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Yi-Shuai Niu1, Joaquim Júdice2, Le Thi Hoai An3 and Pham Dinh Tao4

1Shanghai JiaoTong University, Maths Departement and SJTU-Paristech, China
niuyishuai@sjtu.edu.cn

2Instituto de Telecomunicações, Portugal
judice@co.it.pt

3University of Lorraine, France
hoai-an.le-thi@univ-lorraine.fr

4National Institute of Applied Sciences, France
pham@insa-rouen.fr

Abstract. We present in this paper some results for solving the Quadratic
Eigenvalue Complementarity Problem (QEiCP) by using DC(Difference
of Convex functions) programming approaches. Two equivalent Noncon-
vex Polynomial Programming (NLP) formulations of QEiCP are intro-
duced. We focus on the construction of the DC programming formu-
lations of the QEiCP from these NLPs. The corresponding numerical
solution algorithms based on the classical DC Algorithm (DCA) are also
discussed.
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1 Introduction

Given three matrices A,B,C ∈ Rn×n, the Quadratic Eigenvalue Complemen-
tarity Problem (QEiCP) consists of finding a λ ∈ R and an associated nonzero
vector x ∈ Rn such that

w = λ2Ax+ λBx+ Cx
xTw = 0

x ≥ 0, w ≥ 0
(1)

This problem and some applications have been firstly introduced in [19] and is
usually denoted by QEiCP(A,B,C). In any solution (λ, x) of QEiCP(A,B,C),
the λ-component is called a quadratic complementary eigenvalue, and the vector
x-component is a quadratic complementary eigenvector associated to λ.

QEiCP is an extension of the well-known Eigenvalue Complementarity Prob-
lem (EiCP) [18], which consists of finding a complementary eigenvalue λ ∈ R
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and an associated complementary eigenvector x ∈ Rn \ {0} such that

w = λBx− Cx
xTw = 0

x ≥ 0, w ≥ 0
(2)

where B,C ∈ Rn×n are two given matrices.
Clearly, EiCP is a special case of QEiCP where the matrix A is null. During

the past several years, many applications of EiCP have been discussed and a
number of algorithms have been proposed for the solution of this problem and
some extensions [1–3, 6–11, 15, 16].

EiCP has at least one solution if the matrix B of the leading λ-term is positive
definite (PD) [9, 18]. Contrary to the EiCP, the QEiCP may have no solution
even when the matrix A of leading λ-term is PD. For instance, if B = 0, A,C
are PD matrices, there is no solution for QEiCP since xTw = λ2xTAx+xTCx >
0,∀λ ∈ R, x ∈ Rn \ {0}.

The existence of a solution to QEiCP depends on the given (A,B,C). If
the matrix A is PD, QEiCP has at least a solution if one of the two following
conditions holds:

(i) C /∈ S0 [4], where S0 is the class of matrices defined by

C ∈ S0 ⇔ ∃x ≥ 0, x 6= 0, Cx ≥ 0.

(ii) co-hyperbolicity [19] : (xTBx)2 ≥ 4(xTAx)(xTCx) for all x ≥ 0, x 6= 0.

In practice, investigating whether C ∈ S0 reduces to solving a special lin-
ear program [4]. On the other hand, it is relatively hard to prove that co-
hyperbolicity holds. However, there are some sufficient conditions which imply
the co-hyperbolicity. For instance, this occurs if A and −C are both PD matrices.

A number of algorithms have been proposed for the solution of QEiCP when
A ∈PD and one of the conditions C /∈ S0 or co-hyperbolicity holds [1, 4–6, 19]. As
discussed in [4–6], some of these methods are based on nonlinear programming
(NLP) formulations of QEiCP such that (λ, x) is a solution of QEiCP if and
only if (λ, x) is a global minimum of NLP with an optimal value equal to zero.
In this paper, we introduce two nonlinear programming formulations and their
corresponding DC programming formulations when co-hyperbolicity holds, and
we briefly discuss the DC Algorithm for the solution of these DC programs.

The paper is organized as follows. Section 2 contains the nonlinear program-
ming formulations of QEiCP, and the corresponding dc formulations mentioned
before. A new result on lower and upper bounds estimation of the quadratic
complementary eigenvalue is given in section 3. The numerical solution algo-
rithms for solving these DC programming formulations are discussed in section
4. Some conclusions are presented in the last section.

