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Abstract: In this paper, the solution of the asymmetric eigenvalue comple-

mentarity problem (EiCP) is investigated by means of a variational inequality

formulation. This problem is then solved by finding a stationary point of

the gap function and the regularized gap function. A nonlinear programming

formulation of the EiCP results from the gap function. A hybrid algorithm

combining a projection technique and a modified Josephy-Newton method is

proposed to solve the EiCP by finding a stationary point of the regularized

gap function. Numerical results show that the proposed method can in gen-

eral solve EiCPs efficiently.
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1 Introduction

The eigenvalue complementarity problem (EiCP) is an important problem arising in me-

chanics, physics and other areas of applied mathematics [8, 9, 27]. The problem consists

of finding a real number λ and a vector x ∈ R
n\{0} such that

w = (λB −A)x,

w > 0, x > 0,

xTw = 0,

where w ∈ R
n, A,B ∈ R

n×n, and B is positive definite. As discussed in [16, 26, 28, 29],

if A and B are both symmetric matrices, then the problem is called the symmetric EiCP
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and reduces to finding a stationary point of an appropriate merit function on a structured

convex set. Therefore a local optimization algorithm can be used to solve the symmetric

EiCP. As discussed in [16], the spectral projected gradient (SPG) method [3, 4] is partic-

ularly recommended to solve large-scale symmetric EiCPs in practice. If at least one of

the matrices A and B is asymmetric, then this reduction is no longer valid and different

approaches have to be employed. A number of non-enumerative efficient algorithms have

been introduced for solving the asymmetric EiCP [1, 8, 17, 25, 32]. However, these algo-

rithms are not always able to find a solution of the EiCP. An enumerative method has

been introduced in [18] that is able to solve the EiCP by computing a global minimum

of a special nonconvex merit function on a convex set. The algorithm usually performs

well in practice but its computational effort may be exponential in the dimension of the

matrices A and B.

In a search for efficient non-enumerative algorithms to solve the asymmetric EiCP, we

exploit in this paper its equivalence to a variational inequality problem (VI) discussed in

[18]. It is known that the VI can be solved in many cases by finding a stationary point of

a special merit function. In this paper, we investigate the use of the so-called gap function

[2, 11] and the regularized gap function [10] for solving the VI equivalent to the EiCP. By

exploiting the special structure of the EiCP, we show that finding a stationary point of the

resulting gap function is equivalent to finding a global minimum of a nonlinear program

with nonlinear constraints. Furthermore the optimal value of this problem is equal to zero.

We are able to establish a sufficient condition for a Karush-Kuhn-Tucker (KKT) point of

this nonlinear program to be a solution of the EiCP. We also investigate the performance

of the local optimizer MINOS to solve the EiCP by exploiting this formulation. The

algorithm is not always able to find a solution of the EiCP, but it requires a small amount

of effort when it is successful.

As discussed in [10], the regularized gap function is continuously differentiable as long

as the underlying VI involves a continuously differentiable mapping. For the VI formu-

lation of the EiCP, a gradient-based method can therefore be used to find a stationary

point for this function on the simplex. In this paper, we investigate the performance of

the spectral projected gradient (SPG) algorithm [3, 4] for such a goal. This choice was

done because of the efficiency of this procedure to deal with the symmetric EiCP [16].

Like other local optimization approaches designed for the asymmetric EiCP, the SPG

algorithm is not always able to solve the EiCP. As the computation of the gradients is

somewhat involved, we also propose a projection algorithm that is designed in such a way

that the gradients of the regularized gap function are used as little as possible. Another

improvement of the SPG algorithm consists in finding the search direction by using the

so-called modified Josephy-Newton (MJN) method [20, 31]. The computation of a search

direction for the MJN algorithm requires not only the computation of the gradient of

the regularized gap function but the solution of a special mixed linear complementarity

problem (MLCP) by an enumerative algorithm [13]. So each iteration of the MJN method
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is quite expensive. However, this algorithm converges very fast when the initial point is

chosen sufficiently near a solution of the VI. In this paper, a hybrid algorithm combining

the good features of these three techniques is introduced. Numerical experiments indicate

that this algorithm is not always able to solve the EiCP but can usually find a solution

with a relatively small number of iterations.

The remainder of this paper is organized as follows. The formulation of the EiCP

as a VI on the simplex is given, and the gap function and the regularized gap function

for this VI are discussed in Section 2. Section 3 deals with the nonlinear programming

(NLP) formulation of the EiCP. The SPG algorithm for finding a stationary point of the

regularized gap function is described in Section 4. The projection algorithm and the MJN

algorithm are described in Sections 5 and 6, respectively. A hybrid method of the last two

algorithms is suggested in Section 7. Computational experience with these algorithms for

solving asymmetric EiCPs is reported in Section 8, and some conclusions are included in

the last section.

2 VI Formulation of the Asymmetric EiCP

As stated in [18], the EiCP can be formulated as the following variational inequality

problem (VI): Find a vector x ∈ ∆ such that

F (x)T (y − x) > 0 ∀y ∈ ∆, (1)

where the function F : Rn → R
n is defined by

F (x) =

(

xTAx

xTBx
B −A

)

x (2)

and the set ∆ is the unit simplex in R
n, i.e.,

∆ = {x ∈ R
n : eTx = 1, x > 0}. (3)

Therefore, the eigenvalue λ is obtained by

λ =
xTAx

xTBx
.

Here and throughout, we denote by e the vector whose components are all one.

A variety of algorithms has been developed for finding a solution of the VI [7]. Among

them, the optimization approach that makes use of a merit function associated with the

VI has turned out to be useful in practice. One of the most popular merit functions is the

so-called gap function [2, 11], which is defined by

f0(x) = −min{F (x)T (y − x) : y ∈ ∆}. (4)
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Note that, for any x 6= 0, since F (x)Tx = 0, we may write

f0(x) = −min{F (x)T y : y ∈ ∆}.

