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Abstract

An optimization problem is described, that arises in telecommunications and is asso-

ciated with multiple cross-sections of a single power cable used to supply remote telecom

equipments. The problem consists of minimizing the volume of copper material used in the

cables and consequently the total cable cost. Two main formulations for the problem are

introduced and some properties of the functions and constraints involved are presented.

In particular it is shown that the optimization problems are convex and have a unique

optimal solution. A Projected Gradient algorithm is proposed for finding the global mi-

nimum of the optimization problem, taking advantage of the particular structure of the

second formulation. An analysis of the performance of the algorithm for given real-life

problems is also presented.

Keywords: Nonlinear Optimization, Convex Programming, Energy Systems, Telecom-

munications.

1 Introduction

This work describes the formulation and resolution of an engineering optimization problem

that arose in a project of the Instituto de Telecomunicações (Portuguese research institute

for telecommunications) with the company Portugal Telecom [1]. The problem consists of

optimizing the multiple cross-sections of a single power cable used to supply remote telecom

equipment.

Electric power transmission is usually operated at an almost constant voltage. In fact,

electric appliances and equipment require a constant supply voltage, named the nominal

∗Departamento de Matemática, Universidade de Coimbra and Instituto de Telecomunicações, Portugal.

E-mail: Joaquim.Judice@co.it.pt
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operating voltage. In alternating current (AC) distribution networks, the nominal operating

voltage is 230 V in Europe and 110 V in USA. Those values are the root mean square value of

a sinusoidal voltage that is a function of time and frequency (frequencies of 50 Hz in Europe

and 60 Hz in USA).

Electric appliances may accept only narrow variations of those voltages, typically toleran-

ces of +10%, -15%. If an electrical generator operates at a fixed voltage V and a distribution

line with several nodes, where loads are connected, there are voltage drops along the line,

described by Ohm’s law (the voltage drop is proportional to the line impedance and line

current, and line impedance is proportional to line length). However, when currents are at a

maximum value in any one of the nodes, the voltage must be kept in the interval of acceptable

voltages. Consequently, power distribution is made with oversized copper or aluminum cables.

The maximum length of the distribution cables is limited, in order to avoid excessive voltage

drops or excessive cross sections of the cables. Usually the cable length is limited to be less

than 2 km. The cables cross sections are standardized considering the maximum current in

the system and the maximum allowed voltage drops.

For larger distances, the distribution networks use transformers in order to increase ope-

rating voltage to 10 kV or 15 kV, reducing the line currents in the same proportion. For very

long distances or large power, the voltage increases up to 440 kV or more.

Power distribution operates at an almost constant voltage. Consequently, power lines are

interconnected with transformers in order to keep acceptable sizes of the cables. Industry has

standardized cables, maximum distances and operating voltages in order to obtain acceptable

values for the system cost and voltage drops.

A different situation occurs when a small amount of energy is required very far from any

possible supply point. This happens on a motorway, far from any town where it is required

to power a video camera and the radio transmitter. The use of optic fibers in long distance

telecommunications implies the use of electronic signal conditioning equipment placed along

the fibers, in places that can be more than 100 km from the nearest power supply. It is

possible to construct a copper cable for energy supply along the fiber cable. However, such

long distances imply very large voltage drops or bulky and costly cables, assuming a constant

voltage operation. In the above mentioned project, the authors considered the possibility of

having very large voltage drops in the cable, in order to avoid large cable costs. This option is

possible because telecom equipment require voltage regulators and storage batteries that can

operate with voltage tolerances up to 50%. When the power cable supplies several devices in

different places along the cable, the cross section of each part of the cable should be optimized.

As shown in this paper, the model under consideration can be formulated as a nonlinear

programming problem. We are able to show that the constraint set of this program is bounded

and the objective function is strictly convex on this constraint set. Hence the optimization

problem has a unique optimal solution, which can easily be found by a nonlinear program

code, such as MINOS [14]. By exploiting the structure of this optimization problem, it is also
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possible to reformulate it as a strictly convex nonlinear program on a simplex. This latter

optimization problem can be efficiently processed by a Projected Gradient algorithm [3, 4, 5]

that fully exploits the structure of the constraint set. Computational experience with small

instances of the problem illustrates the validity of the formulation for its purpose and of the

Projected Gradient algorithm to process the associated nonlinear program.

