 178/3, ua ∈ [9/10, 1),

500 · ua − 1468/3, ua ∈ [1, 11/10),

5000 · ua − 16318/3, ua ∈ [11/10,∞).

(10)

Given a weight assignment w and the loads l
OSPF (w)
a associated with each arc a ∈ A

corresponding to the routes obtained with OSPF, we denote its routing cost by ΦOSPF (w) =
∑

a∈A Φa(l
OSPF (w)
a ). The OSPF weight setting problem is then equivalent to finding arc

weights w∗ ∈ [1, wmax] such that ΦOSPF (w) is minimized.

The general routing problem can be formulated as the following linear programming prob-

lem with a piecewise linear objective function:

ΦOPT = minΦ =
∑

a∈A

Φa(la) (11)
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Figure 19: Piecewise linear function Φa(la).

subject to

∑

u:(u,v)∈A

f
(st)
(u,v) −

∑

u:(v,u)∈A

f
(st)
(v,u) =











−dst if v = s,

dst if v = t,

0 otherwise,

v, s, t ∈ N, (12)

la =
∑

(s,t)∈N×N

f (st)
a , a ∈ A, (13)

Φa(la) ≥ la, a ∈ A, (14)

Φa(la) ≥ 3la − 2/3ca, a ∈ A, (15)

Φa(la) ≥ 10la − 16/3ca, a ∈ A, (16)

Φa(la) ≥ 70la − 178/3ca, a ∈ A, (17)

Φa(la) ≥ 500la − 1468/3ca, a ∈ A, (18)

Φa(la) ≥ 5000la − 16318/3ca, a ∈ A, (19)

f (st)
a ≥ 0, a ∈ A; s, t ∈ N. (20)

Constraints (12) are flow conservation constraints that ensure routing of the desired traffic.

Constraints (13) define the load on each arc a and constraints (14–19) define the cost on each

arc a according to the cost function Φa(la).

The above is a relaxation of OSPF routing, as it allows for arbitrary routing of traffic.

Then, ΦOPT is a lower bound on the optimal OSPF routing cost ΦOSPF (w∗). Also, if ΦOSPF (1)

denotes the optimal OSPF routing cost when unit weights are used, then ΦOSPF (w∗) ≤

ΦOSPF (1).
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Fortz and Thorup [21] proposed a normalizing scaling factor for the routing cost which

makes possible comparisons across different network sizes and topologies:

ΦUNCAP =
∑

(s,t)∈N×N

dsthst,

where hst is the minimum hop count between nodes s and t. For any routing cost Φ, the

scaled routing cost is defined as

Φ∗ = Φ/ΦUNCAP .

Using this notation, the following results hold:

• The optimal routing costs satisfy

1 ≤ Φ∗
OPT ≤ Φ∗

OSPF (w∗) ≤ Φ∗
OSPF (1) ≤ 5000.

• Given any solution to (11-20) with normalized routing cost Φ∗, then Φ∗ = 1 if and only

if all arc loads are below 1/3 of their capacities and all demands are routed on minimum

hop routes.

• Given any solution to (11-20) where all arcs are at their maximum capacity, then the

normalized routing cost Φ∗ = 102
3 . We say that a routing congests a network if Φ∗ ≥ 102

3 .

4.2 Hybrid genetic algorithm for OSPF weight setting

In this section, we summarize the detailed description of the genetic algorithm given in [56]

and propose a hybrid genetic algorithm by adding a local improvement procedure after the

crossover.

A genetic algorithm is a population-based metaheuristic for combinatorial optimization.

In this context, a population is simply a set of feasible solutions. Solutions in a population are

combined (through crossover) and perturbed (by mutation) to produce a new generation of

solutions. When solutions are combined, attributes of higher-quality solutions have a greater

probability to be passed down to the next generation. This process is repeated over many

generations as long as the quality of the solutions in the new population improves over time.

We next show how this idea can be explored for weight setting in OSPF routing.

Each solution is represented by an array of integer weights, where each component corre-

sponds to the weight of an arc of the network. Each individual weight belongs to the interval

[1, wmax]. Each solution w is associated with a fitness value defined by the OSPF routing cost

ΦOSPF (w). The initial population is randomly generated, with arc weights selected from a

uniform distribution in the interval [1, wmax/3]. The population is partitioned into three sets

A, B, and C. The best solutions are kept in A, while the worst ones are in C. All solutions

in A are promoted to the next generation. Solutions in B are replaced by crossover of one
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parent from A with another from B∪C using the random keys crossover scheme of Bean [58].

All solutions in C are replaced by new randomly generated solutions with arc weights selected

in the interval [1, wmax].

In the random keys scheme, crossover is carried out on a selected pair of parent solutions

to produce an offspring solution. Each selected pair consists of an elite parent and a non-elite

parent. The elite parent is selected, at random, uniformly from solutions in set A, while the

non-elite parent is selected, at random, uniformly from solutions in set B ∪C. Each weight in

the offspring solution is either inherited from one of its parents or is reset by mutation. With

mutation probability pm, the weight is reset to a value selected at random in the interval

[1, wmax]. If mutation does not occur, then the child inherits the weight from its elite parent

with a given probability pA > 1/2. Otherwise, it inherits the weight from its non-elite parent.

The hybrid genetic algorithm proposed in this subsection, applies a local improvement

procedure to each offspring solution obtained by crossover. This local improvement procedure

is described in the next subsection.

4.3 Local Improvement Procedure

In this subsection, we describe the local improvement procedure. Starting from an initial

solution, the local improvement procedure analyzes solutions in the neighborhood of a current

solution w in the search for a solution having a smaller routing cost. If such a solution exists,

then it replaces the current solution. Otherwise, the current solution is returned as a local

minimum.

The local improvement procedure is incorporated in the genetic algorithm, described in

Subsection 4.2, to enhance its ability to find better-quality solutions with less computational

effort. Local improvement is applied to each solution generated by the crossover operator.

Besides being computationally demanding, the use of large neighborhoods in a hybrid genetic

algorithm can lead to loss of population diversity, and consequently premature convergence to

low-quality local minima. We next describe the local improvement procedure using a reduced

neighborhood.

As before, let la denote the total load on arc a ∈ A in the solution defined by the current

weight settings w. We recall that Φa(la) denotes the routing cost on this arc. The local

improvement procedure examines the effect of increasing the weights of a subset of the arcs.

These candidate arcs are selected among those with the highest routing costs and whose weight

is smaller than wmax. To reduce the routing cost of a candidate arc, the procedure attempts

to increase its weight to induce a reduction on its load. If this leads to a reduction in the

overall routing cost, the change is accepted and the procedure is restarted. The procedure

stops at a local minimum when no improvement results from changing the weights of the

candidate arcs. The pseudo-code in Figure 20 describes the local improvement procedure in

detail.
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procedure LocalImprovement(q, w)

1 dontlooka ← 0,∀a ∈ A;

2 i← 1;

3 while i ≤ q do

4 Renumber the arc indices such that

Φa(la) ≥ Φa+1(la+1),∀a = 1, . . . , |A| − 1;

5 a′ ← 0;

6 for a = 1, . . . , |A| while a′ = 0 do

7 if dontlooka = 1 then dontlooka ← 0;

8 else if wa < wmax then a′ ← a;

9 end for;

10 if a′ = 0 then return;

11 dontlooka′ ← 1;

12 for ŵ = wa′ + 1, . . . , wa′ + d(wmax − wa′)/4e do

13 w′
a ← wa,∀a ∈ A, a 6= a′;

14 w′
a′ ← ŵ;

15 if ΦOSPF (w′) < ΦOSPF (w) then

16 w ← w′;

17 dontlooka′ ← 0;

18 i← 0;

19 end if

20 end for

21 i← i + 1;

22 end while

end LocalImprovement.

Figure 20: Pseudo-code of procedure LocalImprovement.
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The procedure LocalImprovement takes as input parameters the current solution defined

by the weights w and a parameter q which specifies the maximum number of candidate arcs

to be examined at each local improvement iteration. To speed up the search, we disallow the

weight increase of arcs for which no weight increase leads to an improvement in the routing

cost in the previous iteration. To implement this strategy, we make use of a don’t look bit for

each arc.

The don’t look bits are set unmarked in line 1 and the counter of candidate arcs is initialized

in line 2. The loop in lines 3 to 22 investigates at most q selected candidate arcs for weight

increase in the current solution. The arc indices are renumbered in line 4 such that the arcs

are considered in non-increasing order of routing cost. The loop in lines 6 to 9 searches for

an unmarked arc with weight less than wmax. Marked arcs which cannot be selected at the

current iteration are unmarked in line 7 for future investigation. Arc a′ is selected in line 8.

If no arc satisfying these conditions is found, the procedure stops in line 10 returning the

current weights w as the local minimum. In line 11, arc a′ is temporarily marked to disallow

its investigation in the next iteration, unless a weight change in wa′ results in a better solution.

The loop in lines 12 to 20 examines all possible weight changes for arc a′ in the range

[wa′ + 1, wa′ + d(wmax − wa′)/4e]. A neighbor solution w′, keeping all arc weights unchanged

except for arc a′, is built in lines 13 and 14. If the new solution w′ has a smaller routing cost

than the current solution (test in line 15), then the current solution is updated in line 16, arc

a′ is unmarked in line 17, and the arc counter i is reset in line 18. In line 21, we increment

the candidate arc counter i.

The routing cost ΦOSPF (w′) associated with the neighbor solution w′ must be evaluated in

line 15. Instead of computing it from scratch, we use fast update procedures for recomputing

the shortest path graphs as well as the arc loads. These procedures are considered in the next

subsection. Once the new arc loads are known, the total routing cost is computed as the sum

of the individual arc routing costs.

4.4 Fast updates of arc loads and routing costs

In this subsection, we describe the procedures used for fast update of the cost (line 15 of

procedure LocalImprovement) and arc loads. We are in the situation where l are the loads

associated with the current weight settings w and the weight of a unique arc a′ is increased

by exactly a unit.

Let T be the set of destination nodes and denote by gt = (N,At) the shortest path graph

associated with each destination node t ∈ T . One or more of these shortest path graphs will

be affected by the change of the weight of arc a′ from wa′ to wa′ + 1. Consequently, the loads

of some of the arcs in each graph will change.

The procedures described in this subsection use a set of data structures that work like a

memory for the solution. With a weight change, the shortest path graph and the loads can
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change, and the memories are updated instead of recomputed from scratch.

Each shortest path graph with node t as destination has an |A|-vector At indicating the

arcs in gt. If arc a is in the shortest path graph, then At
a = 1. Otherwise, At

a = 0. Another

|A|-vector, lt, associated with the arcs, stores the partial loads flowing to t traversing each

arc a ∈ A. The total load from each arc is represented in the |A|-vector la which stores the

total load traversing each arc a ∈ A. The |N |-vectors πt and δt are associated with the nodes.

The distance from each node to the destination t is stored in πt, while δt keeps the number of

arcs outgoing from each node in gt. All these structures are populated in the beginning and

set free at the end of procedure LocalImprovement. For simplicity, they were omitted from

this procedure and from the parameter list of the procedures described in this subsection.

procedure UpdateCost(a′, d, l)

1 forall a ∈ A do la ← 0;

2 forall t ∈ T do

3 UpdateShortestPaths(a′ , w, t);

4 UpdateLoads(d, t);

5 forall a ∈ At do la ← la + lta;

6 end forall

7 ΦOSPF (w′) ←
∑

a∈A Φa(la);

end UpdateCost.

Figure 21: Pseudo-code of procedure UpdateCost.

The pseudo-code in Figure 21 summarizes the main steps of the update procedure. The

new load la on each arc a ∈ A is set to zero in line 1. The loop in lines 2 to 6 considers

each destination node t ∈ T . For each one of them, the shortest path graph gt is updated

in line 3 and the partial arc loads are updated in line 4. The arc loads are updated in

line 5. Lines 1 and 5 are removed from this procedure in case the arc loads be updated inside

procedure UpdateLoads. Finally, the cost ΦOSPF (w′) of the new solution is computed in line 7.

In the remainder of this subsection we describe the procedures UpdateShortestPaths and

UpdateLoads used in lines 3 and 4.

4.4.1 Dynamic reverse shortest path algorithm

We denote by gt = (N,At) the shortest paths graph associated with each destination node

t ∈ T . Since the weight of a unique arc a′ was changed, the graph gt does not have to be

recomputed from scratch. Instead, we update the part of it which is affected by the weight

change. Ramalingam and Reps [59] and Frigioni et al. [60] proposed efficient algorithms for

these dynamic computations in Dijkstra’s algorithm. These two algorithms are compared
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experimentally in [61]. Although the algorithm of Frigioni et al. is theoretically better, the

algorithm of Ramalingam and Reps usually runs faster in practice. Due to the nature of

the OSPF weight setting problem, we use the reversed version of Dijkstra’s shortest path

algorithm.

The pseudo-code of the specialized dynamic shortest path algorithm for unit weight in-

creases is given in Figure 22. Buriol et al. [62] showed empirically that this algorithm is faster

than the general dynamic reverse shortest path algorithm of Ramalingam and Reps [59]. First,

it identifies the set Q of nodes whose distance labels change due to the increased weight. Next,

the shortest paths graph is updated by deleting and adding arcs for which at least one of its

extremities belongs to Q.

Algorithm UpdateShortestPaths takes as parameters the arc a′ = (−→u, v) whose weight

changed, the current setting of weights w, and a destination node t ∈ T . The algorithm

checks in line 1 if arc a′ does not belong to the shortest paths graph gt, in which case the

weight change does not affect the latter and the procedure returns. Arc a′ is eliminated from

the shortest paths graph gt in line 2. In line 3 the tail node of arc a′ is inserted in a heap

containing all nodes for which the load of its outgoing links might change. This heap will be

used later by the load update procedure. The distances to the destination node t are used

as priority keys and the root contains the node with maximum distance. The outdegree δ+
u

of the tail node of arc a′ is updated in line 4. In line 5, we check if there is an alternative

path to the destination starting from u. If this is the case, the procedure returns in line 5,

since no further change is needed. The set Q of nodes affected by the weight change in arc

a′ is initialized with node u in line 6. The loop in lines 7 to 15 builds the set Q. For each

node identified in this set (line 7), its distance πt(v) to the destination node is increased by

1 in line 8. The loop in lines 16 to 24 updates the shortest paths. Each node u in set Q is

investigated one-by-one in line 16 and each outgoing arc a is scanned in line 17. We check in

line 18 if arc a belongs to the new shortest path to the destination. If so, arc a is inserted

in the shortest paths graph in line 19, its tail u is inserted in the heap in line 20, and its

outdegree δ+(u) is updated in line 21.

4.4.2 Dynamic load update

We first recall that procedure UpdateShortestPaths built a heap H containing all nodes for

which the set of outgoing arcs was modified in the shortest paths graph.

The pseudo-code in Figure 23 summarizes the main steps of the load update procedure.

We denote by lta the load on arc a ∈ A associated with the destination node t ∈ T . Procedure

UpdateLoads takes as parameters the demands d and a destination node t. The loop in lines 1

to 9 removes nodes from the heap until the heap becomes empty. The node u with maximum

distance to the destination node is removed in line 2. The total load flowing through node u

is equal dut +
∑

a=(v,u)∈At la. The load in each arc leaving node u is computed in line 3. The
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procedure UpdateShortestPaths(a′ = (−→u, v), w, t)

1 if a′ /∈ At return;

2 At ← At \ {a′};

3 HeapInsertMax(H,u, πt(u));

4 δ+
u ← δ+

u − 1;

5 if δ+
u > 0 then return

6 Q = {u};

7 forall v ∈ Q do

8 πt(v)← πt(v) + 1;

9 forall a = (u, v) ∈ IN(v) ∩ At do

10 At ← At \ {a};

11 HeapInsertMax(H,u, πt(u));

12 δ+(u)← δ+(u)− 1;

13 if δ+(u) = 0 then Q← Q ∪ {u};

14 end forall

15 end forall

16 forall u ∈ Q do

17 forall a = (u, v) ∈ OUT(u) do

18 if πt(u) = wa + πt(v) then

19 At ← At ∪ {a};

20 HeapInsertMax(H,u, πt(u));

21 δ+(u)← δ+(u) + 1;

22 end if

23 end forall

24 end forall

end UpdateShortestPaths.

Figure 22: Pseudo-code of procedure UpdateShortestPaths.

170



procedure UpdateLoads(H, d, t)

1 while HeapSize(H) > 0 do

2 u← HeapExtractMax(H);

3 load← (dut +
∑

a=(v,u)∈At lta)/δ+(u);

4 forall a = (u, v) ∈ At : lta 6= load do

5 lta ← load;

6 HeapInsertMax(H, v, π(v));

7 end forall

8 end while

end UpdateLoads.

Figure 23: Pseudo-code of procedure UpdateLoads.

loop in lines 4 to 7 scans all arcs leaving node u in the current shortest paths graph for which

the partial load lta has to be updated. The new partial load lta is set in line 5 and the head v

of arc a is inserted in the heap H in line 6.

4.5 Computational Results

In this subsection, we describe the experimental results using the hybrid genetic algorithm

introduced in this subsection. We describe the computer environment, list the values of the

algorithm parameters, present the test problems, and outline the experimental setup.

In the experiments, we compare the hybrid genetic algorithm with the lower bound asso-

ciated with the linear program (11–20) and other heuristics.

4.5.1 The setup

The experiments were done on an SGI Challenge computer (28 196-MHz MIPS R10000 pro-

cessors) with 7.6 Gb of memory. Each run used a single processor.

The algorithms were implemented in C and compiled with the MIPSpro cc compiler,

version 7.30, using flag -O3. Running times were measured with the getrusage function.

Random numbers were generated in the hybrid genetic algorithm as well as in the pure

genetic algorithm using Matsumoto and Nishimura’s Mersenne Twister [63].

The following parameters were set in both the pure and the hybrid genetic algorithms:

• Population size: 50.

• Weight range: [1, wmax = 20].
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• Population partitioning placed the top 25% of the solutions (rounded up to 13) in set A,

the bottom 5% of the solutions (rounded up to 3) in set C, and the remaining solutions

in set B.

• Probability that mutation occurs: pm = 0.01.

• Probability that an offspring inherits the weight from the elite parent during crossover:

pA = 0.7.

• The number of generations varied according to the type of experiment.

In addition, the maximum number of candidate arcs is set to q = 5 in the local improve-

ment procedure in the hybrid genetic algorithm.

The experiments were done on a real-world network from proposed by Fortz and Thorup

[21] and also used in [56]. The AT&T Worldnet backbone is a proposed real-world network of

90 routers and 274 links with 17 destination nodes and 272 origin-destination pairs.

Twelve distinct demand matrices D1,D2, . . . ,D12 are generated. Starting from demand

matrix D1, the other demand matrices are generated by repeatedly multiplying D1 by a

scaling factor: Dk = ρk−1D1,∀ k = 1, . . . , 12.

4.5.2 Fixed time comparison

In this subsection, we compare the hybrid genetic algorithm with three heuristics:

• InvCap: weights are set proportional to the inverse of the link capacity, i.e. wa =

dcmax/cae, where cmax is the maximum link capacity;

• GA: the basic genetic algorithm without the local search used by the hybrid genetic

algorithm;

• LS: the local search algorithm of Fortz and Thorup [21];

as well as with LPLB, the linear programming lower bound ΦOPT . InvCap is used in Cisco

IOS 10.3 and later by default [64, 65]. GA is derived from the genetic algorithm in [56]. LS

is the implementation used in [21].

Twelve increasingly loaded traffic demand matrices are considered. InvCap and LPLB

were run a single time. Ten one-hour runs were done with GA, HGA, and LS on each

instance and average routing costs computed.

Table 4 and Figure 26 summarize these results. For each demand level, the table list

the normalized costs for InvCap and LPLB as well as the average normalized costs over ten

one-hour runs for GA, HGA, and LS. The last row in the table lists the sum of the normalized

average costs for each algorithm. Normalized cost values less than 10 2
3 (i.e., recall that when

the routing cost exceeds 10 2
3 we say that the routing congests the network; see Subsection 4.1)
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are separated from those for which the network is congested by a line segment in the tables.

The distribution of the costs can be seen in the figure, where all ten cost values for each

algorithm and each demand point are plotted together with the average costs.

We make the following remarks about the computational results. The pure genetic algo-

rithm (GA) consistently found better solutions than InvCap. Solution differences increased

with traffic intensity.

HGA found solutions at least as good as GA for all demand levels. Solution differences

increased with traffic intensity. HGA not only found better-quality solutions, but did so in

less CPU time (see Figures 24 and 25, which compare one run of HGA and GA each on the

att network with demand D = 45134.146). Figure 24 shows the value of the best-quality

solution in the population as a function of CPU time, while Figure 25 shows the value of the

best-quality solution in the population as a function of the generation of the algorithm. These

figures illustrate how close to the LP lower bound the HGA comes and how much faster HGA

is to converge compared to GA.

4.5.3 Distribution of time-to-target-solution-value

To study and compare the computation times, we used the methodology proposed by Aiex et

al.[66] and further explored by Resende and Ribeiro e.g. in [67].

Without loss of generality, we considered network att with the demand equal to 37611.7

to illustrate the general behavior observed for most instances. We performed one hundred

independent runs with different seeds of each algorithm GA, HGA, and LS, considering a given

parameter value look4. Each execution was terminated when a solution of value less than or

equal to the target value look4 was found or when the time limit of one hour was reached.

Three different values (corresponding to easy, medium, and difficult cases) of look4 were

investigated: 2.89, 2.77 and 2.64. Different target values were used since the networks and

demands were different. Empirical probability distributions for the time-to-target-solution-

value are plotted in Figure 27. Runs which failed to find a solution of value less than or equal

to the target value look4 within the one-hour time limit were discarded in these plots. To

plot the empirical distribution for each algorithm and each instance, we associate with the

i-th smallest running time ti a probability pi = (i− 1
2)/100, and plot the points zi = (ti, pi),

for i = 1, . . . , nr, where nr ≤ 100 is the number of runs which found a solution of value less

than or equal to the target value look4 within the one-hour time limit.

HGA and LS found solutions with value less than or equal to the target in all runs

associated with network att (Figures 27 and 28). GA failed to find solutions at least as good

as the target value on eight runs with the easiest target, 19 runs with the medium target,

and 59 runs with the hardest target. HGA is not only much faster than GA, but also the

computation times of the former are more predictable than those of the latter. As we can see

from Figure 27, in many runs of GA the computation times are several orders of magnitude
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Figure 24: Cost as a function of time on 1-hour run: HGA versus GA on att with demand

45134.146

larger than those of HGA. Considering Figure 28, we notice that the computation times of

HGA are more predictable than those of LS. The latter are several times larger than the

former in many runs. In more than 30% of the runs LS encounters difficulties to converge

and requires very long computation times. The figure seems to suggest that this is related to

the fact that LS frequently gets stuck at a local minimum and the escape mechanism often

needs to be applied repeatedly to succeed.
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Table 4: Routing costs for att with scaled projected demands. Solutions are averaged over

ten one-hour runs.

Demand InvCap GA HGA LS LPLB

3761.179 1.013 1.000 1.000 1.000 1.00

7522.358 1.013 1.000 1.000 1.000 1.00

11283.536 1.052 1.010 1.008 1.008 1.01

15044.715 1.152 1.057 1.050 1.050 1.05

18805.894 1.356 1.173 1.168 1.168 1.15

22567.073 1.663 1.340 1.332 1.331 1.31

26328.252 2.940 1.520 1.504 1.506 1.48

30089.431 21.051 1.731 1.689 1.691 1.65

33850.609 60.827 2.089 2.007 2.004 1.93

37611.788 116.690 2.663 2.520 2.520 2.40

41372.967 185.671 5.194 4.382 4.377 3.97

45134.146 258.263 20.983 16.433 16.667 15.62

Total 652.691 40.760 35.093 35.322 33.57
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Figure 26: InvCap, GA, HGA, LS, and LP lower bound on att.
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4.6 Concluding remarks

We presented a new hybrid genetic algorithm (HGA) for solving the OSPF weight setting

problem, combining the traditional genetic algorithm (GA) strategy with a local search pro-

cedure to improve the solutions obtained by crossover.

The local search procedure uses small neighborhoods and is based on the fast computation

of dynamic shortest paths. Since it considers only unit weight increments with respect to the

weights in the current solution, our implementation of UpdateShortestPaths is 2 to 3 times

faster than its original implementation. This specialization accounts significantly to speedup

the implementation of the hybrid genetic algorithm.

The new heuristic performs systematically better than the genetic algorithm without local

search (GA and GA0). HGA finds better solutions in substantially less computation times.

The experimental results also showed that it is also more robust, in the sense that it rarely

gets stuck in suboptimal local minima, while the genetic algorithm often does so.

We also compared the new algorithm with a local search heuristic (LS). Once again, HGA

is more robust than LS. Algorithms HGA and LS are competitive in terms of solution quality

and time. HGA is better than LS for some classes of test problems, while LS is better for
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others. Moreover, the implementation of LS is based on limited-size hashing tables which

limits the number of iterations it can perform and, consequently, the solution quality that

can be obtained for larger problems.
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Optimization, and Applications

Eckart Zitzler
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Abstract

This paper gives an introduction into evolutionary computation, in particular in the

light of multiobjective optimization, and demonstrates how evolutionary algorithms can

be used to tackle a highly demanding application in telecommunications, namely the

design of a network processor.

1 Introductory Example

To illustrate the basic principles of multiobjective optimization and evolutionary algorithms,

consider the following example: given is a set of items together with a profit and a weight

associated with each item; the goal is to determine a subset of items such that the overall

profit, i.e., the sum of the profits of the selected items, is maximum, while the overall weight,

i.e., the sum of the weights of the selected items, is minimal. This problem is generally

denoted as knapsack problem.

Now assume that four items are available: a camera (weight = 750, profit = 5), a thermos

flask (weight = 1500, profit = 8), a pocket knife (weight = 300, profit = 7), and a book

(weight = 1000, profit = 3). The set of all possible selections contains 16 possible subsets

(cf. Fig. 1), in general 2n where n is the number of items. In this context, two observations

can be made: there is no single optimal selection of items, and some subsets are better than

others. With respect to the first issue, the empty subset minimizes the overall weight, while

the set containing all items maximizes the overall profit. We say the two optimization criteria

are conflicting. Nevertheless, subsets for which there exists another subset that is better in

at least one criterion, while not being worse in the other criterion, can be neglected. As a

consequence, a set of optimal trade-offs emerges as shown in Fig. 1 at the bottom. At the

end, though, we are interested in a single solution, and therefore a decision making process

is necessary: which of the optimal trade-offs represents the best compromise for our needs?