2 DC Programming Formulations for QEiCP

In this section, we introduce two DC programming formulations of QEiCP when
A ∈PD and the co-hyperbolic property holds. These DC programs are based
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on two NLP formulations of QEiCP. The construction of the DC programming
problem requires lower and upper bounds on the λ-variable which can be com-
puted by the procedures discussed in [6]. We will also present a new procedure
for such a goal in the section 3.

2.1 Nonlinear Programming Formulations

As discussed in [6], QEiCP is equivalent to the following NLP:

(P ) 0 = min f(x, y, z, w, λ) := ‖y − λx‖2 + ‖z − λy‖2 + xTw
s.t. w = Az +By + Cx

eTx = 1
eT y = λ
x ≥ 0, w ≥ 0, z ≥ 0.

(3)

As (x, y, z, w, λ) is an optimal solution of the problem (P ) if and only if (λ, x)
is a solution of QEiCP. In fact, for any solution of QEiCP (λ, x) that does not
satisfy eTx = 1, we can always construct a solution (λ, x

eT x
) of QEiCP satisfying

such a constraint.
The problem (P ) is a polynomial programming problem where a nonconvex

polynomial function f(x, y, z, w, λ) is minimized subject to linear constraints.
Due to the fact that any polynomial function is a dc function, we can reformulate
the problem (P ) as a dc program.

On the other hand, observing that the complementarity constraint wTx =
0, x ≥ 0, w ≥ 0 holds if and only if wTx =

∑n
i=1 min(xi, wi) = 0, we have the

following equivalent nonlinear programming formulation of (P ):

(P ′) 0 = min f ′(x, y, z, w, λ) = ‖y − λx‖2 + ‖z − λy‖2 +
∑n
i=1 min(xi, wi)

s.t w = Az +By + Cx
eTx = 1
eT y = λ
x ≥ 0, w ≥ 0, z ≥ 0.

The problems (P ) and (P ′) have the same set of linear constraints. The difficulty
for solving (P ) and (P ′) relies on the non-convexity on their objective functions.

2.2 DC programming formulations

The polynomial function f in (P ) can be decomposed into four parts:

f(x, y, z, w, λ) = ‖y‖2 + ‖z‖2 − 2λyT (x+ z) + λ2(‖x‖2 + ‖y‖2) + xTw
= f0(y, z) + f1(x, y, z, λ) + f2(x, y, λ) + f3(x,w)

with 
f0(y, z) = ‖y‖2 + ‖z‖2
f1(x, y, z, λ) = −2λyT (x+ z)
f2(x, y, λ) = λ2(‖x‖2 + ‖y‖2)
f3(x,w) = xTw
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The function f0 is convex quadratic function, while f1, f2, f3 are nonconvex
polynomial functions. Similarly, the objective function f ′ in (P ′) is also decom-
posed into the following four terms as:

f ′(x, y, z, w, λ) = f0(y, z) + f1(x, y, z, λ) + f2(x, y, λ) + f̃3(x,w)

where f̃3(x,w) defined by
∑n
i=1 min(xi, wi) is a polyhedral concave function.

Both the bilinear function f3 and the polyhedral concave function f̃3 are
classical dc functions whose dc decompositions are as follows:

1. DC decomposition of bilinear function f3:

f3(x,w) =
‖x+ w‖2

4
− ‖x− w‖

2

4
(4)

in which ‖x+w‖
2

4 and ‖x−w‖
2

4 are both convex quadratic functions.

2. DC decomposition of polyhedral function f̃3:

f̃3(x,w) =

n∑
i=1

min(xi, wi) = (0)− (−
n∑
i=1

min(xi, wi)) (5)

where −
∑n
i=1 min(xi, wi) is a convex polyhedral function.

To obtain a dc decompositions of the nonconvex polynomial functions f1 and
f2, we first obtain the expressions of their gradients and hessians:

1. Gradient and Hessian of f1:

∇f1(x, y, z, λ) =


∇xf1(x, y, z, λ)
∇yf1(x, y, z, λ)
∇zf1(x, y, z, λ)
∇λf1(x, y, z, λ)

 =


−2λy

−2λ(x+ z)
−2λy

−2yT (x+ z)

 .

∇2f1(x, y, z, λ) =


0 −2λI 0 −2y
−2λI 0 −2λI −2(x+ z)

0 −2λI 0 −2y
−2yT −2(x+ z)T −2yT 0

 .
2. Gradient and Hessian of f2:

∇f2(x, y, λ) =

∇xf2(x, y, λ)
∇yf2(x, y, λ)
∇λf2(x, y, λ)

 =

 2λ2x
2λ2y

2λ(‖x‖2 + ‖y‖2)

 .

