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In this paper, we propose nonlinear programming formulations (NLP) and DC (Difference of
Convex functions) programming approaches for the asymmetric eigenvalue complementarity
problem (EiCP). The EiCP has a solution if and only if these NLPs have zero global optimal
value. We reformulate the NLPs as DC Programs (DCP) which can be efficiently solved by
DCA (DC Algorithm). Some preliminary numerical results illustrate the good performance
of the proposed methods.
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1. Introduction

Given an asymmetric matrix A ∈ R
n×n and a positive definite matrix B ∈ S++

n

( where S++
n denotes the set of all n × n symmetric positive definite matrices),

the Asymmetric Eigenvalue Complementarity Problem (EiCP) consists of finding
a real number λ > 0 (complementary eigenvalue) and a vector x ∈ R

n \ {0}
(complementary eigenvector) such that:

(EiCP )







w = (λB −A)x
w ≥ 0, x ≥ 0
xTw = 0.

This problem is very important both on the theoretical aspects of mathematics
and in application fields (see [6, 7, 16, 20, 21, 23] and references therein). It was
proved that the number of solutions for EiCP is finite and at most equal to 2n+1−
n− 2 [6]. Solving the EiCP is in general a NP-hard problem since determining the
feasibility of EiCP is already proved to be a NP-complete problem [6]. The class
of the matrix A plays a very important role in the solution of EiCP. It was shown
that EiCP can be reduced to the problem of finding a stationary point of Rayleigh
function on the simplex when A and B are both symmetric matrices [18, 22]. A
DC programming approach for solving the symmetric case has been investigated
in [8]. However, this result is no longer valid when the matrix A is asymmetric. A
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number of algorithms have been designed for solving the EiCP in this latter case
[1, 6, 7, 17]. In particular, it has been shown in [7] that the EiCP is equivalent to
the Nonlinear Program:

(NLP ) min f(x, y, w, z) = (y − zx)T (y − zx) + xTw
s.t. w = Bx−Ay

eTx = 1
eT y = z
(x, y, w, z) ≥ 0

where e denotes the all-ones vector. In fact, the EiCP has a solution (λ∗, x∗) if and
only if (x∗, y∗ = z∗x∗, w∗, z∗ = 1

λ∗
) is a solution of NLP with f(x∗, y∗, w∗, z∗) = 0.

The objective function f is a 4th order nonconvex polynomial function and the
constraint set of NLP is a polyhedral convex set. So NLP is a nonlinear and
nonconvex polynomial optimization program which is a NP-hard problem and
difficult to be solved.

Our work will focus on proposing some new nonlinear programming formulations
for the asymmetric EiCP and investigating how to reformulate these problems as
DC programs and then solving them via efficient DC programming approaches -
DCA. Some numerical results show a good performance of our approaches, espe-
cially their high-efficiency for tackling large-scale problems.

2. Nonlinear programming formulations

The asymmetric EiCP consists of finding (λ, x) ∈ R× R
n such that







v = (λB −A)x
xT v = 0
0 6= x ≥ 0, v ≥ 0, λ > 0

(1)

where A ∈ R
n×n is an asymmetric matrix, and B ∈ S++

n .
If z = 1

λ
> 0, we have

zv = Bx− zAx.

Let y = zx and w = zv. An equivalent formulation of EiCP is















w = Bx−Ay
y = zx
xTw = 0
0 6= x ≥ 0, w ≥ 0, z > 0.

(2)

To avoid x = 0, we can restrict x to the simplex {eTx = 1, x ≥ 0} and obtain























w = Bx−Ay
eTx = 1
y = zx
xTw = 0
x ≥ 0, w ≥ 0, z > 0.

(3)
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Theoretically, if the EiCP has a solution, then there must exist a lower bound
l > 0 and an upper bound u > 0 such that 0 < l ≤ z ≤ u for any solution of the
EiCP and the constraint z > 0 in (3) can be replaced by l ≤ z ≤ u.

In practice, these lower and upper bounds for z are not given beforehand. We
can estimate the upper bound u of z by solving the linear program:

u = max z
s.t. Bx−Ay ≥ 0

eTx = 1
eT y = z
x ≥ 0, y ≥ 0, z ≥ 0.

(4)

Furthermore, the following result provides a lower bound l for z.

Theorem 2.1 Let D = A+AT

2 , and λmin(C), λmax(C) denote the smallest and the
largest eigenvalue of the matrix C. If the EiCP has a solution, then λmax(D) > 0
and

z ≥ λmin(B)

λmax(D)
= l.

Proof Since in the formulation (3) xTw = 0, w = Bx−Ay, y = zx, we get

xTw = xT (Bx− zAx) = xT (B − zA)x = 0;

And xTAx = (xTAx+ xTATx)/2 = xTDx, we have

xT (B − zA)x = xT (B − zD)x = 0.

Note that B−zD is a real symmetric matrix, because z ∈ R, B and D = A+AT

2 are
real symmetric matrices. Hence all eigenvalues of the symmetric matrix B − zD
are real. Moreover, xT (B − zD)x = 0 implies that

λmin(B − zD) ≤ 0.