The organization of the paper is as follows. In section 2 the model and its formulation

are introduced. A heuristic procedure used in [1] is reviewed in section 3 to find a feasible

solution to the associated optimization problem. The solution of the nonlinear program

under consideration is fully discussed in section 4. The alternative formulation with simplex

constraints and the Projected Gradient algorithm for its solution are described in sections 5

and 6. Finally some computational experience and conclusions are reported.

2 Model Description

A long cable with two conducting wires is supplied at one end by a constant voltage

generator with a known voltage vI . The cable is constituted by n sections. The cross-sections

of the conductors may differ from section to section (although in each section of the cable the

cross-section of both conducting wires should be the same). If li is the length of each section

i (i = 1, 2, . . . , n), then the total length of the cable is
∑n

i=1 li.

Besides the voltage generator and the n sections, we assume the existence of n nodes along

the cable, each representing an electrical load. Section i connects two consecutive nodes i− 1

and i, thus

Node i− 1 Node i

Section i

where i = 1, 2, . . . , n (and node 0 coincides with the voltage generator). Therefore node i

connects two consecutive sections i and i + 1:

Node i

Section i Section i + 1

where i = 1, 2, . . . , n− 1, with the exception of node n.

The load in each node i is known and is characterized by its constant power load pi. The

load current lci in each node i depends on the voltage vi in that node, according to

lci =
pi

vi

, i = 1, 2, . . . , n . (1)

The voltage decrease ∆vi along each section i (∆vi = vi−1 − vi) is, according to Ohm’s

law [10],

∆vi = vi−1 − vi = ri ci , (2)
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where ri and ci are the resistance of the cable and the current in section i, i = 1, 2, . . . , n.

As the cable is made of two conducting wires, the resistance of each cable section is twice

the resistance of each conductor in that section. Hence

ri = 2 ρ
li

si

, (3)

where ρ is the material resistivity, li is the length of the section, and si is the area of the cross

section.

The current ci in section i is the sum of the currents in the loads at nodes i, i + 1, . . . , n

ci =
∑n

j=i l
c
j =

∑n
j=i

pj

vj
. (4)

Consequently the current in section i (i = 1, 2, . . . , n) depends on the voltage in all later

nodes of this section, as the power loads pi are constant. Now, using the expressions of ri and

si in (3) and (4), we obtain from (2)

vi−1 − vi = 2 ρ
li

si

∑n
j=i

pj

vj
. (5)

Therefore

vi = vi−1 − 2 ρ
li

si

∑n
j=i

pj

vj
(6)

for i = 1, 2, . . . , n.

Another data item is the voltage vn in the last node n of the cable. Considering that the

voltage v0 of node 0 coincides with the initial voltage vI , then

vn = a v0 , (7)

where a is a positive given constant satisfying 1
2 ≤ a < 1 1.

The volume of each section i of the cable is equal to 2 li si. Therefore, the total volume of

cable material is

V =
∑n

i=1 2 li si . (8)

As the price of the cable is almost proportional to its volume, its total cost C is given by

C = c V , where c is a given positive constant

C = c
∑n

i=1 2 li si =
∑n

i=1 2 c li si . (9)

The objective of the problem is to determine the cross-section area si of the conducting

wires in each section that minimizes the total cost of the cable. This is equivalent to minimiz-

ing its volume V . The values pi and li, i = 1, 2, . . . , n, as well as v0, vn, a, ρ and c are data of

the optimization problem, and we have to find the cross-section areas si, i = 1, 2, . . . , n, that

minimize C (or equivalently V ). The problem also contains the variables v1, v2, . . . , vn−1,

which are related to si, i = 1, 2, . . . , n by (6).

1It is possible to show that if a <
1

2
, the total volume of the cable increases as the voltage vn decreases [7].
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The model described can then be formulated as the following nonlinear optimization

problem:

Minimize
∑n

i=1 2 c li si (10)

subject to vi = vi−1 − 2 ρ
li

si

∑n
j=i

pj

vj

, i = 1, 2, . . . , n , (11)

vn = a v0 , (12)

vi−1 > vi , i = 1, 2, . . . , n , (13)

si, vi > 0 , i = 1, 2, . . . , n , (14)

where the power loads pi (i = 1, 2, . . . , n), the lengths li (i = 1, 2, . . . , n), the voltages v0

and vn, and the constants a, ρ and c, are data, and the cross-sections si (i = 1, 2, . . . , n) and

the voltages v1, v2 . . . , vn−1 are the variables of the optimization problem. The objective in

(10) is the minimization of the total cost of the cable or equivalently of its total volume.