In practice, the search for optimal solutions by using an appropriate optimization algo-

rithm and the decision making process can be integrated in different ways. One possibility
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is to aggregate the multiple optimization criteria into a single one. That means the decision

is made before the search. In our example, one could transform the second objective into

Figure 1: Illustration of the search space for a simple knapsack problem instance. At the

bottom, the dark-shaeded solutions connected by the dotted line represent the optimal trade-

offs.

186



a constraint and look for the selection with maximum profit that does not exceed a given

weight bound. Alternatively, we can first search for all optimal trade-offs and then choose

one solution out of them. In this case, decision making is done after the search, which is

especially useful if little is known about the underlying problem.

Although being simple regarding the problem formulation, the above knapsack problem

reflects two problem difficulties that arise in many real-world applications: i) the set of

possible solutions is large, and ii) multiple, competing optimization criteria are involved.

Thus, efficient search strategies are required that are able to deal with both difficulties.

Evolutionary algorithms possess several characteristics that are desirable in this context.

The term evolutionary algorithm (EA) stands for a class of randomized search strategies that

simulate the process of natural evolution. The origins of EAs can be traced back to the late

1950s, and since the 1970s several evolutionary methodologies have been proposed, mainly

genetic algorithms, evolutionary programming, and evolution strategies [1]. All of these ap-

proaches operate on a set of candidate solutions. Using strong simplifications, this set is

subsequently modified by two basic principles: selection and variation. While selection mim-

ics the competition for reproduction and resources among living beings, the other principle,

variation, imitates the natural capability of creating ”new” living beings by means of recom-

bination and mutation. Although the underlying mechanisms are simple, these algorithms

have proven themselves as a general, robust and powerful search mechanism [1].

In this lecture, it will be discussed how evolutionary algorithms work, how they can be

tailored to a problem at hand, and how they can be used to tackle a complex application in

telecommunications, namely the design of a network processor.

2 Optimization and Randomized Search Algorithms

2.1 Basic Terms

The scenario considered in this paper involves an arbitrary optimization problem with k

objectives, which are, without loss of generality, all to be maximized and all equally important,

i.e., no additional knowledge about the problem is available. We assume that a solution to

this problem can be described in terms of a decision vector (x1, x2, . . . , xn) in the decision

space X. A function f : X → Y evaluates the quality of a specific solution by assigning it

an objective vector (y1, y2, . . . , yk) in the objective space Y (cf. Fig. 2).

Now, let us suppose that the objective space is a subset of the real numbers, i.e., Y ⊆ IR,

and that the goal of the optimization is to maximize the single objective. In such a single-

objective optimization problem, a solution x1 ∈ X is better than another solution x2 ∈ X

if y1 > y2 where y1 = f(x1) and y2 = f(x2). Although several optimal solutions may exist

in decision space, they are all mapped to the same objective vector, i.e., there exists only a

single optimum in objective space.
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Figure 2: Illustration of a general (multiobjective) optimization problem

In the case of a vector-valued evaluation function f with Y ⊆ IRk and k > 1, the situation

of comparing two solutions x1 and x2 is more complex. Following the well-known concept

of Pareto dominance, an objective vector y1 is said to dominate another objective vectors

y2 (y1 � y2) if no component of y1 is smaller than the corresponding component of y2

and at least one component is greater. Accordingly, we can say that a solution x1 is better

than another solution x2, i.e., x1 dominates x2 (x1 � x2), if f(x1) dominates f(x2). Here,

optimal solutions, i.e., solutions not dominated by any other solution, may be mapped to

different objective vectors. In other words: there may exist several optimal objective vectors

representing different trade-offs between the objectives.

The set of optimal solutions in the decision space X is in general denoted as the Pareto set

X∗ ⊆ X, and we will denote its image in objective space as Pareto front Y ∗ = f(X∗) ⊆ Y .

With many multiobjective optimization problems, knowledge about this set helps the decision

maker in choosing the best compromise solution. For instance, when designing telecommu-

nication systems, engineers often perform a so-called design space exploration to learn more

about the Pareto set. Thereby, the design space is reduced to the set of optimal trade-offs: a
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first step in selecting an appropriate system implementation.

In the following, we will assume that the goal of the optimization process is to find or

approximate the Pareto set (in the case of a single objective, the Pareto front consists of a

single objective vector only). Therefore, the outcome of an algorithm is considered to be a

set of mutually nondominated solutions, or Pareto set approximation for short.

2.2 Blackbox Optimization

Randomized search algorithms form a class of heuristics that aim at finding good solutions

to the optimization problem at hand without investigating all solutions. Different types

of randomized search algorithms have been proposed such as evolutionary algorithms and

simulated annealing, and they are characterized by the fact that minimal requirements with

respect to the objective functions are made, i.e., they have been designed for so-called blackbox

optimization scenarios. A blackbox optimization scenario assumes that nothing is known

about the optimization criteria. Each objective function is considered as a black box, and

the only way to obtain information about it is by asking for the objective vector to which a

particular decision vector is mapped to.

In general, a randomized search algorithm works as follows. First, a decision vector x1

is chosen at random, and the corresponding objective vector y1 = f(x1) is determined by

using the black boxes for the objective functions. In the next step, another solution x2 is

selected randomly on the basis of the information given by x1 and y1. This process is repeated

many times, where in iteration t all the previously investigated solutions x1, . . . ,xt−1 and its

objective function values y1, . . . ,yt−1 can be used to select the next decision vector xt. The

algorithm terminates until a certain termination criterion is fulfilled. In practice, though,

randomized search algorithms do not store all previously considered solutions but rather

only keep the best ones. Local search strategies, the Metropolis algorithm, or simulated

annealing, for instance, only store one solution, while evolutionary algorithms usually work

with a population of solutions. Furthermore, the different variants of randomized search

algorithms used in practice distinguish themselves by the way new solutions are generated

and by the criteria on the basis of which the solutions to be kept in the memory are selected.

In this context, we may ask why to use randomized search algorithms and which variant

of randomized search algorithms to use. As to the first question, we often do not have

sufficient time resources or insight into the problem to design a problem-specific algorithm,

or the problem is too complex to be solved by exact methods. Since randomized search

algorithms have minimum requirements with respect to the objective functions, they can be

useful tools to tackle hard optimization problems. The second question is more difficult to

answer. The No-Free-Lunch (NFL) theorem states that over all possible problems all search

algorithms have the same average performance [2]. This makes clear that we cannot expect

to find the perfect search method that outperforms all other techniques. One rather tries to
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identify classes of problems for which particular algorithms are well suited for. Evolutionary

algorithms, e.g., are for practical reasons a good choice in a multiobjective scenario as the

Pareto set can be approximated in a single optimization run.

3 Design Issues in Evolutionary Computation

In contrast to other randomized search algorithms, an evolutionary algorithm is characterized

by three features:

1. a set of solution candidates is maintained,

2. a selection process is performed on this set which determines which solutions are con-

sidered to generate new solutions, and

3. several solutions may be combined in terms of recombination to generate new solutions.

By analogy to natural evolution, the solution candidates are called individuals and the set of

solution candidates is called the population. Each individual represents a possible solution,

i.e., a decision vector, to the problem at hand; however, an individual is not a decision vector

but rather encodes it based on an appropriate representation.

At the beginning, the population is filled with a certain number of randomly chosen indi-

viduals. Each of these individuals is then evaluated on the basis of the objective functions and

is assigned a scalar value, the fitness value, which reflects its quality. Afterwards, a selection

process is performed in which high-quality individuals are chosen for the generation of new

individuals. Variation, the process of creating new solutions, is usually implemented on the

basis of two operators: recombination and mutation. While recombination assembles a new

solution by combining two or several individuals, mutation creates new individuals by slightly

modifying single individuals. Finally, there is another selection procedure, environmental se-

lection, which determines which of the old individuals and newly generated ones are kept in

memory, i.e., in the new population. The steps fitness evaluation, mating selection, recombi-

nation, mutation, and environmental selection form one iteration of the algorithm, which is

called generation. The number of iterations to be executed can be defined beforehand or may

depend on on other conditions, e.g., stagnation in the population or existence of an individual

with sufficient quality. The general flow of an EA is shown in Fig. 3.

In the following, we will briefly discuss the different issues arising when tailoring an EA to

a specific problem, namely representation of the solution space, fitness assignment, selection,

and variation.

3.1 Representation

With many optimization problems, the decision space has a straight-forward representation

on a computer, e.g., for the knapsack problem a subset can be encoded by a binary bitstring
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Figure 3: Outline of a general evolutionary algorithm for a problem with four binary decision

variables

where each position is associated with a particular item. For other problems, though, an ap-

propriate encoding has to be defined, e.g., for graph problems (network topologies), scheduling

problems, symbolic regression, etc. The choice of the representation is often underestimated,

although it influences the performance of the algorithm; this holds for randomized search

algorithms in general.

Most commonly used are vector representations (binary, integer, real), where the elements

represent atomic units that are modified as a whole in the variation process. While vectors

are usually of fixed length, tress can be used to encode solutions of variable length such

as symbolic expressions and programs. Genetic programming, a subbranch of evolutionary

computation, is devoted to EAs using tree representations. Many other representations such

as matrices are possible, in particular mixed encoding can be often found with many real-world

applications.

What the optimal choice of an encoding for a given problem is also depends on the variation

operators; however, in general and as a rule of thumb, a representation should be

• complete, i.e., for each potential solution a corresponding encoding exists,

• one-to-one, i.e., each solution has a unique encoding, and if not at least

• uniform, i.e., each solution is represented by the same number of possible encodings,

• feasible, i.e., each possible encoding is mapped to a feasible solution, and
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Figure 4: Different fitness assignment strategies

• locality preserving, i.e., the distance between two encoded solutions is the same as be-

tween the two decoded solutions with respect to appropriate metrics.

These criteria only can serve as guidelines and often not all of them can be fulfilled.

3.2 Fitness Assignment

The fitness of an individual describes its quality with regard to the optimization task under

consideration on the basis of a real number (there may be exceptions, though). In the case of

a single objective, often the objective function value is taken as the fitness value. However,

there are different situations which require more complex fitness assignment strategies:

• multiple objectives are involved and the aim is to approximate the Pareto set,

• multiple optima are sought,

• constraints divide the decision space into feasible and infeasible solutions.

In the following, we will deal with each of these aspects separately.

3.2.1 Multiple Objectives

In the presence of multiple optimization criteria, the question is how to assign scalar fitness

values such that the population is guided towards the Pareto set. There are different ap-

proaches, the major three are aggregation-based, criterion-based, and Pareto-based fitness

assignment strategies, cf. Fig 7.
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One approach which is built on the traditional techniques for generating trade-off surfaces

is to aggregate the objectives into a single parameterized objective function. The parameters

of this function are systematically varied during the optimization run in order to find a

set of nondominated solutions instead of a single trade-off solution. For instance, some EA

implementations use weighted-sum aggregation, where the weights represent the parameters

which are changed during the evolution process [3, 4].

Criterion-based methods switch between the objectives during the selection phase. Here,

the fitness of an individual is identical to the objective vector, i.e., it is not a scalar value.

Each time an individual is chosen for reproduction, potentially a different objective will decide

which member of the population will be selected for variation. For example, Schaffer [5]

proposed to divide the mating selection phase into k phases, where at phase i the individuals

are chosen according to objective i; at each phase, the same number of individuals is selected.

In contrast, Kursawe [6] suggested assigning a probability to each objective which determines

whether the objective will be the sorting criterion in the next selection step—the probabilities

can be user-defined or chosen randomly over time.

The idea of calculating an individual’s fitness on the basis of Pareto dominance goes back

to Goldberg [7], and different ways of exploiting the partial order on the population have

been proposed. Some approaches use the dominance rank, i.e., the number of individuals by

which an individual is dominated, to determine the fitness values [8]. Others make use of the

dominance depth; here, the population is divided into several fronts and the depth reflects

to which front an individual belongs to [9, 10]. Alternatively, also the dominance count, i.e.,

the number of individuals dominated by a certain individual, can be taken into account. For

instance, SPEA [11] and SPEA2 [12] assign fitness values on the basis of both dominance rank

and count. Independent of the technique used, the fitness is related to the whole population

in contrast to aggregation-based methods which calculate an individual’s raw fitness value

independently of other individuals.

3.2.2 Multiple Optima and Diversity Preservation

In the presence of multiple optimization criteria, we are often interested in finding the Pareto-

optimal solutions. With many applications, though, this goal cannot achieved, and instead

the aim is to generate a well-distributed subset of the Pareto set. A similar situation may

arise in single-objective optimization, if we would like to find multiple different optima that

all have the same objective function value. The problem, however, is a phenomenon known

in Biology as genetic drift. Genetic drift denotes random changes in allele frequencies (alleles

are the different “values” a gene can take) due to sampling errors in finite and particularly

small populations. Here, we mean the tendency of small populations to converge to a single

optimal solution.

If no specific means are incorporated, the diversity within the population may be lost due
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to genetic drift. One way to circumvent this problem is to incorporate density information

into the fitness such that an individual’s chance of being selected is decreased the greater

the density of individuals in its neighborhood. This issue is closely related to the estimation

of probability density functions in statistics, and the methods used in EAs can be classified

according to the categories for techniques in statistical density estimation [13].

Kernel methods [13] define the neighborhood of a point in terms of a so-called Kernel

function K which takes the distance to another point as an argument. In practice, for each

individual the distances di to all other individuals i are calculated and after applying K the

resulting values K(di) are summed up. The sum of the K function values represents the

density estimate for the individual. Fitness sharing is the most popular technique of this type

within the field of evolutionary computation, which is used, e.g., in MOGA [8], NSGA [9],

and NPGA [14].

Nearest neighbor techniques [13] take the distance of a given point to its kth nearest

neighbor into account in order to estimate the density in its neighborhood. Usually, the

estimator is a function of the inverse of this distance. SPEA2 [12], for instance, makes use of

this density estimation technique as will be discussed in Section 4.

Histograms [13] define a third category of density estimators that use a hypergrid to define

neighborhoods within the space. The density around an individual is simply estimated by

the number of individuals in the same box of the grid. The hypergrid can be fixed, though

usually it is adapted with regard to the current population as, e.g., in PAES [15].

Each of the three approaches is visualized in Fig. 5. However, due to space-limitations, a

discussion of strengths and weaknesses of the various methods cannot be provided here—the

interested reader is referred to Silverman’s book [13]. Furthermore, note that all of the above

methods require a distance measure which can be defined on the encoded decision vectors,

on the decoded decision vectors, or on the objective vectors. Most approaches consider the

distance between two individuals as the distance between the two corresponding objective

vectors.

3.2.3 Constraint Handling

With many applications, constraints restrict the set of admissible solutions, and we are inter-

ested in the solutions that meet these constraints and are optimal with respect to all other

feasible solutions.

Assume that we have a set of inequality constraints g1 ≥ 0, g2 ≥ 0, . . . , gl ≥ 0 (other con-

straints can easily be expressed in this manner). The question we consider in the following is

how to handle constraints within an EA such that the search focuses on the feasible solutions.

In principle, there are three different ways:

• Firstly, the representation can be chosen such that the decoder function maps each

individual to a feasible solutions.
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Figure 5: Illustration of diversity preservation techniques

• Secondly, we can make sure that only feasible solutions are generated. To this end, the

initialization procedure of the population as well as the variation operators need to be

designed accordingly.

• Most general is the penalty approach where the fitness of individuals violating any

constraints is diminished. Usually, an overall constraint violation Ci ∈ IR is computed

as

Ci =
l

∑

p=0

|min{gp(i), 0}|

Provided that fitness is to be minimized, the fitness Fi of an individual can be considered

as the sum of the original fitness F ′

i and the overall constraint violation: Fi = F ′

i + Ci.

Another possibility is to calculate the fitness in the following way, if we know the worst

fitness value Fmax possible for a feasible solution:

Fi =

{

F ′

i if Ci = 0

Fmax + Ci else

The latter method ensures that feasible solutions are alway preferred over infeasible

solutions.

Actually, only the last approach is directly related to fitness assignment, the other two are

just mentioned here for reasons of completeness. Moreover, further possibilities emerge in

multiobjective optimization, e.g., some authors have suggested a modified definition of Pareto

dominance that takes constraints into account [16, 17].

3.3 Selection

Selection, which can be divided into mating and environmental selection, decides which indi-

viduals are considered for variation and which individuals survive, i.e., are kept in memory. It
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serves two conflicting goals: exploitation and exploration. The first term means we are trying

to generate better solutions by modifying the current best solutions; in this sense, selection

should favor the best individuals in the population. On the other hand, keeping diversity

in the population is advantageous in avoiding to get stuck in local optima; in this respect,

selection should focus on the diversity of the chosen individuals.

3.3.1 Mating Selection

Mostly, mating selection is implemented in terms of a randomized selection procedure. In

this context, one has to distinguish two phases: sampling rate assignment and sampling. In

the first phase, each individual is assigned a probability of being selected. The second phase

realizes the actual selection, i.e., a predefined number of individuals is chosen on the basis of

the sampling rates.

In the literature, different sampling rate assignment schemes have been proposed. Evo-

lution strategies, e.g., assign each individual the same probability, while genetic algorithms

traditionally used a fitness proportionate scheme. Fitness proportionate means the sampling

rate is set to the ratio of an individual’s fitness divided by the sum of the fitness values of all

individuals in the population. The disadvantage of this scheme is that adding a constant to

all fitness values results in different sampling rates; the larger the constant, the more likely

it is that all individuals have similar sampling rates. Rank-based schemes avoid this problem

by first sorting the individual according to the fitness values, and afterwards assigning the

sampling rates in dependence of the position within the resulting order.

As to sampling, there are two main methods. Both methods can be best illustrated by

thinking of a roulette wheel which is divided into N parts where N is the number of individuals

in the population. The size of the slot associated with individual i is in proportion to its

sampling rate Ci. The first technique, known as roulette wheel reproduction, simply spins the

roulette wheel as many times as individuals need to be selected; each time that individual that

is associated with the slot under the pointer is selected. In contrast, with stochastic universal

sampling (SUS) the roulette wheel is spun only once; instead N pointers are distributed evenly

spaced around the roulette wheel. Each pointer determines one individual for selection. The

advantage of SUS over roulette wheel reproduction is the lower variance with respect to the

selected individuals.

Finally, tournament selection integrates sampling rate assignment and sampling in the

same procedure. A certain number of individuals is chosen uniformly from the population,

and the individual with the best fitness within this group is selected. This process is iterated

until the predefined number of individuals has been selected.
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Figure 6: Two possible ways to implement environmental selection in a multiobjective EA

3.3.2 Environmental Selection

Environmental selection determines which of the individuals are kept in the population and is

usually realized via a deterministic algorithm. One strategy is to replace the old population

by the set of individuals that have been generated using mating selection and variation.

Alternatively, parents and offspring can be combined and afterwards the best N individuals

from the union form the next population, where N is the population size. Especially in

the presence of multiple objectives, it is important to choose an appropriate environmental

selection scheme as we would like to prevent nondominated individuals from being lost due

to random effects. Therefore, the discussion will focus on multiobjective optimization in the

following.

The two fundamental approaches used in multiobjective EAs are depicted in Fig. 6. The

first one corresponds to the aforementioned strategy of combining parent and offspring popu-

lation and to take the best N individuals. Alternatively, a secondary population, the so-called

archive, can be maintained to which promising solutions in the population are copied at each

generation. The archive may just be used as an external storage separate from the optimiza-

tion engine or may be integrated into the EA by including archive members in the selection

process.

As the memory resources are usually restricted, with both variants criteria have to be

defined on this basis of which the solutions to be kept are selected. The dominance criterion

is most commonly used. If an archive is maintained, the archive comprises only the current

approximation of the Pareto set, i.e., dominated archive members are removed. Otherwise,

special care is taken to ensure that nondominated solutions are preferred to dominated ones.

However, the dominance criterion is in general not sufficient (e.g., for continuous problems

the Pareto set may contain an infinite number of solutions); therefore, additional information

is taken into account to reduce the number of stored solutions further. Examples are density

information [11, 15] and the time that has passed since the individual entered the archive

[18].
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Most multiobjective EAs make use of a combination of dominance and density to choose

the individuals that will be kept in the archive at every generation. However, these approaches

may suffer from the problem of deterioration, i.e., solutions contained in the archive at gen-

eration t may be dominated by solutions that were members of the archive at any generation

t′ < t and were discarded later. Recently, Laumanns et al. [19] presented an archiving strat-

egy which avoids this problem and guarantees to maintain a diverse set of Pareto-optimal

solutions (provided that the optimization algorithm is able to generate the Pareto-optimal

solutions).

3.4 Variation

Variation aims at generating new individuals on the basis of those individuals that were chosen

during the mating selection phase. While mutation creates a new solution by modifying a

given one, the recombination operator takes two or more individuals, combines them in a

randomized fashion, and outputs one or more offspring. Since the choice of the operators

is strongly problem-dependent and many different variation procedures have been suggested,

we will only sketch the underlying ideas assuming a bitvector representation.

With binary vectors, mutation is usually implemented by flipping each bit independently

with a predefined mutation probability pm; a standard setting is pm = 1/n, where n is the

number of bits, such that in average one bit is flipped per individual. As to recombination,

a popular operator is one-point or, in general, N-point crossover. The two parents are cut at

randomly chosen positions into N + 1 parts, and afterwards children a created by alternately

choosing parts from the first and from the second parent. As with mutation, there is a

crossover probability associated with this operator. With probability pc, the two parents are

recombined and the two resulting children are returned; otherwise, two copies of the parents

are returned.

4 An Example Evolutionary Algorithm: SPEA2

As an illustrative example, we here present a generic implementation of a multiobjective EA,

namely SPEA2 [12], that has been used to tackle the network processor application discussed

in the lecture. The overall algorithm is as follows:

Algorithm 1 (SPEA2 Main Loop)

Input: N (population size)

N (archive size)

T (maximum number of generations)

Output: A (nondominated set)
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Step 1: Initialization: Generate an initial population P0 and create the empty archive

(external set) P 0 = ∅. Set t = 0.

Step 2: Fitness assignment: Calculate fitness values of individuals in P t and P t (cf. Sec-

tion 4.1).

Step 3: Environmental selection: Copy all nondominated individuals in P t and P t to

P t+1. If size of P t+1 exceeds N then reduce P t+1 by means of the truncation

operator, otherwise if size of P t+1 is less than N then fill P t+1 with dominated

individuals in P t and P t (cf. Section 4.2).

Step 4: Termination: If t ≥ T or another stopping criterion is satisfied then set A to the

set of decision vectors represented by the nondominated individuals in P t+1. Stop.

Step 5: Mating selection: Perform binary tournament selection with replacement on P t+1

in order to fill the mating pool.

Step 6: Variation: Apply recombination and mutation operators to the mating pool and set

Pt+1 to the resulting population. Increment generation counter (t = t + 1) and go

to Step 2.

SPEA2 uses a fine-grained fitness assignment strategy which incorporates density infor-

mation as will be described in Section 4.1. Furthermore, an archive of fixed size is maintained

that contains a representation of the current nondominated front. Whenever the number

of nondominated individuals is less than the predefined archive size, the archive is filled up

by dominated individuals; otherwise, a truncation method is applied which is described in

Section 4.2.

4.1 Fitness Assignment

To avoid the situation that individuals dominated by the same archive members have identical

fitness values, with SPEA2 for each individual both dominating and dominated solutions are

taken into account. In detail, each individual i in the archive P t and the population Pt is

assigned a strength value Si, representing the number of solutions it dominates:

Si = |{j | j ∈ Pt + P t ∧ i � j}|

where | · | denotes the cardinality of a set, + stands for multiset union and the symbol �

corresponds to the Pareto dominance relation. On the basis of the S values, the raw fitness

Ri of an individual i is calculated:

Ri =
∑

j∈Pt+P t,j�i

Sj

That is the raw fitness is determined by the strengths of its dominators in both archive

and population. It is important to note that fitness is to be minimized here, i.e., Ri = 0
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Figure 7: Illustration of the fitness assignment scheme used SPEA2 for a maximization prob-

lem with two objectives f1 and f2; the numbers give the raw fitness values of the corresponding

individuals.

corresponds to a nondominated individual, while a high Ri value means that i is dominated

by many individuals (which in turn dominate many individuals). This scheme is illustrated

in Figure 7.

Although the raw fitness assignment provides a sort of niching mechanism based on the

concept of Pareto dominance, it may fail when most individuals do not dominate each other.

Therefore, additional density information is incorporated to discriminate between individuals

having identical raw fitness values. The density estimation technique used in SPEA2 is an

adaptation of the k-th nearest neighbor method [13], where the density at any point is a

(decreasing) function of the distance to the k-th nearest data point. Here, we simply take

the inverse of the distance to the k-th nearest neighbor as the density estimate. To be more

precise, for each individual i the distances (in objective space) to all individuals j in archive

and population are calculated and stored in a list. After sorting the list in increasing order,

the k-th element gives the distance sought, denoted as σk
i . As a common setting, we use k

equal to the square root of the sample size [13], thus, k =
√

N + N . Afterwards, the density

Di corresponding to i is defined by

Di =
1

σk
i + 2

In the denominator, two is added to ensure that its value is greater than zero and that

Di < 1. Finally, adding Di to the raw fitness value Ri of an individual i yields its fitness Fi:

Fi = Ri + Di
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4.2 Environmental Selection

The archive update operation (Step 3 in Algorithm 1) in SPEA2 was designed in such a

way that i) the number of individuals contained in the archive is constant over time, and ii)

boundary solutions are not lost.

During environmental selection, the first step is to copy all nondominated individuals, i.e.,

those which have a fitness lower than one, from archive and population to the archive of the

next generation:

P t+1 = {i | i ∈ Pt + P t ∧ Fi < 1}

If the nondominated front fits exactly into the archive (|P t+1| = N) the environmental

selection step is completed. Otherwise, there can be two situations: Either the archive is

too small (|P t+1| < N) or too large (|P t+1| > N). In the first case, the best N − |P t+1|

dominated individuals in the previous archive and population are copied to the new archive.

This can be implemented by sorting the multiset Pt + P t according to the fitness values

and copy the first N − |P t+1| individuals i with Fi ≥ 1 from the resulting ordered list to

P t+1. In the second case, when the size of the current nondominated (multi)set exceeds N ,

an archive truncation procedure is invoked which iteratively removes individuals from P t+1

until |P t+1| = N . Here, at each iteration that individual i is chosen for removal for which

i ≤d j for all j ∈ P t+1 with

i ≤d j :⇔ ∀ 0 < k < |P t+1| : σk
i = σk

j ∨

∃ 0 < k < |P t+1| :
[(

∀ 0 < l < k : σl
i = σl

j

)

∧ σk
i < σk

j

]

where σk
i denotes the distance of i to its k-th nearest neighbor in P t+1. In other words, the

individual which has the minimum distance to another individual is chosen at each stage;

if there are several individuals with minimum distance the tie is broken by considering the

second smallest distances and so forth. How this truncation technique works is illustrated in

Figure 8.