We then deduce that

0 ≥ λmin(B − zD) = min{xT (B − zD)x : ‖x‖ = 1}
≥ min{xTBx : ‖x‖ = 1}+ zmin{xT (−D)x : ‖x‖ = 1}
= λmin(B)− zλmax(D).

Since λmin(B) > 0 and z > 0, λmax(D) ≤ 0 implies 0 ≥ λmin(B)− zλmax(D) > 0.
This contradiction means that there is no feasible solution when λmax(D) ≤ 0.
Therefore λmax(D) > 0 is a necessary condition for the existence of solution of
EiCP and

0 ≥ λmin(B)− zλmax(D);λmax(D) > 0 =⇒ z ≥ λmin(B)

λmax(D)
.

�
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Proposition 2.2 If l ≤ z ≤ u, the solution (x, y, w, z) of the EiCP satisfies

x ∈ [0, 1]n; y ∈ [0, u]n;

0 ≤ w = Bx−Ay ≤











∑

j

(|B1j |+ u|A1j |)
...

∑

j

(|Bnj |+ u|Anj |)











.

Proof For the bounds of x, we have

{eTx = 1, x ≥ 0} ⇒ x ∈ [0, 1]n.

As far as the bounds of y are concerned, we have {y = zx, eTx = 1, x ≥ 0, z >
0} ⇒ {eT y = zeTx = z > 0, y = zx ≥ 0} ⇒ y ∈ [0, z]n. Hence y ∈ [0, u]n.
The bounds of w can be derived from x ∈ [0, 1]n, y ∈ [0, u]n and w = Bx−Ay as

0 ≤ w = Bx−Ay ≤











∑

j

(|B1j |+ u|A1j |)
...

∑

j

(|Bnj |+ u|Anj |)











.

�

2.1. Nonlinear Programming Formulation 1 (NLP1)

We can penalize the nonlinear constraints y = zx and xTw = 0 of (3) to obtain
the nonlinear program:

min f(x, y, w, z) = ||y − zx||2 + xTw
s.t. w = Bx−Ay

eTx = 1
x ≥ 0, y ≥ 0, w ≥ 0, z > 0.

(5)

If the optimal value of (5) is zero then (3) and (5) have the same solution set.
According to theorem 2.1 and proposition 2.2, we can replace z > 0 by l ≤ z with

l = λmin(B)
λmax(D) . This yields the following equivalent formulation of (5):

0 = min ||y − zx||2 + xTw
s.t. w = Bx−Ay

eTx = 1
x ≥ 0, y ≥ 0, w ≥ 0, z ≥ l

(6)

and all variables of (6) could be bounded as

l ≤ z ≤ u;x ∈ [0, 1]n; y ∈ [0, u]n;
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0 ≤ w ≤











∑

j

(|B1j |+ u|A1j |)
...

∑

j

(|Bnj |+ u|Anj |)











.

with u being the optimal value of the problem (4). If (4) is an unbounded problem,
then we can fix an upper bound u and find solutions in the interval l ≤ z ≤ u.

The boundeness of the variables is important since we need these bounds for
deriving a DC programming formulation for the problem (6). This topic will be
investigated in the section 3.

2.2. Nonlinear Programming Formulation 2 (NLP2)

The NLP formulation (6) can be presented as

0 = min
(x,y,w)∈C

min
z≥l

||y − zx||2 + xTw (7)

where l := λmin(B)
λmax(D) > 0 and C := {w = Bx − Ay, eTx = 1, x ≥ 0, y ≥ 0, w ≥ 0}

is a polyhedral convex set. It is easy to prove that if the problem (7) has a zero
optimal value then its optimal solution set is the same as the solution set of (3).

Note that we can replace z ≥ l by z ≥ 0 since by theorem 2.1 there is no zero
optimal solution in the interval 0 ≤ z < l. Therefore, we have

min
(x,y,w)∈C

min
z≥0

||y− zx||2 + xTw = min
(x,y,w)∈C

{||y||2 + xTw+min
z≥0

{z2||x||2 − (2xT y)z}}.

Let φx,y(z) := z2||x||2 − (2xT y)z, we have

φ
′

x,y(z) = 2z||x||2 − (2xT y) = 0 =⇒ z =
xT y

||x||2 ≥ 0,∀(x, y, w) ∈ C.

Hence,

min
z≥0

φx,y(z) = −(xT y)2

||x||2 ,∀(x, y, w) ∈ C.

The problem (7) is equivalent to

0 = min
(x,y,w)∈C

||y||2 + xTw − (xT y)2

||x||2 . (8)

The objective function of (8) is nonlinear and nonconvex. Hence the problem (8)
is a nonlinear and nonconvex program. Its DC decomposition and solution method
will be discussed in section 3.
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2.3. Nonlinear Programming Formulation 3 (NLP3)

In the proof of the theorem 2.1, we showed that xTw = xT (B − zD)x. By using
this equality in the formulation (6), we can derive the equivalent formulation:

0 = min ||y − zx||2 + xT (B − zD)x
s.t. Bx−Ay ≥ 0

eTx = 1
x ≥ 0, y ≥ 0, z ≥ l.