3 An Initial Feasible Solution for the Optimization Problem

As stated in [1], a first feasible solution for the optimization problem can be constructed

by assuming that in each cable section i, i = 1, 2, . . . , n, the cross section si is proportional

to the current ci. Thus si = S ci, and from (4), si = S
∑n

j=i lcj, with S > 0. The process of

finding such a solution reduces to the computation of the proportionality constant S. Suppose

that all the loads along the cable are concentrated in a unique node, so that the cable is made

of a single section with length L =
∑n

i=1 li and by two nodes, one at each end, namely

the voltage generator and the current node. This last node concentrates the electrical loads,

whence it has a load power P =
∑n

i=1 pi. Since the voltage in this node is a v0, we can

easily compute the load current c in the last node, the resistance r in the section, and the

cross-section s in the conducting wires of that section by

c =
P

a v0
, (15)

r =
v0 − a v0

c
=

a (1− a) v2
0

P
, (16)

s =
2 ρL

r
=

2 ρLP

a (1− a) v2
0

. (17)

Therefore the reference cross-section S is defined by

S =
s

c
=

2 ρL

(1− a) v0
. (18)

The cross-sections si are computed from

si = S
∑n

j=i lcj , i = 1, 2, . . . , n . (19)
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The voltages vi can now be obtained recursively from (6) by

vi−1 = vi + 2 ρ
li

si

∑n
j=i

pj

vj

, i = 1, 2, . . . , n . (20)

In the particular case where p1 = p2 = . . . = pn, with vn =
v0

2
, the voltages can be

determined as follows:

vi−1 − vi =
li

∑n
i=1 li

(v0 − vn), i = 1, 2, . . . , n . (21)

Then by (20) the cross-sections satisfy

si = 2 ρ li

∑n
j=i

pj

vj

vi−1 − vi

, i = 1, 2, . . . , n . (22)

Computational experience (section 7) shows that this process finds a feasible solution that

is in general a tight upper bound to the global minimum value of the optimization problem.

It is also important to note that, since si = S
∑n

j=i lcj, equations (5) can be rewritten as

∆vi = vi−1 − vi =
2 ρ

S
li. This means that for the feasible solution obtained through this

heuristic method, the voltage decrease ∆vi in each section i is proportional to the length li

of this section.

4 Solution of the Nonlinear Optimization Problem

Consider again the model described in the section 2. Looking carefully at this formulation,

we note that the constraints si, vi > 0 , i = 1, 2, . . . , n, are redundant. In fact, according to

(12) and (13), we have v0 > v1 > v2 > . . . > vn = a v0. Since a and v0 are positive, then

vi ≥ a v0 > 0, for all i = 1, 2, . . . , n. As vi−1 − vi > 0, ρ > 0, li > 0 and pj > 0, for all j,

then si > 0, for all i = 1, 2, . . . , n. Then the variables si can be assumed to be unrestricted

in sign and can be eliminated from the problem to obtain the following nonlinear program in

the variables vi:

NLP: Minimize
v∈Rn

4 ρ c
∑n

i=1 l2i

∑n
j=i

pj

vj

vi−1 − vi

(23)

subject to vi−1 > vi , i = 1, 2, . . . , n , (24)

vn = a v0 , (25)

where v0, a, ρ, c, li, pj are positive data. After a global minimum is obtained for this optimiza-

tion problem NLP, then the cross-section areas si can be found from (11).

The feasible set of this program is not closed, whence the Weierstrass Theorem [2] cannot

be used to guarantee the existence of a minimum. To overcome this difficulty, we consider the

additional variables zi, defined by zi = vi−1−vi, i = 1, 2, . . . , n, and the nonlinear program:
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NLP1: Minimize f(z, v) = 4 ρ c
∑n

i=1 l2i

∑n
j=i

pj

vj

zi

(26)

subject to zi − vi−1 + vi = 0, i = 1, 2, . . . , n , (27)

zi ≥ ε, i = 1, 2, . . . , n , (28)

vn = a v0 , (29)

where ε is a positive and small real number (in practice ε = 10−6). As for each i = 1, 2, . . . , n,

vi−1 > vi ⇔ zi = vi−1 − vi > 0 ,

then we guarantee that the function f of NLP1 has a global minimum on the set

K = {(z, v) ∈ R
n×n satisfying (27) – (29)} .

