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Abstract Interior–point algorithms are among the most efficient techniques
for solving complementarity problems. In this paper, a procedure for globaliz-
ing interior–point algorithms by using the maximum stepsize is introduced. The
algorithm combines exact or inexact interior–point and projected–gradient
search techniques and employs a line–search procedure for the natural merit
function associated with the complementarity problem. For linear problems,
the maximum stepsize is shown to be acceptable if the Newton interior–point
search direction is employed. Complementarity and optimization problems
are discussed, for which the algorithm is able to process by either finding a
solution or showing that no solution exists. A modification of the algorithm
for dealing with infeasible linear complementarity problems is introduced
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which, in practice, employs only interior–point search directions. Computa-
tional experiments on the solution of complementarity problems and convex
programming problems by the new algorithm are included.

Keywords Complementarity problems · Interior–point algorithms ·
Nonlinear programming

1 Introduction

A classical problem in Numerical Analysis consists of solving nonlinear sys-
tems of equations with unrestricted [9, 29, 30, 33] or nonnegative variables [4].
In this paper we address the case where complementarity conditions xiwi = 0
on nonnegative variables xi and wi are included in the definition of the system.
Therefore the problem consists of finding x ∈ �n, y ∈ �m, w ∈ �n such that

H(x, y, w) = 0, xiwi = 0, i = 1, . . . , n, (1)

and

x, w ≥ 0, (2)

where H : �n+m+n −→ �
n+m is continuously differentiable. Note that (1) is a

system of 2n + m equations and unknowns.
Linear (LCP), Nonlinear (NCP) Complementarity Problems, Variational

Inequalities and KKT conditions of constrained optimization problems may
all be formulated in the form (1) and (2). For those particular cases many
algorithms have been published [1, 2, 4, 6, 8, 10, 13, 15, 24, 27, 28, 34, 35, 37, 38].
Interior–point algorithms [10, 28, 35, 37, 38] exhibit very nice practical behav-
ior for constrained optimization, complementarity and variational inequality
problems. These algorithms compute, at each iteration, an exact or inexact
Newton’s direction for a system of nonlinear equations which contains a cen-
tral parameter. Line–search or trust–region techniques are used to guarantee
global convergence of the algorithm under suitable hypotheses. Interior–point
algorithms that are quite efficient for solving monotone LCPs in practice,
usually employ the maximum stepsize in each iteration [28, 37]. However, it
is not possible to establish global convergence for such procedures [28, pp.
407–408].

In this paper we consider the natural (sum of squares) merit function asso-
ciated with the nonlinear system (1) and (2), in order to design an algorithm
that combines interior–point and projected–gradient techniques. A line search
is included in the algorithm to guarantee global convergence to a stationary
point of the natural merit function on the convex set defined by the linear
constraints (2). For monotone CPs, such a stationary point is a solution of
the CP. Hence the algorithm can process monotone variational inequalities
and convex nonlinear programs when their feasible sets are nonempty and
bounded. In case of a monotone linear complementarity problem, it is shown
that the maximum stepsize can be used throughout the algorithm without
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destroying its global convergence property. It is also important to add that
in this case the algorithm either finds a solution or shows that the LCP is
infeasible. This has obvious consequences on the solution of the linear and
convex quadratic program for which the algorithm either finds an optimal
solution or shows that these problems are infeasible or unbounded.

The idea of the projected–gradient interior–point algorithm is to use the
exact (or inexact) Newton’s direction whenever it is possible and recom-
mendable, and only move to the projected–gradient otherwise. In practice,
for monotone LCPs, the algorithm never moves to the projected–gradient
direction unless the problem is infeasible or there is no strictly feasible
solution. If the LCP is infeasible or has no strictly feasible solution, the
projected–gradient algorithm is activated. Since the convergence rate of the
projected-gradient algorithm is much slower than the convergent rate of
the interior–point algorithm, we propose a two-phase procedure that, in
general, allows us to produce the correct diagnostic without using projected-
gradient directions. Computational experience shows that the two-phase algo-
rithm is able to find a solution of the LCP, or to show that the LCP is infeasible.
Therefore, the algorithm can find an optimal solution for linear and convex
programs or to show that they are primal or dual infeasible. Furthermore,
no projected–gradient iterations are used in practice, provided that feasible
LCPs have a strictly feasible solution (LP and QP have a strictly primal or dual
feasible solution).

The structure of this paper is as follows. In Section 2 the projected–gradient
interior–point algorithm is described and its convergence is analyzed in Section
3. Section 4 is devoted to the analysis of linear problems. Computational ex-
perience with the algorithm for solving LCPs, linear, quadratic and nonlinear
programs are reported in Section 5. Conclusions about the efficiency of the
proposed methodology are included in the last section.

Notation

The set of natural numbers is denoted by�. Furthermore

�
n
+ = {x ∈ �n : x ≥ 0}.

For v, w ∈ �n, we define:

[v, w] = {
x ∈ �n : x = tv + (1 − t)w for some t ∈ [0, 1]} .

The symbol ‖ · ‖ denotes the Euclidean norm, although many times it may be
replaced by an arbitrary norm.

If x, w ∈ �n, y ∈ �m, we denote (x, y, w) =
⎛

⎝
x
y
w

⎞

⎠, provided that this sim-

plification does not lead to confusion.
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2 Projected gradient inexact-Newton algorithm

Let

� =
⎧
⎨

⎩

⎛

⎝
x
y
w

⎞

⎠ ∈ �n+m+n : x, w ≥ 0

⎫
⎬

⎭

and z =
⎛

⎝
x
y
w

⎞

⎠, F(z) =

⎛

⎜⎜⎜
⎝

H(x, y, w)

x1w1
...

xnwn

⎞

⎟⎟⎟
⎠

f (z) = 1

2
‖F(z)‖2

2 (3)

For any z ∈ �2n+m and η > 0 we define the scaled projected gradient as:

g(z, η) = P�(z − η∇ f (z)) − z,

where P� denotes the Euclidean projection on �. If z∗ ∈ � and g(z∗, 1) = 0
then g(z∗, η) = 0 for all η > 0 and z∗ is said to be stationary.

For each z ∈ �, μi ≥ 0, i = 1, . . . , n and θ ∈ [0, 1[, we define the inexact
Newton direction d = d(x, y, w) = (dx, dy, dw) as a solution of

H′(x, y, w)d + H(x, y, w) = r (4)

and

xiwi + xi(dw)i + wi(dx)i = μi, i = 1, . . . , n, (5)

where r ∈ �n+m+n is such that

‖r‖ ≤ θ‖F(x, y, w)‖. (6)

The following lemma shows that, if
∑n

i=1 μ2
i is small enough, every solution

d of (4), (5) and (6) is a descent direction for f .

Lemma 1 Consider z = (x, y, w) ∈ � and μ ∈ �n+, such that

‖μ‖2 <
(
1 − θ2

) n∑

i=1

(xiwi)
2 . (7)

Assume that d ∈ �n satisf ies (4)–(6). Then d is a descent direction for f at z.
Moreover d is always a descent direction if μ = 0 and z is not a solution of (1)
and (2).

