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Abstract

This paper discusses an engineering optimization problem which arises in hydraulics

and is related to the use of a new criterion for sizing water distribution piping in large

buildings. The optimization model aims to find the most suitable interior pipe diameters

for the various pipes in the system, using commercial sizes and minimizing the overall

installation cost according to some boundary conditions. The problem is formulated as

a nonconvex nonlinear program and a branch-and-bound algorithm is introduced for its

solution. A procedure is proposed to obtain a feasible solution with standard values from

the optimal solution of the nonconvex program. The performance of the algorithm is

analysed for a real-life problem and the cost of the computed solution is assessed, showing

the appropriateness of the model and the optimization techniques.
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1 Introduction

If its design flows and geometry are known, the sizing of a water pipe system in a building

can be found by calculating the most suitable diameters for the various pipes in order to

satisfy the boundary conditions and some constraints related to velocities and pressures. The

sizing of a water piping system is usually based on one of the following simplified criteria

(Silva-Afonso, 2001; Brater, 1976):

i. the maximum permitted velocity criterion,

ii. the maximum total permitted head loss criterion.
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The first criterion leads to a cheaper solution and it is the best option, if practicable. If the

design flows in each pipe are known, the diameters are computed in order to minimize pipe

size and satisfy some limits for velocity. But this criterion usually means considerable head

losses in the water distribution system, and therefore requires sufficient head to guarantee the

minimum residual pressures in the various fittings and fixtures.

The second criterion should be used when residual pressures are low, or when the total

head losses in some circuits within the water distribution system are too high (critical circuits).

The application of this second sizing criterion is only justified in critical circuits where

residual pressures or pressure fluctuations are in question. It is therefore important, for

reasons of cost, to employ the first criterion in the other circuits.

This paper proposes a new criterion for the sizing of water distribution piping in buildings;

it is called the economic design criterion (Silva-Afonso, 2001). Although similar in some

respects to the second criterion, it is justified by the fact that the computation based on a

medium value of the unit friction loss does not guarantee a solution that is optimal for the

overall water distribution system cost.

This new cost design criterion aims to compute the interior piping diameters to be used

in the various pipes of the circuit. These must belong to a finite collection of standard

values corresponding to a range of commercially available diameters, so that the imposed

boundary conditions are satisfied, together with some constraints related to velocities and

head losses within the pipes, and the global installation cost is minimized. Therefore, the

decision variables of the corresponding optimization problem must be the interior piping

diameters of the various pipes in the circuit. Other parameters, such as the geometric features

of the circuit, minimum residual pressures in the fixtures and pipe material are normally

considered to be problem data.

The total head loss should neither exceed the amount of the available head, nor the value

of the maximum established pressure fluctuations.

In this paper an optimization model representing this new criterion is described. The

formulation of this model involves a global optimization problem consisting of minimizing a

nonlinear nonconvex function on a convex set defined by inequality constraints. A branch-

and-bound algorithm is proposed for finding an optimal solution to this nonconvex program.

The algorithm is based on underestimating functions to provide lower and upper bounds that

reduce the overall search in the tree. In the optimization problem to be solved, the diameter

variables should belong to a discrete set of standard values. A crash procedure is described

to obtain a good feasible solution for this optimization problem from the global minimum

of the associated nonconvex program. Computational experience is included to show that

the branch-and-bound algorithm performs quite well for the solution of a real-life model.

Furthermore the crash procedure is able to find a feasible solution which corresponds to the

objective of the model.
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The model was tested for a large public building, and led to a better solution than the

one obtained by the traditional sizing procedures.

The structure of the paper is as follows. In Section 2 the formulation of the model is

introduced. Section 3 includes some properties of the associated optimization problem. The

branch-and-bound algorithm for processing the nonconvex program is described in Section

4. Section 5 is devoted to the procedure for obtaining a good feasible solution with standard

values from the optimal solution of the original problem. Computational experience with a

real-life instance of the proposed problem is reported in Section 6. Finally some conclusions

and some ideas for future research are presented in the last section.

2 Model Description

In hydraulics, the equation of continuity and the Bernoulli equation are usually applied

by considering that the flow does not change with time, the fluid is incompressible and the

pressure distribution in the cross-sections is hydrostatic. In these circumstances, it is easy

to find some useful relationships among the different variables that allow the solution of the

hydraulic design problem (Silva-Afonso, 2001).

The energy between flow sections is found by the Bernoulli theorem, which expresses the

hydraulics of the Energy Conservation Principle (Silva-Afonso, 2001).

In the case of real fluids in permanent motion, the total energy or total head H decreases

along the trajectory, due to the work done by the forces resisting the motion, arising from the

interaction between the fluid motion and the walls of the pipe. The decrease of the energy

line per unit of length is equal to the work done by the resistant forces, per unit of liquid

weight and per unit of length. It is usually designated by head loss per unit of length or

unitary friction loss, and denoted by J (Smith, 1994; Walski, 1990; Wise, 1986). These head

losses can be computed, for example, by the Flamant Formula (Silva-Afonso, 2001).