∇2f2(x, y, z, λ) =

2λ2I 0 4λx
0 2λ2I 4λy

4λxT 4λyT 2(‖x‖2 + ‖y‖2)


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The spectral radius of the hessian matrices ∇2f1 and ∇2f2 (denoted by
ρ(∇2f1) and ρ(∇2f2)) can be bounded above by the induced 1-norm as follows:

ρ(∇2f1) ≤ ‖∇2f1‖1 = 2 max{|λ|+ |yi|, |xi + zi|+ 2|λ|,
∑
i

(2|yi|+ |xi + zi|)}

ρ(∇2f2) ≤ ‖∇2f2‖1 = 2 max{λ2+2|λ||xi|, λ2+2|λ||yi|, ‖x‖2+‖y‖2+2|λ|
∑
i

(|xi|+ |yi|)}

Thus ρ(∇2f1) and ρ(∇2f2)) are bounded when the variables (x, y, z, w, λ) of
(P ) and (P ′) are bounded.

The next proposition shows that if the quadratic complementary eigenvalue
λ of QEiCP is bounded, then the variables x, y, z, w are bounded with respect
to the bounds of λ.

Proposition 1. If the quadratic complementary eigenvalue λ of QEiCP is bounded
in an interval [l, u], then any optimal solution of (P ) and (P ′) satisfies:

x ∈ [0, 1]n; y ∈ [min{0, l},max{0, u}]n; z ∈ [0,max{u2, l2}]n;

0 ≤ w ≤

max{u2, l2}
∑
j |A1j |+ max{|l|, |u|}

∑
j |B1j |+

∑
j |C1j |

...
max{u2, l2}

∑
j |Anj |+ max{|l|, |u|}

∑
j |Bnj |+

∑
j |Cnj |

 .
Proof. Suppose that we could determine some values l and u such that λ-
component of QEiCP is located in the interval [l, u].

1. eTx = 1, x ≥ 0 implies x ∈ [0, 1]n.
2. y = λx, x ∈ [0, 1]n and λ ∈ [l, u] imply y ∈ [min{0, l},max{0, u}]n.
3. z = λy, y = λx ⇒ z = λ2x, with x ∈ [0, 1]n, λ ∈ [l, u], leads to z ∈

[0,max{u2, l2}]n.
4. Since w ≥ 0, the upper bound of w is obtained from the definition of w as
Az+By+Cx. As x ∈ [0, 1]n, y ∈ [min{0, l},max{0, u}]n, z ∈ [0,max{u2, l2}]n,
then w is also bounded:

|w| ≤

max{u2, l2}
∑
j |A1j |+ max{|l|, |u|}

∑
j |B1j |+

∑
j |C1j |

...
max{u2, l2}

∑
j |Anj |+ max{|l|, |u|}

∑
j |Bnj |+

∑
j |Cnj |

 .
ut

Let us define the convex polyhedral set:

C := {(x, y, z, w, λ) : w = Az +By + Cx, eTx = 1, eT y = λ, x ∈ [0, 1]n,

y ∈ [min{0, l},max{0, u}]n, z ∈ [0,max{u2, l2}]n, w ≥ 0, l ≤ λ ≤ u}.

The problems (P ) and (P ′) defined on C have the same set of optimal solutions,
and ρ(∇2f1) and ρ(∇2f2) are bounded. In fact, the following proposition holds:
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Proposition 2. For (x, y, z, w, λ) ∈ C,

ρ(∇2f1) ≤ 2 + 2n(p2 + 2p) = ρ1

ρ(∇2f2) ≤ 2(3np2 + 2p+ 1) = ρ2

where p = max{|l|, |u|}.

Proof. Since λ ∈ [l, u], then |λ| ≤ max{|l|, |u|} = p. Hence,

ρ(∇2f1) ≤ 2 max{|λ|+ |yi|, |xi + zi|+ 2|λ|,
∑
i

(2|yi|+ |xi + zi|)}.

But, ∑
i

|yi| ≤ np.∑
i

|xi + zi| ≤
∑
i

|xi|+
∑
i

|zi| ≤ 1 + np2.