Proof Let

d =
⎡

⎣
x′ − x
y′ − y
w′ − w

⎤

⎦ .
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By (4) and (5), we have
∥∥∥∥∥∥

H(x, y, w) + H′(x, y, w)

⎡

⎣
x′ − x
y′ − y
w′ − w

⎤

⎦

∥∥∥∥∥∥
≤ θ

√√√√‖H(x, y, w)‖2 +
n∑

i=1

(xiwi)
2 (8)

and

xiwi + wi(x′
i − xi) + xi(w

′
i − wi) = μi, i = 1, . . . , n. (9)

Consider the convex quadratic function q : �n+m+n −→ � given by

q(x, y, w) =
∥∥∥∥∥∥

H(x, y, w) + H′(x, y, w)

⎡

⎣
x − x
y − y
w − w

⎤

⎦

∥∥∥∥∥∥

2

+
n∑

i=1

[xiwi + wi(xi − xi) + xi(wi − wi)]
2 .

By (8) and (9),

q(x′, y′, w′) ≤ θ2

[

‖H(x, y, w)‖2 +
n∑

i=1

(xiwi)
2

]

+
n∑

i=1

μ2
i .

On the other hand

q(x, y, w) = ‖H(x, y, w)‖2 +
n∑

i=1

(xiwi)
2.

Let

μ =
n∑

i=1

μ2
i .

Hence q(x, y, w) > q(x′, y′, w′) if μ > 0 satisfies (7) or if μ = 0 and (x, y, w) is
not a solution of (1). Thus, by the convexity of q,

∇q(x, y, w)
d < 0.

Since ∇ f (x, y, w) = 1
2∇q(x, y, w), the lemma is proved. ��

The following lemma provides a sufficient condition for generating a de-
scent direction.

Lemma 2 If (x, y, w) ∈ � is not a solution of (1), σi ∈]0,
√

1 − θ2[ and

μi = σi
x
w

n
(10)

for all i = 1, . . . , n, then any vector d satisfying (4), (5) and (6) is a descent
direction for f .
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Proof If x
w > 0 then μi defined by (10) satisfies (7). If x
w = 0 and (x, y, w)

is not a solution of (1) the result follows by Lemma 1. ��

The projected gradient Inexact Newton (PGIN) algorithm described below
generates points lying in � and uses nonmonotone line–searches of Li–
Fukushima type [25]. The line-search condition does not impose the objective
function to decrease at every iteration.

Algorithm PGIN

Step 0: Initial setup: Consider γ > 0 and γk > 0 for all k ∈ � and such that
∞∑

k=0

γk = γ < ∞.

Let θ ∈ [0, 1[, τ ∈]0, 1], σ ∈]0,
√

1 − θ2[, 0 < η1 < η2, ρ > 0, β ∈]0, 1
2 [,

cbig > csmall > 0, csmall < 1. Let z0 = (x0, y0, w0) ∈ �. Assume that

zk = (
xk, yk, wk) ∈ �, ηk ∈ [η̄1, η̄2]

and θk ∈ [0, θ [. Then, the steps for obtaining

zk+1 = (
xk+1, yk+1, wk+1

) ∈ �

or declaring finite convergence are as follows:
Step 1: Declare f inite convergence if the scaled projected–gradient is zero: If

‖g(zk, ηk)‖ = 0, terminate the execution of the algorithm. Otherwise,
compute zk+1 = (xk+1, yk+1, wk+1) by the following steps 2–6:

Step 2: Inexact Newton direction: Compute

dk = (
dk

x, dk
y, dk

w

) ∈ �
n+m+n

satisfying
∥∥H′(xk, yk, wk)dk + H

(
xk, yk, wk)∥∥ ≤ θk

∥∥F
(
xk, yk, wk)∥∥ (11)

and

xk
i w

k
i + xk

i

(
dk

w

)
i + wk

i

(
dk

x

)
i = μk,i (12)

where

μk,i = σk,i

(
xk
)


wk

n
and

σk,i ∈ [0, σ ] (13)

for i = 1, . . . , n. If such a direction dk does not exist or if ‖dk‖ > cbig,
choose τk ∈]τ, 1] and go to Step 4.

Step 3: Compute the maximum steplength: Choose τk ∈ [τ, 1[. Compute

αbreak
k = max

{
α ≥ 0 : zk + αdk ∈ �

}
(14)
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and

αmax
k = min

{
1, τkα

break
k

}
. (15)

If αmax
k ≤ csmall min

{
1, ‖dk‖}, go to Step 4. Otherwise, go to Step 5.

Step 4: Projected gradient direction: Compute (or re-define) dk = g(zk, ηk)

and set αmax
k = τk.

Step 5: Line–search: Set α = αmax
k .

Step 5.1: If
∥∥F

(
zk + αdk)∥∥ ≤ ∥∥F

(
zk)∥∥ − ρ

∥∥αdk
∥∥2 + γk (16)

set αk = α and go to Step 6.
Step 5.2: Choose αnew ∈ [βα, (1 − β)α], set α = αnew and go to Step

5.1. (Note that the loop 5.1–5.2 necessarily finishes because
γk > 0.)

Step 6: Compute the new iterate: choose zk+1 ∈ � such that
∥∥F

(
zk+1

)∥∥ ≤ ∥∥F
(
zk + αkdk)∥∥. (17)

End.

Remarks

1. The choice of αnew in the interval [βα, (1 − β)α] allows us to use safe-
guarded parabolic interpolation for decreasing α, when the sufficient
descent condition (16) does not hold. This is generally more efficient than
decreasing α by a constant factor.

2. A sufficient (but not necessary) condition for the existence of dk satisfying
(11)–(13) is the nonsingularity of the matrix associated with the linear
system (11) and (12). The boundedness of ‖dk‖ is guaranteed if the inverse
of this matrix is bounded. However, the uniform boundedness of the
matrix inverses is not a necessary condition for the boundedness of ‖dk‖.
As an example, take the trivial monotone linear complementarity problem
defined by:

x − w = 0, x ≥ 0, w ≥ 0, xw = 0.

Starting from x0 = w0 = 1, the algorithm converges with a linear rate to
the degenerate solution (0, 0), the matrix inverse norm tends to infinity
but dk remains bounded and the Newton direction is always accepted. The
sequence of matrices tend to the null matrix but remain well-conditioned
throughout the process.

3. Due to (15), if τ, τk < 1 the iterates zk+1 always remain in interior of �

(xk+1 > 0, wk+1 > 0). Forcing the iterates to satisfy this property could be
important because Newton directions do not change the zero value of
a variable, that is, xk+1

i = 0 (wk+1
i = 0) provided xk

i = 0 (wk
i = 0). Since

gradient projection iteration may be followed by Newton iterations, we



Numer Algor

also maintain this requirement when gradient projections are used. It is
important to stress that interiority will not play any role in the convergence
theory. It is interesting to observe that, for monotone nonlinear comple-
mentarity problems (NCP) the Jacobian matrix is always nonsingular if
the iterate is interior [10].