Consider now the objective function of NLP1, the n functions fi defined by

fi(zi, vi, . . . , vn) =

∑n
j=i

pj

vj

zi

, i = 1, 2, . . . , n (30)

and the sets

Ki = {(zi, vi, . . . , vn) ∈ R
n−i+2 : zi > 0; vj > 0 , j = i, . . . , n} , i = 1, 2, . . . , n . (31)

Therefore for all (z, v) ∈ K,

f(z, v) = 4 ρ c
∑n

i=1 l2i fi(zi, vi, . . . , vn) . (32)

Then f is strictly convex on K, as the following property holds:

Theorem The function fi ( i = 1, 2, . . . , n ) defined by (30) is strictly convex on Ki.

Proof:

The gradient of fi at each point of Ki always exists and is given by

∇fi(zi, vi, . . . , vn) =























−
1

z2
i

(

∑n
j=i

pj

vj

)

−
1

zi

(

pi

v2
i

)

...

−
1

zi

(

pn

v2
n

)























.

The Hessian of fi is
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∇2fi(zi, vi, . . . , vn) = A1 + A2 ,

where

A1 = diag

(

1

z3
i

(

∑n
j=i

pj

vj

)

,
pi

zi v3
i

, . . . ,
pn

zi v3
n

)

and A2 is given by

A2 =





























1

z3
i

(

∑n
j=i

pj

vj

)

pi

z2
i v2

i

pi+1

z2
i v2

i+1

· · ·
pn

z2
i v2

n
pi

z2
i v2

i

pi

zi v3
i

0 · · · 0

pi+1

z2
i v2

i+1

0
pi+1

zi v3
i+1

· · · 0

...
...

... · · ·
...

pn

z2
i v2

n

0 0 · · ·
pn

zi v3
n





























.

Now A2 can be written as follows:

A2 =

[

α vT

v D

]

,

where α > 0, v ∈
� n−i+1 and

D = diag

(

pi

zi v
3
i

,
pi+1

zi v3
i+1

, . . . ,
pn

zi v3
n

)

.

Since all diagonal elements of D are positive and the Schur Complement (A2|D) of D in

A2 [6] is zero, then A2 is Symmetric Positive Semi-Definite. As A1 is Symmetric Positive

Definite, then ∇2fi(zi, vi, . . . , vn) is Symmetric Positive Definite in Ki [6] and fi is strictly

convex on Ki. �

Since K is compact and f is strictly convex on K, then f has a unique stationary point

on K, which is exactly its unique global minimum [2]. As a stationary point of f on K may

be found by a local nonlinear programming algorithm, it is easy to obtain the unique global

minimum of the function on K and thus to solve the optimization problem.

5 An Alternative Formulation on the Simplex

Consider the program NLP1, introduced in the previous section. We can write the con-

straints of the program as follows:

Lv + z = b ,

vn = a v0 ,

zi ≥ ε , i = 1, 2, . . . , n ,
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where

L =



















1

−1 1

−1 1
. . .

−1 1



















∈ R
n×n , b =



















v0

0

0
...

0



















∈ R
n , z =



















z1

z2

z3

...

zn



















∈ R
n.

As L is a triangular nonsingular matrix, we can eliminate the variables vi by solving Lv = b−z.

Then

vi = v0 −
∑i

k=1 zk , i = 1, 2, . . . , n . (33)

Furthermore

vn = a v0 ⇔ v0 − (z1 + z2 + · · · + zn) = a v0

⇔ z1 + z2 + · · · + zn = (1− a) v0

⇔
∑n

j=1 zj = (1− a) v0 .