The next result shows that we can use this function to reformulate the VI as an equivalent

optimization problem.

Theorem 2.1 [2, 11] A vector x solves VI (1) if and only if x is a global optimal solution

of the problem

Minimize f0(x)

subject to x ∈ ∆
(5)

and f0(x) = 0.

Note that the gap function f0 is not everywhere continuously differentiable, and hence

problem (5) is a nonsmooth optimization problem. The regularized gap function [10] has

been introduced to overcome such a drawback and is defined by

fα(x) = −min
{

F (x)T (y − x) +
α

2
‖y − x‖22 : y ∈ ∆

}

,

where α is a positive parameter. Again, for any x 6= 0, we may write

fα(x) = −min
{

F (x)T y +
α

2
‖y − x‖22 : y ∈ ∆

}

. (6)

The next theorem shows that the regularized gap function f can be used to reformulate

the VI as an optimization problem.

Theorem 2.2 [10] A vector x solves VI (1) if and only if x is a global optimal solution

of the problem

Minimize fα(x)

subject to x ∈ ∆

and fα(x) = 0.

Since the function F defined by (2) is continuously differentiable on the simplex ∆, the

regularized gap function is also continuously differentiable on ∆. Therefore, any suitable

gradient-based method can be employed to find a stationary point of fα on ∆.

Particularly we remark that the values of the regularized gap function fα can be

computed by solving the following strictly convex separable quadratic program on the

simplex:

Minimize F (x)T y +
α

2
‖y − x‖22

subject to eT y = 1

y > 0.

(7)
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Note that the unique optimal solution of problem (7) is given by

y = P∆

(

x−
1

α
F (x)

)

,

where P∆(u) denotes the projection of a vector u ∈ R
n onto the set ∆.

A number of quite efficient algorithms [12, 14, 24, 30] are available to compute the

optimal solution of problem (7). In particular, the block principal pivoting (BPP) algo-

rithm discussed in [15] is very simple and has been shown to be strongly polynomial [14].

In order to understand its main steps, let us write the optimality conditions of the above

problem as the following mixed linear complementarity problem (MLCP):

q + αy + ϕe = w,

eT y = 1, wT y = 0,

w > 0, y > 0, ϕ ∈ R,

where q = F (x) − αx. Due to the special structure of this MLCP, the BPP algorithm

[15] can be used to solve it efficiently. At each iteration of the BPP algorithm, one has

a complementary solution satisfying wiyi = 0, i = 1, . . . , n. Thus there is an index set

G ⊆ {1, 2, . . . , n} such that wi = 0 for i ∈ G and yi = 0 for i 6∈ G. The variables yi, i ∈ G,

are called basic, and the vector consisting of those yi’s is denoted yG. (A similar notation

applies to other vectors as well.) We also let eG denote the vector of ones with the same

dimension as yG. Since the variable ϕ is unrestricted in sign, it is always treated as basic.

Hence the basic variables yG and ϕ satisfy the following equations:

{

qG + αyG + ϕeG = 0

(eG)
T yG = 1.

This system can be rewritten as















ϕ = −
1

|G|

(

α+ (eG)
T qG

)

yG = −
1

α
(qG + ϕeG),

where |G| = (eG)
T eG is the number of elements in the set G. Then the steps of the BPP

algorithm are stated as follows [14]:

Block Principal Pivoting (BPP) Algorithm

Step 0. Let G := {1, 2, . . . , n}.

Step 1. Compute ϕ := −
1

|G|

(

α+ (eG)
T qG

)

.
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Step 2. Let H := {i ∈ G : (qi + ϕ)/α > 0}. If H = ∅, then stop. The vector y with

yi =

{

0 if i 6∈ G

−(qi + ϕ)/α if i ∈ G

is the optimal solution of the quadratic program (7). Otherwise, set G := G\H and

return to Step 1.

For any given x ∈ ∆, once the solution y of problem (7) is computed by the BPP algorithm,

the value of the regularized gap function fα is obtained by

fα(x) = −F (x)T y −
α

2
(y − x)T (y − x).

3 NLP Formulation with the Gap Function

The set ∆ is nonempty, closed and bounded, and therefore the minimum on the right-hand

side of (4) is always attained for any vector x. More specifically, by the special feature of

the simplex, the gap function f0 has the following explicit representation on the set ∆:

f0(x) = − min
16i6n

Fi(x)

= − min
16i6n

(

xTAx

xTBx
Bi −Ai

)

x,

where Fi(x), Ai and Bi denote the ith component of F (x), the ith rows of A and B, respec-

tively. As mentioned before, the gap function is not everywhere differentiable. However,

by introducing an extra variable ξ ∈ R, the optimization problem (5) can be rewritten as

Minimize ξ

subject to −

(

xTAx

xTBx
Bi −Ai

)

x 6 ξ, i = 1, . . . , n,

x ∈ ∆

or equivalently

Minimize ξ

subject to e ξ +

(

xTAx

xTBx
B −A

)

x > 0,

x ∈ ∆.

(8)

Since B is positive definite, problem (8) may further be rewritten as

NLP: Minimize ξ

subject to e ξxTBx+
(

xTAxB − xTBxA
)

x > 0,

x ∈ ∆.

(9)
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Note that, by a basic property of the gap function, the objective value of NLP (9) is

nonnegative for any feasible solution (x, ξ). Moreover, by Theorem 2.1, the following

result holds:

Theorem 3.1 A vector x̄ is a solution of the EiCP if and only if (x̄, ξ̄) is a global optimal

solution of NLP (9) with ξ̄ = 0.

Since NLP (9) is nonconvex, it is in general difficult to find a global optimal solution.