4. We require that the point zk + αkdk must be obtained by the backtracking
search (16). However, the next iterate zk+1 is not required to be zk + αkdk.
Of course, if zk+1 is chosen as:

zk+1 = zk + αkdk

then, zk+1 satisfies (17) but, many times, better choices are possible. For
example, if affordable, we can define:

zk+1 = zk + α∗
kdk,

where α∗
k is a solution of the one–dimensional optimization problem

min
∥∥F

(
zk + αdk

)∥∥
subject to 0 ≤ α ≤ αmax

k .

5. Recent research in spectral projection algorithms for minimization on
convex sets [4–6, 22] recommends the so-called spectral choice for ηk:

k = 0 =⇒ ηk = 1

∀k > 0 : ηk =
{

P[ηmin,ηmax]
(

ξk
νk

)
if νk > 0

ηmax otherwise

(18)

where P[l,u](α) represents the projection of α ∈ � on the interval [l, u],
ξk = (

zk − zk−1
)
 (

zk − zk−1
)
, νk = (

zk − zk−1
)
 (∇ f (zk) − ∇ f (zk−1)

)
and

ηmin, ηmax are small and large positive numbers respectively. In practice,
ηmin = 10−2 is appropriate in general. Furthermore, ηmax = 102 usually
works well but in many uses larger values for ηmax provide better results
[22].

6. The direction dk may be computed using direct or iterative algorithms.
Details on this computation will be given in Section 5.

3 Global convergence

Lemma 3 For any sequence generated by Algorithm PGIN,

lim
k→∞

‖αkdk‖ = 0.

Proof Since γk −→ 0, the negation of the thesis leads to ‖F(zk)‖ < 0 for
some k. ��
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Theorem 1 Let
{
zk
}

be a sequence generated by Algorithm PGIN and let z∗ be
a cluster point such that

lim
k∈K1

zk = z∗,

where K1 ⊂ � is an inf inite subsequence of indices. Then:

1. z∗ is a stationary point of

min f (z)

subject to z ∈ �.

2. If K1 contains inf inite many indices k such that dk is computed as an inexact
Newton direction, then F(z∗) = 0.

Proof We first prove 2. Let K2 be an infinite subset of K1 such that dk is
computed as an inexact Newton direction for every k ∈ K2. We first consider
the case in which

lim
k∈K2

dk = 0. (19)

By (11) and (12) we have
∥∥H′(xk, yk, wk)dk + H

(
xk, yk, wk)∥∥ ≤ θk

∥∥F
(
xk, yk, wk)∥∥ (20)

and

xk
i w

k
i + xk

i

(
dk

w

)
i + wk

i

(
dk

x

)
i = σk,i

(
xk
)


wk

n
.

Therefore

(
xk)
 wk +

n∑

i=1

xk
i

(
dk

w

)
i +

n∑

i=1

wk
i

(
dk

x

)
i ≤ σ

(
xk)
 wk. (21)

Taking limits in (21) we obtain
(
xk
)


wk −→ 0 and, by (20),
∥∥H

(
xk, yk, wk)∥∥ −→ 0.

Since (x∗, y∗, w∗) ∈ �, it follows that z∗ is a solution of (1).
Now, suppose that (19) does not hold. Then, there exists ε > 0 and K3, an

infinite subset of K2, such that
∥∥dk

∥∥ ≥ ε, for all k ∈ K3. (22)

By Lemma 3 we have αkdk −→ 0. Therefore

lim
k∈K3

αk = 0. (23)

Since dk is computed by the inexact Newton method, ‖dk‖ ≤ cbig for all k ∈ K2.
Therefore, by (22), we can extract an infinite subset K4 of K3 such that

lim
k∈K4

dk = d �= 0.
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Since dk is computed as an inexact Newton direction, then

αmax
k ≥ csmall min

{
1, ‖dk‖} ≥ csmall min {1, ε} .

Therefore αmax
k is bounded away from zero for k ∈ K4. On the other hand, by

(23), the accepted stepsize αk tends to zero. Hence, by Step 5 of the algorithm,
for all k ∈ K4 large enough there exists α′

k such that

lim
k∈K4

α′
k = 0

and
∥∥F

(
zk + α′

kdk)∥∥ − ∥∥F
(
zk)∥∥ > −ρ

∥∥α′
kdk

∥∥2
. (24)

Multiplying both sides of (24) by ‖F(zk + α′
kdk)‖ + ‖F(zk)‖ we obtain

∥∥F
(
zk + α′

kdk)∥∥2 − ∥∥F
(
zk)∥∥2

> −ρ
∥∥α′

kdk
∥∥2 (∥∥F

(
zk + α′

kdk)∥∥ + ∥∥F
(
zk)∥∥) .

(25)
Hence dividing by α′

k,

f
(
zk + α′

kdk
) − f

(
zk
)

α′
k

> −ρα′
k

∥∥dk
∥∥2 (∥∥F

(
zk + α′

kdk)∥∥ + ∥∥F
(
zk)∥∥) (26)

Taking limits and using the Mean Value Theorem, we obtain:

∇ f (x∗, y∗, w∗)
d ≥ 0, (27)

so d is not a descent direction. But, by continuity,
∥∥H′(x∗, y∗, w∗)d + H(x∗, y∗, w∗)

∥∥ ≤ θ
∥∥F(x∗, y∗, w∗)

∥∥ (28)

and there exist μi, i = 1, . . . , n, such that

x∗
i w

∗
i + x∗

i

(
dw

)
i + w∗

i

(
dx
)

i = μi. (29)

On the other hand, for k = 0, 1, 2, . . .,

xk
i w

k
i + xk

i

(
dk

w

)
i + wk

i

(
dk

x

)
i = σk,i

(
xk
)


wk

n
. (30)

Therefore, taking limits appropriately,

μi = σ i
(x∗)
 w∗

n
(31)

for some σ i ∈ [0, σ ], i = 1, . . . , n. Therefore, d satisfies (28), (29), (31) and is
not a descent direction. Then, by Lemma 2, (x∗, y∗, w∗) is a solution of (1).

We now prove 1. We only need to consider the case in which there exists
k0 such that dk is the projected–gradient direction for all k ∈ K1, k ≥ k0. We
first suppose that, for some subsequence K5 ⊂ K1, limk∈K5 dk = 0. Considering
a convenient subsequence of {ηk} converging to η ∈ [η1, η2], we obtain that

∥∥P(z∗ − η∇ f (z∗)) − z∗∥∥ = 0,

so z∗ is a stationary point of f over �.
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Now suppose that ‖dk‖ is bounded away from 0 for k ∈ K1. We take a con-
vergent subsequence of {ηk} so that dk converges to d̄ = P(z∗ − η∇ f (x∗)) − x∗
along that subsequence.

By Lemma 3 we have that limk∈K1 αk = 0. But αmax
k = τk is bounded away

from zero, therefore, by Steps 5.1 and 5.2, there exists α′
k such that

lim
k∈K1

α′
k = 0

and (24) holds for k large enough. Therefore, as in (24)–(27), we obtain:

∇ f (x∗, y∗, w∗)
d̄ ≥ 0.