Hence,

ρ(∇2f1) ≤ 2 max{2p, 1 + p2 + 2p, 1 + n(p2 + 2p)} = 2 + 2n(p2 + 2p) = ρ1

Similarly,

ρ(∇2f2) ≤ 2 max{λ2 + 2|λ||xi|, λ2 + 2|λ||yi|, ‖x‖2 + ‖y‖2 + 2|λ|
∑
i

(|xi|+ |yi|)}

≤ 2 max{p2 + 2p, 3p2, 3np2 + 2p+ 1} = 2(3np2 + 2p+ 1) = ρ2.

ut

Thus, we get a dc decomposition for f1 and f2 as follows:

f1(x, y, z, λ) =
ρ1
2
‖(x, y, z, λ)‖2 − (

ρ1
2
‖(x, y, z, λ)‖2 − f1(x, y, z, λ))

f2(x, y, λ) =
ρ2
2
‖(x, y, λ)‖2 − (

ρ2
2
‖(x, y, λ)‖2 − f2(x, y, λ))

where ρ1
2 ‖(x, y, z, λ)‖2 and ρ2

2 ‖(x, y, λ)‖2 are quadratic convex functions. While
ρ1
2 ‖(x, y, z, λ)‖2− f1(x, y, z, λ) and ρ2

2 ‖(x, y, λ)‖2− f2(x, y, λ) are locally convex
restricted on C.

Using the dc decompositions of f1,f2,f3 and f̃3 derived in this section, we
get the following dc decomposition for the objective functions f and f ′.

1. A dc decomposition for f is given by:

f(x, y, z, w, λ) = g(x, y, z, w, λ)− h(x, y, z, w, λ)

where

g(x, y, z, w, λ) =
‖x+ w‖2

4
+
ρ1 + ρ2

2
‖x‖2+(

ρ1 + ρ2
2

+1)‖y‖2+(
ρ1
2

+1)‖z‖2+
ρ1 + ρ2

2
λ2,

h(x, y, z, w, λ) = g(x, y, z, w, λ)− f(x, y, z, w, λ).
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2. A dc decomposition for f ′ is given by:

f ′(x, y, z, w, λ) = g′(x, y, z, w, λ)− h′(x, y, z, w, λ)

where

g′(x, y, z, λ) =
ρ1 + ρ2

2
‖x‖2 + (

ρ1 + ρ2
2

+ 1)‖y‖2 + (
ρ1
2

+ 1)‖z‖2 +
ρ1 + ρ2

2
λ2,

h′(x, y, z, w, λ) = g′(x, y, z, λ)− f ′(x, y, z, w, λ).

The functions g and g′ are both convex quadratic functions, while h and h′

are locally convex functions restricted on the convex polyhedral set C.
Finally, we get the following equivalent DC programs of (P ) and (P ′) as

below:
(PDC) 0 = min g(x, y, z, w, λ)− h(x, y, z, w, λ)

s.t. (x, y, z, w, λ) ∈ C. (6)

(P ′DC) 0 = min g′(x, y, z, λ)− h′(x, y, z, w, λ)
s.t. (x, y, z, w, λ) ∈ C. (7)

3 Lower and upper bounds for the quadratic
complementary eigenvalue λ

Since the bounds of the variables x, y, z, w in C, as well as the dc decompositions
given in the previous section depend on the bounds of λ, we need to estimate
its upper and lower bounds. The following theorem gives these values.

Proposition 3. If A ∈PD and the co-hyperbolic condition holds, the λ-component
of any solution of QEiCP satisfies

l = β −
√
α ≤ λ ≤ γ +

√
α = u

with s = min{xTAx : eTx = 1, x ≥ 0}, α = max{γ2, β2}+
maxi,j{−Cij}

s ,

β =

{
min{−Bij}
2max{Aij} , if min{−Bij} > 0;
min{−Bij}

2s , if min{−Bij} ≤ 0.

γ =

{
max{−Bij}

2s , if max{−Bij} > 0;
max{−Bij}
2max{Aij} , if max{−Bij} ≤ 0.

Proof. Since A ∈PD and the co-hyperbolic condition holds, the λ-component of
any solution of QEiCP satisfies

λ =
−xTBx±

√
(xTBx)2 − 4(xTAx)(xTCx)

2xTAx
.
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Let U = {eTx = 1, x ≥ 0}. For a given matrix M ∈ Rn×n and for any x ∈ U ,
we next prove that:

min
i,j

Mij ≤ xTMx ≤ max
i,j

Mij ,∀x ∈ U. (8)

If fact, let (Mx)i denote the i-th element of the vector Mx. Then

xTMx =

n∑
i=1

xi(Mx)i

But, (Mx)i is bounded by

min{
n∑
j=1

Mijxj : x ∈ U} ≤ (Mx)i ≤ max{
n∑
j=1

Mijxj : x ∈ U},∀x ∈ U.