(9)

Obviously, if the optimal value of (9) is zero then its optimal solution set is the
same as that of (3). Replacing z ≥ l by z ≥ 0, the problem (9) can be represented
by

0 = min
(x,y)∈C1

min
z≥0

||y − zx||2 + xT (B − zD)x (10)

where C1 := {Bx−Ay ≥ 0, eT x = 1, x ≥ 0, y ≥ 0}.

min
(x,y)∈C1

min
z≥0

||y−zx||2+xT (B−zD)x = min
(x,y)∈C1

{||y||2+xTBx+min
z≥0

{z2||x||2−(2xT y+xTDx)z}}.

Let φx,y(z) := z2||x||2 − (2xT y + xTDx)z, we deduce that

φ
′

x,y(z) = 2z||x||2 − (2xT y + xTDx) = 0 =⇒ z =
xTDx+ 2xT y

2||x||2 ,

and

min
z≥0

φx,y(z) =

{

− (xTDx+2xT y)2

4||x||2 , xTDx+ 2xT y > 0;

0, xTDx+ 2xT y ≤ 0.

Proposition 2.3 If (10) holds, then xTDx+ 2xT y > 0.

Proof When xTDx + 2xT y ≤ 0, we have minz≥0{φx,y(z)} = 0 and the problem
(10) becomes

min
(x,y)∈C1

||y||2 + xTBx.

Since B is a PD matrix, this problem has a unique optimal solution (x = 0, y = 0).
But (0, 0) /∈ C1 and this establishes the theorem. �

Remark 1 If A is a copositive matrix (A ∈ COn), i.e. x
TAx ≥ 0 for all x ≥ 0, then

D = A+AT

2 ∈ COn and we have xTDx+ 2xT y ≥ 0,∀(x, y) ∈ C1.

The EiCP has a solution if and only if

0 = min ||y||2 + xTBx− (xTDx+2xT y)2

4||x||2
s.t. (x, y) ∈ C1

xTDx+ 2xT y > 0.

(11)
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3. DC Program Formulations and DCA

This section will focus on how to reformulate the nonlinear programs presented
in section 2 as DC programs and to propose DC Algorithms (DCA) for their
numerical solutions. DCA was first introduced by Pham Dinh Tao in their
preliminary form in 1985. It has been extensively developed since 1994 by Le
Thi Hoai An and Pham Dinh Tao (see e.g. [11–14] and also the web page
http://lita.sciences.univ-metz.fr/~lethi/). DCA has been successfully ap-
plied to many large-scale (smooth or nonsmooth) nonconvex programs in different
fields of applied sciences for which they often give global optimal solutions. The al-
gorithm has proved to be usually more robust and efficient than standard methods.

For DC decomposition, we should represent the nonconvex objective function as
a DC function. In general, there exists infinitely many DC decompositions for a
nonconvex function. In fact, if f has a DC decomposition as g − h, then for any
convex function p, (g + p)− (h+ p) is also a DC decomposition.

3.1. DC Formulation and DCA for NLP1

3.1.1. DC formulation for NLP1

We rewrite the objective function of NLP1 as follows:

f(x, y, w, z) = ||y−zx||2+xTw = ||y||2+wTx−2zxT y+z2||x||2 = f0(y)+f1(x,w)+f2(x, y, z)+f3(x, z)

with

f0(y) = ||y||2; f1(x,w) = wTx; f2(x, y, z) = −2zxT y; f3(x, z) = z2||x||2.

Then f0 is a convex quadratic function and f1, f2, f3 are nonconvex polynomial
functions. The gradients of these nonconvex functions are:

{

∇xf1(x,w) = w
∇wf1(x,w) = x

,







∇xf2(x, y, z) = −2zy
∇yf2(x, y, z) = −2zx
∇zf2(x, y, z) = −2xT y

and

{

∇xf3(x, z) = 2z2x
∇zf3(x, z) = 2z||x||2 .

The Hessian matrices are

∇2f1(x,w) =

[

O I
I O

]

, a 2n× 2n matrix,
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∇2f2(x,w) =





O −2zI −2y
−2zI O −2x
−2yT −2xT O



 , a (2n+ 1)× (2n + 1) matrix,

and

∇2f3(x, z) =

[

2z2I 4zx
4zxT 2xTx

]

, a (n+ 1)× (n+ 1) matrix.

We can estimate the upper bounds of their spectral radius as

ρ(∇2f1(x,w)) = 1 = ρ1.

ρ(∇2f2(x, y, z)) ≤ ‖∇2f2(x, y, z)‖1 = maxi=1,...,n{2z + 2yi, 2z + 2xi, 2e
T y + 2eTx}

= maxi=1,...,n{2z + 2yi, 2z + 2xi, 2z + 2} ≤ max{4z, 2z + 2}
≤ max{4u, 2u + 2} = ρ2.

ρ(∇2f3(x, z)) ≤ ‖∇2f3(x, z)‖1 = maxi=1,...,n{2z2 + 4zxi, 4ze
T x+ 2||x||2}

≤ max{2z2 + 4z, 4z + 2} ≤ max{2u2 + 4u, 4u + 2} = ρ3.

For the bilinear function f1(x,w) = xTw, we have two types of DC decompositions:

(1) f1(x,w) = xTw = ( ||x+w||2
4 )− ( ||x−w||2

4 ).