5 Applications

There are numerous applications of EAs in the area of telecommunications ranging from

network design to routing problems. An overview of multicriteria studies in this context can

be found in [20].

In the lecture, we will present a network processor design application that involves several

objectives. Due to space restrictions, the problem is not discussed here; instead, the interested

reader is referred to the original paper [21].
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Figure 8: Illustration of the archive truncation method used in SPEA2. On the right, a

nondominated set is shown. On the left, it is depicted which solutions are removed in which

order by the truncate operator (assuming that N = 5).
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Efficient and accurate numerical solution of

stochastic partial differential equations: formulating

a problem

Adolfo V. T. Cartaxo∗ José A. P. Morgado†

Abstract

Accurate numerical computation of a set of stochastic partial differential equations

(SPDEs) presents considerable difficulties. A technique to deal with this problem in a

time efficient way is sought. Tracks to find a statistically correct numerical solution of

the set of SPDEs are outlined. A technique used to solve a set of stochastic differential

equations corresponding to a set of SPDEs with just one independent variable is presented,

discussed and validated with several examples.

Keywords: stochastic differential equation, numerical solution, partial differential equation, nonlinear

differential equation, accuracy, time efficiency, single-mode laser rate equations, relative intensity noise,

frequency noise, periodogram, sample process, estimator, Fast Fourier Transform.

1 Introduction

In nowadays communication systems, as traffic increases rapidly in the Internet, wavelength

division multiplexing (WDM) optical networks become the paradigm for fixed telecommu-

nication networks. Semiconductor optical amplifiers (SOAs), and semiconductor distributed

feedback (DFB) lasers are key components to implement these WDM optical networks.

Numerical simulation has been used as a powerful tool concerning the performance as-

sessment and optimization of these systems [1, 2, 3]. Nevertheless, the accuracy and purposes

of the results achieved by simulation depend strongly on the correctness and efficiency of the

methods used to solve numerically the differential equations that govern the dynamics of the

majority of the components comprising these systems, especially if noise features are taken

into account.

The dynamics of the components indicated so far, including noise features, are usually

described by a set of stochastic partial differential equations (SPDEs), see for instances [2, ch.

∗Instituto de Telecomunicações. E-mail:adolfo.cartaxo@lx.it.pt
†Instituto de Telecomunicações. E-mail:j.morgado@lx.it.pt
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11], [4, ch. 4 and ch. 5]. The accurate noise characterisation of these devices is of particular

interest from a telecommunications point of view or, by other words, the accurate statistical

characterisation of the stochastic process at the device output.

In the general case, each equation of the set of SPDEs is nonlinear. Therefore, the rigorous

characterisation of noise at the device output can only be obtained by accurately solving, in

a numerical way, the set of SPDEs. The accuracy of a numerical scheme for integrating a

set of SPDEs is judged on the basis of its ability to provide samples of the stochastic process

from which accurate estimates of some statistical parameters can be computed. Often, we

are mainly interested in the estimation of moments, probabilities or other functional as the

noise power spectral density from samples of the solution of the set of SPDEs. Furthermore,

it is also particularly important to obtain accurate estimates in a time saving form because

these estimates are often used in a more general process of system optimisation. So, a time

efficient and accurate technique of numerically solving a set of SPDEs is very desirable and,

to the authors knowledge, the development of such technique still remains.

Techniques based on first order approximation in the step size of each independent variable

[5] should be avoided because of the high computation time required to assess each sample.

Furthermore, the accuracy, as described above, of the techniques presented in reference [5] is

questionable. Techniques like those presented in [5] seem to be particularly devoted to deal

with another problem of the numerical solution of a set of SPDEs, namely its robustness.

The paper is structured as follows. In section 2, the formulation of the problem is presented

in a general form. In section 3, a particular case of the formulated problem, which has been

already successfully solved, is presented. Results related to its use on the simulation of the

dynamics of single-mode bulk lasers are presented and discussed. In section 4, the main

conclusions are drawn and suggestions to solve the formulated problem are given.

2 Formulations of the problem

The equations that govern the dynamics of SOAs and DFB lasers (propagation equations of

the fields inside the device), including noise features, are formally equivalent to [2, 4]

∂Ai(z, t)

∂z
+ ki

∂Ai(z, t)

∂t
= fi(A1, . . . , An, z, t) + ηi(z, t); 0 ≤ z ≤ t; t ≥ 0; 1 ≤ i ≤ n (1)

where the index i refers to the different low–pass equivalent complex fields with a total count

of n, t and z are the independent variables corresponding to time and space coordinates,

respectively, L is the maximum space coordinate of interest (device length), Ai(z, t) is the

i-th low–pass equivalent complex field, ki is a real constant, fi(A1, . . . , An, z, t) is a complex

nonlinear function of the complex fields representing the nonlinear field evolution, Ai(z = 0, t)

is the known time waveform of the i-th low-pass equivalent complex field at the device input

(z = 0), and ηi(z, t) is a complex Gaussian-distributed stochastic field. The two Gaussian
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components, corresponding to the real and imaginary parts of the complex fields ηi(z, t), are

zero mean, statistically independent stochastic processes. Besides, the stochastic fields ηi(z, t)

are generally uncorrelated in t and z, so that they satisfy the following property:

〈

ηi(z, t) · η∗i (z
′, t′)

〉

= ξi · δ(t − t′) · δ(z − z′) 1 ≤ i ≤ n (2)

where 〈x〉 means expected value of x, η∗
i (z, t) stands for complex conjugate of ηi(z, t), i is a

constant, and δ(x) is the delta Dirac function.

The problem may be formulated as the derivation of a procedure for accurate numerical

integration of the set of SPDEs presented in (1). The procedure should generate representative

values of Ai(z, t) at discrete times tj for the specific space coordinate of z = L by direct

solution of the SPDEs. Then, these values of Ai(L, t) are used to estimate accurately the

statistical parameters of interest, as those above mentioned. The procedure should produce

results that are statistically correct to a given order in the time and space step. Higher

order approximations than the first order one, if they exist, seem desirable because of shorter

computation time.

3 A particular case

In this section, a particular case of the formulated problem will be considered, assuming

no space dependence in eqs. (1). This is a very useful case to simulate the dynamics of

single-mode bulk lasers which, differently from the DFB lasers, can be modelled by stochastic

differential equations (SDEs) with time as the only independent variable and, therefore, no

space dependence exists [4, 6].

3.1 The Greenside–Helfand technique to solve SDEs with uncorrelated

noise sources

A very interesting and useful technique presented in [7], to solve the set of SDEs resulting from

(1) assuming no space dependence has been presented in [7]. In the following, the technique

will be called Greenside–Helfand technique (GHT). The GHT is an extension of the Runge–

Kutta technique used in the numerical solution of deterministic differential equations. The

main idea of the GHT is to evaluate the nonlinear functions fi(A1, . . . , An, t) at stochastically

selected points, so that all moments of the extrapolated estimate after a time step are correct

to some order in the step size [7]. The set of SDEs to be solved can be generically written as



















dx1(t)

dt
= h1(x1, x2, t) + r1(t)

dx2(t)

dt
= h2(x1, x2, t) + r2(t)

(3)
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where h1(x1, x2, t) and h2(x1, x2, t) are real nonlinear functions representing the nonlinear

time evolution of real processes x1(t) and x2(t), respectively, and r1(t) and r2(t) are real

Gaussian-distributed noise sources with zero mean and autocorrelation functions given by

〈r1(t) · r1(t
′)〉 = ξ1 · δ(t − t′) and 〈r2(t) · r2(t

′)〉 = ξ2 · δ(t − t′), respectively, where ξ1 and

ξ2 are constants representing the white power spectral densities of r1(t) and r2(t), respec-

tively. Furthermore, the stochastic processes r1(t) and r2(t) are assumed uncorrelated, i. e.,

〈r1(t) · r2(t
′)〉 = 0. A set of two equations is considered, but the GHT is easily generalised to

an arbitrary number of equations. The samples of x1(t) and x2(t) after the time step, TS , are

given by [7]











x1(TS) = x1(0) + TS · [A1g11 + A2g21 + A3g31 + A4g41] + T
1/2

S ξ
1/2

1
Y01

x2(TS) = x2(0) + TS · [A1g12 + A2g22 + A3g32 + A4g42] + T
1/2

S ξ
1/2

2
Y02

(4)

where Ai are constants given by

A1 = 0.0; A1 = 0.644468; A3 = 0.194450; A4 = 0.161082 (5)

and gij are given by

g11 = h1

([

x1(0) + T
1/2

S ξ
1/2

1
Y11

]

,
[

x2(0) + T
1/2

S ξ
1/2

2
Y12

])

;

g12 = h2

([

x1(0) + T
1/2

S ξ
1/2

1
Y11

]

,
[

x2(0) + T
1/2

S ξ
1/2

2
Y12

])

;

g21 = h1

([

x1(0) + TSβ21g11 + T
1/2

S ξ
1/2

1
Y21

]

,
[

x2(0) + TSβ21g12 + T
1/2

S ξ
1/2

2
Y22

])

;

g22 = h2

([

x1(0) + TSβ21g11 + T
1/2

S ξ
1/2

1
Y21

]

,
[

x2(0) + TSβ21g12 + T
1/2

S ξ
1/2

2
Y22

])

;

g31 = h1

([

x1(0) + TSβ31g11 + TSβ32g21 + T
1/2

S ξ
1/2

1
Y31

]

,

[

x2(0) + TSβ31g12 + TSβ32g22 + T
1/2

S ξ
1/2

2
Y32

])

;

g32 = h2

([

x1(0) + TSβ31g11 + TSβ32g21 + T
1/2

S ξ
1/2

1
Y31

]

,

[

x2(0) + TSβ31g12 + TSβ32g22 + T
1/2

S ξ
1/2

2
Y32

])

;

g41 = h1

([

x1(0) + TSβ41g11 + TSβ42g21 + TSβ43g31 + T
1/2

S ξ
1/2

1
Y41

]

,

[

x2(0) + TSβ41g12 + TSβ42g22 + TSβ43g32 + T
1/2

S ξ
1/2

2
Y42

])

;

(6)
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g42 = h2

([

x1(0) + TSβ41g11 + TSβ42g21 + TSβ43g31 + T
1/2

S ξ
1/2

1
Y41

]

,

[

x2(0) + TSβ41g12 + TSβ42g22 + TSβ43g32 + T
1/2

S ξ
1/2

2
Y42

])

;

(6(cont.))

where βij are constants given by

β21 = 0.516719;

β41 = 1.587731;

β31 = 0.397300;

β42 = 1.417263;

β32 = 0.427690;

β43 = 1.170469
(7)

and Yij are random variables given by

Y01 = λ01Z11 + λ02Z21

Y11 = λ11Z11 + λ12Z21

Y21 = λ21Z11 + λ22Z21

Y31 = λ31Z11 + λ32Z21

Y41 = λ41Z11 + λ42Z21

Y02 = λ01Z12 + λ02Z22

Y12 = λ11Z12 + λ12Z22

Y22 = λ21Z12 + λ22Z22

Y32 = λ31Z12 + λ32Z22

Y42 = λ41Z12 + λ42Z22

(8)

where λij are constants given by

λ01 = 1.0;

λ02 = 1.0;

λ11 = 0.0;

λ12 = 0.271608;

λ21 = 0.516719;

λ22 = 0.499720;

λ31 = 0.030390;

λ32 = 0.171658;

λ41 = 1.0;

λ42 = 0.0;
(9)

and Zij are independent Gaussian random variables with zero mean and variance equal to one.

Expressions (6) show that the nonlinear functions h1(x1, x2, t) and h2(x1, x2, t) are evaluated

at stochastically selected points. This choice has been made so that all moments of the

extrapolated estimates after a time step are correct to third order in the step size [7]. The

results achieved in Ref. [7] suggest that higher order algorithms do not exist. However this

statement has not been demonstrated.

3.2 The modified Greenside–Helfand technique to solve SDEs with corre-

lated noise sources

In order to use the GHT on practical communication systems, namely to simulate the dy-

namics of single-mode bulk lasers, some modifications have been introduced in this technique

in order to take into account the possible noise sources correlation. So, the GHT has been

modified to solve the set of SDEs


















dx1(t)

dt
= h1(x1, x2, t) + r3(t)

dx2(t)

dt
= h2(x1, x2, t) + r2(t)

(10)

where r3(t) and r2(t) are Gaussian–distributed noises sources with zero mean and autocor-

relation functions given by 〈r3(t) · r3(t
′)〉 = ξ3 · δ(t − t′) and 〈r2(t) · r2(t

′)〉 = ξ2 · δ(t − t′),

209



respectively, where ξ3 and ξ2 are constants representing the power spectral densities of r3(t)

and r2(t), respectively, and cross-correlation function given by 〈r3(t) · r2(t
′)〉 = ξ32 · δ(t − t′).

It can be easily shown that r3(t) can be written as

r3(t) = r1(t) + Kr2(t) (11)

where r1(t) is a Gaussian-distributed noise source independent of r2(t), with zero mean and

autocorrelation function given by 〈r1(t) · r1(t
′)〉 = ξ1 · δ(t − t′), with

K =
ξ23

ξ2

; ξ1 = ξ3 − K2ξ2 (12)

It results from (11)-(12) that if K = 0, r3(t) and r2(t) are independent noise sources and,

so, the GHT is applicable directly to solve (10). If K 6= 0, the correlation between r3(t)

and r2(t) increases with increasing |K|. In this situation, it can be heuristically thought that

the GHT still remains correct if, in the numerical solution (4)-(9), the expressions related

to r1(t) are substituted by the linear combination (11) of similar expressions related to the

independent noise sources r1(t) and r2(t). In practical terms, the following substitutions

should be accomplished:

T
1/2

S Y01 −→ T
1/2

S ξ
1/2

1
Y01 + KT

1/2

S ξ
1/2

2
Y02

T
1/2

S Y11 −→ T
1/2

S ξ
1/2

1
Y11 + KT

1/2

S ξ
1/2

2
Y12

T
1/2

S Y21 −→ T
1/2

S ξ
1/2

1
Y21 + KT

1/2

S ξ
1/2

2
Y22

T
1/2

S Y31 −→ T
1/2

S ξ
1/2

1
Y31 + KT

1/2

S ξ
1/2

2
Y32

T
1/2

S Y41 −→ T
1/2

S ξ
1/2

1
Y41 + KT

1/2

S ξ
1/2

2
Y42

(13)

in expressions (4) and (6). In the following, this technique is called modified Greenside-

Helfand technique (MGHT).

To validate the MGHT, the particular case of the set of equations (10), where h1(x1, x2, t)

and h2(x1, x2, t) are linear functions, is considered. In this situation, the analytical solution of

the set of equations (10) is easily obtained. The MGHT validation is achieved by comparison

of the analytical results concerning the power spectral densities of x1(t) and x2(t), with the

numerical ones achieved by using the MGHT to solve (10). The periodogram technique is

used to estimate the power spectral densities [1].

Figures 1 (a) and (b) show the analytical power spectral densities of x1(t) and x2(t),

respectively. Figures 1 (c) and (d) show the simulation results for power spectral densities

of x1(t) and x2(t), respectively. We have assumed h1(x1, x2, t) = −x2(t) and h2(x1, x2, t) =

x1(t) − x2(t), ξ1 = ξ2 = 0.01 and K = 100, resulting in strong correlated noise sources.
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All simulations results were obtained averaging over 128 periodograms, having each one 213

points and a time width of 400 s. Excellent agreement between analytical and simulations

results is achieved. It should be stressed that excellent agreement has been also achieved for

other tested K values such as K = ±1, K = ±10 and K = −100. These results validate the

MGHT.
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Figure 1: Theoretical results for power spectral density of (a) x1(t) and (b) x2(t). Simulation

results for power spectral density of (c) x1(t) and (d) x2(t) using the MGHT.

3.3 Single-mode bulk laser rate equations simulation

In this section, the MGHT is used to solve the stochastic laser rate equations which govern

the dynamics of a single-mode bulk laser and obtain the relative intensity noise (RIN) and

frequency noise (FN) spectra at laser output and after fibre transmission. To validate the

simulation results, simulation results are compared with theoretical predictions.
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3.3.1 Theory

The single-mode bulk laser considered in this paper has been described in [8]. The stochastic

laser rate equations which describe the relation between the carrier density N(t) and photon

density S(t) at laser cavity, corresponding to the bias current I(t) injected into the active

region with volume Vact, can be written as [6]























dN(t)

dt
=

I(t)

eVact

− R(N) − G(N,S) · S(t) + FN (t)

dS(t)

dt
= ΓG(N,S) · S(t) −

S(t)

τp
+ RS(N) + FS(t)

(14)

where e is the electronic charge, Γ is the optical confinement factor, p is the photon lifetime,

G(N,S) = g0(N −N0)/(1+εS) is the cavity optical gain, where g0 is the gain slope constant,

N0 is the electron density at which the net gain is zero and ε is the gain saturation parameter.

R(N) is the total recombination rate given by [6] R(N) = AnrN+BrN
2+CnrN

3, Rs(N) is the

spontaneous emission rate given by [6] Rs(N) = ΓβBrN
2, where β is the spontaneous emission

factor and Anr, Br and Cnr are respectively, the non-radiative, radiative and the Auger

recombination coefficients [6]. FN (t) and FS(t) are the Langevin noise sources associated

with the carrier and photon rate equations, respectively [6].

Within the semi-classical treatment, fluctuations arising from the spontaneous-emission

process and the carrier-generation-recombination process, which are physically responsible for

RIN , are incorporated by adding the Langevin noise sources FN (t) and FS(t) to the single-

mode laser rate equations (14) [6]. Under the Markovian assumption, the Langevin noise

sources are zero mean, correlated Gaussian ergodic stochastic processes [6], and their spectral

densities are given by

〈

∣

∣

∣
F̃N (f)

∣

∣

∣

2
〉

= 8π∆f0S
2
/Γ2 + 2R(N)/Vact,

〈

∣

∣

∣
F̃S(f)

∣

∣

∣

2
〉

= 8π∆f0S
2
,

and
〈

F̃S(f) · F̃ ∗
N (f)

〉

= −8π∆f0S
2
/Γ2, where F̃N (f) and F̃S(f) are the Fourier transforms of

FN (t) and FS(t), respectively, f is the modulating frequency, S and N represent the steady-

state mean values of the photon and carrier densities, respectively, and ∆f0 = RS(N)/
(

4πS
)

is the modified Schawlow-Townes linewidth [6].

The optical phase φT (t) of the electrical field emitted by the laser is given by [6]

dφT (t)

dt
=

α

2
Γg0 [N(t) − Nth] + Fφ̇(t) (15)

where α is the linewidth enhancement factor, Nth is the threshold carrier density and Fφ̇(t)

is the Langevin noise source associated with the optical phase. Under the Markovian as-

sumption, this Langevin noise source is a zero mean, Gaussian ergodic stochastic process,

uncorrelated with FN (t) and FS(t), and with spectral density given by

〈

∣

∣

∣
F̃φ̇(f)

∣

∣

∣

2
〉

= 2π∆f0

[6].
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The laser intrinsic parameters can be found in [8], except the carrier lifetime τn which

is given by [6] τn = N/R(N) =
(

Anr + BrN + CnrN
2
)−1

. Anr = 6.6 × 107s−1, Br = 3 ×

10−16m3s−1 and Cnr = 4 × 10−41m6s−1, have been considered, which correspond to τn = 1

ns at the threshold current [6].

To obtain analytically the laser noise characteristics, the steady-state values of the carrier

and photon densities and optical phase are perturbed by small amounts whereas the injected

current is kept in its steady state value [6], [9, 10, 11]. In this small-signal analysis, the

stochastic nonlinear differential equations (14), (15) are first linearised and, then, solved in

the frequency domain using the Fourier Transform. The amplitude of the power and phase

fluctuations, in the frequency domain, at the laser output (δ̃p(z = 0, f) and δ̃φ(z = 0, f)) and

fibre output (δ̃p(z, f) and δ̃φ(z, f)), assuming linear transmission, can be found in [11]. The

two-sided RIN and FN spectra expressions are given, respectively, by [11]

RIN(z, f) =

〈∣

∣

∣
δ̃p(z, f)

∣

∣

∣

〉

P
2

; FN(z, f) =

〈

∣

∣

∣
2πf · δ̃φ(z, f)

∣

∣

∣

2
〉

(16)

where P is the average power. Expressions for RIN and FN at laser and fibre output are

presented in [11].

3.3.2 Simulation

To estimate the RIN and FN spectra at laser and fibre output, the periodogram technique

has been used [1]. The estimator is obtained after averaging over M periodograms and is

given by

Ê(f) =

M
∑

m=1

Êm(f)

M

where Êm(f) is the m-th RIN or FN periodogram, respectively. This spectrum estimator

is asymptotically unbiased and its variance decreases (approaches zero) with 1/M [1]. Each

sample function δp(z, t) and δφ(z, t) of the intensity and phase noise processes at laser (z = 0)

or fibre output with duration T is sampled at NP points (the sampling period is TS = NP /T )

and each periodogram Êm(f) is obtained using the Fast Fourier Transform (FFT) as follows

[1, 12]

RÎNm(f) = 10 log10



















FFT [δp(z, t)]2

(NP TS)

P
2



















F̂Nm(f) =
|2πf · FFT [δp(z, t)]|2

NP TS

; 0 ≤ i ≤
P

2
(17)
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Therefore, samples of Êm(f), calculated from (17), have a frequency resolution of ∆f = 1/T

[1, 12]. So, larger T leads to better frequency resolution of the spectra estimators [12].

To obtain δp(z, t) and δφ(z, t), the laser rate equations (14) taking into account the

Langevin noise terms, are numerically integrated using the MGHT. As in [10] and [11],

the transmission along the single-mode fibre is simulated in the frequency domain taking

advantage of the speed of FFT computation.

3.3.3 Numerical results and discussion

Figure 2 shows the simulated results of RIN spectrum at laser output using the fifth order

Runge-Kutta technique (deterministic technique) (Fig. 2-(a)), and the MGHT of solving a

set of SDEs (stochastic technique) (Fig. 2-(b)). In Fig. 2-(a), the corresponding theoretical

result is also shown for comparison purposes. Figs. 3-(a) and 3-(b) show, respectively, the

theoretical results of FN spectrum at laser output, and the numerical estimate using the

stochastic technique. A laser bias current of 80 mA has been considered. All simulations

results were obtained averaging over M =128 periodograms, having each one NP = 215

points and T =40 ns. These results show that the use of the MGHT to solve the laser rate

SDEs provides statistically correct samples of the output stochastic processes, at least up to

the second-order moment. Similar results have been obtained for other laser bias currents.

Besides, Fig. 2-(a) shows that deterministic numerical methods utilized by many authors, see

for instances [13, 14], to integrate the bulk laser rate equations (14) should not be used since

they provide statistically incorrect description of the single-mode bulk laser noise.
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Figure 2: RIN spectrum at laser output for a bias current of 80 mA: (a) theoretical result

and deterministic simulation result; (b) stochastic simulation result.

Figures 4 and 5 show, respectively, the RIN and FN spectra at fibre output at a laser bias

current of 80 mA, after single-mode fibre transmission with dispersion of 1600 ps/nm. Figs. 4-

(a) and 5-(a) show the theoretical results and Figs. 4-(b) and 5-(b) show the simulation results
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Figure 3: FN spectrum at laser output for a bias current of 80 mA: (a) theoretical result;

(b) stochastic simulation result.

using the MGHT. All simulations results were obtained averaging over M =128 periodograms,

having each one NP = 215 points and T =40 ns. Figs. 1-5 show that very efficient and

accurate power spectral density estimates of intensity and frequency noises of the field at

the laser output and after linear transmission over a single-mode fibre are obtained using the

MGHT. Further results showed that the MGHT leads also to good estimates of the probability

density function of the intensity noise at the laser output in agreement with experimental data

that indicates a quasi-Rice distributed optical power at the bulk laser output [15].
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Figure 4: RIN spectrum at fibre output for a bias current of 80 mA and fibre dispersion of

1600 ps/nm: (a) theoretical result; (b) stochastic simulation result.
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Figure 5: FN spectrum at fibre output for a laser bias current of 80 mA and fibre dispersion

of 1600 ps/nm: (a) theoretical result; (b) stochastic simulation result.

4 Conclusions

To the authors knowledge, accurate numerical solution of a set of SPDEs is still an open

problem. Tracks to find a solution have been provided. A technique used to solve a set of

SDEs has been presented, discussed and validated with several examples. This technique,

which is an extension of the Runge-Kutta techniques for numerical solution of deterministic

differential equations, can be seen as a particular case from the one required for solving

SPDEs. Its accuracy has been shown for the stochastic laser rate equations that govern the

dynamics of a single-mode bulk laser. Therefore, a generalisation of the Runge-Kutta method

to SPDEs or the development of a completely new technique with similar features, regarding

accuracy, time efficiency and complexity, would be very desirable.

It has been also shown that the usual methods of solving deterministic nonlinear differ-

ential equations to estimate, by simulation, statistics of stochastic process should be avoided

since they provide statistically incorrect estimates.
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Optimal M-QAM/DAPSK allocation in

Narrowband OFDM radio channels

Bárbara Coelho∗ António Navarro†

Abstract

This paper proposes and formulates a mathematical optimization problem in the con-

text of multi-carrier communications. A particular multi-carrier modulation system is the

orthogonal Frequency Division Multiplexing (ODFM) where modulation operations are

implemented through a single Fast Fourier Transformer (FFT). A wireless communication

system may use tens of thousands of orthogonal modulators. Given a finite set of possible

digital modulators M-QAM or M-DAPSK and under certain constrains, the solution of

the optimization problem should provide the optimum value of M.

Keywords: Digital Television, Integer Optimization, Optimal Multi-carrier, Adaptive Joint Source-

modulation.

1 Introduction

Broadcasting is moving into a digital era allowing new and enriched services and applications.

The broadcasting quality is improved significantly by using multicarrier systems. The first

systems using MCM (Multi-Carrier Modulation) were military HF radio links in the late

1950s and early 1960s. OFDM, a special form of MCM was patented by R.W. Chang in the

US in 1970. OFDM removed the bank of steep bandpass filters that completely separated

the spectrum of individual subcarriers. Orthogonality of OFDM carriers allows subcarrier

spectra overlapping without inter-carrier interference (ICI).