Since d̄ = g(z∗, η) this implies that z∗ is stationary. ��

Consider the Variational Inequality Problem over a convex set

Find x ∈ K such that
G(x)
(x − x) ≥ 0, ∀x ∈ K,

(32)

where G : �n −→ �
n is a continuously differentiable mapping, gi : �n −→

�
1, i = 1, . . . , l are convex twice smooth functions on�n and

K = {
x ∈ �n : Ax = b , x ≥ 0, gi(x) ≤ 0, i = 1, . . . , l

}
.

If K satisfies a constraint qualification, this problem is equivalent to the
following CP problem:

G(x) = A
y − ∇g(x)μ + w

Ax = b
g(x) + α = 0
x ≥ 0, μ ≥ 0, w ≥ 0, α ≥ 0
x
w = 0
μ
α = 0,

where g(x) = (g1(x), . . . , gp(x)), ∇g(x) = (∇g1(x), . . . , ∇gp(x)) ∈ �n×l , x ∈
�

n, y ∈ �m, μ ∈ �l, w ∈ �n and α ∈ �l is a vector of slack variables for the
constraints g(x) ≤ 0. The natural merit function for this CP takes the form:

�(x, w, y, β, α) = ∥∥G(x) + ∇g(x)μ − A
y − w
∥∥2 + ‖Ax − b‖2 + ‖g(x) + α‖2

+
n∑

i=1

(xiwi)
2 +

l∑

i=1

(αiμi)
2.

Observe that, replacing x by (x, μ) and w by (w, α), the merit function �

coincides with the merit function f defined in (3).
Moreover, we may write:

� = {
(x, y, w, μ, α) ∈ �2n+m+2l : x ≥ 0, w ≥ 0, μ ≥ 0, α ≥ 0

}
.

The following result has been established in [3].
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Theorem 2 If G is monotone on the nullspace of A, K �= ∅ and K1 =
{x ∈ �n : Ax = b , x ≥ 0} is bounded, then every stationary point of � over �

is a solution of (32).

Hence the algorithm is able to find a solution of a VI under the condition
stated in the theorem. A KKT point of a Nonlinear Program (NLP) with
a continuously differentiable function h : �n −→ �

1 can be stated as a VI,
where G = ∇h(x). Therefore the algorithm can also find KKT points of convex
nonlinear programs.

4 The linear case

In this section we address the linear case of CP in which H is an affine mapping
of the form

H(x, y, w) = A1x + A2 y + A3w − q.

The first issue to investigate is whether the maximum stepsize αmax can be
accepted during the whole procedure without the need of the line–search in
Step 5. In this case, Steps 6 and 7 could be replaced by:

zk+1 = zk + αk
maxdk.

To do this, it would be desirable that
∥∥F

(
zk + αk

maxdk)∥∥ ≤ ∥∥F
(
zk)∥∥ (33)

at each iteration of the algorithm. The following example shows that such a
result does not hold in general.

Consider the strictly monotone linear complementarity problem defined by
n = 2, m = 0 and

H(x, w) =
[

2x1 − w1
4
3 x2 − w2

]
.

If x0 = (1, 3) and w0 = (2, 4), then
(
x0
)


w0 = 14 and

(
x0

1w1
)2 + (

x0
2w2

)2 = 148.

Since H(x0, w0) = 0, then

‖F(x0, w0)‖2 = 148.

We take θ = 0 in (11) and we use the common choice for μ in interior–point
algorithms

μ0,i = μ = σ

(
x0
)


w0

2
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with σ ∈]0, 1[. Solving (11) and (12) we get

d0
x =

[
μ+2

4 − 1
μ+12

8 − 3

]

d0
w =

[
μ+2

2 − 2
μ+12

6 − 4

]

Therefore, αmax
k = 1,

∥∥H
(
x0 + d0

x, w
0 + d0

w

)∥∥ = 0

and
∥∥F

(
x0 + d0

x, w
0 + d0

w

)∥∥2 = (μ + 2)4

64
+ (μ + 12)4

2304
.

This implies that, for σ ∈]0.98, 1[,
∥∥F

(
x0 + d0

x, w
0 + d0

w

)∥∥2 ≥ 151 > 148 = ∥∥F
(
x0, w0

∥∥2
.

Hence (33) does not hold in this example.
The reason why the previous counterexample does not verify the descent

property (33) is that μ is not small enough. In the following theorem we prove
that, if H is an affine function and σk,i is small enough so that

μk,i < xk
i w

k
i (34)

for all i = 1, . . . , n, then, not only (33) holds, but also the minimizer of ‖F(zk +
αdk)‖ for α ∈ [0, αmax

k ] occurs at α = αmax
k .

It is interesting to observe that this property does not depend on the
monotonicity of the problem. The theorem says that, if the direction dk is
defined satisfying the requirements of Step 2 of the algorithm with θk = 0
and (34), then the maximum allowed steplength minimizes the objective
function and, so, the point defined by this steplength is admissible as zk+1.
The convergence theory requires ‖dk‖ ≤ cbig, but this assumption is not used
in proof of the following theorem.

Theorem 3 Let

H(x, y, w) = A1x + A2 y + A3w − q (35)

and suppose that, for θ = 0 and μk,i satisfying (34), the iteration (11)–(13) is well
def ined. If

ϕ(α) = ∥∥F
(
zk + αdk)∥∥2

,

then ϕ(α) is strictly decreasing for α ∈ [0, αmax
k ].

Proof We write the function ϕ(α) in the form

ϕ(α) = ϕ0(α)2 +
n∑

i=1

ϕi(α)2,
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where

ϕ0(α) = ∥∥H
(
xk + αdk

x, yk + αdk
y, w

k + αdk
w

)∥∥

and

ϕi(α) = (
xk + αdk

x

)
i

(
wk + αdk

w

)
i (36)

for i = 1, . . . , n. By (35) and (11) with θ = 0, we have that ϕ0(1) = 0. Since
ϕ0(α) is a nonnegative convex quadratic function in one variable, then it
decreases monotonically between 0 and 1. Since αmax

k ≤ 1, we have that ϕ0(α)

decreases monotonically between 0 and αmax
k .

Now we prove that each function ϕi(α)2, i = 1, . . . , n, decreases monotoni-
cally between 0 and αmax

k . By (36),

ϕi(α) = xk
i w

k
i + α

[
xk

i

(
dk

w

)
i + wk

i

(
dk

x

)
i

] + α2 (dk
w

)
i

(
dk

x

)
i .