In practice, the value of J does not change during flow assuming that the flow is uniform in

terms of motion and according to the characteristics of the resistant environment. Therefore,

in water piping systems, the total continuous head losses along the pipes, ∆Hi, in each pipe

i are calculated as the product of the unit friction loss Ji by the length of the pipe, Li.

Head losses can also occur in singularities such as piping fittings (curves and reductions, for

instance), pipe accessories (valves and meters) and in equipments (treatment, heating, etc).

Head losses in singularities are designated by local and are represented by ∆HL.

In water distribution piping in buildings, local head losses cannot be ignored, as they have

a significant magnitude when compared with continuous head losses. However, individual

computation of local head losses for most pipe fittings and accessories with low head losses is

not justified. But they can be computed as an equivalent piping length that produces equal

head loss. In practice, real lengths of the circuits are bounded in a percentage (ρ) between

15 and 25%, depending on the material. Piping accessories and equipment producing very
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significant local head losses (globe valves, etc.) are not included in this procedure.

The main components of a water piping system are the pipes (including fittings), the

piping accessories (valves and meters) and equipment for treatment, heating, etc. In order to

apply the economic sizing criterion mentioned in the previous section, it is necessary to define

cost functions relating unit costs to interior diameters for all the parts whose characteristics

depend on the values attributed to the decision variables.

As the characteristics of the meters and the treatment and heating equipment only depend

on the water flow, cost functions have to be established for any pipes and valves that may

be installed in the circuits. The unit cost related to the installed pipes and valves must be

global, i.e. they must take into account all the accessories (connection and fitting parts),

labour (cost per worker and any complementary works) and charges (administration and tax

charges) needed for the installation.

(i) Objective Function

The pipe cost function is usually expressed as a polynomial of degree two

CC = −a x2 + b x − c (1)

where CC is the unit cost of the installed pipes, in e/meter, x is the interior pipe diameter,

in meters, and a, b and c are previously known positive constants (Silva-Afonso, 2001). The

cost function of the valves is given as a polynomial of degree three

CV = −αx3 + β x2 − γ x + η (2)

where CV is the cost of the installed valve, in e, α, β, γ, η are previously known positive con-

stants and x is the interior pipe diameter, in meters (Silva-Afonso, 2001). These expressions

imply that the objective function for a circuit with n pipes and s valves takes the form

CT =

n
∑

k=1

CTk+

s
∑

j=1

CVj =

n
∑

k=1

(−ak x
2
k + bk xk − ck )Lk+

s
∑

j=1

vj (−αj x
3
j +βj x

2
j − γj xj + ηj )

(3)

where CTk = CCk Lk represents the installed piping cost in the pipe k, CCk and CVj are

the installed pipe unit cost in the pipe k, in e/meter, and the cost of the installed valve j,

in e, Lk is the length of the pipe k, xk is the interior pipe diameter in the pipe k, xj is the

interior diameter of the valve j, in meters, vj is the number of valves in the pipe j and s ≤ n.

(ii) Bounds and other Constraints

The velocity bounds are a consequence of the regulations, which require the velocity in

each pipe of the circuit not to exceed the minimum and maximum fixed values (normally

expressed in m/s).
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By expressing those bounds as functions of the diameters, with the design flow Q normally

in m3/s and x in meters, it is obtained, for a circuit with n pipes,

xk ≤ ϕk Q
0.5
k = uk (4)

and

xk ≥ ψk Q
0.5
k (5)

respectively (Qk represents the design flow in pipe k), where ϕk and ψk are positive constants,

for k = 1, 2, ..., n.

According to Portuguese regulations, which are similar to other European regulations,

the design flow velocities in each pipe of any circuit must not to exceed the minimum and

maximum bounds of 0.5m/s and 2.0m/s, respectively. With respect to these velocities, it

has ψk = 0.798 and ϕk = 1.596, for each k = 1, 2, ..., n.

Additional bounds are usually considered in some pipes in the circuit, for reasons of

acoustic comfort (different from the regulation velocities). For a high comfort level, the

additional bound

xk ≥ 0.400Q 0.37
k , k = 1, 2, ..., n (6)

can also be included in the model. If bounds (5) and (6) are held to be simultaneously

satisfied, then the lower bound lk of each variable xk should be given by

lk = max
{

0.798Q 0.5
k , 0.400Q 0.37

k

}

The Flamant Formula is used to establish the constraint associated to head losses. It is

considered jointly with the percentage ρ of the real length of the circuit upper bound (Silva-

Afonso, 2001). Thus, in each pipe k, with ∆Hk in meters, Qk in m3/s and xk in meters, it is

obtained

∆Hk = ( 1 + 0.01 × ρ )Lk hk Q
1.75
k x−4.75

k , k = 1, 2, ..., n (7)

where 1+0.01×ρ represents the increase factor applied to the real pipe lengths (Silva-Afonso,

2001), Lk represents the length of the pipe k and hk are previously known positive constants.