The most popular wireless broadcasting systems making use of OFDM are Digital Audio

Broadcasting (DAB) and Digital Video Broadcasting (DVB). OFDM is nowadays efficiently

implemented by applying the IDFT/IFFT at the emitter,

xn =
1

N

N−1+c
∑

k=0+c

Xke
j 2π

N
kn, 0 + d ≤ n ≤ N − 1 + d (1)
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and the DFT/FFT at the receiver,

Xk =
N−1+a
∑

n=0+a

xne−j 2π
N

kn, 0 + b ≤ k ≤ N − 1 + b (2)

where a, b, c and d can be any integer. For sake of simplicity, let us assume them equal to

zero. Xk, k = 0, 1, . . . , N−1 are integer complex numbers and represent the information to be

transmitted to the receiver. As expressed in (1), Xk is modulated/multiplied by a complex

exponential carrier and through the summation converted into a new discrete complex se-

quence xn, n = 1, 2, . . . , N usually called a symbol. This sequence is delivered to the receiver

suffering channel impairments. Thus xn is changed by the channel, resulting in,

rn = xn ⊗ hn + wn, n = 0, 1, . . . , n − 1 (3)

where ⊗ denotes the convolution operation, hn is a exponential decaying function and wn is

a zero mean complex Gaussian independent variable. All variables in (3) as well as Xn are

random processes.

From (3), we have [1],

rn = IFFT {FFT(xn) · FFT(hn)} + wn (4)

resulting in,

rn = IFFT {XnHn} + wn (5)

By applying the FFT to (5), we obtain,

Rn = XnHn + Zn (6)

with

Zn = FFT(wn), (7)

representing a zero mean complex Gaussian independent random variable. The receiver per-

formance is measured by its capability of removing Hn and Zn effects in (6) and thus ap-

proaching Rn to Xn. The impairments caused by Hn and Zn are greater and greater as Mn

increases. However, the greater Mn is, the more information is delivered to the destination.

Therefore a tradeoff is require to find out the best values of Mn, n = 0, 1, . . . , N − 1.

2 The Optimization Problem Formulation

We will confine our problem formulation to M-QAM with M = 1, 2, 4, 8, 16, 32, 64. Let b be

given by log2 M . The impairments mentioned in the above section are modeled by the bit
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error probability. In consequence, we are interested in minimizing the following objective

function defined implicitly,

N−1
∑

n=0

Pbn
(γn), b ∈ {0, 1, 2, . . . , 6} (8)

where, the error probabilities, Pb(γ) are derived from Pb(γ), as described in Appendix A

[2, 3, 4]. The variable follows a chi-square distribution with two degrees of freedom and

average γ [5]. Expressions Pb(γ) take into account the effects of Hn and Zn described in

Section 1 and therefore is a function of n.

The solution is the vector B with the following elements,

bn, n = 0, 1, . . . , N − 1 (9)

in which n is the vector index and represents the carrier frequency. The problem constraints

are:

1.

b ∈ {0, 1, 2, . . . , 6}

2.
N−1
∑

n=0

bn =
N

7

6
∑

b=0

b = 3N (10)

The latter expression constrains the total number of bits transmitted in the N carriers.

For optimization algorithm evaluation purposes, we have assumed that the total number of

bits is equal to N times the average number of bits in all possible constellations. Observing

the latter constrain, the problem is non-convex and therefore several solutions may occur.

However, we expect a solution for B 6= 3I (the same constellation M = 8 in all carries) and

N−1
∑

n=0

Pbn
(γn) <

N−1
∑

n=0

P3n(γn), b ∈ {0, 1, 2, . . . , 6} (11)

It would be interesting to find out a solution for some particular functions as for instance

an exponential function type,

γ =
α

2

(

1 − e−α|n−k|
)

dB, α > 0, k ∈ {0, 1, . . . , N − 1} (12)

We have been trying to propose to solve the problem through dynamic programming which

provides a global optimum. However, the constrain (10) imposes some challenges. Figure 1

shows an hypothetical solution where higher modulations are assigned to carriers with lower

signal-to-noise ratio.
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Figure 1: An hypothetical solution for a given profile at a particular instant of time.

3 Conclusions

Other problems could have been formulated. For instance, instead of minimizing the total

error probability (8) and constraining on the bit error rate (10), we could formulate the

problem by maximizing the total bit error rate and an inequality constrain given by the total

error probability greater than a pre-defined value.

Appendix A

The bit error probabilities (BEP) are obtained by solving the integral:

PE(γ) =

∞
∫

0

PEpγ(γ)dγ (A.1)

where PE is the conditional BEP in non-fading channel corrupted by AWGN and pγ(γ) is

the probability density function (PDF) [4]. Rayleigh function is used to model the multipath

fading with no direct line-of-sight (LOS). The PDF of Rayleigh model is:

pγ(γ) =
1

γ
exp

(

−γ

γ

)

, γ ≥ 0 (A.2)

The expression for the BEP with AWGN involves the Gaussian Q-function and the square

of this function,

Q(x) =

∞
∫

x

exp
(

−y2

2

)

√
2π

dy (A.3)
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Using an alternate representation for simplicity,

Q(x) =

π
2
∫

0

exp

(

− x2

2 sin2 θ

)

dθ for x ≥ 0 (A.4)

In this particular case,

Pbn
(γ) =

∞
∫

0

Q(a
√

γ)pγ(γ)dγ (A.5)

resulting in the following expression,

Pbn
(γ) =

1

π

π
2
∫

0

(

1 +
a2γ

2 sin2 θ

)−1

dθ =
1

2



1 −

√

√

√

√

a2γ
2

1 + a2γ
2



 (A.6)

Considering b ∈ {0, 1, 2, . . . , 6}, the error probabilities are:

• For b = 0, no information is transmitted.

• For b = 1,

P1(γ) =

∞
∫

0

Q
(

√

2γ
) 1

γ
e
− γ

γ dγ =
1

2

(

1 −
√

γ

γ + 1

)

(A.7)

• For b = 2,

P2(γ) =

∞
∫

0

2Q
(

√

2γ
) 1

γ
e
− γ

γ dγ =

(

1 −
√

γ

γ + 1

)

(A.8)

• For b = 3,

P3(γ) =

∞
∫

0

5

6
Q

(
√

γ

3

)

1

γ
e
− γ

γ dγ =
5

12

(

1 −
√

γ

γ + 6

)

(A.9)

• For b = 4,

P4(γ) =

∞
∫

0

[

3

4
Q

(
√

γ

5

)

+
1

2
Q

(

√

9γ

5

)

− 1

4
Q
(

√

5γ
)

]

1

γ
e
− γ

γ dγ

=
3

8

(

1 −
√

γ

γ + 10

)

+
1

4

(

1 −
√

9γ

9γ + 10

)

− 1

8

(

1 −
√

5γ

5γ + 2

)

(A.10)

• For b = 5,

P5(γ) =

∞
∫

0

7

10
Q

(
√

γ

10

)

1

γ
e
− γ

γ dγ =
7

20

(

1 −
√

γ

γ + 20

)

(A.11)
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• For b = 6,

P6(γ) =

∞
∫

0

[

7

12
Q

(√

γ

21

)

+
1

2
Q

(

√

9γ

21

)

− 1

12
Q

(

√

25γ

21

)

+
1

12
Q

(

√

81γ

21

)

− 1

12
Q

(

√

169γ

21

)]

1

γ
e
− γ

γ dγ

=
7

24

(

1 −
√

γ

γ + 42

)

+
1

4

(

1 −
√

9γ

9γ + 42

)

− 1

24

(

1 −
√

25γ

25γ + 42

)

+
1

24

(

1 −
√

81γ

81γ + 42

)

− 1

24

(

1 −
√

169γ

169γ + 42

)

(A.12)
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Computational Complexity of Discrete Fourier

Transform

Vitor Silva∗ Fernando Perdigão†

Abstract

The development of a new mathematical theory on the computational complexity of

the Discrete Fourier Transform is an important research topic. Lower bounds on the num-

ber of elementary operations (additions and multiplications) are needed in order to verify

if current FFT algorithms are nearly optimal or if there is room for further improvements.

Keywords: DFT, FFT, computational complexity, lower bound.

1 Introduction

The discrete Fourier transform (DFT) is an important mathematical tool in modern digital

signal processing and telecommunications fields. The direct transform is given by

X(k) =
N−1∑

n=0

x[n] · e−j
2π
N

nk
, (1)

for 0 ≤ k ≤ N − 1, and where N is the length of the sequence x[n] (real or complex). Since

the pioneer work by Cooley and Tukey [1], several families of fast DFT algorithms (FFT)

have been developed [2, 3, 4, 5, 6]. The foundations of the modern work on efficient FFT

algorithms were done by S. Winograd [7, 8, 9].

Several new algorithms have been published that require the least known amount of total

arithmetic [10, 13, 12, 14, 16, 17]. Of these, the split-radix FFT [11, 21, 16] seems to have the

best structure for programming. Other FFT approach is the prime factor algorithm (PFA)

which access the data using an index map originally developed by Thomas and by Good [13].

The theory of the PFA was derived in [13] and some results on the PFA are given in [22, 23].

Another DFT method, valid for a general length N , based on a linear convolution operation,

is the Chirp-z Transform (CZT) [24].
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A common issue shared by the mentioned algorithms is the arithmetic complexity minimiza-

tion idea. Usually, it is measured as the number of complex (real) additions and multipli-

cations necessary to compute (1). In the literature, several upper bounds on the number

of arithmetic operations are available (for N prime, composite and power of primes). For

N = 2n the best-known upper bound (4N log2(N) real multiplications plus additions) is due

to the split-radix algorithm [16]. For a generic N , a (good) upper bound is given in [25, 26].

Theoretical lower bounds on the number of multiplications required for the DFT, based on

Winograd’s theories, are given in [19, 20, 16] (multiplicative complexity). However, there is

no similar result on the number of additions (additive complexity). The published work on

linear complexity [27] and optimality of the FFT [28] are not enough generic. Furthermore, of

most interest would be a lower bound on the number of both additions and multiplications.

Nowadays, arithmetic complexity and computer architecture capabilities (pipeline, cache,

memory speed, etc) have a similar (comparable) effect on the FFT algorithm run time perfor-

mance. A very interesting platform-adaptable FFT system, called FFTW, has been developed

by Frigo and Johnson [18], which uses a library of efficient ”codelets” and a decomposition

method which searches the optimal DFT decomposition. Also, in another work [29], a generic

algorithm derives fast versions for a broad class of discrete signal transforms symbolically,

including the DFT.

In fact, the computational complexity of FFT algorithms is an intricate combination of arith-

metic cost and computer implementation issues due to processor architectures, memory ac-

cesses and adequate code design.

2 The Problem

Independently of any kind of known efficient FFT algorithm, the proposed challenge is to

develop a mathematical theory on the computational (arithmetic) complexity of the DFT,

which leads to lower bounds on the number of elementary operations (additions and multi-

plications) necessary to compute (1) as functions of the sequence length N . This knowledge

will allow us to verify the level of optimality of the available algorithms and if there is room

for further research on new fast algorithms and related topics.
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Optimization of the dispersion profile in soliton

links with dispersion–varying compensating fiber

Henrique J. A. da Silva∗ M. C. Gouveia†

Abstract

Recently, it has been shown that the soliton dynamics in fiber links employing com-

pensating fiber with variable dispersion may lead to an improvement of the system per-

formance, suggesting the possibility of an optimal dispersion compensating profile for

soliton transmission in periodically amplified systems. The problem proposed here is to

find an optimal dispersion profile, based on the variational approach for the solution of

the nonlinear Schrödinger equation (NSE) and using a simple system criterion.

Keywords: soliton propagation, dispersion compensation, nonlinear Schrödinger equation.

1 Introduction

The equation that describes the propagation of soliton pulses in periodically amplified systems

with variable dispersion is [1]:

i
∂u

∂ξ
+

1

2
d(ξ)

∂2u

∂τ2
+ |u2|u = − i

2
Γu+ i

(√
G− 1

)

NA
∑

m=1

δ(ξ −mξA)u (1)

where NA is the number of cascaded amplifiers, ξA = ZA/LD is the normalized amplifier

separation, Γ = αLD is the normalized loss coefficient (α is the loss coefficient and LD is

the dispersion length), G = exp(ΓξA) is the gain provided to compensate for the losses, δ is

the Dirac function, which indicates the periodic nature of the amplification, and d(ξ) is the

variable dispersion profile, given by:

d(ξ) =



























βDCF
2

βave
2

, for the DCF, and

βDSF
2

βave
2

, for the DSF.

(2)
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where DCF and DSF stand for dispersion compensating fibre and dispersion shifted fibre,

respectively, and

βave
2 =

βDCF
2 ZDCF + βDSF

2 ZDSF

ZA
(3)

is the average dispersion coefficient.

In order to analyse the propagation of the pulse envelope, it is convenient to write the

amplitude u as a function of a fast component, due to loss and periodic amplification, and a

slow component, the envelope, through the transformation:

u(ξ, τ) = a(ξ)v(ξ, τ) (4)

By applying this transformation to equation (1), the following equations are obtained:

i
∂v

∂ξ
+

1

2
d(ξ)

∂2v

∂τ2
+ a2(ξ)|v|2v = 0 (5)

da

dξ
= −1

2
Γa+

(√
G− 1

)

NA
∑

m=1

δ(ξ −mξA)a (6)

Equation (6) has the following solution [1]:

a(ξ) =







a0 exp

[

−1

2
Γ (ξ −mξA)

]

, for mξA < ξ < (m+ 1)ξA

a0, for ξ = mξA

(7)

with

a0 =

[

ΓξA
1 − exp(−ΓξA)

]1/2

(8)

It should be noticed that, if the amplifier spacing ZA is chosen much smaller than the dis-

persion length LD, then ξA = ZA/LD � 1 and a(ξ) is a function of the fast variation in

each interval between amplifiers. With a suitable choice of the input power, the soliton shape

will deviate very little from its shape in a lossless medium, and may be amplified hundreds

of times with a behaviour very close to ideal propagation. The energy of the soliton in this

propagation regime is the average energy in one amplification stage, and is therefore called

average soliton regime.

2 Variational Method

2.1 Lagrangean of the system

The application of variational calculus to the solution of the nonlinear Schrödinger equation

(NSE) was proposed for the first time by Anderson [2], in 1983. Since then, variational

calculus has been a powerful tool in the study of soliton dynamics. It is worth noting that
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this method may be employed in systems with dispersion management, since the energy is

conserved in average.

The differential equation that describes the optical field propagation is equation (5). This

equation must be rewritten through variational calculus equations. The first step is to write

the Euler-Lagrange equations for the system under analysis. Considering that the Lagrangean

L of the system depends on the optical field and its derivatives relative to the propagation

coordinate and to the temporal coordinate:

L = L

(

v, v∗,
∂v

∂ξ
,
∂v∗

∂ξ
,
∂v

∂τ
,
∂v∗

∂τ

)

(9)

the Euler-Lagrange equations are given by:

∂L

∂v
−
[

∂

∂ξ

(

∂L

∂vξ

)

+
∂

∂τ

(

∂L

∂vτ

)]

= 0 (10a)

∂L

∂v∗
−
[

∂

∂ξ

(

∂L

∂v∗ξ

)

+
∂

∂τ

(

∂L

∂v∗τ

)

]

= 0 (10b)

where

vξ =
∂v

∂ξ
, v∗ξ =

∂v∗

∂ξ
, vτ =

∂v

∂τ
, v∗τ =

∂v∗

∂τ

The Lagrangean of the system must be such that, replaced in the Euler-Lagrange equations

(10), produces the original NSE (5) or its complex conjugate. Using this principle, the

Lagrangean of the system was found to be given by [3]:

L =
i

2

[

v
∂v∗

∂ξ
− v∗

∂v

∂ξ

]

+
1

2
d(ξ)

∣

∣

∣

∣

∂v

∂τ

∣

∣

∣

∣

2

− 1

2
c(ξ)|v|4 (11)

It may be easily verified that the NSE is obtained, if this Lagrangean is used in equation

(10b). It should be noted, however, that here the variable is c(ξ) = a2(ξ).

2.2 Ansatz and average Lagrangean

Having defined the Lagrangean of the system and verified its validity through the Euler-

Lagrange equations, an important step is to identify a trial function, or ansatz, which will

be used as an approximation for the exact solution. The final solution, found through the

variational method, is as more accurate as the ansatz is closer to the exact solution. In order

to take into consideration the main system parameters that rule soliton propagation, the

following ansatz was chosen [4]:

v(ξ, τ) = η(ξ) sech [η(ξ) (τ + Ω(ξ)ξ − q(ξ))] · exp

[

−iΩ(ξ)τ + i
(

η(ξ)2 − Ω(ξ)2
) ξ

2
+ iφ(ξ)

]

(12)
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where η(ξ), Ω(ξ), q(ξ), φ(ξ) represent the amplitude, frequency, phase and position of the

soliton, respectively.

Once defined the trial function, a new calculation of the system Lagrangean is required,

starting with the chosen ansatz. In this way, the Lagrangean becomes a function of the ansatz

parameters.

Replacing equation (12) in equation (11), it is found that:

L = η2sech(x)

{

−τ ∂Ω

∂ξ
+

1

2

[

(η2 − Ω2) + 2ξη
∂η

∂ξ
− 2ξη

∂Ω

∂ξ

]

+
∂ψ

∂ξ
+
i

4
d(ξ)

[

Ω2 + η2tanh(x)2
]

− i

4
c(ξ)η2sech(x)2

}

(13)

where x = η(τ + Ωξ − q).

The variational principle establishes that:

δ

∫∫

Ldξdτ = 0 (14)

It is possible to reduce the variational principle to only one dimension, by integrating the

Lagrangean over all time τ . For this it is useful to define the reduced or average Lagrangean,

given by:

〈L〉 =

+∞
∫

−∞

Ldτ (15)

Using equation (13), the following average Lagrangean is obtained:

〈L〉 = −2q
∂Ω

∂ξ
+2Ωξ

∂Ω

∂ξ
+η3−ηΩ2+2ξη2∂η

∂ξ
−2ξη2∂Ω

∂ξ
+η

∂φ

∂ξ
+
i

2
ηd(ξ)Ω2+

2

3
η3− i

3
η3c(ξ) (16)

The variational principle is then replaced by the reduced variational principle, expressed by:

δ

∫

〈L〉dξ = 0 (17)

2.3 Ansatz parameters

The reduced Lagrangean defines a Hamiltonian system with finite dimension. Therefore, the

equations that describe the ansatz parameters can be obtained from the canonical Hamilton

equations, given by:

dxj

dz
=
∂H

∂pj
(18)

dpj

dz
=
∂H

∂xj
(19)
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where the generalized system momentum, p, and the system Hamiltonian, H, for the reduced

variational problem, are given respectively by:

pj =
∂〈L〉
∂
[

dxj

dz

] (20)

H =
N
∑

j=1

pj
dxj

dz
− ∂〈L〉 (21)

The generalized coordinates xj are those that, in the reduced Lagrangean, have derivative

relative to z. In the case under analysis, z = ξ and the generalized coordinates of the problem

are xj = Ω, η, φ, for j = 1, 2, 3. Therefore:

p1 =
∂〈L〉
∂
[

dΩ
dξ

] = −2q + 2Ωξ − 2ξη2 (22)

p2 =
∂〈L〉
∂
[

dη
dξ

] = 2ξη2 (23)

p3 =
∂〈L〉
∂
[

dφ
dξ

] = η (24)

Using equation (21), the following Hamiltonian is found:

H = ηΩ2 − η3 − 2

3
η3 − i

2
ηΩ2d(ξ) +

i

3
η3c(ξ) (25)

Using this in the Hamilton equations (18, 19), we obtain:

dΩ

dξ
=

∂H

∂ (−2q + 2Ωη − 2ξΩ2)
⇒ dΩ

dξ
= 0 ⇒ Ω = Ω0 = const. (26)

− dq

dξ
+ ξ

dΩ

dξ
+ Ω − η2 − 2ξη

dη

dξ
+ ηΩ − i

2
ηΩd(ξ) = 0 (27)

dφ

dξ
=
∂H

∂φ
⇒ dφ

dξ
= −3η2 + Ω2 − i

2
Ω2d(ξ) − 2η2 + iη2c(ξ) (28)

dη

dξ
= −∂H

∂φ
⇒ dη

dξ
= 0 ⇒ η = η0 = const. (29)

dη

dξ
=

∂H

∂(2ξη2)
⇒ dη

dξ
= 0 ⇒ η = η0 = const. (30)

d(2ξη2)

dξ
= −∂H

∂η
⇒ 3η2 − Ω2 +

i

2
d(ξ)Ω2 − iη2c(ξ) = 0 (31)

Equation (27) may now be rewritten using equation (26):

dq

dξ
= Ω − η2 + ηΩ − i

2
ηΩd(ξ) (32)
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In summary, the equations for the soliton parameters are:

dη

dξ
= 0 ⇒ η = η0 = const. (33)

dΩ

dξ
= 0 ⇒ Ω = Ω0 = const. (34)

dφ

dξ
= −2η2

0 (35)

dq

dξ
= Ω0 − η2

0 + η0Ω0 −
i

2
η0Ω0d(ξ) (36)

From these results it may be concluded that, for this type of propagation:

• The amplitude of the envelope of the slow variation function is constant;

• The soliton frequency is constant;

• The phase varies linearly with propagation distance;

• The position of the soliton during propagation depends on the dispersion map and on

the initial amplitude and frequency values.

3 Optimization problem

In [5], a new dispersion compensation scheme is reported where the uniform DCF is replaced

by fiber with decreasing and increasing dispersion profiles. In this study, three cases were

considered for the dispersion coefficient of the compensating fiber: uniform (conventional

DCF), exponential decreasing, and exponential increasing. In order to do a fair comparison

as general as possible, the average dispersion of the dispersion-varying compensating fiber

(DVCF) was set to be equal to the dispersion of the uniform fiber.

The NSE has been solved with the variational approach with a more general ansatz of the

type [3]:

Q(z, τ) = a(z)f [τ/b(z)] exp
[

iλ(z) + iµ(z)τ 2
]

(37)

where f(x) is an arbitrary pulse waveform, a(z), b(z), λ(z) and µ(z) account for the complex

amplitude, pulse width, phase and pulse chirp, respectively, and z = Z/LNL = ξLD/LNL

is the distance normalized by the fiber nonlinear length LNL. This normalization is more

convenient to analyse the interaction between the fiber nonlinearity and the residual dispersion

given by equation (3), which is significant on the scale of the complete transmission line, which

may have a length with the same order of magnitude of LNL � ZA.
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By applying the variational principle, the NSE reduces to a set of ordinary differential

equations:

a(z)2b(z) = N2 = const. (38)

db(z)

dz
=

2LNLd(z)

LD
b(z)µ(z) (39)

dµ(z)

dz
=
LNLd(z)C1

2LDb(z)4
− c(z)a(z)2C2

b(z)2
− 2LNLd(z)

LD
µ(z)2 (40)

where C1 and C2 are constants that depend on the shape of the input pulse:

C1 =

∫ +∞

−∞

∣

∣

∣

∣

df(x)

dx

∣

∣

∣

∣

dx

∫ +∞

−∞

x2 |f(x)|2 dx
(41)

C2 =

∫ +∞

−∞

|f(x)|4 dx
∫ +∞

−∞

x2 |f(x)|2 dx
(42)

For f(x) = sech(x) pulses, C1 = 2C2 = 4/π2, and for Gaussian pulses f(x) = exp(−x2),

C1 = 4 and C2 = 1
√

2. Function c(z) is related to the fiber losses and amplifier gain:

c(z) = exp

[

2

∫ z

0

g(z′)dz′
]

(43)

with

g(z′) = LNL

{

−γ + [exp(γZA) − 1]
N
∑

k=1

δ(z′ − zk)

}

(44)

where γ = 0.115α describes the fiber losses, ZA is the amplification period, and zk = kzA are

the amplifier locations.

In the framework of project TRANSPARENT (POSI/34559/CPS/2000) [5], other dis-

persion profiles were considered besides the exponential one, namely the Gaussian and the

hyperbolic profiles, in order to compare the soliton dynamics for different kinds of dispersion-

varying compensating fiber (DVCF). For these profiles, the increasing and decreasing cases

were also considered, and a good agreement was observed between the solution obtained with

the variational equations (38) to (40) and the direct numerical solution of the NSE with the

split-step Fourier method (SSFM) [6].

The results reported in [5] show that the pulse dynamic behavior depends on the dis-

persion profile of the compensating fiber, and that the chirp acquired by the pulse as it

propagates is responsible for the different evolution of the pulse with the three profiles con-

sidered. Therefore, the preliminary study presented indicates that it is possible to improve
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the system performance with a proper control of the chirp parameter evolution, and that this

may be achieved through the use of DVCF instead of conventional DCF.

The assumption concerning system performance made here is that the pulse dynamics

whose amplitude and width values deviate less from the input amplitude and width values

would be less detrimental to the system performance. With this simple criterion, the opti-

mization problem may be reduced to a simpler minimization problem.

Other system parameters, namely the amplifier span, the DVCF length and the pulse

width, might also be considered in this optimization problem, with the objective of finding

the best operating regions for the propagation of solitons in long-haul links. This would

however make the problem much harder, due to the higher number of variables required.

As a further motivation for this study, it should be noted that the use of a DVCF with

the same average dispersion as its DCF counterpart might be applied to any dispersion map.

This would mean that the performance of a system employing a conventional DCF with an

arbitrary dispersion value might always be improved through the use of its DVCF counterpart

(i.e., a DVCF with average value of the dispersion coefficient equal to the uniform dispersion

coefficient of the DCF), and even more so if an optimal dispersion profile could be found.

4 Soliton dynamics

The variational equations (38) to (40) include both the fast dynamics, due to loss and am-

plification, and the slow dynamics, due to the fiber nonlinearity and residual dispersion. By

introducing the variable v(z) = µ(z)b(z), we have, from (38) and (39):

dv

dz
=
LNLd(z)C1

2LDb3
− c(z)N2C2

b2
(45)

To obtain the solution for the linear case we must consider only the dispersive effects. There-

fore, for sech pulses (45) reduces to:

dv

dz
=
LNLd(z)C1

2LDb3
=

2LNLd(z)C1

LDb3π2
(46)

By dividing (39) by (46) and integrating (through separation of variables), we obtain:

v2 =
1

π2

(

1 − 1

b2

)

(47)

By substitution of this result in (39) and integration, the linear solution for b(z) is then

obtained:

b2l = 1 +

[

4

π
R(z)

]2

(48)

where
dR(z)

dz
=
LNL

2LD
d(z) (49)
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The slow dynamics due to the fiber nonlinearity and the residual dispersion can be con-

sidered as perturbations of the linear solution. Equations (39) and (45) may be linearized

about the linear solution by assuming b = bl + b̃±, with b̃± � bl (+ and − corresponding to

SMF and DCF, respectively; for simplicity, these subscripts are not used in the following):

db̃

dz
=

2LNL

LD
d(z)b̃µ =

2LNL

LD
d(z)ṽ (50)

dṽ

dz
= −6LNLd(z)

π2LDb
4
l

b̃− 2c(z)N2

π2b2l
(51)

The initial conditions at z = 0 are b̃ = 0 and ṽ = 0. Therefore, the system formed by these

equations can be written in the form:











db̃

dz

dṽ

dz











=











0 k

− 3k

π2b4l
0

















b̃

ṽ






+











0

−2N2c(z)

π2b2l











(52)

with the initial conditions
[

b̃(0)

ṽ(0)

]

=

[

0

0

]

,

and where bl = bl(z) and

k =
2LNLd(z)

LD

is constant for DCF and SMF, but varies with z in DVCF. This system is of the type y ′(z) =

A(z)y(z) + e(z).