This function is quadratic in the variable α and its first and second deriva-
tives are given by

ϕ′
i(α) = [

xk
i

(
dk

w

)
i + wk

i

(
dk

x

)
i

] + 2α
(
dk

w

)
i

(
dk

x

)
i (37)

and

ϕ′′
i (α) = 2

(
dk

w

)
i

(
dk

x

)
i (38)

respectively. Furthermore, by (12) and (34),
[
xk

i

(
dk

w

)
i + wk

i

(
dk

x

)
i

]
< 0. (39)

Since xk
i > 0 and wk

i > 0, we have

ϕ′
i(0) < 0 (40)

and
(
dk

w

)
i < 0 or

(
dk

x

)
i < 0. (41)

If
(
dk

w

)
i

(
dk

x

)
i = 0, since ϕ′

i(0) < 0 and ϕi(α
max
k ) > 0, then ϕi(α)2 decreases

monotonically from 0 to αmax
k . On the other hand, if (dk

w)i(dk
x)i �= 0, then

the stationary point of ϕi(α) corresponding to a maximizer or minimizer is
given by

α = − xk
i

(
dk

w

)
i + wk

i

(
dk

x

)
i

2
(
dk

w

)
i

(
dk

x

)
i

(42)

and two cases may be considered.

Case 1: If
(
dk

w

)
i

(
dk

x

)
i < 0, then α is a maximizer and α < 0. Since ϕi(α

max
k ) > 0,

then ϕi(α)2 decreases monotonically from 0 to αmax
k .

Case 2: If
(
dk

w

)
i < 0 and

(
dk

x

)
i < 0, (43)
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then, by the definition of αmax
k , we have

αmax
k < min

{

− xk
i(

dk
x

)
i

, − wk
i(

dk
w

)
i

}

. (44)

As α > 0 is a stationary point, then

α = 1

2

[

− xk
i(

dk
x

)
i

− wk
i(

dk
w

)
i

]

> αmax
k .

Since ϕi(α
max
k ) > 0 we can conclude that ϕi(α)2 decreases monotoni-

cally from 0 to αmax
k .

Then, the theorem is proved. ��

Consider again the set

K = {
x ∈ �n : Ax = b , x ≥ 0

}
(45)

with A ∈ �m×n full rank and m < n. Let the columns of Z ∈ �n×(n−m) be a
basis of the nullspace of A. Let us consider the Affine Variational Inequality
Problem

Compute x ∈ K
such that (Mx + q)
 (x − x) ≥ 0, ∀x ∈ K (46)

where M ∈ �n×n and q ∈ �n. As before, x is a solution of (46) if and only if
(x, y, w) is a solution of the problem:

w = q + Mx − A
y

0 = Ax − b

x
w = 0

x, w ≥ 0. (47)

The following result has been established in [3].

Theorem 4 Let (x, y, w) be a stationary point over � of the merit function

f (x, y, w) = ‖q + Mx − A
y − w‖2
2 + ‖Ax − b‖2

2 +
n∑

i=1

(xiwi)
2 (48)

If the columns of Z form a basis of the nullspace of A and Z 
MZ is a positive
semi–def inite matrix, then

(i) If f (x̄, ȳ, w̄) = 0, then (x̄, ȳ, w̄) is a solution of (47).
(ii) If f (x̄, ȳ, w̄) > 0, then the problem (47) is infeasible.

The same result holds if M is a P–matrix [8], that is, if all the principal minors
of M are positive. Therefore this theorem confirms a well known result [8]
that the LCP (47) with a P or PSD matrix has at least one solution provided is
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feasible. In particular an Affine Variational Inequality with a P–matrix has at
least a solution provided it is feasible. Furthermore, this solution is unique [8].

Let us now consider a Quadratic Program (QP):

Minimize q
x + 1
2 x
Mx = f (x)

subject to Ax = b
x ≥ 0.

(49)

The KKT conditions for this Program consist of a LCP of the form of (47).
By Theorem 4, if f is convex over the nullspace of A, then a stationary point
(x, y, w) of the merit function (48) over � solves the convex QP, in the sense
that:

1. If f (x, y, w) = 0, then x is a global minimum of the quadratic program;
2. If f (x, y, w) > 0, then the quadratic program is primal or dual infeasible.

The same conclusion applies for a Linear Program (LP)

Minimize c
x
subject to Ax = b

x ≥ 0.

(50)

Computational experience to be discussed in the next section shows that for
feasible monotone LCPs, convex quadratic programs and linear programs with
at least a strictly feasible solution, the algorithm never uses projected–gradient
directions during the whole iterations. However, the projected–gradient itera-
tions must be required for LCPs that are infeasible or feasible without a strictly
feasible solution. In particular, infeasible LPs and convex quadratic programs
also require the projected–gradient iterations. In this latter case, the algorithm
should terminate with a stationary point with a positive value for the natural
merit function.

Since the projected–gradient algorithm is in general quite slow, we recom-
mend the following two–phase procedure for dealing with monotone LCPs and
convex quadratic and linear programs:

Phase 1: Apply the algorithm PGIP. If a solution is found by solely using
interior–point directions, terminate.

Phase 2: If an interior–point search direction cannot be computed, switch to
the following feasibility problem

min ‖H(x, y, w)‖2
2 = f (x, y, w)

subject to x ≥ 0, w ≥ 0.

Solve this Quadratic Program by the PGIP algorithm with the cur-
rent point as initial one to find a stationary point (global minimum
over �) (x, y, w). Two terminations are then possible:

Termination 1: f (x, y, w) > 0 so the original LCP is infeasible (LP
or convex QP are either primal or dual infeasible).

Termination 2: f (x, y, w) = 0, so a feasible solution of the LCP
(a primal and dual feasible solution of the LP or
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the QP) has been found. If this solution is com-
plementary, then a solution of the LCP (optimal
solution of the LP or convex QP) is at hand. Oth-
erwise, projected–gradient iterations of the PGIP
algorithm have to be applied until the end.

Computational experience has shown that Phase 2 when applied to infeasi-
ble linear and convex quadratic programs generally terminates in Termination
1, showing primal or dual infeasibility of the convex QP or LP. Further-
more the process never uses projected–gradient iterations. Other efficient and
popular implementations of interior–point algorithms are not conclusive with
respect to infeasibility or unboundedness of convex QPs and LPs.

5 Computational experiments

In this section we report some computational experiments that have been
performed to highlight the strengths and weaknesses of PGIP algorithm.
For that purpose, we coded the algorithm in Fortran 77, using Intel Fortran
Compiler version 7.0 [21], with options -O3 -tpp7 -xM -ip, and ran all the
experiments on a Linux 2.4.25 system featuring an AMD Athlon processor
running at 1.6 Ghz with 256 M of RAM. For CPU time measuring the function
etime() was used. The stopping criterion is ‖g(zk, 1)‖ < 10−6. We consider
cbig = 104, csmall = 10−4, γk = 1

k2 , θ = 0.5, σki = σ = 1√
n , ρ = 10−1, β = 1

4 and

τk = τ = 0.9995. The initial iteration z0 as a vector of ones of appropriate
dimension, unless otherwise stated. All the implementations were done in
double precision.

We have organized our experience in four sections, namely:

Experience 1: Solution of feasible monotone LCPs, and convex QPs and
LPs with an optimal solution.

Experience 2: Solution of Nonmonotone LCPs.
Experience 3: Inexact versus Exact Newton’s iteration for a Structured

Convex Quadratic Optimization Problem.
Experience 4: Infeasible Linear Programs.