Next, we investigate when a Karush-Kuhn-Tucker (KKT) point of NLP (9) is a solution

of the EiCP. Let us write NLP (9) in the form

Minimize f(x, ξ)

subject to e ξ xTBx+ g(x) > 0, (10)

eTx = 1, (11)

x > 0, (12)

where f : Rn × R → R and g : Rn → R
n are defined by

f(x, ξ) = ξ and g(x) = (xTAxB − xTBxA)x,

respectively. Furthermore, let r ∈ R
n, α ∈ R and y ∈ R

n be the Lagrange multipliers

associated with the constraints (10), (11) and (12), respectively. A KKT point for the

above problem satisfies

∇xf(x, ξ)− ξeT r(B +BT )x−∇g(x)r + αe = y,

∇ξf(x, ξ)− eT rxTBx = 0, (13)

eξxTBx+ g(x) > 0, r > 0, rT
(

eξxTBx+ g(x)
)

= 0, (14)

eTx = 1,

x > 0, y > 0, xT y = 0,

with ∇xf(x, ξ) = 0, ∇ξf(x, ξ) = 1 and

∇g(x) = BxxT (A+AT )−AxxT (B +BT ) + (xTAx)BT − (xTBx)AT .

From (13) we obtain

eT r =
1

xTBx
> 0,

i.e., r is a nonzero nonnegative vector. It is now easy to prove the following sufficient

condition for a KKT point of NLP (9) to be a solution of the EiCP.

Theorem 3.2 If the Lagrange multiplier vector r associated with the constraint (10) is

positive, then a KKT point of NLP (9) is a solution of the EiCP.
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Proof: Since r > 0, condition (14) implies that

e ξ xTBx+ g(x) = 0. (15)

Multiplying both sides of (15) by xT , we obtain

ξ xT e xTBx+ xT g(x) = 0. (16)

From the definition of g, it is easy to see that xT g(x) = 0. Since xT e = 1 and xTBx > 0,

(16) yields ξ = 0. The assertion of the theorem then follows from Theorem 3.1. �

In general this sufficient condition does not always hold and a KKT point of NLP (9)

may not be a solution of the EiCP. In Section 8, we report some numerical experience for

finding a KKT point of NLP (9) with the local optimizer code MINOS [22].

4 Spectral Projected Gradient Algorithm

In this section, we describe the spectral projected gradient (SPG) method applied to the

EiCP. Specifically, the SPG method searches for a stationary point of the regularized gap

function fα on the simplex ∆. At iteration k, given xk ∈ ∆, the projected gradient search

direction dk is given by

dk = P∆(xk − ηk∇fα(xk))− xk. (17)

Then xk is updated by xk+1 = xk + δkdk, where the stepsize δk ∈ (0, 1] is computed by a

line search technique to satisfy the Armijo rule:

fα(xk + δkdk) 6 fα(xk) + δkβ∇fα(xk)
Tdk, (18)

where 0 < β < 1. As discussed in [3], the algorithm converges to a stationary point of fα
under reasonable hypotheses. Next we discuss the main issues in the SPG algorithm when

applied to the problem of minimizing the regularized gap function fα on the simplex ∆.

(i) Computation of the search direction dk:

By definition, P∆(u) is the unique optimal solution of the following strictly convex

separable quadratic programming problem:

Minimize
1

2
‖y − u‖22

subject to eT y = 1,

y > 0.

(19)

This problem can effectively be solved using the BPP method discussed in Section 2.

By (17), the search direction dk is obtained by dk = ȳ − xk, where ȳ is the optimal

solution of problem (19) with u = xk − ηk∇fα(xk).
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(ii) Computation of ∇fα(x):

The gradient of the regularized gap function that is required in each iteration is

computed by the steps presented below.

(I) After a few algebraic manipulations on the function F defined by (2), we obtain

the (transposed) Jacobian matrix ∇F (x) as

∇F (x) =
xTAx

xTBx
BT +

1

xTBx
(A+AT )xxTBT −

xTAx

(xTBx)2
(B+BT )xxTBT −AT .

Let λ =
xTAx

xTBx
and v =

1

xTBx
Bx. Then we can write

∇F (x) = λBT + (A+AT )xvT − λ(B +BT )xvT −AT . (20)

(II) As in (i), the projection P∆(x −
1

α
F (x)) can be computed by solving problem

(19) with u = x−
1

α
F (x).

(III) Let y = P∆(x−
1

α
F (x)). Then, noticing that fα is given by (6), it can be shown

from Danskin’s theorem [5] that the gradient ∇fα(x) is calculated by

∇fα(x) = −∇F (x)y − α(x− y),

where ∇F (x) is given in (I).

(iii) Computation of the spectral parameter ηk:

Let wk = ∇fα(xk) and ηmin and ηmax be positive real numbers such that ηmin <

ηmax. Then ηk is computed as follows [4, 16]:

(I) For k = 0, let

η0 = mid

{

ηmin, ηmax,
1

‖P∆(x0 − w0)− x0‖∞

}

,

where mid{a, b, c} denotes the middle value of three numbers a, b and c.

(II) For any k > 0, let

sk−1 = xk − xk−1, yk−1 = ∇fα(xk)−∇fα(xk−1)

and

ηk =











mid

{

ηmin, ηmax,
〈sk−1, sk−1〉

〈sk−1, yk−1〉

}

if 〈sk−1, yk−1〉 > ε

ηmax otherwise,

(21)

where ε is a small positive number.
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The SPG algorithm is simple structurally and converges to a stationary point of the

regularized gap function fα on ∆. Despite its simplicity, the computation of the gradient

of the regularized gap function requires much effort. Furthermore, numerical experience

to be presented in Section 8 shows that the algorithm often faces difficulties to terminate

and may be slow for some examples. To overcome the first drawback, we introduce in

the next section an improvement on the SPG algorithm that tries to use a derivative-free

search direction first at each iteration, thereby avoiding the computation of the gradients

of fα as much as possible. To improve the speed of the convergence, on the other hand,

we will propose the use of a modified Josephy-Newton algorithm in Section 6.