According to theorem 8.3 in [7], if φ(z) is a fundamental matrix for the system y ′(z) =

A(z)y(z), the unique solution for this system will be given by:

y(z) = φ(z)φ−1(z0)η +

∫ z

z0

φ(z)φ−1(s)e(s)ds (53)

where η = y(z0).

If φ(z) is nonsingular for all z and satisfies equation φ′(z) = A(z)φ(z), then it is a funda-

mental matrix for the system y′−Ay = 0. This matrix exists if A(z) is continuous. Moreover,

if xi(z), with i = 1, . . . , n, are solutions of y′ −Ay = 0, then φ(z) =
[

x1 x2 . . . xn

]

satisfies

φ′(z) = A(z)φ(z).

In order to determine φ(z) for system (52), we consider:

x1 =

[

cosh(Mz)
M
k sinh(Mz)

]

and x2 =

[

k
M sinh(Mz)

cosh(Mz)

]

(54)

where k is defined as in (52) and M = i

√
3k

πb2l
.
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Since x1 and x2 are solutions of y′ − Ay = 0, then:

φ(z) =

[

cosh(Mz) k
M sinh(Mz)

M
k sinh(Mz) cosh(Mz)

]

(55)

such that |φ(z)| = 1 and:

φ−1(z) =

[

cosh(Mz) k
M sinh(Mz)

−M
k sinh(Mz) cosh(Mz)

]

(56)

with φ−1(0) = I.

Then, with the initial conditions

y(0) =

[

0

0

]

,

solution (53) takes the form:

y(z) =

∫ z

0

φ(z)φ−1(s)e(s)ds (57)

Therefore:







b̃−

ṽ−






=















−2kN2

π2

∫ z

0

1

M
sinh [Mz −Ms]

c(s)

b2l (s)
ds

−2N2

π2

∫ z

0

1

M
sinh [Mz +Ms]

c(s)

b2l (s)
ds















(58)

if k is constant, as happens with DCF and SMF.

5 Conclusion

Result (58) is valid for uniform DCF and for SMF, which have constant dispersion. If the

DCF is replaced by a DVCF with arbitrary dispersion profile, A(z) becomes a matrix with

variable coefficients. In this case, φ(z) in solution (53) may be obtained by applying the Wei–

Normann theorem, taking into consideration that A(z) belongs to the Lie algebra of 2 × 2

matrices with null trace.

At the time of writing we are still working on the solution for this case, which we expect

will enable the identification of the DVCF dispersion profile that minimizes the perturbation

of the soliton parameters.
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Effective Permittivity of 1D- 2D- and 3D-Wire

Structures: An Analytical Approach

Mário Silveirinha∗ Carlos A. Fernandes†

Abstract

In this paper we discuss the propagation of electromagnetic waves in an artificial

medium that consists of a regular array of thin metallic wires. The problem involves the

calculation of the eigenvalues of a differential operator. The challenge is to obtain an

approximate closed-form solution for the first few eigenvalues (the long wavelength limit).

The proposed solution is based on a variational formulation and physical considerations.

We homogenize the periodic structure and we prove that it can be described in terms

of an effective permittivity. Our results show that the effective permittivity of the wire

medium depends explicitly on the wave vector, and thus that the wire medium is not

isotropic in the long wavelength limit. We compare our model with the standard plasma

model commonly accepted in the literature, and we discuss the physical implications of

the results.

Keywords: metamaterials, left-handed media, wire media, homogenization theory.

1 Introduction

In recent years the propagation of electromagnetic waves in periodic dielectric/metallic struc-

tures has received great attention [1, 2]. These structures consist of a three-dimensional

regular array of metallic or dielectric particles (inclusions) embedded in a host homogeneous

material. It has been shown that these artificial materials possess remarkable properties that

find many applications in several branches of physics and engineering [1]. The main features of

the interaction of composite materials with electromagnetic waves depend on the wavelength

of operation.

For wavelengths smaller or comparable to the lattice constant (i.e. the spacing between the

inclusions) the propagation of electromagnetic waves in the periodic material may be forbidden

in certain frequency bands [1]. In general, the frequency bands depend on the polarization and

direction of propagation. However, it has been shown [3] that it is possible to design a periodic

∗Instituto de Telecomunicações. E-mail: mario.silveirinha@co.it.pt
†Instituto de Telecomunicações. E-mail: carlos.fernandes@lx.it.pt
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dielectric material in which propagation of electromagnetic waves is completely forbidden,

irrespective of the polarization and direction of propagation. These structures were initially

investigated in the framework of solid-state physics and electronics. It was suggested that

spontaneous emission in semiconductor lasers can be rigorously eliminated if the band-gap of

the periodic dielectric structure overlaps the electronic band edge [4]. Spontaneous emission

limits the performance of semiconductor lasers and other devices. Other applications have

been suggested over the years. These include high-Q electromagnetic cavities and waveguides

for short wavelengths at which metals are useless due to strong losses [5], monolithic waveguide

filters [6], and the improvement of the radiation characteristic of antennas [7, 8].

For wavelengths much larger than the lattice constant, the properties and characterization

of periodic materials are substantially different from those of the band gap regime described

above. In the long wavelength limit, the propagation of electromagnetic waves in the artifi-

cial material can be described from an average perspective, in analogy with propagation in

matter (due to this reason composite structures in the long wavelength limit are also known

as “metamaterials”). In this way, it is possible to homogenize the metamaterial and to define

effective parameters that completely characterize the average electromagnetic fields (in the

simpler formulation the effective parameters are the effective permittivity and permeability

[9]; in the most general case the medium is bianisotropic [10]). Fifty years ago, these facts

motivated an intense research on artificial dielectrics [11]. Recently, the investigation of these

structures regained interest after the extraordinary breakthrough that it is possible to synthe-

size a material having simultaneously negative permittivity and permeability over a certain

frequency band [12]. These materials are known as left-handed media or double negative

materials, and their unconventional electrodynamics was investigated long time before they

were actually found [13]. Among other exotic and unexpected properties, double negative

materials have negative index of refraction. An interesting implication is that rays refracted

at an interface with air bend with a negative transmission angle. A remarkable consequence

is that negative refraction makes a perfect lens [13, 14]. Indeed, as discussed in [14], with

a conventional lens the resolution of the image is always limited by the wavelength of light.

Quite differently, a slab of material with negative refractive index has the power to focus all

Fourier components of an image, even those that do not propagate in a radiative manner (i.e.

the Fourier components that decay exponentially in free-space).

The composite structure that was first shown to have a negative index of refraction [12],

consists of a periodic array of metallic wires and split ring resonators, as illustrated in Figure

1. This structure is not isotropic and strictly speaking the negative index of refraction is

seen only by electromagnetic waves that propagate in the direction indicated in Figure 1,

with magnetic field normal to the split ring resonators. As discussed in [12], the negative

permeability effect emerges due to the split ring resonators, whereas the negative permittivity

effect emerges due to the metallic wires.
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Figure 1: Geometry of the medium proposed by Smith et al. [12], which interacts with

electromagnetic waves as a double negative medium

To a first approximation the properties of the composite structure can be described by

characterizing the effect of each of its basic components individually. This approach assumes

small coupling between the two basic inclusions.

In this paper, we are interested in modeling uniquely the interaction of electromagnetic

waves with the array of metallic wires (and other similar structures with increased symmetry

described ahead), and to assess the validity of the standard plasma model [12]. In fact, it was

recently proved that the standard plasma model is insufficient to describe the electrodynamics

of the array of wires because strong spatial dispersion emerges at very long wavelengths [15].

The analysis of [15] is however restricted to the case in which metallic wires are all oriented in

the same direction (1D-wire medium). The objective of this paper is to investigate whether

this effect emerges or not in other wire structures with increased symmetry. The geometry of

these structures is depicted in Figure 2. The relevance and motivation of the study is that the

natural solution to synthesize an isotropic metamaterial with negative permittivity is based

on the 3D-wire medium configuration depicted in Figure 2. Is such a structure really isotropic

at long wavelengths? Later in the paper we will give the answer to this fundamental question.

Figure 2: Geometry of the 1D- 2D- and 3D- wire medium
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2 Propagation of electromagnetic waves in periodic media

In this section we discuss the propagation of electromagnetic waves in periodic media, and

the mathematical formulation of the problem. For simplicity, we restrict the discussion to

media with metallic inclusions (perfect conductors). A three-dimensional periodic medium

is invariant to translations along three independent vectors a1, a2 and a3 , which are known

as the lattice primitive vectors [1]. The unit cell Ω = {α1a1 + α2a2 + α3a3 : |αi| ≤ 1
2}

completely defines the geometry of the structure. In a metallic crystal the unit cell consists

of a homogeneous dielectric region, and a metallic domain D. The boundary of domain D is

surface ∂D, and the outward unit vector normal to D is v̂ . The translation of D into the

lattice point r1 = i1a1 + i2a2 + i3a3 is ∂DI, where I = (i1, i2, i3) is a multi-index of integers.

The unit cell is depicted in Figure 3, assuming the particular case in which the periodic

medium is the 3D-wire medium depicted in Figure 2. In this situation, the primitive vectors

are parallel to the coordinate axes and such that α = |a1|+ |a2|+ |a3| (i.e. the lattice is simple

cubic [1]). The α parameter is the spacing between adjacent parallel wires, and is referred

to as the lattice constant. The spacing between adjacent orthogonal wires is assumed to be

half-lattice constant.

Figure 3: Unit cell for the 3D-wire medium. The lattice constant is α.

The propagation of electromagnetic waves in a periodic structure is described in terms of

a theory of bands. An arbitrary solution of Maxwell-Equations [16] in the periodic structure

can be decomposed into electromagnetic Floquet modes. The Floquet modes are the analogue

of plane waves in free-space, and are characterized by a wave vector k. The wave vector is

restricted to the so-called Brillouin zone [1] (e.g. in case of a simple cubic lattice the Brillouin

zone is the cube
[

−π
α
, π

α

]3
).

The objective is to compute the electromagnetic Floquet modes (E,H) of the periodic

structure. A Floquet mode associated with wave vector k is a solution of the (frequency-

dependent) Maxwell-Equations, such that (E,H) exp(jk · r) is periodic (i.e. invariant to

translations along the primitive vectors). Thus, an electromagnetic mode must satisfy the
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following equations:

∇× E = −jβZ0H, dielectric region (1a)

∇× H = j
β

Z0
E, dielectric region (1b)

v̂ × E = 0, on ∂D1 (1c)

(E,H) exp(jk · r), is periodic (1d)

where k = (k1, k2, k3) is the wave vector, j =
√
−1 , Z0 is the impedance of free-space, β = ω

c

is the free-space wave number, ω is the angular frequency, and c is the velocity of light in

vacuum. Equations (a) and (b) are the frequency-dependent Maxwell-Equations, (c) is the

boundary condition at the metallic interfaces, and (d) is the Floquet wave condition.

For a given wave vector k, system (1) has non-trivial solutions only for a countable set

of resonant wave numbers (i.e. it is an eigenvalue problem). The resonant wave numbers

βn = βn(k) n = 1, 2, . . ., form the so-called band structure of the metallic crystal. The

calculation of the band structure of a periodic medium is a difficult problem. No analytical

solutions are in general available. Thus we have to resort to numerical methods [17, 3], which

are computationally demanding and give no insight of the physical problem.

The objective of the first part of this paper sections 3 and 4 is to obtain an approximate

analytical formula for the first few bands (i.e. eigenvalues) of eigensystem (1) assuming that

the wire radius, rw , is very small. Thus, the metallic regions (i.e. the high-permittivity

regions) are extremely localized in space. These results will allow us to characterize the

average electromagnetic fields in terms of an effective permittivity dyadic [9] in section 5. In

section 6, we discuss the physical implications of the results, and in section 7 we draw the

conclusions.

3 Variational Formulation

In this section, we derive a variational formulation for problem (1). To this end, we obtain

first an integral representation for the electric field E.

To begin with, we introduce the lattice Green function Φp = Φp(r|r′), which is the Floquet

solution of the following equation [18, 19]:

∇2Φp + β2Φp = −
∑

I

δ(r− r′ − rI)e
−jk·(r−r′) (2)

where I = (i1, i2, i3) is a multi-index of integers, r = (x1, x2, x3) is the observation point,

r′ = (x′
1, x

′
2, x

′
3) is a source point, r1 = i1a1 + i2a2 + i3a3 is a lattice point, and δ is Dirac’s

distribution. The lattice Green function can be efficiently evaluated as explained in [18].

In this paper we shall consider instead the so-called spectral representation of the Green
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function, which is obtained by expanding Φp in a Fourier series. The result is the following

slow converging series:

Φp(u) =
1

Vcell

∑

J

e−jkJ·u

|kJ|2 − β2
, kJ = k + k0

J (3)

where u = r − r′, Vcell = |a1 · a2 × a3| is the volume of the unit cell, J = (j1, j2, j3) is a

multi-index of integers, k0
J

= j1b1 + j2b2 + j3b3 , and b1, b2 and b3 are the reciprocal

lattice primitive vectors defined by the relations an · bm = 2πδn,m , n,m = 1, 2, 3 (δn,m is

Kronecker’s delta symbol, which equals 1 if n = m and 0 otherwise). Using (1c), (2) , and

arguments similar to those employed in [20, pp.151], for the case in which the Green function

is the free-space kernel, we can readily prove that the electric field has the following integral

representation:

E(r) =
Z0

jβ
∇×∇×

∫

∂D

Jc(r
′)Φp(r|r′)ds′, r in the dielectric region (4)

In the above, the surface integral is over the primed coordinates (the integration is over the

boundary of the metallic region in the unit cell), and Jc = v̂×H. Physically, Jc is the surface

current that flows over the metallic surface. Using the vector identity ∇×∇× = ∇∇ · −∇2

and (2), we can rewrite (4) as:

E(r) =
Z0

jβ
∇

∫

∂D

∇s · Jc(r
′)Φp(r|r′)ds′ − jβZ0

∫

∂D

Jc(r
′)Φp(r|r′)ds′ (5)

where ∇s· stands for the surface divergence of a tangential vector density.

Let w be an arbitrary tangential vector density defined over ∂D. Letting the observation

point r approach ∂D in (5), and using the boundary condition (1c), we obtain that:

0 = w(r) · ∇
∫

∂D

∇s · Jc(r
′)Φp(r|r′)ds′ + β2w(r) ·

∫

∂D

Jc(r
′)Φp(r|r′)ds′, r ∈ ∂D (6)

Next, we integrate the above equation over ∂D (in the unprimed coordinates). After simple

manipulations we find that:

∫

∂D

∫

∂D

∇s ·w(r)∇s · Jc(r
′)Φp(r|r′)ds′ds − β2

∫

∂D

∫

∂D

w(r) · Jc(r
′)Φp(r|r′)ds′ds = 0 (7)

Thus, we conclude that if there is an electromagnetic mode associated with wave vector k and

wave number β, then the bilinear form defined by the left-hand side of the previous formula

is degenerate. Note that in the above formula the Green function depends on both k and β.

For a given wave vector k, we can compute the resonant wave numbers βn = βn(k)

n = 1, 2, . . . using the standard approach described next. First, we expand Jc in a set of
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basis functions (with unknown coefficients), and replace it in (7). Then, we test the resulting

equation with a basis of test functions w. In this way, we obtain an homogeneous linear

system for the unknown coefficients. A non-trivial solution exists only if the determinant of

the linear system vanishes. This occurs only if β is coincident with a resonant wave number.

The approach described before is “numerically” rigorous, but still complicated. In next

section, we describe a simplified procedure that will allow us to obtain an approximate ana-

lytical solution for the first few eigenvalues.

4 Approximate analytical solution for wire structures

The formalism of the previous section is completely general. We apply now the results to the

wire structures depicted in Figure 2. The unit cell of the periodic medium contains N wire

(cylindrical) sections with length α and radius rw, where N = 1, 2, or 3 depending on the

geometry being that of the 1D- 2D- or 3D-wire medium, respectively. The geometry for the

unit cell of the 3D-wire medium is depicted in Figure 3.

We put ∂D = ∂D1 ∪ . . . ∪ ∂Dn where ∂Dn represents the surface of the wire directed

along the xn-axis. The cylindrical section ∂Dn is completely defined by the wire radius rw,

and by a point rn,0 in the wire axis. As referred in section 2, we admit that the distance

between adjacent orthogonal wires is half-lattice constant, α
2 , i.e. orthogonal wires are as far

as possible.

Since we admit that the wire radius is very small, we expect, based on physical grounds,

that for relatively low frequencies the current will flow along the wire axes as a propagating

wave. Thus, it seems reasonable to assume that the surface current over ∂Dn is to a first

approximation:

Jc |∂Dn
≈ In

2πrw
e−jk·rûn (8)

where ûn is the unit vector along the xn-axis, and In is the (unknown) current over the n-th

wire (a complex constant). Within this hypothesis, we know the functional dependence of

the current associated with the eigenmodes. In what follows, we explore this fact to calculate

the first few resonant wave numbers of the metallic crystal.

To this end, we apply the procedure outlined in the end of the previous section. Hence,

we replace Jc given by (8) in (7), and then we test the resulting equation with several test

functions w. The m-th test function is taken equal to e+jk·rûn over ∂Dm , and 0 elsewhere.

Since,

∇s ·
(

1

2πrw
e−jk·rûn

)

=
jkn

2πrw
e−jk·r (9)
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we easily obtain that:

∑

n

gm,n

(

kmkn − β2δm,n

)

In = 0, where gm,n =
1

(2πrw)2

∫

∂Dn

∫

∂Dn

e+jk·(r−r′)Φp(r|r′)ds′ds

(10)

In the previous equation, m,n = 1, . . . , N , with N = 1, 2, or 3, depending on the geometry

of the wire medium. Next, we calculate the coefficients gm,n defined as above. To this end,

we use the spectral representation (3) of the Green function. Since the lattice is simple cubic,

it is straightforward to obtain by direct integration that:

gm,n =
1

a

∑

J

δjm,0δjn,0

[

J0(|k0
J
|rw)

]2

|kJ|2 − β2
e−jk0

J
(rm,0−rn,0) (11)

where J0 is the Bessel function of the first kind and order 0, J = (j1, j2, j3) is a multi-index of

integers, k0
J

= 2π
α

(j1, j2, j3), and the rest of the symbols are defined as in the previous section.

Note that if m = n the range of summation can be reduced to a pair of integers, whereas if

m 6= n it can be reduced to the set of integers.

Formula (11) is exact. Note that gm,n depends on both k and β. We recall that the

objective is to calculate the first few resonant wave numbers of (1). More specifically, our

approximation is supposed to hold in the long-wavelength limit where |k|a � 1 and βa � 1.

Within this approximation, we can put k = 0 and β = 0 in each term of the series in (11) ,

with the exception of the J = 0 term. Thus, we obtain that:

gm,n ≈ 1

a

(

1

|k|2 − β2
+

1

β2
m,n

)

,
1

β2
m,n

=
∑

J6=0

δjm,0δjn,0

[

J0(|k0
J
|rw)

]2

|k0
J
|2 e−jk0

J
(rm,0−rn,0) (12)

Notice that β2
m,n, defined as above is a constant independent of k and β.

Since we admit that the distance between adjacent orthogonal wires is half-lattice constant,
α
2 , it can be easily verified that for m 6= n we have that,

1

β2
m,n

=
( a

2π

)2 ∑

l 6=0

[J0(2πlrw/a)]2

l2
(−1)l, m 6= n (13)

where l is an integer different from zero. The above series is nearly alternate (it is exactly

alternate if rw

α
−→ 0). Hence, it seems clear that for m 6= n, 1

β2
m,n

can be neglected as

compared with the first term in right-hand side of the approximate formula for gm,n in (12)

(notice that in the long wavelength limit – |k|a � 1 and βa � 1 – the first term is certainly

very large). Quite differently, the amplitude of 1
β2

m,n

can be very large if m = n (it is a double

and non-alternate series), and thus it cannot be neglected. Therefore, we have that:

gm,n ≈ 1

a

(

1

|k|2 − β2
+

1

β2
0

δm,n

)

,
1

β2
0

=
∑

J6=0

δj3,0

[

J0(|k0
J
|rw)

]2

|k0
J
|2 (14)
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Replacing (14) into (10) we obtain that:

∑

n

(

kmkn − β2δm,n

)

(

1

|k|2 − β2
+

1

β2
0

δm,n

)

In = 0 (15)

Hence, we obtain a homogeneous linear system for the unknown currents In. The dimension

of the linear system is 1, 2 or 3 depending on the geometry of the considered wire structure.

We can now easily obtain the dispersion characteristic β = β(k) of the first few eigenvalues,

by equaling the determinant of the associated matrix to zero. Before that, it is appropriate

to homogenize the artificial medium, i.e. relate the average electromagnetic fields with the

wave vector. This topic is discussed in next section.

5 Homogenization of the structure

In this section, we prove that the average electromagnetic fields can be related with the wave

vector k using an effective permittivity dyadic (tensor). To begin with, we present some

introductory results and definitions.

Let (E,H) be an electromagnetic Floquet mode in a generic metallic crystal, i.e. a solution

of (1). We define the average fields Eav and Hav as follows,

Eav =
1

Vcell

∫

Ω

E(r)e+jk·rd3r, Hav =
1

Vcell

∫

Ω

H(r)e+jk·rd3r (16)

Using (1), it can be verified that the following equations hold:

−k × Eav + βZ0Hav = 0 (17a)

βEav + kZ0Hav =
jZ0

Vcell

∫

∂D

Jce
+jk·rds (17b)

where ∂D denotes the surface of the metallic region in the unit cell, and Jc = v̂ × H is

the surface current over the metallic boundaries. From (17), we obtain after straightforward

manipulations that:
[

(

β2 − |k|2
) ¯̄I + kk

]

·Eav =
jZ0

Vcell

∫

∂D

Jce
+jk·rds (18)

where ¯̄I is the identity dyadic.

In the rest of this section, we assume for simplicity that the metallic crystal is the 3D-

wire medium depicted in Figure 2. In the end, we explain how the derived results can be

generalized to the other wire geometries.

Since we admit that the surface current over the wires is given by (8), we readily obtain

from (18) that:

[

(

β2 − |k|2
) ¯̄I + kk

]

·Eav =
jZ0

a2
(I1û1 + I2û2 + I3û3) (19)
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We also note that (15) is equivalent to:

1

|k|2 − β2

(

kk − |k|2 ¯̄I + β2 ¯̃̄ε
)

(I1û1 + I2û2 + I3û3) = 0 (20)

where,

¯̃̄ε =
|k|2 − β2

β2

(

¯̄ε − ¯̄I
)−1

· ¯̄ε (21)

and ¯̄ε is the diagonal dyadic (in the canonical basis associated with the coordinates axes) such

that:

ûm · ¯̄ε · ûm = εm,m = 1 − β2
0

β2 − k2
m

, m = 1, 2, 3 (22)

Therefore, using (19), we find that the average electric field satisfies the following homogeneous

system:
1

|k|2 − β2

(

kk − |k|2 ¯̄I + β2 ¯̃̄ε
)

·
(

(

β2 − |k|2
) ¯̄I + kk

)

·Eav = 0 (23)

Next, we multiply the left-hand side of the above equation by the dyadic ¯̄ε− ¯̄I. After straight-

forward manipulations we conclude that:
(

kk − |k|2 ¯̄I + β2 ¯̄ε
)

·Eav = 0 (24)

Comparing the above equation with the characteristic equation for the average electric field in

an anisotropic medium [21, pp.202], we recognize that ¯̄ε is necessarily the (relative) effective

permittivity dyadic. The dispersion characteristic β = β(k) for the first few bands is obtained

by setting the determinant of the dyadic to zero, and solving for β:

det
(

kk − |k|2 ¯̄I + β2 ¯̄ε
)

= 0 (25)

As is well-known [21, pp.202], the average electric field is then given by:

Eav ∝
(

k1

|k|2 − β2ε1,1
,

k2

|k|2 − β2ε2,2
,

k3

|k|2 − β2ε3,3

)

(26)

where εm,m is given by (22).

As referred before, the derived results assume the 3D-wire medium geometry. In general,

for N wire sections in the unit cell, we could verify that εm,m is given by (22) for m ≤ N

and that εm,m = 1 for m > N . In particular, in the 1D-wire medium case our results are

consistent with those obtained in [15] using a completely different approach. Furthermore,

the constant β0, defined by (14), is necessarily the so-called plasma wave number. In order

that our definition is consistent with that of [15], we must have that [22]:

(β0a)2 =
2π

ln
(

a
2πrw

)

+ 0.5275
(27)

Indeed, numerical simulations and a more detailed analysis show that the above formula is a

very good approximation of (14).

250



6 Physical implications of the results

In this section, we obtain the dispersion characteristic β = β(k) for the first few modes of the

different wire structures, and briefly discuss the physical implications of the results.

As explained in the previous section, the dispersion characteristic is obtained by solving

(25) for β . In general the solution cannot be obtained in a closed-analytical form. To

circumvent this problem we proceed as delineated next. First, we write the wave vector

in polar coordinates, i.e. we put k = |k|(sin θ cosϕ, sin θ sinϕ, cos θ). Then, we admit that

β2 = a0 + a2|k|2 + . . ., where a0, a2, etc, are unknown coefficients that in general depend on

angles θ and ϕ. We insert the indicated formulas for β and k in (25). After simplifications,

we obtain an identity of the form F
(

|k|2, a0, a2, . . .
)

= 0 , where F is a polynomial function

of its arguments. In order to calculate recursively the unknown coefficients a0, a2, etc, we

impose that the successive derivatives of function F (in |k|2) at the origin vanish. In this

way, we obtain an approximation for the desired dispersion characteristic (the formulas are

expected to hold in the long wavelength limit). In what follows, we describe the results for

the different wire geometries.

6.1 1D-Wire medium

The 1D-wire medium depicted in Figure 2 (the wires are oriented in the x1-direction) is

characterized by three bands in the long wavelength limit. The dispersion characteristic of

these bands is:

β2 = |k|2 (28a)

β2 = k2
1 (28b)

β2 = β2
0 + |k|2 (28c)

The band (28a) is associated with (transverse electric) modes with average electric field normal

to the wires. The band whose dispersion characteristic is (28b) is associated with transverse

electromagnetic (TEM) modes. Finally, the band (28c) is the plasma mode (which sees a

negative permittivity in the static limit). More details can be found in [15].