5.1 Experience 1—Solution of feasible monotone LCPs, convex QPs and LPs
with an optimal solution

We started by testing the performance of the PGIP algorithm on the solution
of the famous Murty’s LCP [27]:

w = q + Mx

x, w ≥ 0

x
w = 0
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where

M =

⎡

⎢⎢⎢
⎣

1
2 1
...

...
. . .

2 2 . . . 1

⎤

⎥⎥⎥
⎦

and

qi =
{−1 if i ∈ J

0 otherwise
, i = 1, . . . , n,

with J ⊂ {1, . . . , n}. So A1 = −M, A2 = 0 and A3 = In in the definition (35)
of H(x, y, w), where In is the identity matrix of order n. Due to the specific
structure of the matrix M, it was possible to create an implementation of
the algorithm that takes this into account and is able to solve quite large
LCPs in a small amount of time. Furthermore, since M is a lower triangular
matrix, an exact Newton direction (θ = 0) can be computed in a very efficient
manner.

Tables 1 and 2 display the results with problems of orders from 2,500 to
15,000 and degenerate components of the solution ranging from 0 to 75%
of the variables. In this table, IT stands for the number of PGIP iterations
performed, and CPU corresponds to the CPU time required for the execution.
The PGIP algorithm showed a quite robust performance. In each iteration k,
the exact Newton direction dk has always been used, that is, no projected–
gradient direction was required. Furthermore, αk = αmax

k was always chosen,
as the problem is linear. Finally the values FMERIT of the merit function at
the solutions of the LCP computed by the algorithm are always quite small,
which indicates that these solutions are accurate in terms of feasibility and
complementarity gap.

Table 1 Performance of
algorithm PGIP solving
Murty LCPs

n PGIP
0% 25% 50% 75 %

2,500 IT 20 24 27 25
CPU 0.65 0.78 0.86 0.79
FMERIT 2 × 10−7 3 × 10−7 3 × 10−7 2 × 10−7

5,000 IT 20 30 31 28
CPU 2.36 3.32 3.56 3.23
FMERIT 4 × 10−7 2 × 10−7 3 × 10−7 3 × 10−7

7,500 IT 20 31 31 26
CPU 5.04 7.98 7.86 6.61
FMERIT 5 × 10−7 5 × 10−7 4 × 10−7 6 × 10−7

10,000 IT 20 26 31 32
CPU 8.14 10.62 12.71 13.01
FMERIT 6 × 10−7 4 × 10−7 6 × 10−7 5 × 10−7

12,500 IT 20 22 32 32
CPU 19.03 29.05 30.47 30.66
FMERIT 8 × 10−7 7 × 10−7 7 × 10−7 8 × 10−7
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In order to gain a better idea of the performance of the PGIP algorithm
we have also tried to solve all the Murty’s problems by the code PATHLCP
[14]. Two versions of this code have been tested, which differ on the use
of a Presolve procedure (PATHLCP1) or not (PATHLCP2). The numerical
performance of these codes is displayed in Table 2. Both versions have been
unable to solve the LCPs of orders 10,000 and 12,500 due to lack of memory
of our hardware resources, and the same happened with PATHLCP2 for
n = 7,500 (this is marked by “*” in Table 2). For the remaining problems
PATHLCP2 seems to be competitive with PGIP in terms of the number of
iterations but not in CPU time. The presolve technique of PATHLCP has been
able to solve the LCPs in all those instances but (this is denoted by “–” in Table
2) with a higher execution time than PGIP.

Since PATHLCP solved these LCPs in the presolve phase, we decided to
test the LCPs mentioned in [27, p. 380], where

M =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

6 −4 1
−4 6 −4 1
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . 1

1 −4 6 −4
1 −4 6

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

and q is given by qi = ai+1 − ai, i = 1, . . . , n, with a ∈ �n+1 a vector whose
components are random numbers in the interval [0, 30]. We also developed an
implementation of PGIP that took advantage of the structure of this problem
for the computation of the Newton direction. Table 3 displays the performance
of PGIP and PATHLCP (with presolve) algorithms for solving these LCPs for
different dimensions n. As before, PATHLCP was not capable of solving the
largest instances (this is marked by ∗ in Table 3). Furthermore, PGIP was much
more efficient than PATHLCP for all the problems.

We now discuss the performance of PGIP on linear programs and convex
quadratic programs with an optimal solution taken from the well–known
NETLIB collection [17]. In Table 4, we show the performance of the PGIP
algorithm for eight of these test problems. Again the algorithm performed

Table 3 Performance of
PATHLCP and PGIP for
pentadiagonal LCPs

n PATHLCP PGIP
IT CPU FMERIT IT CPU FMERIT

500 324 0.05 6 × 10−7 32 0.01 2 × 10−7

1,000 474 0.16 1 × 10−7 41 0.01 3 × 10−7

2,000 5,660 4.17 2 × 10−7 53 0.02 1 × 10−7

3,000 7,020 7.93 1 × 10−7 61 0.04 5 × 10−7

4,000 ∗ ∗ ∗ 67 0.05 7 × 10−7

5,000 ∗ ∗ ∗ 72 0.07 7 × 10−7
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Table 4 Performance of algorithm PGIP on some linear programs from the NETLIB collection

Name n m nza IT CPU FMERIT

AFIRO 51 27 102 13 0.05 2.0 × 10−8

BLEND 114 74 522 21 0.26 3.1 × 10−8

DIET 9 3 21 22 0.02 2.6 × 10−8

SHARE2B 162 96 777 24 0.44 1.6 × 10−8

PILOT 6,103 2,684 46,861 62 105.35 2.0 × 10−7

PILOT4 1,400 687 5,818 41 14.22 3.5 × 10−6

PILOTNOV 2,990 1,519 14,419 76 89.12 4.7 × 10−6

PILOT87 8,478 3,828 78,545 94 210.14 2.8 × 10−6

quite well and has always used the Newton iteration. Furthermore αk
max has

always been used, as the corresponding complementarity problem is linear.
The same performance has been shown on the solution of four convex

quadratic programs (CQP) with linear constraints taken from the CUTEr
collection [19]. As before the CP represents the KKT conditions associated
to these CQPs.

For all the tests the value FMERIT of the merit function at the solution is
quite small, which indicates that the algorithm has been able to find accurate
solutions in terms of primal and dual infeasibility and complementarity gap
(Table 5).