For pipes k with no valves, the total head loss should not exceed the maximum permitted

head loss ∆HM . Therefore the following constraint has to be considered

n
∑

k=1

{

( 1 + 0.01 × ρ )Lk hk Q
1.75
k x−4.75

k

}

≤ ∆HM (8)

If head losses in valves are significant (globe valves, for example, present high head losses,

even in a total outlet position), the constraint (8) should be modified. In fact, local head

losses should be considered individually, with direct computation of the head loss or by using

an equivalent virtual length

Le =
K

λ
x (9)
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where K represents the local head loss coefficient and λ is the resistance coefficient for each

valve. It is assumed here that for a given material, fluid and temperature, the relation
K

λ
may be considered practically unchanged, that is,

Le = C x

where C is a positive constant. Constraint (8), relating to total head loss, can thus be replaced

by
n

∑

k=1

hk Q
1.75
k x−4.75

k { ( 1 + 0.01 × ρ )Lk + vk C xk } ≤ ∆HM (10)

where vk represents the number of valves to be installed in pipe k, k = 1, 2, ..., n.

All these considerations lead to an optimization model that is described next. The data

for this model is as follows:

T = { 1, 2, ..., n } : set of the pipes in the circuit (n = |T | represents the total number of

pipes in the circuit);

V = { 1, 2, ..., s } : set of the pipes in the circuit where the installation of valves is considered

(V ⊆ T );

S : set of the pipes in the circuit where it is required to equate the local head losses in valves

(S ⊆ V ⊆ T );

Lk : length of pipe k, k ∈ T (Lk > 0 , ∀ k ∈ T );

Qk : design flow in pipe k, k ∈ T ;

vk : number of valves to be installed in pipe k, k ∈ T (vk > 0 if k ∈ V and vk = 0 if

k ∈ T \ V );

C : positive constant;

ρ : constant corresponding to the percentage of an upper bound to the real length of the

circuit, taking into account the compensation for the various local head losses in pipe

fittings (0 < ρ ≤ 100 );

The decision variables xk of the model correspond to the interior pipe diameter in pipe k,

k ∈ T (xk ≥ 0 , ∀ k ∈ T ). The optimization model takes the form

NLP: Minimize f(x) =

n
∑

k=1

fk(xk) (11)

subject to

n
∑

k=1

gk(xk) ≤ g (12)

lk ≤ xk ≤ uk , k = 1, 2, ..., n (13)
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where

fk(xk) = Lk (−ak x
2
k + bk xk − ck ) + vk (−αk x

3
k + βk x

2
k − γk xk + ηk ) (14)

vk =



















> 0 , if k = 1, 2, ..., s

= 0 , if k = s+ 1, ..., n

(15)

gk(xk) = dk x
−4.75
k ( ek + qk xk ) (16)

Furthermore s ≤ n, Lk, ak, bk, ck, αk, βk, γk, ηk and g are given positive constants and

dk = hk Q
1.75
k > 0 ;

ek = ( 1 + 0.01 × ρ )Lk > 0 ;

qk = C vk ≥ 0

for all k = 1, . . . , n.

It should be added that a global minimum for this optimization model is not, in principle,

feasible for the problem, as the diameters ought to belong to a discrete collection of previously

known standard values corresponding to the range of commercially available diameters . As

discussed in the next sections, the optimal values obtained for the decision variables for the

range of commercial diameters should be approximated in order to get a good acceptable

solution for the hydraulics model.

3 Properties of the Optimization Problem

In this section, some properties of the objective function and of the feasible set of the

nonlinear program NLP presented in the preceding section are investigated. The following

properties taken from Bazaraa et al. (1993); Martos (1975) are useful in this context.

Property 1. The sum of strictly convex functions on a convex set K ⊆ R
n is a strictly

convex function on K.

Property 2. If f is a convex function on a convex set X ⊆ R
n and θ ∈ R, then

K = {x ∈ X : f(x) ≤ θ}

is a convex set.
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Property 3. If g is a real function of one real variable twice continuously differentiable on

a interval I, with g′′(x) > 0 (< 0 ) for all interior points x of I, then g is strictly convex

(concave) on I.

It then follows from this last result that

Property 4. If θ > 0 and β 6∈ [ 0, 1 ], then the function

g : R+ −→ R

x 7−→ θ xβ

is strictly convex on R+ = {x ∈ R : x > 0}.

It can then be established the following two main results:

Theorem 1. The feasible set of the program NLP is a convex set.

Proof: By properties 1 and 4, the functions gk given by (16) are strictly convex on R+, for

all k = 1, 2, ..., n. Since g(x) =

n
∑

k=1

gk(xk), then the feasible set of the program is defined

by

K = { x ∈ R
n : g(x) ≤ g ; lk ≤ xk ≤ uk , k = 1, 2, ..., n }

Then K is a convex set, by properties 1 and 2. �

Theorem 2.