(2) f1(x,w) = xTw = (ρ1||(x,w)||2
2 )− (ρ1||(x,w)||2

2 − f1(x,w))

= ( ||x||
2+||w||2
2 )− ( ||x−w||2

2 ).

So two DC decompositions can be defined

(i) f(x, y, w, z) = g1(x, y, w, z) − h1(x, y, w, z) with

g1(x, y, w, z) =
ρ1 + ρ2 + ρ3

2
‖x‖2 + (

ρ2
2

+ 1)‖y‖2 + ρ1
2
‖w‖2 + ρ2 + ρ3

2
z2,

h1(x, y, w, z) = g1(x, y, w, z) − f(x, y, w, z).

(ii) f(x, y, w, z) = g2(x, y, w, z) − h2(x, y, w, z) with

g2(x, y, w, z) =
||x+ w||2

4
+

ρ2 + ρ3
2

‖x‖2 + (
ρ2
2

+ 1)‖y‖2 + ρ2 + ρ3
2

z2,

h2(x, y, w, z) = g2(x, y, w, z) − f(x, y, w, z).

3.1.2. DCA for NLP1

For the DC program defined by

(PDC) min{g(x) − h(x) : x ∈ C}

where C is a nonempty convex set, DCA yields the following general scheme:
Construct two sequences {xk} and {yk} ( candidates to be optimal solutions of the
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primal and dual DC programs resp.) as follows:

xk −→ yk ∈ ∂h(xk)
ւ

xk+1 ∈ ∂g∗(yk) = argmin{g(x) − 〈x, yk〉 : x ∈ C}.

In our application, since h1 and h2 are both differentiable functions, we have
∂h1(x, y, w, z) = {∇h1(x, y, w, z)} and ∂h2(x, y, w, z) = {∇h2(x, y, w, z)} with

∇h1(x, y, w, z) = ∇g1(x, y, w, z)−∇f(x, y, w, z) =









(ρ1 + ρ2 + ρ3)x−w + 2zy − 2z2x
ρ2y + 2zx
ρ1w − x

(ρ2 + ρ3)z + 2xT y − 2z‖x‖2









and

∇h2(x, y, w, z) = ∇g2(x, y, w, z)−∇f(x, y, w, z) =









(12 + ρ2 + ρ3)x− 1
2w + 2zy − 2z2x

ρ2y + 2zx
w−x
2

(ρ2 + ρ3)z + 2xT y − 2z‖x‖2









.

Finally, DCA for the two DC decompositions (g1 − h1 and g2 − h2) yields the
same fixed point framework as:

(xk+1, yk+1, wk+1, zk+1) ∈ argmin{gi(x, y, w, z)−〈(x, y, w, z),∇hi(x
k, yk, wk, zk)〉 : (x, y, w, z) ∈ C}

where i = 1, 2. We observed from the above framework that each iteration of DCA
requires solving a strictly convex quadratic program over a convex polyhedral set
C. This kind of problem can be efficiently solved by many quadratic programming
solvers (such as CPLEX, MATLAB etc.).

For given tolerances ǫ1, ǫ2 and ǫ3, DCA could be terminated when one of the
following conditions is satisfied:

(1) The sequence {(xk, yk, wk, zk)} converges, i.e.,

‖(xk+1, yk+1, wk+1, zk+1)− (xk, yk, wk, zk)‖ ≤ ǫ1.

(2) The sequence {f(xk, yk, wk, zk)} converges, i.e.,

|f(xk+1, yk+1, wk+1, zk+1)− f(xk, yk, wk, zk)| ≤ ǫ2.

(3) The sufficient global ǫ-optimality condition:

|f(xk, yk, wk, zk)| ≤ ǫ3.

The first two conditions are general stopping criteria for DCA. The third one is
a special feature for this specific problem since we know what the global optimal
value should be if EiCP has a solution.

Theorem 3.1 DCA has the following convergence theorem:
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• DCA generates convergence sequences {(xk, yk, wk, zk)} and
{f(xk, yk, wk, zk)}, such that {f(xk, yk, wk, zk)} is decreasing and bounded
below.

• The sequence {(xk, yk, wk, zk)} converges either to a feasible solution of
EiCP when the third stopping criterion is satisfied or to a general KKT
solution of NLP when the first and the second stopping criteria are satisfied.

The proof of Theorem 3.1 is based on the general convergence theorem of DCA
( see [10–15] for details).

3.2. DC Formulation and DCA for NLP2

3.2.1. DC formulation for NLP2

The nonlinear objective function of NLP2 can be written as:

f(x, y, w) = ||y||2 + xTw − (xT y)2

||x||2 = f0(y) + f1(x,w) + f2(x, y)

with

f0(y) = ||y||2; f1(x,w) = wTx; f2(x, y) = −(xT y)2

||x||2 .

Then f0 is a convex quadratic function, and f1, f2 are nonconvex functions. The
gradients of the nonconvex functions are:

{

∇xf1(x,w) = w
∇wf1(x,w) = x

{

∇xf2(x, y) = −2 xT y
||x||2y + 2 (xT y)2

||x||2 x

∇yf2(x, y) = −2 (xT y)
||x||2 x

.