6.2 2D-Wire medium

In the 2D-wire medium case the wires are directed along the x1- and x2-directions. There are

four relevant bands, which are defined by:

β2 = k2
1 + k2

2 + o
(

|k|4
)

(29a)

β2 =
2k2

1k
2
2

β2
0

|k|2
k2

1 + k2
2

+ o
(

|k|6
)

(29b)

β2 = β2
0 + |k|2 ± k1k2 + o

(

|k|4
)

(29c)
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where o(t) represents a quantity that vanishes as t. The band (29a) is associated with a

mode whose power flow is restricted to directions in the x1ox2 plane. The polarization (i.e.

the direction of the average electric field) is practically normal to the x1ox2 plane. The

band (29b) is associated with a mode that propagates only at extremely low frequencies.

Quite interestingly, the intersection of the contours β = const. (known as the wave normal

surfaces) with the k3 = 0 plane are hyperbolic curves. This situation is rather peculiar and is

not observable in standard (non-artificial) dielectric materials, which invariably have elliptic

wave normal surfaces. For k3 = 0, the polarization is Eav ∝ (k1,−k2, 0). In particular, if

the wave vector is along the wire axes the mode is longitudinal (i.e. has polarization parallel

to the wave vector). Finally, the two bands defined by (29c) are associated with plasma

modes (which see a negative permittivity in the static limit). To a first approximation the

polarization of these modes is Eav ∝ (1,−(±1), 0), i.e. independent of the wave vector. More

details are omitted for conciseness.

6.3 3D-Wire medium

The 3D-wire medium is characterized by five different bands in the long wavelength limit.

The general formulas for the different bands are a bit cumbersome, and in some cases cannot

be obtained in closed-analytical form. Due to that reason, we restrict our discussion to the

case in which k3 = 0. The dispersion characteristic of the different bands is given by:

β2 = 0 + o
(

|k|6
)

, k3 = 0 (30a)

β2 =
2k1k

2
2

β2
0

+ o
(

|k|6
)

, k3 = 0 (30b)

β2 = β2
0 + |k|2 ± k1k2 + o

(

|k|4
)

, k3 = 0 (30c)

β2 = β2
0 + |k|2 + o

(

|k|4
)

, k3 = 0 (30d)

The first two bands defined by (30a) and (30b) are associated with modes that only propagate

at extremely low frequencies. Indeed, the band defined by (30a) only exists in the static limit

(zero frequency). The corresponding polarization is longitudinal. On the other hand, the

band defined by (30b) has an hyperbolic wave normal contour. The polarization properties

are identical to those of band (30b) discussed in the previous section.

The three bands defined by (30c) and (30d) correspond to the plasma modes, which see a

negative permittivity in the static limit. The two bands defined by (30c) have elliptical wave

normal contours and polarization as in the previous section (i.e. practically independent of

the wave vector). On the other hand, the band defined by (30d) has a circular wave normal

contour, and polarization normal to the x1ox2 plane.

It is now appropriate to compare our results with the standard plasma model for the

3D-wire medium. Within the standard plasma model, the effective permittivity of the wire
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medium is given by ¯̄ε = 1 − β2

0

β
, i.e. the medium is isotropic and does not suffer spatial dis-

persion (the effective permittivity is independent of k). Within the standard model, only two

electromagnetic modes should exist in the long wavelength limit. The two modes are degen-

erate and have dispersion characteristic β2 = β2
0 + |k|2 (plasma modes). The electromagnetic

modes are transverse electromagnetic (i.e. the electric and magnetic field are normal to the

wave vector).

Thus, we conclude that the standard model fails to predict the existence of bands (30a)

and (30b), which correspond to modes that propagate at very low frequencies. Furthermore,

the standard model fails to predict the existence of three plasma modes. Indeed, only the

mode (30d) is correctly predicted. It is thus apparent that the propagation of electromagnetic

waves in the 3D-wire medium is much more intricate than it was thought. There is no isotropy

even for very long wavelengths (this is a consequence of the strong spatial dispersion caused

by the infinitely long wires). Quite interestingly the existence of three propagating plasma

modes in a similar wire structure was speculated in [23] based on numerical and experimental

data. To conclude, we refer that we have checked our analytical formulas with numerical

results obtained using the hybrid method proposed in [17]. The agreement was good.

7 Conclusions

In this paper, we discussed the propagation of electromagnetic waves in several wire structures

in the long wavelength limit. Based on simple physical considerations and using a variational

formulation, we were able to reduce the calculation of the spectrum of a differential operator

to the calculation of the zeros of a simple characteristic equation that is known in closed-

analytical form. Then, we proved that the propagation of electromagnetic waves in the

considered periodic structures can be described in terms of a spatially dispersive permittivity

dyadic. The permittivity dyadic is a generalization of that derived in [15] for the 1D-wire

medium case. Finally, we discussed the physical implications of the results. We showed that

there is no isotropy in the 3D-wire medium for long wavelengths, and that the standard model

may be insufficient to describe the electrodynamics of the structure. Our results predict the

existence of three distinct plasma modes. In general, a plasma mode may be longitudinal.

The results also show that two modes propagate at extremely low frequencies. The wave

normal surfaces of these modes are intrinsically hyperbolic. The implication of the results in

the realization of double negative media merits further investigation.
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Analysis of chordal rings

Slawomir Bujnowski∗ Bozydar Dubalski∗ Antoni Zabludowski∗

Abstract

In the paper the analysis of third and fourth degree chordal rings has been given. In

the first part of the paper some definition of chordal rings, existing in the literature, has

been discussed. The main goal of the second part is to search for the general formulas

that describe chord lengths in chordal rings with degree 3. This chord gives the graph,

describing the communication network, with minimum diameter and average paths length.

The results obtained were set against the theoretically obtained values which determine

the lower limits of these parameters together with results obtained while examining the

real structures. The main obtained results related to the graphs fourth degree have been

presented in the third part of the paper. Two classes of chordal rings, namely ideal

and optimal graphs have been defined. It has been shown that the optimal chordal rings

posses strictly defined number of nodes, there exist only one optimal chord with the length

2d(G)+1 for those structures, and the optimal chordal rings are built with the use of two

Hamiltonian cycles (d(G) means the diameter of graph). The ideal chordal rings (real or

virtual), can be treated as the lower bound of any analysed chordal ring.

Keywords: Chordal ring, diameter of graph, average path length.

1 Introduction

As the part of research project, conducted in the Institute of Telecommunications the Uni-

versity of Technology and Agriculture in Bydgoszcz, that concerns to the switching systems,

an analysis distributed structures of telecommunication server has been done. A distributed

telecommunication server consists of a number of identical, sophisticated, switching modules

that communicate each other with the use of interconnection network. Recently, some of the

leading producers of telecommunication equipment has implemented such a solutions in their

products [1, 2]. It is obvious, that the telecommunication servers provide for their subscribers

the same functions and services as the large switches do. The main problem which has ap-

peared during analysis of such the systems was the problem of choosing the interconnection

network structure that links the telecommunication modules. At the beginning, the solu-

tions from distributed computer systems, especially the interconnection network structure for

∗Inst. Telekom. ATR Poland. E-mail: antoni.zabludowski@atr.bydgoszcz.pl
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telecommunication servers has been studied. Distributed computer systems were developed

to increase the computation power for applications in engineering and science and were based

on a concept of parallel processes, implemented by a set of processors connected with the

use of given interconnection network. In fact, the distributed computer systems are very

similar in concept to the studied distributed telecommunication server. It is obvious that the

topology of interconnection network determines the efficiency of the entire system [3], both in

distributed computer system and distributed telecommunication server. The interconnection

network structure should provide very high level of reliability as well as the level of service

quality. Among the analyzed interconnection structures (i.e. hypercubes, meshes, Cayley’s

graphs, rings etc.) the rings are the cheapest and the easiest to implement ones, but they have

the lowest connectivity and the highest diameter [4]. So, the transmissions properties of such

the networks (we take the probability of call rejection as the of quality parameter) are very

poor in comparison with the other graphs. The simplest possible method of improvement

of transmission properties of interconnection structures is the use of additional edges called

chords, that would connect the nodes of the ring in a given way. The rings with additional

edges linking nodes are denoted in the literature the chordal rings.

Definition 1 Chordal ring is a circulant graph with chord of length 1. It is defined by the

pair (w,S), where w means the number of nodes of the ring and S is the set of chords

S ⊆ {2, ..., bw/2c}. Each chord s ∈ S connects every pair of nodes of ring that are at distance

s in the ring. This structure is denote by symbol G(w; s1, ..., si), s1 < . . . < si, the chordal

ring defined by (w, {s1, . . . , si}). The dimension of G(w; s1, . . . , si) is i+1. Degree of chordal

rings is 2i in general whenever there is a chord of length w/2, in this case w is even and

ring?s degree is 2i − 1 [5].

Figure 1: Examples of chordal rings of third and fourth degrees G(16; 1, 8), G(16; 1, 4) and

G(16; 1, 5)

The term chordal ring denotes also in many papers the regular graphs with nodes of

degree three.
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Definition 2 Chordal ring is a ring structure network in which each node has an additional

link, called a chord, that connect some other node in the network. In the ring each odd-

numbered node i = {1, 3, 5, . . . , w − 1} is connected to node numbered (i + s) mod w, where

s is odd number, so node numbered (i + s) is even-numbered. Thus, in the chordal ring

each even-numbered node j = {0, 2, 4, . . . , w − 2} is connected to odd-numbered node (j − s)

mod w, where s ≥ w/2 means length of chord and w means number of nodes. Length of chord

is positive and odd.[6]

To describe chordal rings third degree defined by definition 2 we will introduce additional

index G3.

Figure 2: Examples of graphs of third degree G3(16; 1, 3), G3(16; 1, 5)

Before we start with the analysis of the chordal ring we recall basic graph parameters, we

will use for graph comparison.

The network diameter:

d(G) = max
vivj

{dmin(vi, vj)} (1)

is the largest value among all of the shortest path lengths between all pair of nodes.

The average length of the paths between all the pair of nodes is defined by the following

formula:

dav =
1

w(w − 1)

w−1
∑

i=0

w−1
∑

j=0

dmin(vi, vj) (2)

The parameters defined above will be used as the main measure of communication ability

of analysed networks. In the next parts of this paper we will derive the formulas which give

near the best value of chord. However, before we will be able to define those formulas we

should describe chordal rings that can be treated as the ideal ones, not necessary existing in

real.
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2 Third degree cordal rings

As we already have explained, chordal rings are very useful as communication structures

(communication network) connecting distributed modules. The only problem in analysis of

such a networks is to determine the parameters describing the properties of the ring that

should be taken into account. In the most papers the authors use the diameter of chordal

rings as the main parameter that describe the properties of the ring [7]. They assert that

this parameter decides of the usefulness of the structure to design multi-computers, multi-

processors or telecommunications networks. On the basis of results obtained, they suggest

moreover, that the chord lengths equal to
√

w + 3 or
√

w + 5 gives the shortest diameter of

chordal rings, and the networks with topology based on such rings posses better transmission

abilities than the other ones [6, 8, 9, 10].

We have observed however, that the diameter of chordal rings is not sufficient parameter

for analysing of communication network properties, as this parameter does not determine

the transmissions abilities of the networks. We have studied several hundred of networks

determined by the chordal rings of degree 3 (as well as with the higher node degrees), and

observed, that very often the networks with the same diameter posses different abilities for

passing telecommunication traffic. In order to examine the transmission abilities of the net-

works we have used the computer simulation tests using Monte-Carlo method. The following

assumptions have been taken into account:

• the comparison of different chordal rings (interconnection networks) with the same

number of nodes and transmission capacity of the links, were done;

• the multicommodity flow (Poissson, exponential) among the nodes have been studied;

• the value of the traffic intensity generated in each node have been increased. For fixed

value of the traffic there were done several thousands of attempts;

• in each attempt with the fixed traffic value the source and destination nodes were taken

with the uniform distribution;

• the shortest paths between source and destination have been chosen to carry the traffic.

In the event of existence of many possible paths between the nodes, the least loaded

has been chosen;

• probability of call rejection described by the formula

pcr =

∑

PN
∑

GP
,
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where

∑

PN – rejected call number,
∑

GP – total call number,

has been calculated.

As the example, we will discuss the communication properties of two networks ? first

one with 30 nodes and the second one with 56 nodes. The simulation results obtained for

those networks are depicted in figure 3. For chordal rings with 30 nodes, the diameter of all

the rings was the same, equal to 5, but for rings with 56 nodes, the diameter of the graph

G3(56, 1, 13) was equal to 7, and G3(56, 1, 11) was equal to 8 (the best graph G3(56, 1, 9) has

diameter equal to 7).

Figure 3: Results of simulation. Ti – total value of traffic generated in each node, Pcr –

probability of call rejection

The probability of call rejection was different for analysed chordal rings. For the graphs

with 30 nodes (we remind that all the graphs have the same diameter) the probability of call

rejection (for fixed traffic value) reaches the minimal value for chord length equal to 7, but for

chordal ring with 56 nodes the probability of call rejection for the ring with a bigger diameter

is smaller than for the ring with smaller one. From the above discussion, one can conclude

that in order to find the chordal rings having better ability of carrying communication traffic

with the minimal probability of call rejection, we should choose such a chord that minimise

a completely different parameter as the graph diameter is. A more detailed inspection of

chordal rings shows however, that the biggest influence on communication ability of chordal

rings possesses the average value of the length of shortest paths dav between all the pairs of

nodes. Thus, the following postulate was formulated:

Postulate 1 In chordal rings of degree 3 the probability of call rejection depends on the

average length of the paths between all pairs of the nodes.
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Thus, the analysis of chordal rings should concern two basic parameters of rings, namely

the network diameter and the average length of the paths between all pairs of nodes.

Turning back to the analysed examples, it was easy to calculate that for the graph

G3(30, 1, 7) the average value of paths is dav = 3.07, while for G3(30, 1, 9) or G3(30, 1, 11),

dav = 3.14. For rings with 56 nodes in turns, for G3(56, 1, 11) (the diameter is equal to 8),

dav = 4.25 and for G3(56, 1, 13) (the diameter is equal to 7) - dav = 4.29. The best graph

G3(56, 1, 9) has the diameter equal to 7 and dav = 4.18.

2.1 Optimal and ideal chordal rings with degree 3

In this part of the paper, two type of chordal rings will be defined, the first one called the

optimal chordal ring and the second one called the ideal graph. Those rings will be used for

comparison of “ideal” and real obtained structures.

Before the ideal graph will be defined (i.e. the graph which will be used for comparison

of parameters of examined graphs), the optimal graph should be defined.

The optimal graph is the chordal ring characterising by following features:

1. The number of nodes wd in a d-th layer (the layer means the subset of nodes that are

reached from any source node with the use of d edges), is given by the formula:

wdo = 3d (3)

Figure 4: Node distribution at first three layers
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2. The total number of nodes wo in the graph with a diameter d(G) is equal to:

w0 = 1 + 3

d(G)
∑

d=1

d = 1 + 3
d(G) [d(G) + 1]

2
(4)

3. The diameter of the graph with the wo nodes is equal to:

d(G)o =

√
24wo − 15 − 3

6
(5)

4. The average length of the path is equal to:

davo = 3

d(G)
∑

d=1

d2

wo − 1
= d(G)

[d(G) + 1] [2d(G) + 1]

2(wo − 1)
=

2d(G) + 1

3
(6)

At the table below the number of nodes and the average length of the paths versus the

diameter are given.

d(G) 1 2 3 4 5 6 7 8

wo 4 10 19 31 46 64 85 109

davo 1 1.67 2.33 3 3.67 4.33 5 5.67

Theorem 1 There exist no optimal chordal rings of degree 3 with the diameters equal to 4j

or 4j − 1 (j = 1, 2, . . .).

Proof: The necessary condition for existence of graph in the assumed premises is an even

number of nodes. Total number of nodes existing in ideal graph of d(G) diameter is equal to

wo = 1 + 3
d(G) [d(G) + 1]

2
,

so

3
d(G) [d(G) + 1]

2

must bring an odd number for every d(G) value as a result. By using values 4j and 4j − 1 in

the mentioned formula we obtain

3
4j(4j + 1)

2

and

3
(4j − 1)4j

2

respectively. As the any number multiplied by an even number gives an even number, therefore

total number of nodes in the described graph will be odd. �
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The only one real optimal graph is a graph with 4 nodes and diameter d(G) = 1, simply

it is a complete graph. It was not stated that there should exist any possibilities of practical

construction of the ideal graph with a diameter d(G) > 1. Optimal graphs are the special

group of the ideal graphs. The ideal graph is a theoretical chordal ring which fulfils, in turns,

the following conditions:

1. The diameter of the ideal graph with the wi nodes is equal to:

d(G)i =

⌈
√

24w − 15 − 3

6

⌉

(7)

2. The numbers of the nodes wdi in a d-th – layer are:

if d 6= d(G) ⇒ wdi = 3d

if d = d(G) ⇒ wdi = w − wo{d(G)r−1}

(8)

where: w – number of nodes in the ideal graph, wo{d(G)i−1} – number of nodes in the

optimal graph with diameter d(G)i − 1.

3. The average length of the paths is equal to:

davi = d(G)i

[d(G)i − 1] [2d(G)i − 1] + 2(w − wo{d(G)i−1}

2(w − 1)
(9)

Parameters of the ideal graphs determine the lower limits of the diameter and average

length paths and they are a basis to evaluate results obtained while examining the real

structures.

2.2 Approximation method of chords calculation

Examining the diameter distribution in the chordal rings degree 3 versus the chord length, a

typical diagram shown in figure below was obtained.

Figure 5: Diameter of chordal graphs degree 3 versus chord length – 484 nodes
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Postulate 2 In chordal rings degree 3 the choice of a chord length s2 equal to

s2 =
∣

∣

∣

√
2w

∣

∣

∣
or s2 =

w

2
−

∣

∣

∣

∣

√

w

2

∣

∣

∣

∣

(10)

guarantees that this graph has the close diameter to the one of a reference graph.

Proof: On the obtained diagrams we can observe two ranges in which the distribution reaches

the local minimal values.

Functions approximating the distribution of maximum diameter values versus the chord

length (we the use of the Least Square Method [11]) are given by the formulas:

(i) d(G)s2
=

s2

2
+

w

s2
+ C (11)

(ii) d(G)s2
=

w

2
− s2 +

w

2
(

w
2 − s2

) + C (12)

C means a constant without any influence on function minimum.

First derivatives are:

(i) d(G)′s2
=

1

2
− w

s2
2

(13)

(ii) d(G)′s2
=

w

2
(

w
2 − s2

)2 − 1 (14)

(a) (i) (b) (ii)

Figure 6: Diagrams of the functions approximating the maximum diameter distribution in

chordal rings with 484 nodes
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So these functions reach the minima for:

(i) s2 =
∣

∣

∣

√
2w

∣

∣

∣
(1)

(ii) s2 =
w

2
−

∣

∣

∣

∣

√

w

2

∣

∣

∣

∣

(2)

�

To illustrate postulate 2, the chordal ring with 484 nodes was analysed. In this case the

constant C is equal to −10.25, but the results are as follows:

(i) (ii)

Computed chord length 31.11 226.44

Computed diameter value 20.86 20.86

Real cord length 31 227

Real diameter value 21 21

The minimal diameter d(G) equal to 19 is obtained for G3(484, 1, 51) and G3(484, 1, 57)

respectively. Figure 7 shows in turns the distribution of average path length versus chord

diameter. This diagram has a similar character (comb function) to the diameter distribution

shown in the figure 5.

Postulate 3 In chordal rings of degree 3 the choice of a chord length s2 equal to

(i) s2 =
∣

∣

∣

√
1.8182w

∣

∣

∣
(15)

or (ii) s2 =
w

2
−

√
0.4545w (16)

guarantees that the average length of the paths in this graph will be close to the value of this

parameter existing in a reference graph.

Figure 7: Average length of the path in chordal rings with 484 nodes versus chord lengths

266



Proof: Approximating functions are given as:

(i) dmax(s2) = 0.275s2 +
w

2s2
+ C (17)

(ii) dmax(s2) = 0.55
(w

2
− s2

)

+
w

4
(

w
2 − s2

) + C (18)

and they reach the minima for (i) s2 =
∣

∣

√
1.8182w

∣

∣ or (ii) s2 = w
2 −

√
0.4545w �

(a) (i) (b) (ii)

Figure 8: Diagrams of approximating functions in chordal rings with 484 nodes

To illustrate postulate 3, the chordal ring with 484 nodes was analysed. In this case the

constant C is equal to −4.25, but the results are as follows:

(i) (ii)

Computed chord length 29.66 227.17

Computed average length path value 12.06 12.06

Real cord length 29 227

Real average length path value 12.21 12.10

Diameter 21 21

The minimal average length paths is dav = 12.02 for G3(484, 1, 51) and G3(484, 1, 57).

In the tables below are the results of choice of chord length using the presented and other

methods with comparison the parameters of those graphs and the parameters of reference

graph have been given.
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Nodes Chord Diameter Average Chord Diameter Average

number Length length length length

50 9 7 3.94 19 7 3.98

100 15 9 5.52 43 10 5.95

500 31 22 12.44 235 21 12.30

1000 45 30 17.52 477 30 17.46

1600 57 41 22.39 771 38 22.13

2000 63 42 24.64 969 42 24.57

3000 77 56 30.59 1461 51 30.16

4000 89 64 35.30 1955 59 34.82

5000 99 67 38.89 2451 74 39.48

s2 =
∣

∣

∣

√
2w

∣

∣

∣
s2 =

w

2
−

∣

∣

∣

∣

√

w

2

∣

∣

∣

∣

Table 4: The results obtained with the use of postulate 2.

Nodes Chord Diameter Average Chord Diameter Average

number Length length length length

50 9 7 3.94 21 7 3.97

100 13 9 5.52 43 10 5.95

500 31 22 12.44 235 21 12.30

1000 43 30 17.46 479 30 17.44

1600 53 38 22.10 773 38 22.06

2000 61 42 24.65 969 42 24.57

3000 73 54 30.38 1463 51 30.15

4000 85 64 35.15 1957 59 34.81

5000 95 67 38.91 2453 70 39.22

s2 =
∣

∣

∣

√
1.8182w

∣

∣

∣
s2 =

w

2
−

√
0.4545w

Table 5: The results obtained with the use of postulate 3.
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Nodes Chord Diameter Average Chord Diameter Average

number Length length length length

50 11 7 3.94 13 7 4.14

100 13 9 5.51 15 9 5.51

500 25 22 12.58 27 21 12.41

1000 35 31 17.83 37 32 17.65

1600 43 39 22.74 45 39 22.47

2000 47 44 25.60 49 43 25.28

3000 55 55 31.89 57 54 31.46

4000 65 63 36.49 67 62 36.11

5000 73 70 40.73 75 69 40.35

s2 =
∣

∣

√
w

∣

∣ + 3 s2 =
∣

∣

√
w

∣

∣ + 5

Table 6: The results obtained with the use of the theorem given in [8].

Nodes Diameter Average Chord Diameter Average

number length length length

50 6 3.87 9 7 3.94

100 8 5.45 13 9 5.51

500 18 12.17 59 20 12.24

1000 26 17.22 269 27 17.23

1600 33 21.77 97 33 21.78

2000 37 24.34 611 39 24.38

133 48 29.99

3000 45 29.81 933 49 29.87

4000 52 34.43 151 53 34.46

965

5000 58 38.49 1293 59 38.50

Reference graphs Reference graphs

(theory) (practice)

Table 7: Reference graphs and real best graphs parameters.

3 Fourth degree chordal rings

Fourth degree chordal rings consist of one ring and chords with length s that link two different

nodes in the network. Fourth degree chordal rings possess some properties, that make them
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very suitable for construction of interconnection networks. The basic feature of fourth degree

chordal rings is their ability to physical realization some of them as the optimal graphs and

the majority of them as the ideal ones (definitions of these graphs will be given further in

the paper). This type of interconnection structures were widely discussed in [12, 13, 14], as

well as in [15] where this structure was used for the construction of transputers networks for

image processing application.

Chordal rings of fourth degree (d(V ) = 4) denoted as G(w; 1, s), where w means number

of nodes and s – chord length, form two disjoint classes of graphs (shown for example in figure

1):

• class in which the chord linking nodes i and j, where j = i ⊕ s mod w, generates the

Hamiltonian cycle – the Hamiltonian cycle is obviously formed by the edges of the ring;

• class in which the chord linking nodes i and j where j = i ⊕ 1 mod w generates some

separate cycles of the same length < w. In this graphs there is only one Hamilton cycle

formed by edges of the ring.

Theorem 2 In the chordal ring G(w; 1, s) of degree four, the shortest path length (defined as

the number of edges) between any two nodes vi and vj, can be calculated as follows:

d(vi, vj) = min{(|k − j|div(s) + {(k − j) − [|k − j|div(s) × s]}),
(|w + j − k|div(s) + {[(w + k) − (|w + j − k|div(s) × s] − k}),
(|k − j|div(s) + 1) + {[(j + (|k − j|div(s) + 1) × s]) − k}),
((|w + j − k|div(s) + 1) + [(k − ((w + k) − (|w + j − k|div(s) + 1) × s)])}

(19)

Proof: To find the shortest path between two nodes in chordal ring all the possible routes

from node vi to node vj has to be calculated. It is obvious that wherever it is possible the

route use the long jumps (long jump = chord length s). This route can end either on left or

right side of node vj . From the node we have reached by the long jumps, we have to go by

the edges of the ring. Four routes to the node of chordal ring does exist:

• moving right by long jumps (the last node has a number smaller than j),

• moving right by long jumps (the last node has a number larger than j),

• moving left by long jumps (the last node has number smaller than j),

• moving left by long jumps (the last node has a number larger than j).

�

To search for the graph diameter there is no need to check the maximum for all pairs

(vj , vk), as the chordal ring is the symmetrical structure. It is only need to check all paths
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length from one node to all remaining ones. One of the very important graph parameter

for chordal rings is the average length of paths. This parameter shows the number of edges,

which have to be crossed on average route for communication between any two nodes. In the

chordal ring the layer ωd contains all the nodes reachable from source node by the shortest

path of length d. The number of nodes in layer ωd (cardinality of layer) will be denoted by

wd.

The average length of the path (average distance) dav is defined as:

dav =

d(G)
∑

d=1

dwd

w − 1
(20)

where wd denotes the cardinality of layer ωd and d the distance between nodes of layer ωd

and the source node.