(i) If vk = 0, then fk is a strictly concave function on [ lk , uk ].

(ii) If xk =
vk βk − Lk ak

3αk vk

, then

(a) xk ≤ lk ⇒ fk is strictly concave on [ lk , uk ];

(b) xk ≥ uk ⇒ fk is strictly convex on [ lk , uk ];

(c) lk < xk < uk ⇒ fk is strictly convex on [ lk , xk ] and strictly concave on [xk , uk ].

Proof: Since

fk(xk) = Lk (−ak x
2
k + bk xk − ck ) + vk (−αk x

3
k + βk x

2
k − γk xk + ηk )

then for each xk ∈
�

1,

f ′′k (xk) = 2 [(vk βk − Lk ak) − 3αk vk xk]

The result now follows from property 3. �
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4 Branch-and-Bound Algorithm for the Optimization Problem

A global optimal solution of the program NLP may be found by using a branch-and-

bound algorithm based on a decomposition of the feasible set of the program, similar to that

described in Horst et al. (2000); Horst and Tuy (1993); Konno and Wijayanayake (2001).

This procedure exploits a binary tree, where each node is associated to a Nonlinear Program

of the form

NLP(node): Minimize f(x) =
n

∑

k=1

fk(xk)

subject to

n
∑

k=1

gk(xk) ≤ g

lk ≤ xk ≤ uk, k = 1, 2, . . . , n

with lk ≤ lk < uk ≤ uk, for all k = 1, . . . , n. In order to explain the branching technique,

let t be a node of the binary tree associated to the Nonlinear Program. For a variable xs,

consider the partition of [ls, us] in two intervals [ls,
ls+us

2
] and [ ls+us

2
, us]. Then two daughter

nodes can be generated from the current node according to the following scheme:

t

t + 2

Current node

ls ≤ xs ≤ ls+us

2

t + 1

ls+us

2
≤ xs ≤ us

The NLPs associated with the newly generated nodes (t+1) and (t+2) are obtained from the

previous one by replacing the bound constraints ls ≤ xs ≤ us by the corresponding constraints

ls ≤ xs ≤
ls + us

2
and

ls + us

2
≤ xs ≤ us

As is discussed in Konno and Wijayanayake (2001), for this method to be efficient, tech-

niques for finding lower and upper bounds have to be developed. If for a given node the

current lower bound was greater than or equal to the best upper bound, then there is no need

to search from this node.

Lower bounds are computed by constructing an underestimating function

h(x) =
n

∑

k=1

hk(xk)

where, for each k = 1, 2, ..., n, hk is convex on
[

lk , uk

]

and hk(xk) ≤ fk(xk), for all

lk ≤ xk ≤ uk.

As discussed in the previous section, if is assumed that for each k = 1, 2, ..., n, f ′′
k (xk)

does not vanish in the interval
[

lk , uk

]

, then there are two possible cases:

9



Case 1 - fk is convex on
[

lk , uk

]

. Then hk(xk) = fk(xk), for all lk ≤ xk ≤ uk.

Case 2 - fk is concave on
[

lk , uk

]

. Consider the linear approximation hk(xk) = rk xk + sk

of fk in
[

lk , uk

]

such that fk(xk) > rk xk + sk, for all lk < xk < uk, as illustrated in

Figure 1.

lk uk

fk(lk)

fk(uk)

fk(xk)

hk(xk) = rk xk + sk

xk

Figure 1: Linear Approximation

Furthermore, it is easy to show that the values of rk and sk are as follows

rk =























0 if fk(uk) = fk(lk)

k = 1, 2, ..., n

fk(uk) − fk(lk)

uk − lk
if fk(uk) 6= fk(lk)

and

sk =























fk(lk) if fk(uk) = fk(lk)

k = 1, 2, ..., n

fk(lk) −
fk(uk) − fk(lk)

uk − lk
× lk if fk(uk) 6= fk(lk)
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Now consider the following optimization problem

NLP(node): Minimize h(x) =

n
∑

k=1

hk(xk)

subject to
n

∑

k=1

gk(xk) ≤ g

lk ≤ xk ≤ uk , k = 1, 2, ..., n

This nonlinear program is convex and has exactly the same feasible set as program NLP.

Let x∗ = (x∗k) k =1,2,..., n ∈ K ⊆ R
n be an optimal solution of NLP, f ∗ = f(x∗), and

x∗∗ = (x∗∗k ) k = 1,2,...,n ∈ K ⊆ R
n be an optimal solution of NLP(node). Then the following

result holds between the optimal values of those programs.

Theorem 3. h(x∗∗) ≤ f∗ ≤ f(x∗∗).

Since NLP(node) is a convex program, then its optimal value can be obtained as a sta-

tionary point (Karush–Kuhn–Tucker) of f on K (Bazaraa et al., 1993), which can be found

by using a local nonlinear optimization algorithm (Bazaraa et al., 1993; Nocedal and Wright,

1999), such as MINOS (Murtagh and Saunders, 1987).