Since the linear programs min{
∑n
j=1Mijxj : x ∈ U} and max{

∑n
j=1Mijxj :

x ∈ U} have optimal solutions on vertices, the optimal values of the above
linear programs are exactly minj{Mij} and maxj{Mij}. Hence, we can compute
bounds for xTMx on U as follows:

min
i,j
{Mij} = min{

∑
i

xi min
j
{Mij} : x ∈ U} ≤

∑
i

xi min
j
{Mij} ≤

∑
i

xi(Mx)i

= xTMx ≤
∑
i

xi max
j
{Mij} ≤ max{

∑
i

xi max
j
{Mij} : x ∈ U} = max

i,j
{Mi,j}.

Hence, (8) is true.
Using the bounds (8) for the matrices B and C, we have:

min
i,j
{−Bij} ≤ −xTBx ≤ max

i,j
{−Bij},

min
i,j
{−Cij} ≤ −xTCx ≤ max

i,j
{−Cij}

Since A ∈PD, we have

0 < s = min{xTAx : x ∈ U} ≤ xTAx ≤ max
i,j
{Aij},∀x ∈ U.

Accordingly, −x
TBx

2xTAx
is bounded by:

min{−Bij}
2xTAx

≤ −x
TBx

2xTAx
≤ max{−Bij}

2xTAx
≤ γ =

{
max{−Bij}

2s , if max{−Bij} > 0;
max{−Bij}
2max{Aij} , if max{−Bij} ≤ 0.

and
min{−Bij}

2xTAx
≥ β =

{
min{−Bij}
2max{Aij} , if min{−Bij} > 0;
min{−Bij}

2s , if min{−Bij} ≤ 0.
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Then

(
−xTBx
2xTAx

)2 +
−xTCx
xTAx

≤ max{γ2, β2}+
max{−Cij}

s
= α.

Finally, we can compute bounds for λ as follows:

β −
√
α ≤ −x

TBx

2xTAx
−

√
(
−xTBx
2xTAx

)2 +
−xTCx
xTAx

≤

λ ≤ −x
TBx

2xTAx
+

√
(
−xTBx
2xTAx

)2 +
−xTCx
xTAx

≤ γ +
√
α.

ut

In practice, it is interesting to compare in the future the bound proposed here
with the one given in [6]. The bounds given in this paper have been designed
such that they can be computed in a small amount of effort, even for large-scale
problems.

4 DC Algorithms for solving PDC and P ′
DC

In this section, we investigate how to solve the DC programming formulations
(PDC) and (P ′DC).

Given a general DC program:

min{g(x)− h(x) : x ∈ C},

where C is a non-empty convex set, the general DC algorithm (DCA) consists
of constructing two sequences {xk} and {yk} via the following scheme[12–14]:

xk → yk ∈ ∂h(xk)
↙

xk+1 ∈ ∂g∗(yk) = argmin{g(x)− 〈x, yk〉 : x ∈ C}.

The symbol ∂h stands for the sub-differential of the convex function h, and g∗ is
the conjugate function of g. These definitions are fundamental and can be found
in any textbook of the convex analysis (see for example [17]).

The sequence {xk} and {yk} are respectively candidates for optimal solutions
of the primal and dual DC programs.

In DCA, two major computations should be considered:

1. Computing ∂h(xk) to get yk.

2. Solving the convex program argmin{g(x)− 〈x, yk〉 : x ∈ C} to obtain xk+1.

Now, we investigate the use of DCA to solve the DC programs (PDC) and (P ′DC).
Concerning to (PDC), since the function h is differentiable, ∂h(x, y, z, w, λ) is
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reduced to a singleton {∇h(x, y, z, w, λ)}, where

∇h(x, y, z, w, λ) = ∇g(x, y, z, w, λ)−∇f(x, y, z, w, λ)

=


x+w
2 + (ρ1 + ρ2)x+ 2λy − 2λ2x− w

(ρ1 + ρ2 − 2λ2)y + 2λ(x+ z)
ρ1z + 2λy

w−x
2

(ρ1 + ρ2 − 2(‖x‖2 + ‖y‖2))λ+ 2yT (x+ z)

 . (9)

For (P ′DC), since the function h′ is non-differentiable, we compute the convex
set ∂h′(x, y, z, w, λ) as follows:

∂h′(x, y, z, w, λ) =




(ρ1 + ρ2)x+ 2λy − 2λ2x− u
(ρ1 + ρ2 − 2λ2)y + 2λ(x+ z)

ρ1z + 2λy
−v

(ρ1 + ρ2 − 2(‖x‖2 + ‖y‖2))λ+ 2yT (x+ z)


 (10)

where

u = (ui)i=1,...,n, ui =

1, xi < wi;
{0, 1}, xi = wi;
0, xi > wi.

v = (vi)i=1,...,n, vi =

0, xi < wi;
{0, 1}, xi = wi;
1, xi > wi.