Example: In chordal ring G(16; 1, 5), the nodes that are connected from the source node

(zero node) by the use of d - length paths consist three following overlapping layers ωd (in ω3

the nodes already appeared in the lower layer are written in bold):

• the layer ω1 contains the nodes connected by the paths with the length d = 1, i.e. the

nodes with indexes from subset {1, 5, 11, 15},

• the layer ω2 contains the nodes connected by the paths with the length d = 2, i.e. the

nodes with indexes from subset {2, 4, 6, 6, 10, 10, 12, 14},

• the layer ω3 contains the nodes connected by the paths with the length d = 3, i.e. the

nodes with indexes from subset {3, 3, 7, 7, 9, 9, 13, 13,1,5,11,15}.

15

9 10 11

3 4 5 6 7

13 14 15 0 1 2 3

9 10 11 12 13

5 6 7

1

Figure 9: Node distribution table for graph G(16; 1, 6), by bold are depicted the nodes that

appear in the lower layers

For construction of interconnection network we should take such a topology of the network

structure, for which the diameter as well as the average path length reach minimal value. It

is easy to conclude that the minimal value of those parameters possess the chordal rings in
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which all layers ωd are disjoint. This type of chordal rings is called the optimal graph. In

chordal ring the generated layers can be depicted by the use of, so called, “atomic” model.

An example of “atomic” model of chordal ring G(25; 1, 7) is shown in figure 10.

(a) (i) (b) (ii)

Figure 10: Example of optimal chordal ring G(25; 1, 7) and its “atomic” model

In the next part of this paper it will be shown that the optimality of fourth degree chordal

ring depends on nodes number, diameter of the ring and chord length s > 1. As an example

of the optimal graph with node degree four and diameter 3 a graph with 25 nodes and chord

equal to 7 can be taken. The successive layers of this graphs are as follows:

ω1 = {1, 7, 18, 24}
ω2 = {2, 6, 8, 11, 14, 17, 19, 23}
ω3 = {3, 4, 5, 9, 10, 12, 13, 15, 16, 20, 21, 22}

The number of nodes appearing in the respective layers makes up the arithmetic sequence.

Both the first expression in the sequence a0 – corresponding to the node number in the

first layer, as well as the difference – corresponding to increase of the node numbers in the

respective layers – are equal 4. So it is possible to estimate the diameter of this ring by means

on solving the inequality being a summation formula of arithmetical sequence.

w − 1 ≤ d(G)

2
[2a0 + r(d(G) − 1)] (21)

By substituting a0 = 4 and r = 4 we get the main formula:

w − 1 ≤ d(G) [4 + 2(d(G) − 1)] or 2d(G)2 + 2d(G) + 1 ≥ w (22)
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3.1 Ideal and optimal graph

Maximum numbers of nodes that appear in each layer form the number sequence. The total

number of nodes is determined by:

wi = 1 + w1 + w2 + . . . + wd(G)−1 + wd(G) = 1 +

d(G)−1
∑

d=1

wd + wd(G) (23)

where wd(G) is equal to node number of last layer.

Definition 3 Chordal ring fulfilling the formula (23) under assumption that two layers num-

bered from 1 to d(G)− 1 are disjoint but the last layer contains the remain nodes, is referred

as an ideal graph.

Definition 4 The ideal chordal ring with the last layer that reaches the maximal value is

called the optimal graph.

In optimal graph the total number of nodes is expressed in the form:

wo = 1 +

d(G)
∑

d=1

wd (24)

but the average paths length is equal to:

davo =

d(G)
∑

d=1

dwd

w − 1
(25)

The formulas (24) and (25) allow to define ideal graph parameters in the form:

wi = wo(d(G)−1) + wd(G)

davi = davo(d(G)−1) +
d(G)wd(G)

w − 1

(26)

The ideal graphs described above constitute a reference point for estimation the studied

chordal ring structures. The expression (22) that describes a dependence between the node

number and chordal ring diameter, allows to determine fourth degree chordal ring in which

the nodes number reaches the maximal value.

Definition 5 In the optimal chordal ring of fourth degree the node number wo can be ex-

pressed as the function of diameter d(G) in the following form:

wo = 2d(G)2 + 2d(G) + 1 (27)
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For optimal chordal ring with wo nodes the diameter is equal to:

d(G) =

√
2wo − 1 − 1

2
(28)

The study of optimal chordal rings has shown that the optimal structures can be obtained

only for one value of chord, called in this paper the optimal chord – so. In the table 8, the

node numbers of optimal chordal rings, as well as the optimal chord for different diameters

d(G) were presented :

d(G) 1 2 3 4 5 6 7 8

wo 5 13 25 41 61 85 113 145

so 3 5 7 9 11 13 15 17

Table 8

Before the optimal chord can be determined, the upper and the lower bounds will be

defined.

Theorem 3 For the optimal chordal ring the optimal chord is bounded as follows:

2d(G) + 2 ≥ so ≥ 2d(G) (29)

Proof: In the optimal chordal ring each node can be reached from any other one by the use

of at most d(G) chords. In the ring there are nodes that are reachable from the starting ones

by d(G) chords of length so. So, in the optimal ring the maximal distance between any two

nodes cannot be greater than the half of the node number, i.e.:

s × d(G) < w (30)

On the other hand, using d(G) + 1 chords of length so, it is possible to pass the entire ring,

so the expression:

so × [d(G) + 1] > w (31)

is true. By putting the number of nodes of optimal chordal ring into expression so×d(G) < w,

one can obtain:

so × d(G) < w = 2d(G)2 + 2d(G) + 1 (32)

As all the calculations are done in the set of integer numbers, so the following is true:

so × d(G) ≤ d(G)2 + 2d(G) (33)

Therefore the left side of the expression (29) is fulfilled. Transforming in turns the expression

so × [d(G) + 1] > w we obtain:

so × [d(G) + 1] > 2d(G)2 + 2d(G) + 1 (34)
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and next:

so × [d(G) + 1] > 2d(G)2 + 2d(G) (35)

so so > 2d(G). Obtained expression proves the theorem 3. �

Having found the lower and the upper bounds of the optimal chord it is possible to find

its real value. This value is defined by the theorem 4.

Theorem 4 In the optimal chordal rings of fourth degree the length of optimal chord is equal

to:

so = 2d(G) + 1 (36)

Proof: In order to prove theorem 4, one has to show that all the nodes existing between the

source node (to simplify let?s assume its number equal to 0) and the final node of the chord

(number so), can be reached from starting node with the use at most d(G)chords. There

exist three routes to reach these nodes:

• by moving clockwise with the use d(G) chords with length 1, those nodes have the

numbers 1, . . . , d(G);

• by the use of one so length chord clockwise and (d(G) − 1) counter clockwise chords of

length 1 – numbers of the nodes so − [d(G) − 1], . . . , so;

• precisely by the use of d(G) counter clockwise chords of length so – number of the

reached node is equal to d(G) + 1.

Let us consider the last route. Due to that we move counter clockwise from node 0, the

following expression is fulfilled:

w − so × d(G) = d(G) + 1 (37)

Substituting w by 2d(G)2 + 2d(G) + 1 we get:

2d(G)2 + 2d(G) + 1 − so × d(G) = d(G) + 1 (38)

and finally so = 2d(G) + 1 what proves theorem 4. �

The proof of theorem 4 has also been shown in [12]. For the proof the authors has

constructed the plane (figure 11) and have analysed all the vectors that connect the starting

node with the other. From this table they have concluded that the only value of the optimal

chord length is equal to so = 2d(G) + 1. This chord enables to arrange the cells which gives

graph G(2d(G)2 + 2d(G) + 1; 1, so).

Theorem 5 The optimal chordal ring of fourth degree consists of two Hamiltonian cycles.
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Figure 11: Supplementary table used in paper [12]

Proof: Due to the fact that the ring with chords of the length 1 is Hamiltonian cycle, it

is enough to prove that optimal chord of the length so also generates Hamilton cycle. To

prove that, it is enough to show that the number of nodes wo and optimal chord length so are

relatively prime. By converting the expression (27) defining the nodes number in the optimal

chordal ring we get:

wo = 2d(G)2 + 2d(G) + 1 =
s2
o + 1

2
(39)

We need to show that there does not exist the number (different to 1) that divides the numbers

(s2
o + 1) and so. If so is a prime then theorem is always true. So let us assume, that so is not

a prime number and there is a number p, which divide so. We will prove than that p does

not divide (s2
o +1). As so must be odd, so p must be also odd. Let us write so as the product

of the form p × q. Therefore (s2
o + 1) = p2 × q2 + 1. The first element of this expression is

divided by p but the rest equal to 1 is not divided by p. So (s2
o + 1) cannot be divided by p,

what proves the theorem 5. �

The average path length of optimal chordal ring of fourth degree is expressed in the form:

davo =
1

wo − 1

wo−1
∑

j=0

dmin(v0, vj) = 4

d(G)
∑

j=1

j2

wo − 1
(40)

By substituting value of expression

d(G)
∑

j=1

j2 and the value of wo we obtain:

davo = 4
d(G)[d(G) + 1][2d(G) + 1]

6[2d(G)2 + 2d(G)]
=

2d(G) + 1

3
=

so

3
(41)
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Optimal chordal rings can be built for a specific number of nodes only. Those rings, as we

explained before, form a specific group of ideal graphs that are extended for any number

of nodes. The ideal graph can be treated as the reference graph – virtual or real ones for

analysed structure, as the parameters of this graph, i.e. its diameter and average path length

are the lower bounds of parameters of analysed structures.

Definition 6 Chordal ring with wi nodes is called an ideal graph if it fulfils the following

conditions:

• graph diameter d(G)i is expressed by:

d(G)i =

⌈√
2wi − 1 − 1

2

⌉

(42)

• in layer d number of nodes wdi is defined in the form:

if d 6= d(G) ⇒ wdi = 4d

if d = d(G) ⇒ wdi = wi − wo

(43)

where: wi – number of nodes in ideal graph, wo – number of nodes in optimal graph

with diameter d(G)i?1,

• the average paths length is expressed by the form:

davi =
2[d(G)i−1]+1

3 (wo − 1) + d(G)i(wi − wo)

wi − 1

= davo

wo − 1

wi − 1
+ d(G)i

wi − wo

wi − 1

(44)

where d(G)i – diameter of ideal graph, wi – number of the nodes of ideal graph, wo –

number of nodes of optimal graph with diameter d(G)i − 1.

In the table 9 results for some ideal graphs has been depicted.

4 Conclusions

In this paper the properties of third and fourth degree chordal rings have been discussed. On

the basis the results shown in first part of the paper the conclusions can be formulated as

follows: The average length of the path in chordal rings has a bigger influence on the value of

call rejection probability than diameter. The proposed formulas give similar or better results

of the diameter values and average length of the paths to those met in the accessible literature.

In [16] another way of the choice of structures possessing the best transmissions abilities is

presented. In second part of the paper two classes of rings forth degree, namely ideal and

optimal graphs, have been defined. In fact, the class of optimal chordal rings belongs to the
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Table 9

class of ideal ones. The optimal chordal rings posses strictly defined number of nodes (that

depends on the diameter d(G) of ring) and there exist only one optimal chord with the length

2d(G) + 1 that allows to build the optimal chordal ring. It has been also proved that the

optimal chordal rings of fourth degree can be built with the use of two Hamiltonian cycles. The

ideal chordal rings in turns, have been introduced as the reference graphs (sometimes virtual

only eg. when graph posses 2d(G)2 + 2d(G) nodes – table 9) for comparison of properties of

any analysed chordal ring.
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Solving puzzles and games by Evolutionary

Algorithms

Agostinho Rosa∗

Abstract

This presents the application of Evolutionary Algorithms to several puzzles and games.

The solutions of the puzzles Pentominoes and Mastermind and two player games gomoku

and chess are presented. As pedagogical and illustrative examples the presentation stress

on the search space coding and the fitness function construction. Performance results are

presented.

Keywords: Evolutionary Algorithms, Pentominoes, Mastermind, GoMoku, Chess, Genetic algo-

rithms, meta-heuristics, co-evolutionary algorithms.

1 Introduction

Supporting the pedagogic framework of learning by example is the underline motivation of the

set of works to be presented in this paper. Puzzles and games are and has been appropriate

paradigms as learning examples for several reasons. They are well known for large population,

easy understanding of the underlining rules and operations, real life problems, could be simple

or very challenging, association to an intelligent behavior and could also be entertaining.

The Artificial Intelligence community had used games and puzzles extensively for building

intelligent systems, so it is a known and effective path. Evolutionary Algorithms gained

popularity very recently and it is still a relative unknown subject and sometimes hard to

understand not it principles but the reasons of it success. The examples studied covers a

wide range of different problems from simple to very complex and the ultimate objective is

to shed some light on possible ways to apply evolutionary algorithms to combinatorial search

problems.

Introduction to evolutionary algorithms and detailed description of the puzzles and games

is not given in this paper, one may find them elsewhere [1, 2, 3, 4, 5, 6]. What will be described

with some details are the coding and fitness function described in the next few chapters.

∗
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2 Brief Introduction to Evolutionary (Genetic) Algorithms

The operational approach or pseudo-code of the algorithms can be summarized as follows:

1. Candidates/possible solution to the problem (individual), is the phenotype. The coding

of the candidate solution in terms of computer representation is called the genotype,

in most of the cases, the chromosome. It is usually a set of variables, each variable is

called a gene and the possible values of the gene variable are the alleles. All the possible

combinations of the alleles in the different genes of a chromosome is the search space.

2. The algorithms is composed by a set of individuals (or chromosomes) making the pop-

ulation; each individual in the population corresponds to a candidate solution to the

problem.

3. The evolutionary paradigm bias is introduced in the process of transforming one popu-

lation to another along time steps. More fit (adapted to the environment) individuals

have higher probability to reproduce or in other words the number of off springs is

proportional to the individual fitness or performance. This part implements the se-

lective process and is the selection operator. A pragmatic approach to avoid loosing

already good individuals in the population is to artificially force their presence in the

next population, this forcing procedure is known as elitism.

4. The reproduction process itself is the generation of new individuals from current indi-

viduals. The process known as variation may have many forms and implementations.

In the genetic paradigm, the crossover operator, where (two) parents generate children

through the exchange of their genes. The crossover operator is view as a combinatorial

search on the alleles present in the population (exploitation). On the other hand the

mutation operators change the allele to any possible allele, enabling the scan of any

possible position in the search space (exploration).

5. The “intelligence” of the algorithms resides in the fitness function. All individuals are

evaluated through this fitness function designed to achieve the target objectives of the

candidate solutions.

6. This process repeats until runs out of time, or a specific target is reached or a number

of repetition was performed or from an external termination request.

2.1 Basic Genetic Algorithm

Genetic algorithms (GA) are a stochastic computational technique based on the theory of

evolution. [7] They operate on a population of solutions represented by chromosomes. Each

chromosome consists of a number of genes and any chromosome is one possible solution for
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the problem. The evolution of the new populations are obtained repeatedly by reproduction

and genetic operators (Figure 1) in order to search the optimum solution or to satisfy our

goals like to win the opponent.

Figure 1: GA-Cycle

3 Pentominoes [3]

The Pentominoes puzzle [8] used consists in trying to place twelve pieces, of five squares each,

on an 8× 8 = 64 board, without overlapping (there are four places left vacant). These twelve

pieces are the possible configurations one can obtain joining together five squares at least by

one side. Figure 2, shows, in a solution, the twelve pieces and their usually associated names.

Figure 2: a solution to the 8 × 8 Pentomino Puzzle

283



3.1 Coding

The genotype is a single chromosome built as a sequence of twelve pieces (genes), each one

having x and y coordinates, as well as orientation and mirroring (Figure 3).

X Y R M

Figure 3: A gene. Each gene represents the location of a piece in the board. (R – rotation;

M – mirroring)

Considering all varieties of orientation and mirroring (eight varieties for each board loca-

tion), the size of the search space is 3.25×1032 (approximately 29×12). The fitness evaluation

is obtained by counting the number of occupied board locations. The objective of the search

is to find a board with 60 occupied locations. The observation of a piece classifies it as good

or bad. Good, in this context means that the piece does not overlap with any other in the

same chromosome, and it is within the board boundaries. The mutation operator acts upon

genes (pieces), flipping its bits randomly. Each gene have a counter (initialized to zero) that

are incremented by one unit when the corresponding piece overlaps or is not completely inside

the board boundaries and it is decremented otherwise. The counter saturates at a constant

pre defined value MAXINF.

Figure 4: (GA comparison): mean number of generations to find a solution; when MAX-

INF=0, it is the base GA, otherwise it is igEA with different MAXINF values.

3.2 Results

Figure 4 presents the comparison between a basic Evolutionary Genetic Algorithms (bGA)

[7] for this problem and an igEA [3] version with several MAXINF values. The population

size was 100 and the results are expressed in terms of mean number of generations to reach
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a solution. For each combination of parameters, 100 runs were made. Results clearly show

that igEA outperforms the bGA.

4 Mastermind [4]

The MASTERMIND game [9] is known as a logical game for false two players, an encoder

and a decoder. The encoder builds a Secret Code using any combination (with or without

repetition) of the existing N colors, taking in consideration that exists P positions to be filled.

The decoder tries to duplicate the exact colors and positions of the Secret Code. Each time

the decoder establishes a code as a possible solution, the encoder should provide information

to decoder by presenting a Code Key. The Code Key is a set of black, white and null tokens

(absence of tokens) built with the following rules:

1. Black tokens - one black token for each color in the code, given by the decoder, which

matches at the same time the cooler and its position in the Secret Code.

2. White Pieces - one white token for each color in the code, given by the decoder, which

matches one color but not the position in the Secret Code.

3. The game ends when the decoder finds the Secret Code. The encoder should present P

black tokens as the Code Key and reveal the Secret Code.

The number of possible combinations for the Secret Code is given by NP . The two most

widely commercial configurations for the game is the 6 × 4 with 6 colors and 4 Pegs and

the 8 × 5 with 8 colors and 5 pegs. For the 6 × 4 game, the optimal strategy based on

exhaustive search needs 4.3 moves in average to solve the problem [10]. A dynamic constraint

optimization using GA. without crossover to the Master Mind problem is described in [11].

In our approach, the fitness function is formulated as a dynamic self constraint opti-

mization problem, but the crossover and mutation operators are dependent of the fitness of

the individuals of the population and this characteristic provides them effective probabilistic

self-adaptive behavior.

4.1 Coding

For the implementation of the algorithm the following elements were used: Each peg is coded

by a gene with N alleles. Each chromosome with P pegs (genes) is a candidate solution to

the problem. Integer coding is used in order to allow genes boundary crossover.

Since this particular problem has the final goal completely unknown we needed to make

some adjustment to the standard GA. The fitness of the individuals can only be estimated from

the incomplete knowledge gathered during the sequence of guesses. The initial population of

fixed size is randomly generated, having however the particularity that all the individuals are
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Figure 5: shows a picture of a version 5× 8 of the game with the histogram of the number of

trials.

made out of chromosomes without repeated colors. This particularity is the result of a series

of tests, which indicated that in this case the information provided is richer. Exception on

the initial population where the trial element is randomly chosen, on every generation one

element (trial element), with the best fitness is chosen to be played. A new population is

built based on the preceding one by applying the genetic operators described in the following

sections.

4.2 Selection

The selection is proportional to the fitness (roulette wheel). The next population replaces

completely the original population. When elitism is applied a percentage of best elements of

the parent population will substitute the corresponding number of worst elements of the child

population. The crossover operator is dependent on the (conditional) fitness of the elements

calculated in relation to the current trial.

4.2.1 Conditional Fitness

Lets define XBi and XWi the number of black and white pieces, respectively, attributed to

the individual i of the population after selection, by comparing to the trial element T. For

each individual i the number of pegs that may be correct in both position and color (HBi),

and in color only (XWi) are calculated as:

HBi = min(XBi,NB) + min(XWi,NW)

HWi = abs (NB − XBi)

Where min is the minimum operator, NB and NW are the number of black and white tokens

obtained by the last trial, respectively and abs is the absolute value operator.
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4.2.2 Conditional Crossover

Two individuals from the population after selection i and j are chosen randomly, thenpositions

genes are picked randomly for the new individual, in these positions the pegs will be replicas

of the pegs of the individual i , additional HW i positions are also selected Randomly, for these

positions the colors of individual i will be attributed to the new individual but at different

and non yet occupied positions. The rest of the (P−HBi −HWi) pegs of the new individuals

are obtained from the individual j. The second individual is generated by the same method,

by exchanging the functions of the individuals i and j and selecting the positions using HBj

and HWj . For a better understanding of the operator, an example of creating the first new

individual with HBi = 2 and HWi = 1 is shown in figure 6:

Figure 6: Application of Conditional Crossover.

Two genes (HBi = 2), the first with value 3 and the third with value 2 are selected ran-

domly from the i element to be passed directly without change to the new individual/element.

Only one (HWi = 1) gene, the second with value 6 is passed to the new individual but to

a different non occupied location, in this example to the fourth position. The remaining

locations are filled by the corresponding genes value of the j element.

This step is applied successively, without repeating the already selected individuals, until

the new population is obtained. The Crossover process is different when all the colors of the

Secret Code were found but not their positions. In this case only the last trial will be used (the

population is substituted by clones of the last trial), only conditional fitness crossover operator

is actually applied, since, for this situation, it is obvious that HB = NB and HW = NW. The

crossover operator is always applied (probability 1), it may be considered as a self adaptive

operator in the sense that the actual number and extent of crossovers are dependent on the

fitness of each individual it reduces as the fitness increases.

4.2.3 Mutation

An individual of the population after crossover is randomly selected for mutation. A peg

of this individual is then randomly selected for application of the mutation operator. The
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mutation on a peg is made by replacing the color of the peg by the color in the Color Pool (CP,

a varying set of tagged colors available for mutation) with the smallest Number of Occurrence

(NoC), but different from the color to be mutated.

The NoC of each CP is calculated in the following manner: When a color appears in a peg

of an individual then the NoC of the color in the CP, is incremented by a parametric value,

named Play Color (PC). If a color is used in a mutation, than the NoC of the color in CP is

decremented by a parametric value, named Mutation Color (MC).

The number of mutations (NM) performed on an element is proportional to the number of

null pieces (NN) attributed to the last trial, NN = P−NB−NW, to the Size of the population

(SP), to the present Generation Number (GN) and to the Mutation Weight (MW) value:

NM = NN × SP × GN ×
MW

100

The mutation operator is also always applied. It is also a self-adaptive operator in the sense

that the actual mutation rate of the gene also depends on the changing fitness.

4.2.4 Elitism

Two types of Elitisms were implemented. The first type is applied when there is an element

in the trial set where Code Key has NB = 0 and NW = 0, which means that all colors in

the trial element are not in the Secret Code, two actions are taken: first, all colors present

are eliminated from the color pool, therefore are not used by the mutation operator; second,

these colors are also taken away from all the individuals in the new population, and replaced

by the ones in the CP. The second type of elitism is the replacement, of a percentage, of

the new generation of individuals with low fitness by the same percentage of individuals of

previous generation with highest fitness (the replacement is made only for the individuals of

previous generation that are really better than the individuals of the new generation). The

second type of elitism is not applied if all the pegs in the Secret Code had already been found.

4.3 Fitness function

The Fitness Function measure how a given chromosome satisfies all trials constraints already

obtained. For a chromosome fitness calculation it is required to have in account the following

variables: NB(GN), NW(GN) and NN(GN) - number of black, white and null pieces, respec-

tively, attributed to the trial element associated with the generation number, GN, evaluated

by the Secret Code.

NN(GN)P − NB(GN) − NW(GN)

Where XBI(GN), XWI(GN) and XNI(GN) are the number of black, white and null pieces

respectively, attributed to the individual I having as reference the trial element GN.
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For a given GN:

Ai(GN) = 10 − |NB(GN) − XBi(GN)|Bi(GN) = P − |NN(GN) − XNi(GN)|

Ci(GN) = P − |NB(GN) − XBi(GN)|

The values Ai(GN) and Ci(GN) are proportional to the numbers of positional agreements

between individual i, and generation GN of the Code Key. However, for the calculation of

Ci(GN) it is already known that the correct colors have already been found, so the value

Bi(GN) is, when the individual i, agrees, in terms of colors, with the GN generation Code

Key.

4.3.1 Linear scaling

In the Linear case, the Fitness Function for the individual i of the GN generation is given by:

fi =

GN∑

n=0

PositionWeight×Ai(n) + ColourWeight ×Bi(n)

or when all colors of the Secret Code is found:

fi =
GN∑

n=0

PositionWeight× Ci(n) + ColourWeight × Bi(n)

4.3.2 Power scaling

In the Power case, the Fitness Function for the individual i of the NG generation is given by:

fi =
GN∑

n=0

PositionWeight×Ai(n) × ColourWeight ×Bi(n)

or when all colors of the Secret Code is found:

fi =

GN∑

n=0

PositionWeight× Ci(n) × ColourWeight × Bi(n)

4.4 Results

Due to the large number of parameters a default set is defined as follows:

The tests were done with different population size and fitness function scaling. In all tests

the runs were repeated 500 times and the histogram of the number of the moves needed and

corresponding statistical data are shown. In all tests performed the algorithm reached always

the solution within 24 trials.

The test with default parameters set is shown in figure 3, where the average number of

moves necessary for solution is 7.538.
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The histogram of figure 7 is obtained by running the algorithm with linear scaling in the

fitness function instead of power law scaling. For this problem the power scaling performs

better than linear scaling as shown by the number of average moves needed for solution, 7.538

and 8.894 respectively, see figure 8.

POPULATION SIZE = 150

ELITISM WEIGHT = 0.02

PLAY COLOR = 0.5

MUTATION COLOR = 1.0

MUTATIONWEIGHT = 1.0

GENERATION* = 30

POWER FITNESS FUNCTION

COLOR WEIGHT = 2.0 (8.0)

POSITION WEIGHT = 8.0 (2.7)

Figure 7: Histogram of the trials with default parameters.

Figure 8: Histogram of the trials with default parameters with Linear Scaling
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The effect of population size on the number of average moves needed for solution using

the default parameter set is shown in figure 9.

The initial increase of the population size has a noticeable effect on the number of average

moves (#AM) for solution. But after 250 elements in the population, the curve is still

decreasing monotonically but very slowly (for 250 the #AM=6.954 to 900 with #AM=6.401),

become almost flat, i.e. the size does not influence much the number of average moves. On

the other hand the total number of combinations searched is increasing linearly with the

population size (PS=250 5.3% search space and PS=900 17.6%). These results suggest the

use of niching or speciation in order to take advantage of a larger population.

Figure 9: Effect of population size on the average moves

Figure 10: Reduction of Population size to 300
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The histogram of 500 runs with population size equals to 300 is shown in figure 10. By

increasing the size of the population, the performance of the algorithm is also increased

The number of average moves is 6.866.