The Hessian matrix of f1(x,w) and its spectral radius are as follows:

∇2f1(x,w) =

[

O I
I O

]

, a 2n× 2n matrix.

ρ(∇2f1(x,w)) = 1 = ρ1.

The Hessian matrix of f2(x,w) is given by

∇2f2(x,w) =

[

∇2
x,xf2(x, y) ∇2

x,yf2(x, y)
∇2

y,xf2(x, y) ∇2
y,yf2(x, y)

]

, a 2n× 2n matrix.

with











∇2
x,xf2(x, y) = − 2

||x||2 (yy
T )− 8(xT y)2

||x||6 (xxT ) + 2(xT y)2

||x||2 In + 4xT y
||x||4 (xy

T + yxT )

(∇2
y,xf2(x, y))

T = ∇2
x,yf2(x, y) = − 2

||x||2 (yx
T ) + 4xT y

||x||4 (xx
T )− 2xT y

||x||2 In
∇2

y,yf2(x, y) = − 2
||x||2 (xx

T )

.
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For estimating the spectral radius of the Hessian matrix ∇2f2(x, y), we need the
following theorem.

Theorem 3.2 Let A =

[

A1 A2

A3 A4

]

with all blocks Ai, i = 1, . . . , 4 are n × n real

matrices. Then

‖A‖22 ≤
4

∑

i=1

‖Ai‖22.

Proof By definition

‖A‖22 = max
(x,y)6=0

∥

∥

∥

∥

A

[

x
y

]∥

∥

∥

∥

2

2

‖x‖22 + ‖y‖22

where x ∈ R
n and y ∈ R

n. Hence

∥

∥

∥

∥

A

[

x
y

]
∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

A1x+A2y
A3x+A4y

∥

∥

∥

∥

2

2

= ‖A1x+A2y‖22 + ‖A3x+A4y‖22
≤ (‖A1x‖2 + ‖A2y‖2)2 + (‖A3x‖2 + ‖A4y‖2)2
≤ (‖A1‖2‖x‖2 + ‖A2‖2‖y‖2)2 + (‖A3‖2‖x‖2 + ‖A4‖2‖y‖2)2
≤ (‖A1‖22 + ‖A2‖22)(‖x‖22 + ‖y‖22) + (‖A3‖22 + ‖A4‖22)(‖x‖22 + ‖y‖22)
= (‖A1‖22 + ‖A2‖22 + ‖A3‖22 + ‖A4‖22)(‖x‖22 + ‖y‖22)

and

‖A‖22 = max
(x,y)6=0

∥

∥

∥

∥

A

[

x
y

]∥

∥

∥

∥

2

2

‖x‖22 + ‖y‖22
≤ max

(x,y)6=0

(‖x‖22 + ‖y‖22)
4
∑

i=1
‖Ai‖22

‖x‖22 + ‖y‖22
=

4
∑

i=1

‖Ai‖22.

�

Using this theorem 3.2, we can prove the following result.

Theorem 3.3

‖∇2f2(x, y)‖22 ≤ (2nu2)2(9n + 1)2 + 128n2u2 + 4

for all solutions of the EiCP.

Proof Let ‖.‖ denote the matrix and vector 2-norms. According to the theorem
3.2, we get

‖∇2f2(x, y)‖2 ≤ ‖∇2
x,xf2(x, y)‖2 + 2‖∇2

x,yf2(x, y)‖2 + ‖∇2
y,yf2(x, y)‖2

≤ (‖ 2
||x||2yy

T ‖+ ‖8(xT y)2

||x||6 xxT ‖+ ‖2(xT y)2

||x||2 In‖+ ‖4xT y
||x||4 xy

T ‖+ ‖4xT y
||x||4 yx

T )‖)2

+2(‖ 2
||x||2 yx

T‖+ ‖4xT y
||x||4 xx

T‖+ ‖2|xT y|
||x||2 In‖)2 + ‖ 2

||x||2xx
T ‖2.

(12)
For any solution of EiCP, due to the proposition 2.2, we have y ∈ [0, u]n and

eTx = 1, x ≥ 0, which yields 1√
n

≤ ‖x‖ ≤ 1 and ‖y‖ ≤ u
√
n. On the other

hand, since (xyT )x = (yTx)x, then yTx is the only possible nonzero eigenvalue
of the rank-one matrix xyT with eigenvector x. Moreover, we have ‖xyT ‖ = ‖x‖‖y‖.
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Now, we use this result to get upper-bounds for some of the norms in (12).

(1)

‖ 2

||x||2 xx
T ‖ =

2

||x||2 ‖xx
T ‖ = 2.

(2)

‖2|x
T y|

||x||2 In‖ =
2|xT y|
||x||2 ≤ 2||x||||y||

||x||2 =
2||y||
||x|| ≤ 2nu.

(3)

‖4x
T y

||x||4 xx
T ‖ =

4|xT y|
||x||2 ≤ 4nu.

(4)

‖ 2

||x||2 yx
T‖ =

2||x||||y||
||x||2 ≤ 2nu.