A third set of experiments has been done on the solution of a Convex
Quadratic Program with linear constraints and two convex quadratic con-
straints of the form

min c
x + 1
2 x
Mx

subject to Ax = b
h
x + 1

2 x
 Hx ≤ h0

g
x + 1
2 x
Gx ≤ g0

0 ≤ x ≤ u

where H, G and M are PSD matrices of order n, c, h, g ∈ �n, b ∈ �m, A ∈
�

m×n and h0, g0 ∈ �1. As discussed in [31], this problem has been taken from
a a thermal dispatch model with environmental and take–or–pay constraints.
The KKT conditions lead into a nonlinear CP. The results of the experience
of processing this algorithm for a smaller (PSMALL) and a larger (PLARGE)
instance of the model are included in Table 6, where algorithm PGIP is
compared with MINOS (an active-set solver) [26], that was run within GAMS [7]

Table 5 Performance of algorithm PGIP on some convex quadratic problems from the CUTEr
collection

Problem m n IT ITPRJ NFKS CPU FMERIT

QAFIRO 27 51 27 0 0 0.02 2 × 10−9

QPCBLEND 74 114 32 0 0 0.08 3 × 10−14

QRECIPE 91 204 67 0 0 0.12 9 × 10−15

QSHARE1B 117 253 24 0 0 0.18 6 × 10−7
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Table 6 Comparative
performance of PGIP, MINOS
and LOQO on problems
PSMALL and PLARGE

PSMALL PLARGE
n = 600, m = 60 n = 18,720, m = 1,872

IT CPU IT CPU

PGIP 36 0.08 94 148.34
MINOS 304 6.22 NS NS
LOQO 29 0.10 69 284.75

and LOQO [35, 36], a predictor–corrector interior–point solver coded in ANSI
C. The starting point for both IP and LOQO was set as xi = ui

2 , i = 1, . . . , n.
The results presented in Table 6 seem to indicate that LOQO performs

less iterations to attain the solution, although PGIP is less time–consuming.
These two algorithms are much more efficient than MINOS, that was not able
to solve Problem PLARGE within our hardware resources. This is marked
by NS in Table 6. As before, PGIP algorithm has always used the Newton
search direction in each iteration, that is, no projected–gradient iteration was
required. Since the CP is nonlinear, the line–search procedure had to be used
in each iteration. However, the results indicate that, as in the linear case, αk

max
has always been chosen as stepsize in each iteration of the procedure.

To terminate the first set of experiments, we have processed some linear
and convex quadratic programs that are feasible but have no strictly feasible
solutions. For this type of problems the algorithm required projected–gradient
iterations to terminate in a stationary point of the natural merit function over
� that gives an optimal solution for the linear or convex quadratic program.
However, preprocessing usually avoids this type of occurrence by eliminating
some constraints or variables of the program. So, as final conclusion of this set
of experiments, we claim that in practice the projected–gradient interior–point
algorithm always finds the optimal solution of linear and convex quadratic
programs and solutions of LCPs when they exist, by simply using the interior–
point direction and the maximum stepsize in each iteration.

5.2 Experience 2—solution of nonmonotone LCPs

As is discussed in [11, 24], the Knapsack Problem consists of finding a vector
z ∈ �n such that

a
z = b , zi ∈ {0, 1}, i = 1, . . . , n,

where a ∈ �n and b > 0 are given. This problem is equivalent to a LCP [24]

w = q + Mx
x ≥ 0, w ≥ 0

x
w = 0
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where

q =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

p
p
...

p
−b

b

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

, M =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

B 0 . . . 0 0 0
0 B . . . 0 0 0
...

...
. . .

...
...

...

0 0 . . . B 0 0
aT

−aT

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

and

p =

⎡

⎢⎢
⎣

0
0

−1
1

⎤

⎥⎥
⎦ , B =

⎡

⎢⎢
⎣

0 0 0 0
1 0 0 0
1 1 0 0

−1 0 0 0

⎤

⎥⎥
⎦ , a = (a1, . . . , a4n+2)


 ∈ �4n+2

with

ai =
{

ai if i = 4 j − 3, j = 1, . . . , n
0 otherwise

It is possible to prove that M is P0 matrix, that is, all principal minors
of M are nonnegative. However, this matrix is not PSD and the LCP is
nonmonotone. We solved these LCPs with orders of n = 2 (KNAP2) and
n = 10 (KNAP10). The computational experience indicates that the algorithm
converged to a stationary point of the merit function over � that is not
a complementarity solution. Furthermore projected–gradient iterations were
used from the beginning until the end.

A second experience with a nonmonotone LCP has been done with a
nonconvex quadratic program (NCQP) [16] of the form (49), where

M =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 −1 −1 0 −1 0 0 0 −1 −1
−1 0 −1 −1 0 0 0 0 0 0
−1 −1 0 −1 −1 0 0 0 0 0

0 −1 −1 0 −1 −1 −1 0 0 0
−1 0 −1 −1 0 −1 −1 0 0 0

0 0 0 −1 −1 0 −1 −1 0 0
0 0 0 −1 −1 −1 0 −1 −1 0
0 0 0 0 0 −1 −1 0 −1 −1

−1 0 0 0 0 0 −1 −1 0 −1
−1 0 0 0 0 0 0 −1 −1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

A = [
1 1 1 1 1 1 1 1 1 1

]

b = 1, q = [
0 0 0 0 0 0 0 0 0 0

]

.

It is easy to see that Z 
MZ is not a PSD matrix for any basis Z of the
nullspace of A. For this problem, the projected–gradient direction was used
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in all 52 iterations of the PGIP algorithm, leading to a stationary point of
the merit function with a value of 2.5 × 10−1. This means that the algorithm
was not able to find a solution of the LCP associated with the Karush–Kuhn–
Tucker conditions of the quadratic program. Furthermore, ηmax = 108 was
the value that produced the best performance. These two examples clearly
demonstrate that the PGIP algorithm should not be recommended to process
nonmonotone complementarity problems and nonconvex programs. On the
other hand, PATHLCP has been able to solve all these LCPs in a small number
of iterations and execution time (see Table 7).

5.3 Experience 3—exact versus Inexact Newton Iteration

Next we show the results of the application of PGIP on the solution of a large–
scale Structured Convex Quadratic Programming (CQP) that arises on the so–
called Linear Plate Obstacle Problem [20, 23], describing the equilibrium of a
thin elastic clamped plate, that may come into contact with a rigid obstacle, by
the action of a vertical force. This problem can be formulated [12] as a strictly
convex Quadratic Program of the form

Minimize 1
2 x


J CJ JzJ − x

J FJ

subject to xJ1 ≥ �

with J, L ⊆ {1, . . . , 4n} such that {1, . . . , 4n} = J ∪ L and J ∩ L = ∅, and J1 ⊂
J. Furthermore C ∈ �4n×4n and F ∈ �4n are obtained assembling a given finite
element matrix Ce ∈ �16×16 and a given element force vector Fe ∈ �16 [12].
As before, the PGIP algorithm solves a CP given by the KKT conditions
associated with this CQP.