5 Projection Algorithm

The idea is not to compute the gradient ∇fα(xk) in each iteration, but instead, first try

to use the derivative-free search direction given by

dk = P∆

(

xk −
1

α
F (xk)

)

− xk. (22)

Recall that if dk = 0 then xk is a solution of VI (1) and hence a solution of the EiCP [10].

Furthermore, the following result holds.

Theorem 5.1 Let xk ∈ ∆ and dk be given by (22). If dk 6= 0, then

F (xk)
T dk < 0.

Proof: Let uk = P∆

(

xk −
1

α
F (xk)

)

and dk = uk − xk 6= 0. Then uk is given as the

unique optimal solution of the problem

Minimize h(y)

subject to y ∈ ∆,

where the function h : Rn → R is defined by

h(y) =
1

2
‖y − (xk −

1

α
F (xk))‖

2
2.

As h is differentiable and ∆ is a convex set, uk satisfies the first-order optimality condition

∇h(uk)
T (y − uk) > 0 ∀y ∈ ∆.

Since xk ∈ ∆, we have

∇h(uk)
T (xk − uk) > 0 ⇐⇒ (uk − (xk −

1

α
F (xk)))

T (xk − uk) > 0

⇐⇒ (uk − xk)
T (xk − uk) +

1

α
F (xk)

T (xk − uk) > 0

⇐⇒
1

α
F (xk)

T (xk − uk) > ‖uk − xk‖
2
2

=⇒ F (xk)
T dk 6 −α‖dk‖

2
2
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and hence the desired result follows. �

In view of this result, we may accept the stepsize δk that satisfies a formula similar to the

condition (18) with ∇fα(xk) replaced by F (xk). As in the Armijo rule, δk is computed

by a finite procedure similar to the one used in the SPG algorithm. If such a stepsize δk
cannot be obtained after a certain number of trials in the line-search procedure, then the

gradient ∇fα(xk) is computed and an usual iteration of the SPG algorithm is performed.

The steps of the algorithm are described as follows:

Projection Algorithm (PA)

Step 0. Choose x0 ∈ ∆ and a positive integer tmax that designates the maximum num-

ber of trials allowed in the Armijo line-search for a derivative-free search direction.

Choose a constant β ∈ (0, 1) and let k := 0.

Step 1. Compute dk := P∆

(

xk −
1

α
F (xk)

)

− xk. If dk = 0, terminate. The current

vector xk is a solution of VI (1). Otherwise, use the Armijo rule to find a stepsize

δk ∈ (0, 1] satisfying

fα(xk + δkdk) 6 fα(xk) + δkβF (xk)
T dk. (23)

If δk is found with the number of trials less than or equal to tmax, then go to Step 3.

Otherwise, go to Step 2.

Step 2. Compute the gradient ∇fα(xk) and let

dk := P∆(xk − ηk∇fα(xk))− xk,

where ηk is the spectral parameter given by (21). If dk = 0, terminate. The current

vector xk is a stationary point of the regularized gap function fα on ∆. Otherwise,

compute a stepsize δk satisfying the Armijo rule (18).

Step 3. Update

xk+1 := xk + δkdk

and return to Step 1 with k := k + 1.

It is important to note that the projection in Step 1 can be computed as explained in the

previous section. If Step 2 is never visited during the whole procedure, then the algorithm

terminates with a solution of VI (1), i.e., a solution of the EiCP. In fact, numerical ex-

perience to be reported in Section 8 shows that this algorithm could solve the EiCP in

many cases without computing gradients of the regularized gap function. Furthermore,

the number of gradients to be computed is usually quite small. This algorithm can there-

fore be considered an improvement of the SPG method, as the computational effort per

11



iteration is usually much smaller. However, like the SPG method, the projection algorithm

is usually slow and may converge to a stationary point of fα that is not a solution of the

EiCP.

6 Modified Josephy-Newton Algorithm

The modified Josephy-Newton (MJN) method solves, at each iteration k, the following

affine VI problem AVI(Fk,∆): Find x ∈ ∆ such that

Fk(x)
T (y − x) > 0 ∀y ∈ ∆, (24)

where Fk : Rn → R
n is the linear approximation of the function F at xk, i.e.,

Fk(x) = F (xk) +∇F (xk)
T (x− xk),

and ∇F (x) is given by (20). It is known [7] that AVI(Fk,∆) is equivalent to the following

mixed linear complementarity problem (MLCP):

Fk(x)− λe = w,

eTx = 1, λ ∈ R,

xTw = 0, x > 0, w > 0,

which is rewritten as
w = qk +Mkx− λe,

eTx = 1, λ ∈ R,

xTw = 0, x > 0, w > 0,

(25)

where qk = F (xk) − ∇F (xk)
Txk and Mk = ∇F (xk)

T . As the feasible set ∆ is closed,

convex and bounded, the AVI(Fk,∆) always has a solution [7]. Since we cannot expect

the matrix Mk to belong to any class of matrices that enjoy certain favorable properties

[6], the only approach that is guaranteed to solve MLCP (25) would be an enumerative

method. An efficient enumerative method for general MLCPs has been proposed in [13].

This method finds a solution of the MLCP by exploring a binary tree generated by the

dichotomy xi = 0 or wi = 0 associated with the complementary condition, see Fig. 1.

In each node of the tree, the algorithm finds a stationary point of the nonconvex

quadratic program of the form

Minimize xTw

subject to w = q +Mx− λe,

eTx = 1,

xi = 0, i ∈ I,

wj = 0, j ∈ J,

x > 0, w > 0,

(26)
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Figure 1: Branching procedure of the enumerative method.

where I and J are the sets defined by I = {i : xi = 0, fixed} and J = {i : wi = 0, fixed},

respectively, in the path of the tree from this node to the root. Furthermore the algorithm

contains some heuristic rules for choosing the node and the pair of complementary variables

for branching. Numerical results reported in [13] and later in this paper show that the

algorithm usually explores very few nodes, i.e., very few quadratic programs of the form

(26) are solved, before finding a solution of the MLCP.