(5) 4xT y
||x||4 xy

T and 4xT y
||x||4 yx

T are rank-one matrices with the same only possible

nonzero eigenvalue 4(xT y)2

||x||4 . Therefore,

‖4x
T y

||x||4 xy
T ‖ = ‖4x

T y

||x||4 yx
T ‖ =

4|xT y|||y||
||x||3 ≤ 4||y||2

||x||2 ≤ 4n2u2.

(6)

‖2(x
T y)2

||x||2 In‖ =
2(xT y)2

||x||2 ≤ 2||x||2||y||2
||x||2 = 2||y||2 ≤ 2nu2.

(7)

‖8(x
T y)2

||x||6 xxT ‖ =
8(xT y)2

||x||4 ≤ 8||x||2||y||2
||x||4 =

8||y||2
||x||2 ≤ 8n2u2.

(8)

‖ 2

||x||2 yy
T ‖ =

2||y||2
||x||2 ≤ 2n2u2.

Finally, we get from (12) and (1)-(8) that

‖∇2f2(x, y)‖2 ≤ (2n2u2 + 8n2u2 + 2nu2 + 4n2u2 + 4n2u2)2 + 2(2un + 4un+ 2un)2 + 22

= (2nu2)2(9n+ 1)2 + 128n2u2 + 4.

�

According to the theorem 3.3, we found an upper bound for the spectral radius:

ρ(∇2f2(x, y)) = ‖∇2f2(x, y)‖2 ≤
√

(2nu2)2(9n+ 1)2 + 128n2u2 + 4 = ρ2.
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Now, we propose the following DC decomposition

f(x, y, w) = g(x, y, w) − h(x, y, w)

with

g(x, y, w) =
ρ1 + ρ2

2
‖x‖2 + (

ρ2
2

+ 1)‖y‖2 + ρ1
2
‖w‖2,

h(x, y, w) = g(x, y, w) − f(x, y, w).

3.2.2. DCA for NLP2

The DCA for NLP2 has the same framework as for NLP1 which yields the fixed
point method as:

(xk+1, yk+1, wk+1) ∈ argmin{g(x, y, w)−〈(x, y, w),∇h(xk , yk, wk)〉 : (x, y, w) ∈ C}

with

∇h(x, y, w) = ∇g(x, y, w) −∇f(x, y, w) =







(ρ1 + ρ2)x− w + 2 xT y
||x||2y − 2 (xT y)2

||x||2 x

ρ2y + 2 (xT y)
||x||2 x

ρ1w − x






.

Each iteration requires solving a strictly convex quadratic program over a polyhe-
dral convex set C. The convergence theorem and the stopping criteria of DCA are
the same as in the subsection 3.1.2.

3.3. Initialization strategy

We must find an initial point to start DCA. The choice of a “good” initial point
is very important since it will affect the quality of the numerical solution, as well
as the total number of iterations for the convergence of DCA. However, finding a
good initial point for DCA is always an open question. For a general DC program,
there is no deterministic method for finding a good initial point. Note that a good
initial point means a point from which DCA can converge to a global optimal
solution of the DC program.

In our specific problem, we propose three different estimation methods for
finding an initial point.

Init1. Zero initial point.
Init2. Optimal solution of SDP:

(SDP ) z∗ = max z
s.t. B − zD � 0

Bx−Ay ≥ 0
eTx = 1
x ≥ 0, y ≥ 0, u ≥ z ≥ l.

(13)
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Init3. We can also improve the initial point from the solution of (SDP) by solving
the later convex QP:

(QPz∗)x∗ ∈ argmin{xT (B − z∗D)x : Bx−Ay ≥ 0, eT x = 1, (x, y) ≥ 0}.

The (QPz∗) is a convex program since B − z∗D � 0. It is easy to prove that
if (QPz∗) has zero optimal value, then its optimal solution (x∗, y∗ = z∗x∗, w∗ =
Bx∗ − Ay∗, z∗) should be also the optimal solution of NLP and (x∗, λ∗ = 1

z∗
) is a

solution of EiCP. Otherwise, we can use its solution as an initial point for starting
DCA. In numerical computation, (SDP) can be solved by SeDuMi [19] and (QPz∗)
by CPLEX [3].

4. Numerical Simulations

In this section, we report some numerical simulation results. All experiments were
realized on a PC equipped with Windows Vista OS, Intel Core2 Duo P8400 2.26
GHz, 4GB RAM memory. Our codes were implemented in MATLAB R2008a
[4] (a C version is also developed). In the paper, we only give the results with
Matlab version. The YALMIP optimization toolbox v3 [9] is used for modeling
the mathematical programming problem, and for invoking CPLEX v12.1 [3] on
Matlab to solve the convex QPs and LPs.

In our tests, B is taken as a real positive definite matrix (often In) and A is
either an asymmetric matrix with randomly generated elements, or from the Matrix
Market NEP repository in applied sciences and engineering [5].

4.1. Tests of Asymmetric Matrices with Randomly Generated Uniformly
Distributed Elements

The first set of test problems uses B = In and A an asymmetric matrix whose
elements were randomly generated and uniformly distributed in the interval [0, 2].
The order n of the tested matrices is between 10 - 1000. In this set of tests, the
existence of the solution of EiCP is guaranteed since A ∈ C and −A ∈ R0 ,
B = In ∈ SC [2, 7]. Hence all NLP formulations proposed in our paper have zero
global optimal values. For these rests, we fixed the parameters ǫ1 = 10−6, ǫ2 = 10−6

and ǫ3 = 10−6 and used 0 as the initial point.