Since CJ J is a symmetric positive definite matrix, an inexact Newton direc-
tion for the PGIP algorithm may be computed by using the Preconditioned
Conjugate Gradient algorithm [18]. As discussed in [32], the stopping crite-
rion for the Preconditioned Conjugate Gradient (PCG) algorithm plays an
important role on the overall performance of the Interior Point algorithm. In
our experiments the PCG is stopped whenever the residual ‖rp‖ satisfies the
following inequality

‖rp‖ ≤ β
(‖CJ J xJ − wJ − FJ‖∞ + max

i∈J1

{(xi − �i)wi}
)

with β = 10−2.
The implementation of the linear system solver takes advantage of the

structure of this problem. For a given iterate x = (xJ1 , xJ f ) and w = (wJ1, wJ f )

let x ◦ w = (xJ1 ◦ wJ1 , xJ f ◦ wJ f ) = (xiwi)i∈J1∪J f . Then it is possible to prove

Table 7 Performance of
PATHLCP (with presolve)
on nonmonotone LCPs

Test problems
KNAP2 KNAP10 NCQP

IT 18 32 20
CPU 0.35 0.81 0.40
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that the search direction in this iteration can be found by solving a linear system
of the form

[
XJ1 CJ1 J1 XJ1 + VJ1 XJ1 CJ1 J f XJ f

XJ f CJ f J1 XJ1 XJ f CJ f J f XJ f + VJ f

] [
�xJ1

�xJ f

]
=
[

pJ1

pJ f

]

where XJ1 , XJ f , VJ1 and VJ f are diagonal matrices whose elements are the
components of the vectors xJ1 , xJ f , xJ1 ◦ wJ1 and xJ f ◦ wJ f respectively, CJ1 J1

and CJ f J f are band matrices and p is an appropriate vector. We consider two
different preconditioning strategies for this linear system:

DIAG: Diagonal preconditioner;
BAND: The preconditioner is the band matrix

[
XJ1 CJ1 J1 XJ1 + VJ1 0

0 XJ f CJ f J f XJ f + VJ f

]

We now discuss some issues related to the implementation of the Interior
Point algorithm for this specific problem. The central path parameter μkl at
the k-th iteration of the Interior Point algorithm is given by

μkl = σkl

∑

i∈J1

(
x(k)

i − �
(k)

i

)
w

(k)

i

|J1|
with 0 < σkl < 1 given, and l ∈ {1, 2, . . . , 4n}.

The stopping criterion that is implemented in the Interior Point algorithm is

μkl
(
(nx − 2) × (

ny − 2
)) ≤ ε1 and ‖CJ J xJ − wJ − FJ‖∞ ≤ ε2,

where nx × ny is the number of nodes of the grid associated with the finite
element discretization of the problem. In the forthcoming experiences we

Table 8 Performance of the interior point algorithm on the solution of the linear plate obstacle
problem

Grid N IT CPU ITAVG

DIAG 25 × 25 2,404 13 0.71 1.35 × 10−2

50 × 50 9,804 13 11.71 1.127 × 10−2

75 × 75 22,204 7 23.11 7.141 × 10−3

100 × 100 39,604 6 46.98 5.209 × 10−3

125 × 125 62,004 6 98.94 4.155 × 10−3

150 × 150 89,404 6 193.26 2.27 × 10−3

175 × 175 121,804 5 288.93 3.011 × 10−3

BAND 25 × 25 2,404 12 0.88 1.454 × 10−2

50 × 50 9,804 15 9.99 4.391 × 10−3

75 × 75 22,204 11 47.76 5.953 × 10−3

100 × 100 39,604 8 65.98 5.49 × 10−3

125 × 125 62,004 6 125.87 2.909 × 10−3

150 × 150 89,404 6 162.07 2.27 × 10−3

175 × 175 121,804 5 234.70 2.148 × 10−3



Numer Algor

Table 9 Performance of algorithm PGIP on primal or dual infeasible linear problems

Name n m IT CPU FMERIT

ITEST2 13 9 59 0.03 202.98
ITEST6 17 11 11 0.14 1.90
BGPRTR 40 20 401 1.42 36,246
KLEIN1 108 54 325 2.61 406.21
VOL1 459 177 371 9.12 8,125.5

consider ε1 = ε2 = 10−6. These experiences are reported in Table 8, for which
ITAVG is given by

ITAVG = ITPCGA
|J| × IT

and ITPCGA corresponds to the total number of iterations of the Precondi-
tioned Conjugate algorithm performed during the application of the Interior
Point algorithm. This table seems to indicate that the Interior Point algorithm
is quite adequate for this type of problems, as this number ITAVG is always
quite small. Furthermore the band preconditioner seems to be superior to the
diagonal one. Finally, this inexact version is much more efficient than the exact
one used in [12]. So this computational study shows that for quite large–scale
and structured linear complementarity problems, linear and convex quadratic
programs that appear quite often in applications, the use of inexact Newton
direction may be quite worthwhile.

5.4 Experience 4—infeasible linear programs

We now report a set of experiments with a set of infeasible and unbounded
linear programs taken from the NETLIB collection, which are presented in
Table 9.

For these problems, the projected–gradient direction was always used by
the PGIP algorithm. As before, ηmax = 108 was the value that produced the
best performance. The algorithm was able to converge slowly to a stationary
point of the merit function over �, with an optimal positive value, given in the
column FMERIT. We also solved these problems by the Two Phase procedure
described in the previous section. The results of the performance of this last
technique are displayed in Table 10, where ITPG and ITQP represent the
number of exact Newton iterations used by the PGIP algorithm in each of

Table 10 Performance of the merit function check on primal or dual infeasible linear programs

Problem ITPG ITQP CPU FQP

ITEST2 0 7 0.05 202.98
ITEST6 0 6 0.02 1.90
BGPRTR 0 4 0.27 36,246
KLEIN1 0 8 0.32 406.21
VOL1 0 13 3.98 8,125.5
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the two phases respectively. We notice that the algorithm was able to establish
infeasibility in a small number of interior-point iterations. We also add as the
last column FQP the positive optimal value of the Phase 2 convex quadratic
program. As expected, the values of columns FMERIT of Table 9 and FQP of
Table 10 are similar.

6 Conclusions

In this paper we considered the Complementarity Problem (CP) in the form (1)
and (2), as a general square nonlinear system that includes complementarity
constraints. This form is more general than the ones that represent optimality
conditions and variational inequality problems. We used the natural squared
norm as merit function, to introduce a projected gradient interior point (PGIP)
algorithm for solving CP, and proved that cluster points of PGIP are stationary
and are solutions provided that for infinitely many indices the inexact Newton
direction is used. Under additional assumptions we proved convergence of the
whole sequence. When H is an affine function, we showed that the Newton
direction has the property that the merit function is monotonically decreas-
ing along the steplength. Therefore, the maximum steplength is admissible.
Under a weak monotonicity assumption, if the merit function is positive at a
stationary point of the associated optimization problem, then the problem is
infeasible. We suggested an alternative two-phase algorithm for dealing with
the “possibly infeasible” linear case.

Numerical results on different instances in this paper indicate that if
a monotone LCP has a strictly feasible solution or is infeasible, then no
projected-gradient iteration is required during the whole procedure. The
same conclusion applies for linear and convex quadratic programs. It will be
interesting to study whether this type of behavior is supported by theoretical
arguments. The results also show that the algorithm is in general unable
to process nonmonotone complementarity problems. The solution of these
complementarity problems and general linear complementarity problems [11]
by this type of approach should also be interesting topics for future research.
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