Theorem 3 also implies that f(x∗∗) is an upper bound for the optimal value f ∗ of the

program NLP. Therefore, an upper bound associated with each node of the tree may also

be computed using the optimal solution of the convex program NLP(node), which is used to

find a lower bound in a current node. The optimal solution x∗∗ of the corresponding Convex

Program NLP(node) is a feasible solution for NLP(node), and can therefore be used as an

initial point for the application of a local optimization algorithm. This may find a better

upper bound by computing a stationary point for the function f in that feasible set. Since

finding a stationary point is time consuming and usually does not lead into an improvement

of the current upper bound, in practice the local optimization algorithm is only applied at

the root node or when f(x∗∗) is quite close to the best upper bound found so far.

The implementation of the branch-and-bound algorithm requires a criterion for the choice

of the node from all the open nodes in a current iteration. Another important point is related

with the branching of the tree from each current node, that is, with the choice of the variable

for branching.

As discussed before, each node of the tree has an associated lower bound that is smaller

than the current upper bound. Whenever an upper bound is updated, all nodes with a lower

bound equal to or greater than the new upper bound are discarded. If there are still some

open nodes in the tree, then the chosen node is associated with the higher lower bound.

As reported in Baptista (2004), this procedure is very easy to implement and works well in

practice.
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The variable for branching the tree from the node previously chosen is chosen using an

adaptation of the heuristic rule presented in Konno and Wijayanayake (2001). Let x∗∗ =

(x∗∗k ) k = 1,2,..., n ∈ R
n be an optimal solution of the program NLP(node), associated with the

current node. Then it is chosen the variable xk whose value in this optimal solution, x∗∗k ,

maximizes fk(xk) − hk(xk), for k = 1, 2, ..., n. So if j is the largest index corresponding to

x∗∗j = arg max { fk(x
∗∗
k ) − hk(x

∗∗
k ) | k = 1, 2, ..., n } (17)

then xj is the chosen variable.

After these considerations, the steps of the branch-and-bound algorithm can be described.

Branch-and-Bound Algorithm

Step 0: Initialization – Let L = {0} be the initial list of open nodes and ε > 0 a tolerance.

Compute the optimal solution x∗∗ of the convex nonlinear program NLP(0) and the

lower bound associated with this node LB(0) = h(x∗∗). Find an upper bound UB by

computing a stationary point x∗ of f in the set K of NLP. If
UB − LB(0)

max{UB, 1}
< ε, then x∗

is the global minimum of f in K and stop.

Step 1: Selection of the Node – If L = ∅, terminate the algorithm, with a global minimum

x∗ corresponding to the value of UB, that is, satisfying f(x∗) = UB. Otherwise, choose

a node t ∈ L corresponding to the largest value of LB(k), for all k ∈ L. Set L = L−{t}.

If
UB − LB(t)

max{UB, 1}
< ε, repeat Step 1. Otherwise, go to Step 2 with the optimal solution

x∗∗ of the corresponding NLP(t).

Step 2: Computation of an Upper Bound – If f(x∗∗) < UB + δ, for a given δ ≥ 0, find a

stationary point x∗ of f in the feasible set of NLP(t) by using a Local Algorithm with

initial point x∗∗ and set

UB = min {UB, f(x∗)}

Step 3: Branching and Computation of Lower Bounds – Let |L| be the number of elements

of L and x∗∗ be the optimal solution of the NLP(t). Find the index j associated with

criterion (17). Add two nodes |L| + 1 and |L| + 2 to the list L, with corresponding

nonlinear programs

NLP(|L| + 1): NLP(t) with the replacement of constraint lj ≤ xj ≤ uj by

lj ≤ xj ≤
lj + uj

2

NLP(|L| + 2): NLP(t) with the replacement of constraint lj ≤ xj ≤ uj by

lj + uj

2
≤ xj ≤ uj
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Compute lower bounds LB(|L| + 1) and LB(|L| + 2) by solving the corresponding pro-

grams NLP(|L|+1) and NLP(|L|+2). If NLP(|L|+1) (or NLP(|L|+2)) is not feasible

remove that node from the list L. Go to Step 1.

A branch-and-bound algorithm was described, which can process the optimization problem

NLP (11) – (13) by assuming that, for each k = 1, 2, ..., n, the function fk is concave or convex

in the initial interval [ lk , uk ]. If this is not the case, then, by theorem 2, there is xk ∈ [ lk , uk ]

such that fk is strictly convex on [ lk , xk ] and strictly concave on [ xk , uk ]. Two daughter

nodes can then be generated from the root such that

1

3

lk < xk ≤ xk

2

xk < xk ≤ uk

Then fk is strictly convex on [ lk , xk ] and strictly concave on [xk , uk ] and the branch-and-

bound algorithm can be applied from now on. Therefore, the algorithm should incorporate

in step 0 (initialization) a preprocessing phase, where 2p nodes are generated from the root,

with p the number of functions fk whose second derivative vanishes into the interior of the

interval [ lk , uk ]. By using this procedure, the functions fk are either strictly convex or

strictly concave on their corresponding intervals at all the open nodes of the list and the

branch-and-bound algorithm can be applied without any modification.