Then NLP is equivalent to

NLP2: Minimize f(z) = 4 ρ c
∑n

i=1
l2i
zi

(

∑n
j=i

pj

v0−
∑j

k=1 zk

)

subject to eT z = (1− a) v0 ,

zi ≥ ε , i = 1, 2, . . . , n ,

where e ∈
� n is a vector of ones. The feasible set of this program is given by

K = {z ∈ R
n : eT z = (1− a) v0; zi ≥ ε , i = 1, 2, . . . , n} . (34)

Hence K is a compact set and by Weierstrass Theorem, the function f has a global minimum

on K. Moreover, the function of NLP2 is obtained from the function of NLP by a linear

transformation with a nonsingular matrix. Therefore this function f is strictly convex on

K [13]. Hence the computation of the unique global minimum of NLP2 may be done by a

local nonlinear programming method. In the next section we introduce a Projected Gradient

algorithm that finds the unique stationary point of f on K by taking advantage of the structure

of the program NLP2. The original variables vi and si can be obtained afterwards by using

formulas (33) and (11).
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6 A Projected Gradient Algorithm for the Nonlinear Program

on the Simplex

Consider the program NLP2 introduced in the previous section and its constraint set K

given by (34). The projected gradient of f in the point z ∈ K is defined as the vector in
� n

g(z) = PK(z − η∇f(z))− z , (35)

where PK(·) is the orthogonal projection in K and η > 0 [3].

It is known that for a given η > 0, g(z) = 0 if and only if z is a stationary point of

f on K [3]. The Projected Gradient algorithm is a modification of the Steepest Descent

algorithm [8] in which the iterates are forced to stay in K by a projection [4]. It can be

shown [3, 5] that this algorithm possesses global convergence towards a stationary point

under reasonable hypotheses. The steps of the algorithm are presented below.

Projected Gradient Algorithm for NLP2:

Step 0: Find an initial solution z ∈ K.

Step 1: (Computation of Search Direction) Compute the direction d ∈
� n by

d = y − z ,

where y = PK(z − η∇f(z)), with η > 0.

Step 2: (Stopping Test) If ‖d‖2 < tol, then stop: z is a stationary point of f on K.

Otherwise, go to Step 3.

Step 3: (Armijo Criterion) Find α ∈
� + such that

f(z + α d) ≤ f(z) + β α∇f(z)T d ,

with 0 < β < 1.

Step 4: (Iterate Updating) Update the current solution

z ← z + α d

and return to Step 2.

Next, we discuss some details of the algorithm.
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(I) Computation of the Gradient of f

By simple manipulation, it is possible to write f(z) as follows:

f(z) = = 4 ρ c
∑n

k=1

pk×
∑k

j=1

l2j
zj

v0−
∑k

j=1 zj

.

Therefore it is easy to obtain the following formulas for the components of the gradient

vector ∇f(z):

∀
i = 1,2,..., n

∂f(z)

∂zi

= 4 ρ c
∑n

k=i

pk×
∑k

j=1

l2j
zj

(v0−
∑k

j=1 zj)
2
−

l2i
z2

i

∑n
k=i

pk

v0−
∑k

j=1 zj

. (36)

(II) Computation of the Projection y = PK(z − η∇f(z))

1. Find u = z − η∇f(z) using (36) to compute ∇f(z).

2. The vector y is the unique optimal solution of the strictly convex quadratic program

Minimize
y∈Rn

1

2
‖u− y‖22

subject to eT y = (1− a) v0 ,

yi ≥ ε , i = 1, 2, . . . , n .

But

‖u− y‖22 = (u− y)T (u− y) = uT u− 2uT y + yT y

and therefore this program is equivalent to

Minimize
z∈Rn

qT y +
1

2
yT y

subject to eT y = b0 ,

yi ≥ ε , i = 1, 2, . . . , n ,

where b0 = (1− a) v0 and q = −u.

There are several algorithms described in the literature to process this kind of quadratic

programs [9, 15, 12]. Among these processes, the Block Pivotal Principal Pivoting (BLOCK)

Algorithm described in [12] is strongly polynomial and very efficient in practice. The steps

of this process are presented below.
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BLOCK Algorithm:

Step 0: Let F = { 1, 2, . . . , n }.

Step 1: Compute λ = −
b0 +

∑

i∈F qi

|F |
.

Step 2: (Stopping test)

Let

H = {i ∈ F : qi + λ > ε} .

If H = φ, stop: the vector

z = (zi)i = 1,2,..., n, with zi =











ε , if i 6∈ F

−(qi + λ) , if i ∈ F

is the unique optimal solution of the quadratic program. Otherwise set F = F −H and

go to Step 1.