In Table 1, DCA shows a good performance for solving both the NLP1 and the
NLP2 formulations. For this kind of random problems, DCA always converges to
zero optimal value with few iterations (less than 10 iterations for NLP1 and 8
iterations for NLP2) and within very short computational time (less than 35.366
seconds for NLP1 and less than 31.895 seconds for NLP2). It seems that DCA for
NLP2 often requires less number of iterations and it is a bit faster than DCA for
NLP1. Moreover, when the order of the matrix becomes larger (more than 200),
most of the cases only need one iteration. These remarkable results outperformed
the Enumerative method, Branch-and-bound method, and BARON/GAMS pre-
sented in [7].
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Table 1. Computational results of DCA for NLP1 and NLP2 with randomly generated uniformly distributed

matrices and with 0 as starting point

n l u DCA for NLP1 DCA for NLP2

Iter Obj z* T Iter Obj z* T

10 7.51e-3 1.20e-2 10 1.27e-5 7.99e-3 0.661 8 1.16e-5 8.01e-3 0.465
30 1.18e-3 1.62e-3 3 1.09e-7 1.19e-3 0.220 2 1.22e-7 1.20e-3 0.127
50 4.00e-4 6.01e-4 2 1.63e-7 4.00e-4 0.169 2 1.69e-8 5.00e-4 0.149
70 2.00e-4 2.37e-4 2 2.98e-9 2.00e-4 0.216 2 2.87e-9 2.09e-4 0.190
90 1.19e-4 1.63e-4 2 3.33e-9 1.19e-4 0.229 2 3.35e-9 1.31e-4 0.196
100 9.77e-5 1.18e-4 2 6.35e-10 9.77e-5 0.244 2 8.69e-10 1.02e-4 0.227
200 2.48e-5 2.98e-5 1 1.11e-10 2.48e-5 0.481 1 1.65e-10 2.60e-5 0.615
300 1.11e-5 1.35e-5 1 2.39e-10 1.11e-5 0.985 1 2.09e-10 1.11e-5 0.966
400 6.26e-6 7.14e-6 1 4.69e-10 6.26e-6 1.934 1 7.04e-11 6.40e-6 2.522
500 4.01e-6 4.41e-6 1 1.39e-10 4.01e-6 3.736 1 3.66e-10 4.10e-6 4.488
600 2.78e-6 3.06e-6 1 4.80e-10 2.78e-6 11.684 1 6.77e-11 2.83e-6 10.369
700 2.04e-6 2.28e-6 1 4.31e-10 2.04e-6 12.003 1 7.20e-11 2.08e-6 10.101
800 1.56e-6 1.73e-6 1 7.32e-11 1.56e-6 18.875 1 1.53e-11 1.59e-6 17.699
900 1.23e-6 1.34e-6 1 2.56e-10 1.23e-6 31.316 1 1.04e-10 1.25e-6 30.813
1000 9.98e-7 1.09e-6 1 5.53e-10 9.98e-7 35.366 1 6.23e-11 1.01e-6 31.895

4.2. Tests of Matrix Market NEP repository

The second set of tests take B = In and A as an asymmetric matrix from the Matrix
Market repository NEP (Non-Hermitian Eigenvalue Problem) collection (a testbed
for the development of numerical algorithms for solving asymmetric eigenvalue
problems and challenging non-hermitian eigenvalue problems in real applications).
These matrices A (have orders between 60− 800) come from various areas and are
illustrated in Table 2:

Table 2. Matrices from Matrix Market NEP Collection

Disciplines Matrices

Electrical engineering BFW62A, BFW398A, DWA512, DWB521, BFW782A
Computational fluid dynamics TUB100, OLM100, RDB200, RDB450, BWM200, PDE225

Computer science LOP163
Robotic control RBS480A, RBS480B
Aeroelasticity TOLS90, TOLS340

Markov chain modeling RW136

We test DCA for NLP1 with fixed parameters ǫ1 = 10−5, ǫ2 = 10−5 and ǫ3 =
10−4. The numerical results are presented in Table 3. The column “T” in Table 3
represents the total computational time (seconds):

T = Time for finding initial point + Time for solving NLP via DCA.

Furthermore “It” is the number of iterations of DCA, “Obj” is the computed
optimal value of f obtained by DCA and “z∗” is the computed optimal value
of z. We start DCA via three different initial point estimation methods Initi, i =
1, 2, 3 in subsection 3.3 and compare their numerical solutions. We observe that the
different initial points yield different optimal solutions. We can summarize three
major results as follows:

(1) In most of the problems, the method Init3 is less computational expensive
and yields a better solution than the method Init2. The quality of the
computed solution can be evaluated by its objective value. The smaller the
value is, the better the solution will be.