The steps of the MJN algorithm are presented below.

Modified Josephy-Newton (MJN) Algorithm

Step 0. Choose x0 ∈ ∆ and a small positive number ρ. Let k := 0.

Step 1. If fα(xk) = 0, terminate. The vector xk is a solution of VI (1), and hence a

solution of the EiCP. Otherwise, compute gk := P∆(xk − ηk∇fα(xk)) − xk, where

ηk is given by (21). If gk = 0, terminate. The vector xk is a stationary point of the

regularized gap function fα on ∆.

Step 2. Compute Fk(x) and find a solution zk of AVI(Fk,∆) by applying the enumerative

algorithm to MLCP (25). Let dk := zk − xk.

Step 3. If ∇fα(xk)
Tdk ≤ −ρ||dk||

2, then go to Step 4. Otherwise, let dk := gk.

Step 4. Compute a stepsize δk ∈ (0, 1] by the Armijo rule (18).

Step 5. Update xk+1 := xk + δkdk and return to Step 1 with k := k + 1.

7 Hybrid Method

In the MJN method, the computational cost per iteration is quite high. In fact not only

the gradient of fα is required but an MLCP has to be solved in each iteration by an

enumerative algorithm. On the positive side, the algorithm in general converges quite fast

provided the initial point x0 is close to a solution of the EiCP. This leads to a hybrid

13



method that combines the three techniques discussed in the last three sections. In this

procedure, the projection algorithm (PA) described in Section 5 is used by default and a

switch to the MJN algorithm incorporating the SPG method is performed when it fails to

find a stepsize δk satisfying (23) or the value of fα(xk) is sufficiently small. Furthermore,

the procedure returns to PA if a SPG iteration is performed in Step 3 of the MJN algorithm.

In order to describe the steps of the hybrid algorithm, we introduce a zero-one parameter

MJN that takes the value one when a MJN iteration should be employed and zero otherwise.

Moreover, we use a small positive parameter γ to judge if fα(xk) is small enough so that

we should switch to the MJN algorithm. The steps of the hybrid algorithm are presented

below.

Hybrid Algorithm

Step 0. Choose x0 ∈ ∆, positive numbers ρ and γ, a positive integer tmax, and a constant

β ∈ (0, 1). Set MJN := 0 and let k := 0.

Step 1. If MJN = 1, go to Step 3. If MJN = 0 and fα(xk) < γ, set MJN := 1 and go to

Step 3. Otherwise, go to Step 2.

Step 2. Compute dk := P∆

(

xk −
1

α
F (xk)

)

− xk. If dk = 0, terminate. The current

vector xk is a solution of VI (1), and hence a solution of the EiCP. Otherwise, use

the Armijo rule to find a stepsize δk ∈ (0, 1] satisfying

fα(xk + δkdk) 6 fα(xk) + δkβF (xk)
T dk. (27)

If δk is found with the number of trials less than or equal to tmax, then go to Step 7.

Otherwise, set MJN := 1 and go to Step 3.

Step 3. If fα(xk) = 0, terminate. The vector xk is a solution of VI (1), and hence a

solution of the EiCP. Otherwise, compute the gradient ∇fα(xk) and let

gk := P∆(xk − ηk∇fα(xk))− xk,

where ηk is the spectral parameter given by (21). If gk = 0, terminate. The current

vector xk is a stationary point of the regularized gap function fα on ∆.

Step 4. Compute Fk(x) and find a solution zk of AVI(Fk,∆) by applying an enumerative

algorithm to MLCP (25). Let dk := zk − xk.

Step 5. If ∇fα(xk)
Tdk ≤ − ρ||dk||

2, then go to Step 6. Otherwise, set MJN := 0, let

dk := gk and go to Step 6.

Step 6. Compute a stepsize δk ∈ (0, 1] by the Armijo rule (18).

Step 7. Update xk+1 := xk + δkdk and return to Step 1 with k := k + 1.
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8 Computational Experience

We report some computational experience with the algorithms discussed in the previous

sections. All the experiments were carried out using a personal computer with 3.0 GHz

Pentium IV processor and 2 GBytes of RAM memory, running Linux 2.6.32. The algo-

rithms were coded in FORTRAN 90 and compiled with the Intel compiler, version 10.0.

Running times presented in this section are always given in CPU seconds. The enumer-

ative method required to solve the MLCPs in the MJN algorithm was coded with the

active-set method MINOS [22] to solve nonconvex quadratic programs (26). The solver

MINOS was also used to solve the nonlinear programming (NLP) formulation of Section 3.

In our first set of test problems, B is always the identity matrix and A ∈ R
n×n is an

asymmetric matrix from various classes: Lotkin (a modification in the first row of a Hilbert

matrix altered to all ones), Murty [23], Tridiagonal, S ×D or Q×D, where S, Q and D

are symmetric, orthogonal and diagonal matrices, respectively, or A is randomly generated

such that each element is uniformly distributed in the interval [−1, 1]. The gallery test

matrices of MATLAB [21] were used to generate the orthogonal matrix. The test problems

were scaled according to the procedure described in [17], which improves the efficacy of the

algorithms, particularly when they are applied to EiCPs with ill-conditioned matrices A.

Furthermore, the value of the termination tolerance has been set equal to 10−6. For the

SPG algorithm, the values of ηmin and ηmax have been fixed to 10−3 and 103, respectively.

In the Armijo line search procedure, the stepsize is computed by a finite number of trials

δ =
1

l1.4
for l = 1, 2, . . . , tmax [19]. Furthermore, we let the maximum number of trials

be tmax = 10 in Step 2 of the projection algorithm.