(III) Computation of the Optimal Values for the Variables v∗
i and s∗i

Let z∗ = (z∗i ) i= 1,2,..., n ∈ R
n be the optimal solution of the problem NLP2. The variables

v∗i , i = 1, 2, . . . , n, of the original problem satisfy Lv∗ = b− z∗. Therefore

v∗i = v∗i−1 − z∗i , i = 1, 2, . . . , n ( v∗0 = v0 ) . (37)

Furthermore, (11) provides the values of the variables s∗i :

s∗i =
2 ρ li

∑n
j=i

pj

v∗j

z∗i
, i = 1, 2, . . . , n .

7 Computational Experience

The computational experience presented in this section was performed using a PC with

3 Ghz Pentium 4 processor and 2 Gb RAM memory, running Linux 2.6.10. The active–set

code MINOS [14] (one of the nonlinear solvers of GAMS) has been used for processing both

the nonlinear programs NLP1 and NLP2. Furthermore, the Projected Gradient algorithm

for the program NLP2 was implemented in Fortran 77 [11], using the Gnu Fortran (g77)

compiler, version 3.4.3, with the options -02 -malign-double -funroll-loops. Running

times presented in this section are given in CPU seconds, excluding inputs and outputs. The

times for the Projected Gradient algorithm were measured by the etime() function.

The results reported in this section are concerned with two actual instances of the problem

found in practice, the first (Example 1) presenting reduced voltage decrease and the second
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(Example 2) presenting high voltage decrease. The data for these problems are stated below

and in Tables 1 and 2:

n = 40; ρ = 20 (ΩKm−1 mm2); c > 0.

Example 1 (reduced voltage decrease) Example 2 (high voltage decrease)

V0 = 500 V V0 = 260 V

V40 = 300 V
a = 0.6

V40 = 190 V
a ≈ 0.731

i length li (Km) power pi (W) length li (Km) power pi (W)

1 0.1 50 0.1 1150

2 0.6 200 0.1 1150

3 0.3 200 0.2 2300

4 3.1 50 0.5 2300

5 2.0 500 0.4 1150

6 1.6 500 1.0 6900

7 0.8 100 0.2 1150

8 0.7 50 0.3 1150

9 1.2 50 0.2 2300

10 1.5 100 0.1 2300

11 1.8 200 0.1 1150

12 0.5 200 0.05 1150

13 0.3 200 0.05 2300

14 0.3 200 0.03 1150

15 0.3 500 0.4 6900

16 0.7 50 0.5 6900

17 0.8 50 0.5 1350

18 1.1 50 0.3 2300

19 2.3 50 0.4 1150

20 7.5 200 0.4 2300

21 1.1 200 0.9 6900

22 1.4 500 1.0 3450

23 1.9 200 0.5 1350

24 0.1 50 0.1 6900

25 0.1 50 0.1 1350

26 0.2 50 0.03 1350

27 0.2 50 0.05 1350

Table 1: Problem data for Examples 1 and 2.

13



Example 1 (reduced voltage decrease) Example 2 (high voltage decrease)

i length li (km) power pi (w) length li (km) power pi (w)

28 0.1 50 0.05 1350

29 0.5 100 1.1 6900

30 1.0 200 1.2 3450

31 1.1 200 0.6 3450

32 1.3 500 0.45 3450

33 1.1 500 0.33 6900

34 7.5 500 0.21 1350

35 3.3 100 0.09 10350

36 0.1 200 0.06 6900

37 0.1 200 1.25 1150

38 0.3 50 0.15 1150

39 0.4 50 0.12 1150

40 0.1 500 1.3 1150

Table 2: Problem data for Examples 1 and 2 (continuation).

For the first example the cross-section value is S = 9.680 (with L = 48.40 and P =

7750), and for the second example, is S = 8.811 (with L = 15.42 and P = 119850). The

heuristic procedure described in section 3 has found the following solutions:

For Example 1:

v = (vi) i= 0, 1,..., 40 = (500.000, 499.587, 497.107, 495.868, 483.058, 474.793, 468.182,

464.876, 461.983, 457.025, 450.826, 443.388, 441.322, 440.083,

438.843, 437.603, 434.711, 431.405, 426.860, 417.355, 386.364,

381.818, 376.033, 372.314, 371.901, 371.488, 370.661, 369.835,

369.421, 367.355, 363.223, 358.678, 353.306, 348.760, 317.769,

304.132, 303.719, 303.306, 302.066, 300.413, 300.000);

s = (si) i = 1, 2,..., 40 = (195.930, 194.961, 191.066, 187.162, 186.160, 175.966, 165.628,