It should be added that the number p of functions fk such that f ′′k (xk) = 0 for lk < xk < uk

is smaller than or equal to the number of pipes with installed valves. As discussed in Section

6, this number is in practice about 10% of the total number of pipes. Furthermore, most

of these functions fk are concave or convex on their corresponding intervals [ lk , uk ]. For

instance, for the case-study reported in Section 6, the total number of pipes is 21, the number

of pipes with installed valves is 2 and only one function fk is neither strictly convex nor

strictly concave on the whole interval [ lk , uk ]. This means that p = 1 and there are two

nodes in the list L at the beginning of the branch-and-bound procedure.

5 Computation of a Feasible Solution for the Model with Stan-

dard Values

The original objective of the hydraulics problem dealt with in this paper is the determi-

nation of values for the decision variables from a range of previously known fixed commercial

values. In fact, each variable xk represents the interior diameter of the pipe k of the water

distribution pipe circuit (k = 1, 2, ..., n). So each xk must assume a value from a discrete
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range of standard values in order to minimize the installation global cost, that is, xk has to

satisfy

xk ∈ {m1, m2, ...ml } , ∀ k = 1, 2, ..., n

with fixed mi, i = 1, 2, ..., l and are written in ascending order. In order to describe how to

find a feasible solution for the original Nonlinear Program with Standard Values (NLPSV),

let x∗ = (x∗k) k = 1,2,..., n ∈ R
n be the optimal solution of the program NLP, obtained by the

branch-and-bound algorithm. For all k = 1, 2, ..., n, the functions

gk : xk 7−→ gk(xk) = dk x
−4.75
k ( ek + qk xk )

are strictly decreasing in [ lk , uk ]. As the constraint

n
∑

k=1

gk(xk) ≤ g (18)

is an inequality ≤, rounding to the standard value xk immediately above to x∗k does not

destroy the feasibility of the solutions. So a feasible solution for the program NLPSV may be

computed by applying this updating procedure n times for each variable xk.

Due to the monotonicity of the functions gk, this algorithm always finds a feasible solution

to the NLPSV. It may possible to obtain a solution for NLPSV with a smaller value for the

objective function by simply updating each variable x∗k of the optimal solution of NLP program

to the standard value x̃k immediately below to x∗k whenever fk(x̃k) < fk(xk). The updated

solution y = (yk) k = 1,2,..., n ∈ R
n is then defined by

yk =







xk if fk(xk) ≤ fk(x̃k)

x̃k otherwise

If this updated solution y = (yk) is feasible to NLPSV, the process terminates. Otherwise,

let

K = { k : yk < x∗k }

For each k ∈ K, let r be the index defined by

x∗r − yr = max {x∗k − yk : k ∈ K }

Then the solution y = (yk) is updated by

yk =







yk if k 6= r

xr if k = r

where xr is the standard value immediately above to x∗r. If this solution is feasible for the

NLPSV then the procedure terminates. Otherwise update K by K = K − {r} and repeat

the procedure until a feasible solution of NLPSV is at hand. It is obvious that a maximum
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of |K| steps are required to find a feasible solution to the NLPSV, where |K| is the number

of elements of the initial set K.

The lower and upper bounds for the optimization problem to be solved by the branch-

and-bound algorithm should be standard values. A simple choice for these bounds can be

achieved as shown below.

Let lk, uk, k = 1, 2, ..., n be the lower and upper bounds of the nonconvex program consi-

dered in Section 2 and {m1, m2, ...ml } be the set of standard values for the diameters. Then

for each k = 1, 2, ..., n, set

lk = mrk
and uk = msk

where

mrk
− lk = min {mi − lk > 0, i = 1, 2, ..., l }

uk − msk
= min { uk − mj > 0, j = 1, 2, ..., l }

It is important to add that these lower and upper bounds should be constructed before

applying the branch-and-bound algorithm to process the NLP optimization problem.

6 Computational Experience

The experiments reported in this section were performed using a PC with 1.83 GHz Intel

Core Duo T2400 processor and 1024 Mb RAM memory, running Windows XP Home Edition.

The branch-and-bound algorithm was implemented within the GAMS environment and the

active–set code MINOS (Murtagh and Saunders, 1987) of GAMS collection has been used for

processing both the nonlinear programs NLP(node) and NLP(node), which compute lower

and upper bounds associated with each node respectively. Running times presented in this

section are given in CPU seconds, excluding inputs and outputs. The results reported in this

section relate to a case-study reported in Silva-Afonso (2001), which is discussed below.

(i) A Case-study

Consider the six-storey tower of a hospital building. Apart from the top one, all the floors

are built in two symmetrical rows, with a central pantry (CP) equipped with a sink (Ll).