Table 1 includes the computational results with the algorithms for solving asymmetric

EiCPs. The initial solution was always chosen at the barycentre of the simplex. In this

table, as well as in the sequel, λ is the eigenvalue computed, Ni is the total number of

iterations, and T is the total CPU time in seconds spent to solve each problem. We use

the notation %SPG to indicate the percentage of iterations that were performed by the

spectral projected gradient direction, and Nin and Nodn denote the average numbers of

iterations and nodes, respectively, used in the enumerative method to solve the MLCP in

the MJN algorithm. The notations M and m stand for the numbers of Major and minor

iterations, respectively, required by MINOS when applied to the NLP formulation of the

EiCP. The symbol (***) indicates that the algorithm was unable to solve a given problem

within the maximum of 15000 iterations allowed. For all the problems marked with ‡, the

algorithm stopped at a stationary point of the merit function that was not a solution of

the VI.

The results show that the SPG algorithm had difficulty in finding a solution to the

EiCP. Trouble also occurred with the MJN algorithm for the Murty matrices, where

it could not even find a stationary point of the merit function. The algorithms NLP,

PA and MJN usually required fewer iterations than the SPG algorithm. However, no
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algorithm was able to solve all test problems successfully. Furthermore, with the same

termination tolerance, the NLP algorithm usually outperforms the other algorithms. The

main drawback of the MJN algorithm seems to be the need of using the SPG directions

in many iterations. Moreover, the enumerative method solved in most cases the MLCPs

required by the MJN algorithm at node 1, that is, without branching.

In Table 2, we display the results of the hybrid algorithm for the same test problems.

In the implementation of the hybrid algorithm, the projection method is performed until

the value of fα(xk) becomes less than or equal to 10−3 or a stepsize δk that satisfies (27)

cannot be obtained within ten trials in the Armijo line search. In these cases, a switch

to the MJN algorithm occurs. We use the notations Ni, NiSPG, NiPA and NiMJN to

represent the total number of iterations, and the numbers of SPG, PA and MJN iterations,

respectively, i.e., Ni=NiSPG+NiPA+NiMJN. In general, the hybrid algorithm performs

quite well with the switching value of γ = 10−3. However, in some cases, this value led to

unduly slow convergence and the larger value γ = 10−2 was used instead. These instances

are marked with (∗) in Table 2. The results shown in Table 2 demonstrate the efficiency

and efficacy of the hybrid algorithm for processing the EiCP, as it generally spent fewer

iterations than the other algorithms and was able to solve successfully all but one of the

test problems. A further interesting observation is that the number of expensive MJN

iterations required to solve these EiCPs was generally small. Furthermore, the number

of SPG iterations was always quite small (zero in many cases) in all successful instances.

Since PA iterations do not involve much work, the hybrid algorithm is regarded as a fast

procedure for solving the EiCP as long as it is not trapped by a stationary point that is

not a solution of the problem.

The second set of test problems uses the matrix A as previously defined and a sym-

metric pentadiagonal strictly diagonally dominant matrix B whose off-diagonal elements

bi, i−2, bi, i−1 are randomly generated in the interval [0,1] and the diagonal elements bi, i
are given by

bi, i = |bi, i+1|+ |bi, i+2|+ |bi, i−1|+ |bi, i−2|+ 10−2.

Hence B is a positive definite matrix [6]. The results with these test problems reported in

Table 3 show that the performance of the hybrid algorithm is similar to the previous case

where B is the identity matrix.

The computation of multiple solutions of the EiCP has been addressed in [1]. Next,

we report two experiments with the projection algorithm (PA) on this issue. In the first

experiment, the matrix A has been taken from [1, 25] and is given by

A =







8 −1 4

3 4 0.5

2 −0.5 6







and B is the identity matrix of order 3. By considering 105 randomly generated initial

points, the PA algorithm was able to find two solutions of this EiCP. Note that this EiCP
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SPG NLP PA MJN