163.546, 162.498, 161.439, 159.292, 154.926, 150.539, 146.140,

141.728, 130.668, 129.555, 128.433, 127.299, 126.139, 121.128,

116.058, 103.187, 97.987, 96.685, 95.382, 94.077, 92.768,

91.458, 88.823, 83.493, 78.095, 64.396, 50.518, 35.287,

32.104, 25.730, 19.347, 17.744, 16.133)
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with total cost C = 11105.270 × c.

For Example 2:

v = (vi) i= 0, 1,..., 40 = (260.000, 259.546, 259.092, 258.184, 255.914, 254.099, 249.559,

248.651, 247.289, 246.381, 245.927, 245.473, 245.246, 245.019,

244.883, 243.067, 240.798, 238.528, 237.166, 235.350, 233.534,

229.449, 224.909, 222.639, 222.185, 221.732, 221.595, 221.368,

221.141, 216.148, 210.700, 207.977, 205.934, 204.436, 203.482,

203.074, 202.802, 197.127, 196.446, 195.901, 190.000);

s = (si) i = 1, 2,..., 40 = (4714.404, 4675.363, 4636.252, 4557.757, 4478.565, 4438.686, 4195.061,

4154.309, 4113.332, 4031.076, 3948.669, 3907.389, 3866.070, 3783.357,

3741.978, 3491.846, 3239.357, 3189.487, 3104.035, 3060.979, 2974.198,

2709.221, 2574.057, 2520.628, 2246.988, 2193.340, 2139.659, 2085.924,

2032.132, 1750.849, 1606.571, 1460.403, 1312.786, 1015.388, 956.928,

507.839, 208.044, 156.640, 105.058, 53.332)

with total cost C = 74762.948 × c.

As mentioned earlier, each of these values is an upper bound for the optimal value given

by the nonlinear programs NLP1 and NLP2. The unique optimal solution of those programs

found by MINOS is given below:

For Example 1:

v∗ = (v∗i ) i= 0, 1,..., 40 = (500.000, 499.470, 496.298, 494.727, 478.658, 468.316, 460.255,

456.334, 452.922, 447.091, 439.823, 431.152, 428.772, 427.361,

425.968, 424.593, 421.494, 417.966, 413.132, 403.062, 370.347,

365.618, 359.689, 356.031, 355.632, 355.235, 354.445, 353.659,

353.267, 351.321, 347.470, 343.325, 338.543, 334.769, 311.298,

302.215, 301.949, 301.704, 301.048, 300.203, 300.000);

s∗ = (s∗i ) i = 1, 2,..., 40 = (156.856, 156.477, 154.934, 153.366, 152.944, 148.488, 143.766,

142.792, 142.295, 141.785, 140.726, 138.507, 136.244, 133.944,

131.608, 125.623, 125.007, 124.379, 123.734, 123.055, 119.820,

116.475, 107.708, 104.070, 103.153, 102.231, 101.303, 100.368,

99.429, 97.521, 93.586, 89.506, 78.755, 67.253, 53.127, 49.982,

43.473, 36.549, 34.720, 32.831).

15



For Example 2:

v∗ = (v∗i ) i= 0, 1,..., 40 = (260.000, 259.337, 258.676, 257.360, 254.097, 251.507, 245.062,

243.805, 241.930, 240.685, 240.068, 239.457, 239.153, 238.851,

238.671, 236.286, 233.396, 230.601, 228.936, 226.742, 224.561,

219.715, 214.542, 212.010, 211.508, 211.029, 210.887, 210.653,

210.421, 205.379, 200.211, 197.717, 195.919, 194.657, 193.937,

193.636, 193.485, 191.440, 191.226, 191.085, 190.000);

s∗ = (s∗i ) i = 1, 2,..., 40 = (3351.859, 3338.425, 3324.873, 3297.323, 3268.836, 3254.211, 3160.536,

3144.546, 3128.242, 3095.103, 3061.525, 3044.547, 3027.457, 2992.976,

2975.600, 2867.608, 2753.897, 2730.719, 2690.347, 2669.620, 2627.048,

2491.010, 2418.020, 2388.453, 2233.547, 2202.441, 2171.058, 2139.357,

2107.330, 1931.019, 1834.938, 1733.832, 1627.834, 1401.373, 1354.395,

950.698, 588.979, 507.413, 412.098, 290.011).