4.5 Conclusions

The solution presented includes a fitness function that represents simultaneously the incom-

plete information of each trial and the cumulative changing indications of the sequence of

trials and a problem specific crossover and mutation operators conditioned by the outcome

of previous trials. This combination yielded a more efficient solution for the problem. The

algorithm was designed to play a trial for every generation, although it is simple to adapt it in

order to give a trial only when a meaningful improvement in the fitness function is found. This

improvement can be asserted using a pre-defined criteria (such as: until the fitness achieves

a certain increment or a desired value or satisfaction of additional constraints; etc). It is not

implemented due to trade off between the average number of moves and the number of fitness

function evaluated (computation time).

It is important to evidence that this algorithm evaluates SP × NG (size of population

number of generations) combinations repeated or not until it achieves the correct solution.

That is, for SP=150, the number of evaluations made are, in average, 150×7.538 = 1131. This

means that the algorithm searches in the worst situation the average of 3.5% of all possible

combinations (32768). For SP=300, (a good compromise of a low #AM and percentage of

combinations searched) the algorithm examined 6.3% of the search space, with a gain of 9%

in the average number of trials (7.538 to 6.866). It seems that for population size beyond

a certain point it did not provide much improvement in performance. Results presented in

reference [3], for a problem of similar size, (7 × 5 16807 combinations) needed 5.45 trials

and 7755 combinations in average (1422 combinations per trial), leading to a percentage of

searches of around 46%.

5 Gomoku [5]

Board games such as Gomoku, Chess, Checkers and Go etc, are interesting in our study

because they offer pure and abstract competition without the confusions on the 2-gun’s game

or on the war’s game. Five-in-Line (Gomoku) is a ancient Japanese strategic board-game.

This game is a two players game. The players have unlimited number of pieces (stones). Each

move consists of putting one piece in the crossing points of a 19×19 square board (Go-board)

by the players in sequence. The moves of players are permitted in any direction and any

free-position (non-occupied position by stones). The game is “over” when one of the player

made five pieces in a row (horizontal, vertical or diagonal) or when the board is filled up.

We explain how to apply the Genetic algorithm to this game and show how to avoid the use
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of search-tree. The next section shows some of the aspects of Genetic algorithms. Section 3

describes how to apply GA to this game and section 4 presents some experimental results.

Finally we discuss future aspects and extensions to this work. The game is represented as

a search problem through a space of possible game positions. This section describes both

encoding and a states of game-board in order to represent our genetic information (gene,

chromosome and population).

5.1 Coding

The board is a two dimensional 20× 20 elements array. Each element may take the following

values:

−1 :Free position in neighbour zone

0 :Free position

1 :Piece of computer-player (GA)

Piece of human-player (external opponent)

Figure 11: Representing the board’s state and the associated values with the 2 dimensional

array after two plays

The neighbor zone is the set of positions adjacent to all played positions (elements with

values 1 and 2). Figure 11 shows the actual state in the game-board and the values of the 2

dimensional array after two moves. The neighbor zone provides us some information about

the actual state of the board and it is updated after each player move. In order to use a

genetic algorithm to solve this game, it is necessary to devise a representation for a move and

a strategy in which maps onto gene and chromosome respectively. Each player move is a gene

defined by 3 integers (x, y and fitness) where x and y represent the horizontals and verticals

coordinates of the board respectively. The fitness is the resulting value from the calculation

of fitness using the fitness function, i.e. the fitness value is the resulting of calculation after

the playing on position (x,y).
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Players / number of pieces 1 2 3 4

GA (red pieces) 4 16 100 5000

Human-player (blue pieces) 2 10 80 3000

Table 1: Weights table used in the algorithm

X1 Y1 Fit1 X2 Y2 Fit2 

Figure 12: Structure of chromosome

Each chromosome represents a sequence of alternative plays by the algorithm and op-

ponent. There is a predefined number Ng of genes in the chromosome. The population is

composed by a predefined number Np of chromosomes, so they represent Np different strate-

gies.

5.2 Initialization

The pseudo–code A is used to generate the first conflict–free population.

After the first human–player move

Generate chromosomes randomly

GA-Cycle with the repair method

This pseudo-code produces the first population of valid moves or strategies. Clearly, it

will produce any feasible population but it is used in order to obtain the first GA population.

5.3 Fitness function

The fitness value of a gene is the simple sums of the specific weights (see Table 1) of all

sequences of pieces surrounding this gene. The algorithm search for all four directions (hori-

zontal, vertical, two diagonals) to localize sequences of pieces from the both players.

Figure 13 showed how the weights can be used to calculate the fitness of gene X. In this

case, this gene has a value of 18.([16+2 ] 16 for the couple[red pieces] and 2 for the single

one[blue piece]).

5.4 Special operators

Special genetic operators are introduced because normal domain independent operators [6]

are hardly to produce feasible strategies or moves. To obtain the feasible strategy or move,

the special genetic operators must satisfy the following restrictions:
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Figure 13: An example of calculation of fitness of gene using the weights table

R1: Chromosomes cannot contain equal genes.

R2: The genes must be in free-positions of the board.

5.4.1 Crossover

In the case of the absence of genes that violate the restrictions R1 and/or R2, the crossover

is an insertion operator. Firstly, the GA selects randomly two chromosomes from the pop-

ulation and secondly it inserts a percentage Tx (rate) of randomly selected genes from one

chromosome onto the end of the another. (Figure 14) The crossover rate in our case is 50%.

The length of the resulting chromosome after crossover varies between 1 to 1.5 Ng. In the

selection process only the first Ng sorted genes (see section 3.4.3) are retained to keep a fixed

length chromosome.

Figure 14: Offspring–chromosome resulting by crossover operator in absence of bad genes

In other cases, the special crossover uses the heuristic repair method (next section) to

produce the feasible chromosomes.
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5.4.2 Heuristic Repair

In order to guarantee the feasibility of strategies (chromosomes), the heuristic repair method

is necessary because there are some bad genes (i.e. genes that violate any of the restrictions)

during the crossover. In practice, the algorithm detects any of the two possible situations:

the existences of two identical genes. genes in non-free positions. In the first situation, one

of the infected gene is eliminated and his “place” is filled by another different gene that is

generated randomly. In second situation, the genes will be moved into other free-positions.

5.4.3 Sorting with prediction

After crossover the chromosomes contains non-ordered new moves. In order to achieve the

best possible strategies in the next Ncop (parameter of prediction) moves with the available

moves, the re-sorting of genes is necessary. The genes are sorted in descending order so the

first gene has the highest fitness value. The second gene represents the answer of the move of

the first gene, its choice must take into account the last move of the algorithm. Therefore all

the fitness values must be recalculated in a virtual board where these moves are simulated.

The other fitness values of genes are ordered by the same way, i.e. the fitness value of the next

n-Moves is obtained in the conditions in which all fitness valued are recalculated taking into

account the last (n-1)-Moves of human-player and of GA. With this coding from the ordered

genes of the chromosomes the prediction of the next moves can be done.

The Elitism is applied and the best Ng genes of each chromosome are kept.

5.4.4 Decision-Making

The next computer’s move is obtained from the actual population. It is necessary to decide

which chromosome has the best strategy. The decision of the algorithm consists of two steps:

For each chromosome of the actual population, the algorithm calculates the sum of the values

(fitness) of the first Ncop genes. Choose the maximum of the step 1 and the first gene of

the chosen chromosome is used by GA in the next move. There are many possible criterions

in order to make the decision but it’s not easy to choose the right one for each stage of the

game. Let us to suppose one state of game shown in Figure 4 with one simplified board in

which the GA is doing one attack’s strategy and the last 2 moves are:

1. GA (red piece) to (7,6)

2. human-player (blue piece) to (3,5)

After these two moves, it’s again the move of red piece (GA). There are 3 interesting sites

–(3,6), (7,5) and (7,9) for GA. The Table 2 shows the values of genes in these three positions.

It is obvious that the gene in the point (3,6) is the unique position to survive. But this

point(3,6) has the smallest fitness value in Table 2. Let’s suppose again the population of GA
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Gene-marked position Fitness value

X-(3,6) 92

X-(7,5) 106

X-(7,9) 102

Table 2: Comparison of fitness value of the 3 genes

has only these 3 genes. If the GA just use simply the best gene ( the gene has the biggest

fitness value) to play and therefore the GA will not be the winner. But in practice, the GA

played a red piece in the point (3,6) using our criterion of decision-making. In fact sometimes

the algorithm should to make some sacrifices (i.e. defense instead of attack ) to survive.

We verified this sacrifices in our experiments (under the condition without the action of the

A.H.M.Defense, see next section).

Figure 15: An example of decision making

5.4.5 Additional Heuristic Mechanism of Defense

In our first test of the algorithm, we considered only one generation during the lifetime of GA.

Sometimes the GA hasn’t ”sufficient intelligence” to organize strategies of defense because of

the lack in genetic information. We implemented one additional heuristic defense’s mechanism

and it is explained by the pseudo-code 1.

There are two parameters HumanMoveFitness and LimiarDefense in the pseudo-code 1.

The first parameter is the fitness value of gene or chromosome resulting in the calculation

297



by fitness function for the human player move. The second one is, a predefined value, the

key of control in this mechanism. Clearly, if one very big number is used, the mechanism

is eliminated because in practice, during all states of the game, there’s not any gene with

fitness value more than 20006. In fact, this number is the maximum fitness value for any

gene.(Figure 16).

:

:

If (HumanMoveFitness > LimiarDefense)

{

// mechanism of defense

Make one new gene;

Choice one chromosome randomly;

Insert the gene into the chromosome chosen;

}

Else { do nothing}

:

:

Pseudo-code 1: Heuristic mechanism of defense.

Figure 16: An example in A.H.M. Defense in which gene X has the fitness value of 20006.

The A.H.M.D. consists of the simple test of game’s state and an insertion of one new gene

onto one chosen chromosome randomly. There is no guaranty that the new gene will been

chosen by GA but we used this mechanism to increase the genetic information in our first

test of the algorithm. But when we used more than one generation on the lifetime of GA, the

algorithm conducted alone some adaptable defense’s and attack’s strategies without the help

of the heuristic defense.

5.5 Experiments and results

The default values set is shown in the following Table 3.

In this section we describe some important results. The parameter Ncop is the most

sensitive one in computation time resulting in the increments of the time to simulate moves
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Ng=20 Number of genes per chromosome

Np=20 Number of chromosome per population

Ncop=3 Prediction step

Tx = 0.5 Crossover rate

Ge = 15 Number of generations

LimiarDefense=1E8 Control of A.H.M.D.

Table 3: Default values list

in virtual board. The dimension of the population (Ng×Nc) is not determinant at least from

tenth to hundredth of genes. The Crossover rate Tx should be close to 0.5 for an efficient

search of the genetic information interchange and fast adaptation to the evolution of the game.

We verified that the used weights (section 3.2) influence strongly the quality of the moves

of GA. To test the performance of the algorithm, one set of 15 consecutive human-computer

(the first author-computer) games were done and the results are showed in Figure 6,7,8 and 9.

The average values in the defensive cases is 3.27 and 3.33 for the sequences of 3 and 4 pieces

respectively. This two numbers mean that on average the GA had 3.27 and 3.33 times to

blockade the sequences of 3 and 4 pieces of opponent respectively. The results showed that on

average the GA attacked more than defended in the game. Our preference of strategy (attack

is almost always more advantage than defend) is verified by this results. But if we change

the used weights, for example, the 2-nd row change with the 3-rd row in the Table 1. In this

situation, the GA would use the strategy of defense. But it isn’t a good strategy in this game.

Although the GA only won 8 times in all 15 tests with the first author but the revelatory

outcome by the algorithm is still satisfactory. Perhaps the results aren’t fair so 3 occasional

players were invited to another set of 15 ( 5 games for each one ) human-computer games.

In these games, the GA won totally 12 times in all 15 games.(each player won one time in

5 games) So far the algorithm played against human opponents only. The human opponent

needs a great deal of concentration in order to beat the algorithm otherwise will lose. The

execution time for each move is below hundredth of a second for the default parameters set

using a Pentium 133Mhz CPU,16Mb RAM, under Windows 95. The paper has demonstrated

the practical utility of GA in the area of game-playing. At the same time, it has shown

how we could implement a board-game without using the search tree or game-tree. In many

situations, to solve the board’s problem using the search tree isn’t practical because we have

to keep at least some parts of the search-tree in the physical memories. [8, 9, 10] Another fact

is the simplicity of the fitness function allows large possibilities of improvement but it’s not

easy to arrange some appropriate weights to produce the replies of brilliant quality both in

attack and in defense. It is difficult for us to classify the intelligence of the algorithm because

of the lack in International Tournament of the game Five-in-Line. In our opinion, this plain

299



GA implemented could simulate a medium level human-player. For further information visit

the small WWW page at: (see http://laseeb.org/Portas abertas/gomoku/)

6 Chess [6]

Very few attempts have been made to address two players games by evolutionary algorithms.

For the Go-moku game a genetic algorithm (GA) based program is described in [4]. For the

checkers game a GA based search program is presented during in Gecco01 [12]. For the Chess

game there is only a few experiments have been described [13]. Since chess is a well known

game and there are many references describing the rules of the game and also different type

of machine intelligence solutions, e.g. [14]. In this paper we restrict to the presentation of

the implementation aspects of the co-evolutionary algorithm based chess machine player.

6.1 Game

Chess game is a 2 player strategic game played in an 8 × 8 “chess” board (alternating black

and white squares). Each player has the same set of pieces (8 Pawns, 2 Knights, 2 Bishops,

2 Rooks, 1 Queen and 1 King); the different pieces have different movement patterns. The

objective is to take the opponent king (check mate). Each player makes their moves alter-

natively [21] The search space in a game of chess problem is N × M, where N is number of

possible choices and M the depth level (number of look ahead moves) is in average (N=35

and M=4) will ends up to 1500625 choices. The chess player could be implemented as a

usual in evolutionary algorithms (EA), where the population represents candidate sequences

of alternated (white and black) moves. Another possibility is to use two different populations,

where each element of the population is a list of moves of only one of the opponents, black

or white. The situation is usually known as co-evolution, where more than one population

evolves together without competing directly with each other, only influences each other. The

first option is simpler to implement but needs a very large population in order to cover a

representative number of play sequences. The advantage of the second is a more compact

representation of the moves and also provides a finer control on the number of play sequences

to analyze. If K is the size of each of the two equal size populations, then we can obtain KxK

possible combinations of alternated play sequences. Different strategies can be used to reduce

the number of evaluations, like for example the most promising ones.

6.2 The co-evolutionary algorithm

The CA is an EA with two distinct populations, one for the black and one for the white pieces.

The EA used for each population is the standard binary coded GA with fitness proportional

selection with elitism, crossover and variation operators. The variation operators, crossover
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and mutation, are applied to these two populations independently, obtaining two offspring

populations. The fitness of each individual is calculated in each generation, takes into account

not only the quality of individual moves in his own population but also the quality of the

possible moves of the other population. For example it does not payoff a move that takes a

knight but loose in the next move the queen.

6.3 Population and coding

The two populations have the same number K of individuals; there is no specific reason to

make them different. The size of the population depends on the depth level of the moves

analysed in order to maintain a suitable percentage of coverage of the search space. Each

individual is coded by a binary chromosome of variable number of genes, as shown in Figure

17. The number of genes is the depth level or the number of the play-ahead moves.

Chromosome with depth level 3:

011010
︸ ︷︷ ︸

gene 1

100010011
︸ ︷︷ ︸

gene 2

1011101
︸ ︷︷ ︸

gene 3

Chromosome with depth level 5:

011010
︸ ︷︷ ︸

gene 1

100010011
︸ ︷︷ ︸

gene 2

1011101
︸ ︷︷ ︸

gene 3

11000010
︸ ︷︷ ︸

gene 4

11110110
︸ ︷︷ ︸

gene 5

Figure 17: Chromosomes of varying length dependent on the depth level

The genes are binary codes, length and coding depends on the specific piece. Each gene

represents a possible move and contains the information of the piece type, the move and the

distance of the move. The generic gene structure is shown in Figure 18.

Piece (4 bits) Direction (3 bits) Displacement (3 bits)

Figure 18: Gene coding: Type of Piece, Move Direction and Displacement.

The Direction coding depends on the type of piece. The Pawns, Rooks, and Bishops have

only 4 different directions; Knights and Queen have 8 and the King has 10 (8 for direction

and 2 for Left and Right castle). Therefore, a maximum of 4 bits is needed for the Direction

coding. The displacement is the number of squares a piece can move in any direction. Pawns,

Knights and King have a fixed displacement of 1, only Rooks, Bishops and Queen need the

displacement code. In order to have a more compact code and avoiding redundancy, a variable

size coding is used. For the Pawns a total of 6 bits is needed and a total of 10 bits for the
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Queen.

6.4 Variation Operators

The Variation operators used are: bit level uniform crossover operator with probability 0.7

and bit mutation and or simple inversion with probability 0.02 per bit.

6.5 Evaluation Strategy

As mentioned before, the fitness function evaluation is the heart of the player intelligence.

A new set of chromosomes are formed through the combination of a pair of black and white

chromosomes. Each chromosome is formed by alternated white and black genes, as shown in

figure 19.

Original Chromosomes

White Chromosome Black Chromosome

gene 1 gene 2 gene 1 gene 2

Mixed Chromosome

gene 1 gene 1 gene 2 gene 2

Figure 19: Mixed chromosomes, a combination of a pair of white and black chromosomes.

The new population is evaluated by a static fitness function and the fitness of best elements

of the two populations is elaborated further through the mixed chromosomes. The P best

white chromosomes are combined with the best Q black chromosomes, resulting in PxQ mixed

chromosomes. The first move of white chromosome with the best mixed chromosome fitness

is played. The corresponding first gene of both, black and white chromosomes is discarded

and a new randomly generated gene is appended at the end.

6.6 Fitness function

Each piece in the game has a relative weight factor, absolute and relative positional (AP and

RP) and menace-protection (MP) scorings. The relative weight is dependent on the relative

value given to the different pieces in the game. There are several proposals for the relative

weight and some are even optimized by GA through simulated game plays [15]. Here an

empirical weight system was adopted, and it is similar to most often adopted ones, as shown

in table 4.
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Piece Weight

Pawn 100

Knight 300

Bishop 320

Rook 500

Queen 900

King 3000

Table 4: Relative weight factor for the pieces.

The absolute positional scoring is the corresponding value an 8 × 8 weight matrix, it

depends only on the position of the piece in the game board. It reflects the strategic positional

value of the piece and is dynamic along the game. The relative positional scoring takes into

account of the synergetic value of the interaction of pieces when they are close together.

The menace-protection scoring depends on the balance value between the number of pieces

protecting a specific piece and the number of menacing pieces from the opponent. When a

piece is under menace the MP scoring is calculated by, subtracting the value of the menaced

piece, adding the value of the attacked piece and subtracting the value of the protected piece.

An example is provided in figure 4; the Black Knight is under the menace/attack of 3 white

pieces and is protected by only 2 black pieces. If the last move was the Black Knight then

the MP scoring of the Black knight only will be: subtract Black Knight (-300), add White

Knight (300), subtract Black Bishop (-320), add White Bishop (320) and subtract Black

Queen (-900). The total MP scoring will be -900.

6.6.1 Rooks

The two Rooks have a distance action and can protect each other, so the absolute position

is not important; the AP scoring is substituted by The Proximity and Mobility Scorings.

The Mobility scoring is the total number of squares each Rook can move to. The Proximity

Score of the Rook is the sum of column and row distances of the Rook to the opponent

King’s position. The reason of this scoring is due to the movement restriction inflicted to the

opponent King. For example a Rook at the distance of 1 Row and 2 Columns will add 24

points (14 +10).
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Figure 20: Menace-protection of a piece.

A Passed and Blocked white Pawn at E5 by a Black Knight at E6 is shown in figure 23.

Figure 21: Doubled Back Pawn at C7.
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Figure 22: An Isolated White Pawn at D4.

Figure 23: Passed and Blocked white Pawn at D5 by a Black Knight at D6.

The RP scoring is the following:

• Add 20 points for each Rook of the same color present in line 7 (or 2), as shown in

figure 24.

• Add 15 points for the presence of 2 or more Rooks in the same column.

• Add 3 points if opponent Pawns are under menace.

• Add 4 points for absence of opponent Pawns in the same column.
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• Subtract 12 points, if the King’s Rook is moved before the King. (Will disable the Left

Rook)

• Subtract 8 points, if the Queen’s Rook is moved before the King. (Will disable the

Right Rook).

The RP Scoring of Knight is:

• Add 3 points for each protecting Pawn to Knights at a proximity lower than 7.

6.6.2 Bishops

The AP scoring of the Bishop is very similar to the Knight AP Scoring. As reflected in the

score differences, the movement restriction of the Bishop is less severe at the board edges

than for the Knight. Figure 24 shows an example of free (D3) and blocked (D7) Bishops.

The RP scoring of the Bishop is:

• Add 20 points, if both Bishops of the same color are present. (Bishops are complemen-

tary, each acting on black or white squares exclusively).

• Subtract 3 points for each Pawn (independent of color) present in the adjacent diagonal.

(The Bishops loose its effectiveness when obstructed).

Figure 24: Two white Rooks, present at row 7 (add 40 points).

6.6.3 Queen

The Queen as the Rooks do not have AP scoring matrix. The Mobility can be very large,

the upper limit is 28. Two different matrixes are used for the beginning and end stages of
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Figure 25: Free white Bishop (D4) and blocked Black Bishop (D7).

the game, reflecting the increased importance of the queen, when there are few pieces in play.

The Proximity scoring is very high, especially for small values of proximity. When the Queen

is very close to the opponent King it restricts drastically its movements, The RP scoring of

the Queen is:

• Add 9 points for the presence of a Bishop in the same diagonal occupied by the Queen.

(A protected Queen is a serious menace for the opponent King).

• Subtract 9 points, if the Queen is moved before two minor pieces (Knight or Bish-

ops). (The Queen is a very powerful and valuable piece, should not be too exposed

prematurely).

• Add 6 points if the Queen is on the row 7 (or 2)

• Add 6 points if the column of the queen is free from any Pawn.

6.6.4 King

The King is the most valuable piece in the game, there is no widely accepted weighting and

scoring values, but it is of general consensus that it should at least be more than the some of

all other pieces.

The RP Scoring of the King is:

• Subtract 10000 points if suffer check-mate

• Add 30 points if Castle

• Subtract 30 points if the first move of the King is not a Castle
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• Add 10 points for each piece difference of friendly and foe pieces surrounding the King

(the Queen counts here as 3 pieces).

• Subtract 10 points for each movement of protecting pawns after Castle.

There is also two AP scoring for the beginning and end stages of the game for the King.

During the beginning of the game a well protected and covered positions are rewarded but

advanced positions are highly penalized, as shown In table 12. At the end stages the centre

of the board has more strategic value. Figure 26 shows an example of protected white King

and unprotected black King.

Figure 26: Protected white King and unprotected black King.

6.6.5 End stages

The end stage threshold condition is the presence of less than 6 minor pieces (Knights and

Bishops) in the game.

6.6.6 Technical Tie and Checks

A Technical Tie condition is declared when one of the following conditions is met:

• King against King

• King and Knight against King

• King and Bishop against King

• King and Bishop against King and Bishop

• King and Bishop against King and Knight
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• King and 2 Knights against King

• Repetition of the same last 3 moves by both players.

Technical Tie is not possible at presence of any Queen, Rooks or Pawn still in play. The same

also applies when more than 2 Knights or Bishops are present in the game. The technical

tie check is performed whenever a piece is taken. For a more detailed description of the

calculation and scoring procedure of fitness function, see [16].

Before each move is executed, all the rules are checked first. Forbidden moves like exposing

the King to check or signaling a check situation to the opponent will be .the defeat is awarded

to the blocked player. The Stalemate is also detected (when the only valid moves will expose

the King to check, situation in which a defeat is awarded.

6.7 Implementation aspects

The CA Chess player satisfies all the internal rules of Chess, namely the Pawn impuissant move

(when a Pawn steps 2 squares in the first move and cross adjacent columns opponent pawns,

the Pawn can be taken by the opponent Pawn as if only one square has been moved) and the

Pawn promotion (when a Pawn reaches the last row in the opponent side it is promoted to

any piece of choice, except the King and Pawn. The CA Chess Player automatically chooses

the Queen, which is the piece of choice, except very rare situation, where a different piece

could be chosen. King Left (or Right) Castle is a complex move where the King (Queen)

Rook and the King exchange positions simultaneously. The program is implemented using

Java 2; it is available by request through the authors. In a Pentium IV 1 GHz the average

time for a move using the default configuration is 10 seconds.

6.8 Results

Two sets of test is done and presented here. The first is algorithm vs. algorithm. These

tests aim to observe the behaviour of different CA settings. In the different configurations

a fair comparison in terms of computation time is tried, but due to the characteristics of

the algorithm it is difficult to ensure for tests. Besides the differences in the algorithms,

its stochastic nature and the uncertainty of the repair function will make the computation

different on every run. The second test is algorithm vs. human players; it aims to classify

the performance of the CA against different level of human players.

6.8.1 Algorithm vs. Humans

Two 3 players groups, beginner and experienced human players were tested. A total of 90

games are played for each group against the default CA.
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Default CA

The default CA has the following parameters:

Population: 100

Generations: 20

Crossover probability: 0.7

Uniform crossover bits %: 20

Mutation probability per bit: 0.04

Depth Level: 4

Beginner

The beginners lost all games to the default CA. A typical result is shown in figure 27.

Figure 27: Typical game between beginner and default CA.

Experienced

The result between experienced players vs. default CA is 46 vs. 54%, favourable to

default CA. A typical game is shown in figure 28. It can be noted long diagonal chains of

Pawns (situation of sequences of protection). The Bishops usually occupies empty diagonals,

a situation that increases its influence. Castles are always performed since it is a highly

rewarded move. The position of a Bishop at G2 is a very common situation, because it puts

strong pressure to opponent positions.
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Figure 28: Typical game between Experienced Player and default CA.

6.9 Conclusions and discussions

A Co-evolutionary based chess player is implemented and the performance of the default

CA player (that depends on the depth level) is comparable to an experienced human player.

Since finals situations are well known, they could be incorporated in order to reduce the

search space. Although the scoring system used seems to work well, it has room for further

improvements. The performance of the CA player worsens in the more advanced stages of the

game when the search space is much larger than in the beginning. A dynamic population and

generation schedule could improve further the performance. Currently the fitness function

of the mixed chromosomes is the sum of all moves; a possibly better approach could be the

fitness due to the last move in the chromosome. The final move at the specified depth is the

one that matters not the intermediate moves. The danger of this strategy is the assumption

that the opponent will always play the response moves coded by the simulated opponent best

chromosome that is not always true. A meta level EA could be used to learn the weights

and scorings to be used during the games and can be adapted to the opponent plat styles.

Adaptation to the international computer chess rules and platforms is under way in order to

have a more precise and quantitative characterization of the CA chess Player.
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