Type n Ni λ T M m λ T Ni λ %SPG T Ni λ %SPG Nin Nodn T

L
o
tk
in

6 15 2.1324 9.00E-04 5 19 2.1324 1.00E-02 17 2.1324 0.0 9.00E-04 3 2.1324 0.0 5.0 1.0 1.35E-02

10 19 2.4286 1.40E-03 6 37 2.4286 2.00E-02 17 2.4286 0.0 1.10E-03 3 2.4300 0.0 12.3 1.0 2.98E-02

20 27 2.8065 4.00E-03 6 75 2.8065 1.20E-01 15 2.8065 0.0 2.60E-03 4 2.8071 0.0 22.0 1.0 4.51E-02

30 29 3.0157 8.10E-03 6 93 3.0157 4.30E-01 16 3.0157 0.0 5.30E-03 4 3.0179 0.0 30.5 1.0 7.76E-02

40 40 3.1594 1.51E-02 10 160 3.1594 1.35E+00 21 3.1594 0.0 8.60E-03 4 3.1625 0.0 38.2 1.0 1.14E-01

50 43 ‡ 2.54E-02 11 196 3.2683 3.03E+00 23 3.2683 0.0 1.33E-02 4 3.2724 0.0 45.8 1.0 1.71E-01

M
u
rt
y

6 2 0.5000 8.00E-02 27 28 0.5125 1.00E-02 8333 ‡ 69.4 3.77E-01 ***

10 9 0.5165 1.40E-03 31 96 0.5893 3.00E-02 396 ‡ 70.2 3.17E-02 ***

20 14 ‡ 2.90E-03 14 86 0.5002 6.00E-02 124 ‡ 50.0 2.98E-02 ***

30 16 ‡ 5.40E-03 17 278 1.3245 4.80E-01 43 ‡ 39.5 2.16E-02 ***

40 16 ‡ 9.10E-03 10 213 0.7085 7.80E-01 65 ‡ 10.8 3.73E-02 ***

50 24 ‡ 1.75E-02 33 487 2.1544 2.86E+00 147 1.9941 6.8 1.73E-01 ***

T
ri
d
ia
g
o
n
a
l

6 55 ‡ 1.30E-03 5 7 1.3808 1.00E-03 27 1.3808 0.0 9.00E-04 2 1.3811 0.0 8.0 1.0 1.01E-02

10 164 ‡ 4.60E-03 5 15 1.3363 1.00E-03 55 1.3363 0.0 1.70E-03 23 1.3387 91.3 14.7 1.0 1.34E-01

20 608 ‡ 4.93E-02 11 99 1.3071 5.00E-02 164 1.3071 0.0 7.20E-03 24 1.3132 91.7 52.8 1.0 2.60E-01

30 1185 ‡ 2.03E-01 22 399 1.2980 4.40E-01 361 1.2980 0.0 2.58E-02 41 1.2858 97.6 39.1 1.0 5.53E-01

40 308 ‡ 9.28E-02 16 193 1.2936 3.50E-01 746 1.2936 0.0 7.97E-02 53 1.3328 92.5 52.0 1.0 1.47E+00

50 494 ‡ 2.20E-01 18 288 1.2910 8.40E-01 1492 1.2910 0.0 2.35E-01 256 1.3488 96.9 52.6 1.1 6.95E+00

S
×

D

6 9 3.4166 9.00E-04 5 5 3.4166 1.00E-02 11 3.4166 0.0 9.00E-04 3 3.4166 0.0 5.0 1.0 1.32E-02

10 11 ‡ 1.10E-03 5 10 5.8187 1.00E-02 14 5.8187 0.0 1.30E-03 3 5.8187 0.0 23.0 1.0 2.01E-02

20 16 ‡ 2.80E-03 5 20 11.3497 4.00E-02 33 11.3497 0.0 6.10E-03 3 11.3497 0.0 22.7 1.0 3.44E-02

30 4 ‡ 3.80E-03 5 31 16.6399 1.40E-01 52 16.6399 0.0 1.75E-02 2 16.6419 0.0 43.5 1.0 4.10E-02

40 4 ‡ 6.60E-03 5 42 21.8470 3.60E-01 62 21.8470 0.0 3.82E-02 2 21.8490 0.0 184.0 1.0 7.41E-02

50 5 ‡ 9.30E-03 5 52 27.0162 7.90E-01 70 27.0162 0.0 7.40E-02 2 27.0183 0.0 251.6 1.0 1.11E-01

Q
×

D

6 47 ‡ 1.20E-03 5 17 0.7949 2.00E-02 12 0.6039 0.0 7.00E-04 3 0.6055 0.0 6.0 1.0 1.32E-02

10 58 ‡ 2.20E-03 7 36 0.5639 2.00E-02 19 0.5639 0.0 1.20E-03 5 1.1931 0.0 26.0 1.4 3.40E-02

20 157 ‡ 1.44E-02 8 121 0.5326 1.90E-01 42 1.5445 4.8 4.70E-03 49 0.7469 87.8 61.4 3.1 7.22E-01

30 473 ‡ 8.24E-02 9 154 0.5219 7.10E-01 159 ‡ 52.2 8.45E-02 42 1.3839 95.2 125.9 3.7 1.14E+00

40 933 ‡ 2.72E-01 9 174 0.5165 1.72E+00 122 ‡ 59.8 1.18E-01 666 1.6717 97.1 94.6 1.1 2.08E+01

50 981 ‡ 4.27E-01 11 280 0.5132 4.83E+00 47 2.9946 2.1 2.25E-02 76 ‡ 96.1 89.8 2.0 3.18E+00

U
n
if
o
rm

[−
1
,
1
] 6 17 ‡ 1.00E-03 8 14 1.0332 1.00E-03 29 -0.0056 34.5 1.50E-03 17 ‡ 94.1 0.0 1.0 6.28E-02

10 52 ‡ 2.20E-03 8 43 ‡ 2.00E-02 189 0.4823 0.5 3.10E-03 4 0.4840 0.0 14.8 2.5 2.81E-02

20 254 ‡ 2.34E-02 12 207 1.7921 2.80E-01 45 1.7921 0.0 4.00E-03 5 1.7921 0.0 24.6 1.0 5.50E-02

30 312 ‡ 5.69E-02 13 163 ‡ 6.40E-01 166 ‡ 82.5 1.19E-01 7 1.5167 14.3 150.1 5.9 2.17E-01

40 138 ‡ 4.42E-02 12 251 ‡ 2.25E+00 77 3.1125 0.0 2.44E-02 6 3.1132 16.7 120.7 2.2 2.07E-01

50 518 ‡ 2.29E-01 12 336 0.7594 4.13E+00 777 ‡ 76.2 1.36E+00 243 ‡ 98.8 2895.8 49.4 8.58E+01

Table 1: Performance of SPG, NLP, PA and MJN algorithms for asymmetric EiCPs.
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Hybrid Algorithm