For both examples, we have used as an initial point for MINOS the default choice given by

the code and the solution computed by the heuristic procedure. The values of the variables

vi show that the constraints zi ≥ ε
(

ε = 10−6
)

are inactive at the optimal solutions of both

problems. Tables 3 and 4 report the numerical results under these two choices and lead to the

conclusion that it is recommended to start with the feasible solution given by the heuristic

procedure. It is also important to add that Formulation NLP1 is preferable if an active-set

method such as MINOS is employed to process the nonlinear program. The reason for this

arises from the more complex formulas of the objective function in the Formulation NLP2.

Example 1

Initial Solution

Formulations By default (MINOS) Heuristic Solution

Iterations CPU Cost Iterations CPU Cost

NLP1 820 1.470 10764.6896 × c 84 0.266 10764.6896 × c

NLP2 789 12.423 10764.6896 × c 121 2.447 10764.6896 × c

Table 3: Comparative performance of the formulations NLP1 and NLP2 for Example 1, solved

by GAMS/MINOS.

The implementation of the Projected Gradient algorithm for problem NLP2 requires a

choice for the parameters β, θ and η used by the procedure. For both examples, some tests
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Example 2

Initial Solution

Formulations By default (MINOS) Heuristic Solution

Iterations CPU Cost Iterations CPU Cost

NLP1 562 1.014 66585.2396 × c 98 0.286 66585.2396 × c

NLP2 530 8.474 66585.2396 × c 153 3.014 66585.2396 × c

Table 4: Comparative performance of the formulations NLP1 and NLP2 for Example 2, solved

by GAMS/MINOS.

have been performed with the algorithm in order to make a sensitivity analysis for these

parameters. The best choices for the Projected Gradient algorithm have been achieved with

β = 10−4, θ = 1
2 , η = 10−2 for Example 1 and β = 10−4 (or β = 10−2), θ = 1

10 , η = 10−3

for Example 2.

Table 5 indicates the performance of the Projected Gradient algorithm (with tol = 10−6)

for the best choice of the parameters and for two initial solutions. These computational results

show that the Projected Gradient algorithm is efficient to process the nonlinear program

NLP2. The number of iterations required by the projected gradient method is slightly bigger

than those of the active-set method (MINOS) displayed in tables 3 and 4. However, the

algorithm performs faster than MINOS. Another interesting conclusion is that the use of the

initial solution given by the heuristic procedure does not seem to help for this method. As

the Projected Gradient algorithm fully exploits the structure of the nonlinear program and

requires minimal storage, we believe that this method can be useful for the solution of larger

instances of this optimization model.

Example 1

Initial Solution Iterations CPU Cost

zi = b0
40 , i = 1, 2, . . . , 40 399 0.003 10764.6896 × c

Heuristic Solution 512 0.005 10764.6896 × c

Example 2

Initial Solution Iterations CPU Cost

zi = b0
40 , i = 1, 2, . . . , 40 114 0.001 66585.2396 × c

Heuristic Solution 129 0.001 66585.2396 × c

Table 5: Best performances of the Projected Gradient algorithm.

The unique optimal solution found by the algorithms gives about 3% savings for Example 1

and about 12% savings for Example 2, when compared with the heuristic solutions used in
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practice in the project reported in this paper. We believe that more substantial savings can

be achieved for larger instances of the energy model if the unique optimal solution of NLP1

or NLP2 is used instead of the solution that is nowadays employed in this project.

8 Conclusion

This paper describes formulations and solutions of an engineering optimization problem

in telecommunications area, that consists of optimizing the cross section of conducting energy

cables, used to supply remote telecom equipments, in order to minimize the volume of copper

material used in the cables and consequently the cost. Two alternative formulations for the

problem have been introduced and a Projected Gradient algorithm was proposed for the

second formulation, taking advantage of its particular structure. Computational experience

with an implementation of this algorithm has shown that the proposed methodology is efficient

in practice. We believe that this type of model and the Projected Gradient algorithm can

also be useful in other engineering models used in energy supply, piping and fluid distribution

with a similar structure, particularly when the number of nodes is quite large.
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