(2) For the problems bwm200, rdb200, rdb400 and dwb512, the method Init3
gives directly a global optimal solution with zero optimal value, and DCA
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Table 3. Numerical results for NEP repository with three initial point strategies

Problem size Init1 (0-init) Init2 (SDP) Init3 (SDP+QP)

T It Obj z∗ T It Obj z∗ T It Obj z∗

bfw62a 62 25.02 328 2.40E-04 2.90E-01 8.08 100 2.10E-04 6.17E-01 15.46 193 2.12E-04 2.05E-01
bfw62a 62 25.02 328 2.40E-04 2.90E-01 8.08 100 2.10E-04 6.17E-01 15.46 193 2.12E-04 2.05E-01
tols90 90 4.61 52 9.97E-05 6.59E-02 177.59 1989 6.38E-04 7.35E-02 94.38 1055 1.05E-03 2.21E-02
olm100 100 12.79 146 2.04E-03 1.65E-03 24.93 283 1.25E-03 9.36E-02 12.92 145 2.02E-03 3.99E-03
tub100 100 0.35 4 9.80E-03 7.90E-08 16.35 182 1.98E-03 9.82E-02 4.83 54 5.24E-04 9.40E-02
rw136 136 3.20 32 5.46E-03 3.98E-04 4.18 41 1.81E-04 9.44E-01 0.85 8 8.97E-05 9.43E-01
lop163 163 3.28 30 4.66E-03 2.99E-04 1.91 17 8.92E-05 9.02E-01 9.54 84 2.56E-03 9.00E-01
bwm200 200 0.26 2 5.00E-03 3.57E-09 9.14 74 3.22E-04 2.37E-01 0.15 1 1.13E-07 2.37E-01
rdb200 200 0.25 1 5.00E-03 2.15E-09 10.50 83 2.32E-04 2.38E-01 0.14 1 1.22E-07 2.38E-01
pde225 225 2.58 19 4.01E-03 3.37E-05 17.65 92 4.05E-03 1.09E-01 2.88 21 3.53E-03 1.05E-01
tols340 340 3.29 18 2.38E-03 1.17E-05 204.82 939 6.57E-03 4.35E-03 36.82 18 2.37E-03 2.33E-05
bfw398a 398 1.09 5 2.45E-03 7.09E-07 100.67 305 1.49E-03 2.24E-01 37.12 11 1.74E-03 9.61E-02
rdb450 450 0.49 2 2.22E-03 1.98E-09 68.15 63 1.42E-04 2.38E-01 53.77 1 6.62E-08 2.38E-01
rbs480a 480 2.55 7 4.89E-04 9.86E-07 898.14 2500 2.39E-02 1.49E-01 70.33 8 3.27E-04 1.85E-03
rbs480b 480 2.10 6 1.71E-03 7.89E-08 231.07 475 1.73E-02 8.60E-03 86.94 47 7.10E-04 1.79E-03
dwa512 512 0.54 2 1.95E-03 5.13E-08 87.28 64 1.79E-03 1.30E+00 75.29 3 1.04E-04 1.29E+00
dwb512 512 3.47 13 1.72E-03 1.67E-05 80.32 18 3.34E-04 1.02E+00 76.12 1 1.33E-08 1.02E+00
bfw782a 782 0.93 2 1.26E-03 2.58E-08 378.51 229 1.03E-03 2.37E-01 250.27 4 1.11E-03 8.37E-02

required only one iteration. It means that the SDP+QP method could give
the best initial point.

(3) For problems of large size (larger than 200), the method Init1 is much less
computational expensive (within 0.2 − 3.5 seconds and 1 − 20 iterations)
than the other two methods. However, the last two methods often get better
solutions than Init1.

It should be noted that solving a SDP is computational expensive, especially for
large-scale problems. Most of the computational time for methods Init2 and Init3
is spent on solving SDP for searching an initial point. For instance, for the problem
“bfw782a”, the method with Init3 spent 248.348 seconds for solving SDP and
only 1.918 seconds for DCA. The main procedure of DCA is less computational
expensive and can handle very well large-scale nonlinear programs. The open
question is how to find a less expensive “good” initial point estimation method
for starting DCA. Despite the local optimality of DCA, we observe in the tables
1 and 3 that if the solution of EiCP exists, DCA can almost always converge to
the global optimal solution of NLP with our proposed starting point estimation
methods since the objective values are close to zero (less than 10−3). Although
solving SDP is computational expensive for large-scale problems, it is a good
method for initial point estimation.

5. Conclusion and Perspective

In this paper, we introduced three nonlinear programming (NLP) formulations for
the asymmetric EiCP, and reformulated these nonlinear programs as DC programs
that can be solved by efficient DC Algorithms (DCA). Three initialization strate-
gies of DCA are investigated. Some numerical simulations for randomly generated
problems and real world problems show a good performance of our methods. DCA
almost always gets a global optimal solutions with zero optimal value of NLPs
(solution of EiCP) within a short computational time and is especially efficient
for relatively large-scale problems.

The third NLP formulation is proposed in this paper but the use of DCA for
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solving the corresponding DC program has not been studied. The gradient and the
Hessian matrix of f can be computed in a similar way as in NLP2. However, there
is difficulty for using this formulation which lies on how to handle efficiently this
type of nonconvex constraint in the DC program. This topic will be investigated
in the future.
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