Finally, DCA applied to (PDC) and (P ′DC) requires solving respectively one
convex quadratic program over a polyhedral convex set in each iteration.

The following two fixed-point schemes describe our dc algorithms:

(xk+1, yk+1, zk+1, wk+1, λk+1) = argmin{g(x, y, z, w, λ)
−〈(x, y, z, w, λ),∇h(xk, yk, zk, wk, λk)〉 : (x, y, z, w, λ) ∈ C} (11)

with g(x, y, z, w, λ) = ‖x+w‖2
4 + ρ1+ρ2

2 ‖x‖2 + (ρ1+ρ22 + 1)‖y‖2 + (ρ12 + 1)‖z‖2 +
ρ1+ρ2

2 λ2.

(xk+1, yk+1, zk+1, wk+1, λk+1) = argmin{g′(x, y, z, λ)
−〈(x, y, z, w, λ), Y k〉 : (x, y, z, w, λ) ∈ C} (12)

with Y k ∈ ∂h′(xk, yk, zk, wk, λk) and g′(x, y, z, λ) = ρ1+ρ2
2 ‖x‖2 + (ρ1+ρ22 +

1)‖y‖2 + (ρ12 + 1)‖z‖2 + ρ1+ρ2
2 λ2.

These convex quadratic programs can be efficiently solved via a quadratic
programming solver such as CPLEX, Gurobi, XPress, etc.

DCA should terminate if one of the following stopping criteria is satisfied for
given tolerances ε1, ε2 and ε3.
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(1) The sequence {(xk, yk, zk, wk, λk)} converges, i.e.,

‖(xk+1, yk+1, zk+1, wk+1, λk+1)− (xk, yk, zk, wk, λk)‖ ≤ ε1

(2) The sequence {f(xk, yk, zk, wk, λk)} (resp. {f ′(xk, yk, zk, wk, λk)}) converges,
i.e.,

‖f(xk+1, yk+1, zk+1, wk+1, λk+1)− f(xk, yk, zk, wk, λk)‖ ≤ ε2

(resp. ‖f ′(xk+1, yk+1, zk+1, wk+1, λk+1)− f ′(xk, yk, zk, wk, λk)‖ ≤ ε2).

(3) The sufficient global ε-optimality condition holds, i.e.,

f(xk, yk, zk, wk, λk) ≤ ε3 (resp. f ′(xk, yk, zk, wk, λk) ≤ ε3).

The following theorem indicates the convergence of DCA:

Theorem 1 (Convergence theorem of DCA). DCA applied to QEiCP gen-
erates convergence sequences {(xk, yk, zk, wk, λk)} and {f(xk, yk, zk, wk, λk)} (resp.
{f ′(xk, yk, zk, wk, λk)}) such that:

– The sequence {f(xk, yk, zk, wk, λk)} (resp. {f ′(xk, yk, zk, wk, λk)}) is decreas-
ing and bounded below.

– The sequence {(xk, yk, zk, wk, λk)} converges either to a solution of QEiCP
when the third stopping condition is satisfied or to a general KKT point of
(PDC) (resp. (P ′DC)).

Proof. The proof of the theorem is an obvious consequence of the general con-
vergence theorem of DCA [12–14]. The sufficient global optimality condition is
due to the fact that the optimal value of the dc program is equal to zero. ut

5 Conclusions

In this paper, we have presented two DC programming formulations of the
Quadratic Eigenvalue Complementarity Problem. The corresponding numerical
solution algorithms based on the classical DCA for solving these dc programs
were briefly discussed.

The numerical results and the analysis of the performance of DCA for solv-
ing QEiCP will be given in a future paper. We will discuss a new local dc de-
composition algorithm that is designed to speed up the convergence of DCA.
Furthermore, that paper will also be devoted to the solution of QEiCP when the
condition A ∈PD and C /∈ S0 holds. A new DC formulation of QEiCP based
on the reformulation of an equivalent extended EiCP will be introduced to deal
with this case and the corresponding DC Algorithm will be discussed.
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