Eight private rooms (QP) with a bathroom are planned for each row. All the rooms have

a bidet (Bd), a toilet with flush cistern (Br), a wash basin (Lv) and a shower (Ch). Also

planned for each row are:

� a nursing service room (TE), with a wash basin (Lv);

� a bed disinfection room (DC), with a bed disinfection device (Mdc);

� a room for soiled materials (SJ), with a hospital pan washer (Pd), a bedpan washing

machine (Mla) and a wash basin (Lv);
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� a treatment room (TR), with a wash basin (Lv) and a service sink (Bl).

Figure 2: Axonometric Perspective.

Figure 2 shows the axonometric perspective of the circuit considered the least favourable,

corresponding to the shower (Ch) supply in the last bathroom on the 6th floor. The pipes

are made of stainless steel. The minimum pressure on the entry of the circuit (A point) is of

500 kPa and, for comfort reasons and equipment requirements, minimum residual pressures

of 250 kPa should be guaranteed. The valves to be installed (in pipes H-I and P-Q) are globe

valves, which have high head losses, even in the outlet position. Their respective values have

therefore been considered in the computation and have been fixed from tables found in the

literature. The design flows have been calculated on the basis of the Portuguese regulations.

Design pipe lengths have been computed on the basis of the increase factor 1.25 (which thus

corresponds to the percentage of increase ρ = 25%), applied to the real pipe lengths. Besides

the velocity bounds due to regulations, given by (4) and (5), the bound (6) proposed in

Silva-Afonso (2001) has also been assumed inside the pipes, for a high comfort level.
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(ii) Computational Results with the Model

Table 1, from Silva-Afonso et al. (2002), illustrates the results from applying the traditional

water piping system sizing criteria to the example described in this section. The maximum

permitted velocity criterion, which leads to the least cost solution, does not provide an ad-

equate solution in the present case, due to insufficient available head, establishing that the

residual pressure in the least favourable fixture (237.1 kPa) is lower than the minimum value

required (250 kPa). As mentioned in Section 1, the usual procedure for this situation consists

of a new sizing on the basis of the maximum total permitted head loss. This is achieved by

computing a mean value for the unit friction loss in the circuit, which allows the computation

of the diameters for the various pipes, such that the solution is adequate for its purpose. In

this example all boundary conditions are now satisfied but the overall cost of the circuit rises

from 2610.00 to 2895.00 euros, which represents an increase of about 11%.

Residual pressure Circuit cost
Sizing criterion

in Ch (kPa) (euros)

Maximum permitted velocity criterion 237.1 (< 250) 2610.00

Maximum permitted total head loss criterion 256.4 2895.00

Table 1: Sizing of the critical circuit using traditional criteria.

In order to apply the economic design criterion to this situation using the formulation

proposed in Section 2, it is necessary to know the constants Lk, ak, bk, ck, αk, βk, γk, ηk, g

(data of the problem) and dk, ek, fk (computed from those data, according to the expressions

introduced in Section 2), k = 1, 2, ..., n, presented in the model. According to Figure 2,

assuming that the pipes in the circuit are sequentially numbered from A-B to U-Ch, there

are 21 pipes. Then n = 21 and T = { 1, 2, . . . , 21 }. As valves only have to be installed in

pipes H-I (corresponding to k = 8) and P-Q (k = 16), the local head losses associated with

these valves cannot to be discarded and

V = S = { 8 , 16 } ⇒ v8 = v16 = 1 (vk = 0, for k ∈ T \ { 8 , 16 })

Problem data are as follows:

C = 580; ρ = 25; g (= ∆HM ) = 4.60

and for each pipe k = 1, 2, ..., 21,

ak = 3.2 × 103; bk = 873; ck = 4.5
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αk = 450 × 103; βk = 80.5 × 103; γk = 2.2 × 103; ηk = 21.3

The lengths Lk and design flows Qk are presented in the columns 3 and 4 of Table 2, respec-

tively. Lower and upper bounds lk and uk, k = 1, 2, ..., 21, are first computed by

lk = max
{

0.921Q 0.5
k , 0.400Q 0.37

k

}

, for k ∈ T1

lk = max
{

0.798Q 0.5
k , 0.400Q 0.37

k

}

, for k ∈ T2

and

uk = 1.596Q 0.5
k , for k ∈ T

where T1 = { 2, . . . , 21 } and T2 = { 1 } (T1 and T2 constitute a partition of the pipe circuit

set, T ) (Silva-Afonso, 2001). Their values of lk and uk, k = 1, 2, ..., 21, are displayed in Table

2.

The following set of standard sizes is considered and correspond to the range of commer-

cially available diameters (Silva-Afonso, 2001) (expressed in meters):

{ 0.0138, 0.0166 , 0.0206 , 0.0264 , 0.0330 , 0.0396 , 0.0516 , 0.0603 , 0.0721 , 0.0849 , 0.104 }

As discussed earlier, the lower and upper bounds of the program NLP should be standard

values. By using the sizes in Table 2 and these standard commercial diameters, the lower

and upper bounds for all the variables can be computed according to the process explained

in Section 5.