Type n Ni λ NiSPG NiPA NiMJN T

L
o
tk
in

6 5 2.1326 0 4 1 5.80E-03

10 6 2.4290 0 5 1 6.90E-03

20 7 2.8083 0 6 1 1.34E-02

30 8 3.0160 0 6 2 4.17E-02

40 9 3.1603 0 7 2 6.11E-02

50 9 3.2730 0 7 2 9.52E-02

M
u
rt
y

6 8 0.9415 2 5 1 1.69E-02

10 11 1.4769 3 7 1 2.54E-02

20 7 2.5171 0 6 1 1.51E-02

30∗ 43 3.1564 2 29 12 2.65E-01

40 23 4.7846 1 8 14 4.64E-01

50 45 2.1188 2 28 15 6.94E-01

T
ri
d
ia
g
o
n
a
l

6 6 1.3817 0 5 1 5.30E-03

10 12 1.3410 3 8 1 4.41E-02

20∗ 3 1.3094 0 1 2 2.61E-02

30∗ 12 1.3101 5 6 1 1.26E-01

40 6 1.3053 2 3 1 9.58E-02

50 2 1.3020 0 1 1 5.86E-02

S
×

D

6 4 3.4166 0 3 1 5.80E-03

10 5 5.8189 0 4 1 7.00E-03

20 9 11.3503 0 8 1 1.50E-02

30 13 16.6410 0 12 1 3.35E-02

40 16 21.8478 0 15 1 5.74E-02

50 18 27.0176 0 17 1 8.71E-02

Q
×

D

6 8 0.9503 1 3 4 2.70E-02

10 14 0.9291 4 9 1 2.92E-02

20 10 1.7897 1 7 2 5.13E-02

30 7 2.2343 1 5 1 4.23E-02

40 7 2.6359 1 5 1 6.18E-02

50 7 2.9948 1 5 1 9.32E-02

U
n
if
o
rm

[−
1
,
1
] 6 11 -0.0048 4 5 2 2.61E-02

10 10 0.4825 1 7 2 1.85E-02

20 10 1.7925 0 9 1 1.40E-02

30 205 ‡ 184 19 2 3.54E+00

40 15 3.1129 0 14 1 3.67E-02

50∗ 14 2.3404 1 5 8 8.56E-01

Table 2: Performance of the hybrid algorithm for asymmetric EiCPs.

has exactly three eigenvalues that can be obtained by a complete enumeration procedure

described in [26]. These results are displayed in Table 4, where “Freq” stands for the

frequency of each eigenvalue in percentage.

In the second experiment, B is again the identity matrix and A is a symmetric positive

definite matrix of order 10 randomly generated. By using 104 randomly generated initial

points, the PA algorithm was able to find two of the four solutions of the EiCP with the
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Hybrid Algorithm

Type n Ni λ NiSPG NiPA NiMJN T

L
o
tk
in

6 4 0.7566 0 2 2 7.00E-03

10 6 0.9823 0 4 2 9.40E-03

20 8 1.0138 0 6 2 2.13E-02

30 9 1.4189 0 6 3 4.32E-02

40 9 1.4181 0 6 3 6.66E-02

50 10 1.5002 0 7 3 9.47E-02

S
×

D

6 6 1.1008 0 5 1 4.31E-03

10 6 1.4915 0 5 1 5.50E-03

20 10 3.7751 0 9 1 1.15E-02

30 15 4.8848 0 14 1 2.11E-02

40 13 6.0397 0 12 1 3.26E-02

50 18 7.4878 0 17 1 4.73E-02

Q
×

D

6 7 0.4561 4 2 1 1.56E-02

10 7 ‡ 4 2 1 1.70E-02

20 3 0.2319 0 2 1 1.11E-02

30 7 0.5582 1 3 3 6.65E-02

40 29 0.2601 25 3 1 5.58E-01

50 16 0.3214 12 3 1 5.13E-01

U
n
if
o
rm

[−
1
,
1
] 6 8 -0.0019 2 5 1 9.50E-03

10 17 0.3902 7 6 4 6.57E-02

20 20 0.3907 5 11 4 1.34E-01

30 218 ‡ 206 9 3 2.47E+00

40 21 1.2768 6 13 2 2.82E-01

50∗ 15 1.9626 0 13 2 9.77E-02

Table 3: Performance of the hybrid algorithm for the test problems with a nondiagonal matrix B.

λ Freq (%)

4.0000 40

9.3979 60

Table 4: Computation of multiple eigenvalues for EiCP with matrices A and B of order 3.

λ Freq (%)

1.2530 30

1.7005 70

Table 5: Computation of multiple eigenvalues for EiCP with matrices A and B of order 10.

corresponding frequency given in Table 5. Although these experiments show that different

eigenvalues could be obtained by using randomly generated initial points, such a random

generation strategy is clearly insufficient to find all the eigenvalues. This is a topic that

needs further research.
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9 Conclusions

In this paper we investigate the solution of the EiCP by exploiting its formulation as a VI

on the simplex. The use of the gap function for this VI leads to a nonlinear programming

(NLP) formulation of the EiCP. A KKT point for the NLP can be found and in many cases

solves the EiCP. A hybrid algorithm combining a projection technique with a modified

Josephy-Newton method has been introduced for solving the VI by finding a stationary

point of the regularized gap function on the simplex. This algorithm is in general able to

find efficiently a solution of the EiCP, but may fail in some occasions. We believe that the

efficacy of this algorithm for finding a solution of the EiCP and for computing multiple

eigenvalues can be improved. This is a topic of our future research.
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[2] A. Auslender, Optimisation: Méthodes Numériques, Masson, Paris, 1976.

[3] E.G. Birgin, J.M. Mart́ınez and M. Raydan, Nonmonotone spectral projected gradient

methods on convex sets, SIAM Journal on Optimization 10 (2000), 1196–1211.

[4] E.G. Birgin, J.M. Mart́ınez and M. Raydan, Algorithm 813: SPG - Software for

convex-constrained optimization, ACM Transactions on Mathematical Software 27

(2001), 340–349.

[5] D.P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, Mass., 1995.

[6] R.W. Cottle, J.S. Pang and R.E. Stone, The Linear Complementarity Problem, Aca-

demic Press, Boston, 1992.

[7] F. Facchinei and J.S. Pang, Finite-Dimensional Variational Inequalities and Comple-

mentarity Problems, vol. II, Springer-Verlag, New York, 2003.
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[14] J.J. Júdice and F.M. Pires, Solution of large-scale separable strictly convex quadratic

programs on the simplex, Linear Algebra and its Applications 170 (1992), 214–220.
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