It is easy to see that the functions fk but f8 are either strictly concave or strictly convex

on their corresponding intervals [ lk , uk ]. Therefore, the algorithm generates two nodes in

the initialization step, according to the procedure described in Section 4.

Table 3 gives the results for the solution of the nonconvex program NLP by the branch-

and-bound algorithm
(

ε = 10−6, δ = 0
)

. Since the global minimum of this program is not

feasible for the initial problem (whose interior pipe diameters must belong to the range of

standard sizes), the procedure for finding a solution with standard sizes discussed in Section

5 was employed. The solution found is presented in Table 4 and corresponds to a percentage

saving of about 6.2% compared with the best solution computed using the traditional sizing

criteria, which is, according to Table 1, the maximum total permitted head loss. Furthermore,

the need to adjust the diameters to the range of commercially available diameters implied an

increase of about 0.44% in the cost of the solution (rising from 2714.177 to 2726.080 euros).

The branch-and-bound algorithm performed quite well for finding a global optimal solution

for the nonconvex program NLP. In fact, the number of iterations (that is, the number of times

that the branching process is used) is small for a problem with 21 variables. Furthermore,

the execution time is clearly quite acceptable for the computation of a global minimum for a

nonconvex program.
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Pipes Lengths Design

k designation Lk (m) flows Qk (m3/s)
lk uk

1 A-B 30.00 0.00441 0.054 0.106

2 B-C 3.70 0.00441 0.061 0.106

3 C-D 3.70 0.00397 0.058 0.101

4 D-E 3.70 0.00348 0.054 0.094

5 E-F 3.70 0.00292 0.050 0.086

6 F-G 3.70 0.00224 0.044 0.076

7 G-H 3.70 0.00126 0.034 0.057

8 H-I 3.50 0.00124 0.034 0.056

9 I-J 4.00 0.00116 0.033 0.054

10 J-K 4.00 0.00109 0.032 0.053

11 K-L 4.00 0.00099 0.031 0.050

12 L-M 4.00 0.00091 0.030 0.048

13 M-N 4.00 0.00071 0.027 0.043

14 N-O 4.00 0.00059 0.026 0.039

15 O-P 4.00 0.00038 0.022 0.031

16 P-Q 0.50 0.00038 0.022 0.031

17 Q-R 1.50 0.00038 0.022 0.031

18 R-S 3.00 0.00025 0.019 0.025

19 S-T 0.60 0.00025 0.019 0.025

20 T-U 1.00 0.00015 0.015 0.020

21 U-Ch 0.95 0.00015 0.015 0.020

Table 2: Problem Data.

Time of Number Cost of the solution (euros)

execution of solution with

(seconds) nodes
optimal solution

standard sizes

11.00 321 2714.177 2726.080

Table 3: Optimal Solution of the Nonlinear Program and Feasible Solution of the Problem

with Standard Sizes.

Even though this case-study is concerned with a relatively small critical circuit, it obtained

a notable real saving in percentage terms of nearly 6%, through the use of the economic

design criterion and the proposed formulation. This new optimization model could well have

considerable interest for large scale systems with very extensive critical circuits, characteristics
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Pipe Diameters (meters)

k optimal solution commercial range

1 0.0604 0.0603

2 0.0721 0.0721

3 0.0603 0.0603

4 0.0603 0.0603

5 0.0524 0.0516

6 0.0516 0.0516

7 0.0396 0.0396

8 0.0475 0.0516

9 0.0385 0.0396

10 0.0377 0.0396

11 0.0366 0.0330

12 0.0356 0.0330

13 0.0330 0.0330

14 0.0309 0.0330

15 0.0264 0.0264

16 0.0264 0.0264

17 0.0264 0.0264

18 0.0206 0.0206

19 0.0206 0.0206

20 0.0166 0.0166

21 0.0166 0.0166

Cost

(euros)
2714.177 2726.080

Table 4: Solutions for the Economic Design Criterion

that are found in specialized buildings such as hospitals, hotels, shopping centers and airports.

7 Conclusion

This paper describes the formulation and solution of an engineering optimization problem

in hydraulics which is related to the application of a new economic design criterion for a water

distribution piping system. This problem is of particular interest for networks with extensive

critical circuits, involving inadequate residual pressures or pressure fluctuations, normally

associated with specialized buildings, such as hospitals, hotels, shopping centers and airports.

This criterion leads into a nonconvex nonlinear program with some standard values that
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have to be met. A branch-and-bound algorithm has been proposed to find a global minimum

for the nonconvex program. A simple procedure to find a feasible solution satisfying these

standard values has also been introduced.

The model has proved quite practical in a real-life application. The authors believe that

the proposed model and methodology will be very useful in the solution of more complex

hydraulics problems. This will certainly be a future topic of their research interests.
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