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Abstract: We investigate the solution of the Second-Order Cone Quadratic Eigenvalue Complementarity
Problem (SOCQEiCP), which has a solution under reasonable assumptions on the matrices included in
its definition. A Nonlinear Programming Problem (NLP) formulation of the SOCQEiCP is introduced.
A necessary and sufficient condition for a stationary point (SP) of NLP to be a solution of SOCQEiCP is
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enumerative method based on the Reformulation-Linearization Technique and prove its convergence. For
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1 Introduction
The Eigenvalue Complementarity Problem (EiCP) [29, 31] consists of finding a real number λ and a vector
x ∈ Rn \ {0} such that

w = λBx− Cx (1.1)

x ≥ 0, w ≥ 0 (1.2)

x>w = 0, (1.3)

where w ∈ Rn, and B and C ∈ Rn×n, and where B is assumed to be positive definite (PD). This problem
finds many applications in engineering [21, 27, 31]. If a triplet (λ, x, w) solves EiCP, then the scalar λ is
called a complementary eigenvalue and x is a complementary eigenvector associated with λ. The condition
x>w = 0 and the nonnegativity requirements on x and w imply that xi = 0 or wi = 0 for all 1 ≤ i ≤ n,
and so, these pairs of variables are called complementary. The EiCP always has a solution provided that
the matrix B is PD [21]. A number of techniques have been proposed for solving EiCP and its extensions
[2, 6, 14,15,19–22,25,28,33].

An extension of the EiCP, called the Quadratic Eigenvalue Complementarity Problem (QEiCP), was
introduced in [32]. This problem differs from the EiCP through the existence of an additional quadratic
term in λ, and consists of finding a real number λ and a vector x ∈ Rn \ {0} such that

w = λ2Ax+ λBx+ Cx (1.4)

x ≥ 0, w ≥ 0 (1.5)

x>w = 0, (1.6)

where w ∈ Rn and A,B, and C ∈ Rn×n. (We differ from (1.1) and use +Cx in (1.4) for notational conve-
nience.) The λ-component of a solution to QEiCP(A,B,C) is called a quadratic complementary eigenvalue
and the corresponding x-component is called a quadratic complementary eigenvector associated with λ.
Contrary to EiCP, QEiCP may have no solution. However, under some not too restrictive conditions on
the problem matrices A, B or C, QEiCP always has a solution [4,32], which can be found by either solving
QEiCP directly [2, 14, 15] or by reducing it to a 2n-dimensional EiCP [4, 18]. In particular, semi-smooth
Newton methods [2], enumerative algorithms [14,15,18], and a hybrid method that combines both previous
techniques [15,18], have been recommended for solving QEiCP.

The EiCP and the QEiCP can be viewed as mixed nonlinear complementarity problems [10], where the
complementary vectors x and w belong to the cone K = Rn+ and its dual K∗ = Rn+, respectively. The case
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of EiCP with K being the so-called second-order cone, or Lorentz cone, denoted SOCEiCP, was introduced
in [1], and can be stated as follows: Find a real number λ and a vector x ∈ Rn \ {0} such that

w = λBx− Cx (1.7)

x ∈ K,w ∈ K∗ (1.8)

x>w = 0, (1.9)

where B and C ∈ Rn×n, B is PD, and K is the second-order cone defined by

K = K1 ×K2 × . . .×Kr, (1.10)

where

Ki = {xi ∈ Rni : ||x̄i|| ≤ xi0} ⊆ Rni , (1 ≤ i ≤ r) (1.11)

r∑
i=1

ni = n, (1.12)

and where

x = (x1, . . . , xr) ∈ Rn, (1.13)

with

xi = (xi0, x̄
i) ∈ R× Rni−1, (1 ≤ i ≤ r). (1.14)

Here, ‖ · ‖ denotes the Euclidean norm and the dual cone K∗ of K is defined by

K∗ = {y ∈ Rn : y>x ≥ 0, ∀x ∈ K}. (1.15)

Observe that each cone Ki is pointed and self-dual, i.e., it satisfies Ki = K∗i . It is well known that the
Euclidean Jordan algebra [11] may be associated to the coneKi. Based on the spectral factorization of vectors
in Rn specified by the Jordan algebra, several approaches that reformulate second-order cone constraints as
smooth functions are presented in [16, 17]. Similar techniques were analyzed in [1] for finding a solution to
SOCEiCP. However, none of these semi-smooth Newton type algorithms in [1] induces global convergence
and there is no guarantee that they find a solution to the SOCEiCP even if a line-search procedure is
employed.

Alternative approaches for solving SOCEiCP consist of considering this problem as a nonlinear pro-
gramming problem (NLP) with a nonconvex objective function minimized over a convex set defined by the
intersection of the Lorentz cone with a set defined by linear constraints. In the so-called symmetric case
(where B and C are both symmetric matrices), the computation of a single stationary point (SP) of this
NLP is sufficient to solve the SOCEiCP [5]. In general, the computation of just one SP of NLP may not
be enough to find a solution for the SOCEiCP and a global minimum of NLP has to be computed. An
enumerative algorithm was introduced in [12] for finding such a global minimum, which explores a binary
tree that is constructed by partitioning the interval associated with some selected components of the com-
plementary variables involved. Whereas the NLP can be rewritten using a cone-wise formalism, in [12] and
in this paper, a component-wise notation is adopted, because it is consistent with the mode of operation
of the enumerative method. A hybrid algorithm combining this enumerative method and a semi-smooth
Newton algorithm was also introduced in [12] to enhance the computational efficiency of the enumerative
method.

Encouraged by the good results obtained by applying the hybrid method for solving SOCEiCP, we
investigate in this paper a similar method for solving the Second-Order Cone Quadratic Eigenvalue Com-
plementarity Problem (SOCQEiCP), which consists of finding a real number λ and a vector x ∈ Rn \ {0}
such that

w = λ2Ax+ λBx+ Cx (1.16a)

x ∈ K, w ∈ K∗ (1.16b)

x>w = 0, (1.16c)

where A, B, and C ∈ Rn×n and where K is defined in (1.10)–(1.14). Similar to the SOCEiCP [12], in order
to guarantee a nonzero complementary eigenvector, the following normalization constraint is added to the
problem:

e>x− 1 = 0, (1.17)

where e = (e1, e2, . . . , er) ∈ Rn, ei = (1, 0, . . . , 0)> ∈ Rni and i = 1, . . . , r. We design an appropriate
enumerative method for finding a solution of SOCQEiCP, which computes a global minimum of an NLP
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formulation of a 2n-dimensional SOCEiCP [5] that is equivalent to the SOCQEiCP. Such a formulation
computes a positive eigenvalue for the SOCQEiCP, but the same approach can be applied for computing
negative eigenvalues with a slight modification in the formulated 2n-dimensional SOCEiCP. The choice of
computing a positive eigenvalue is based on practical usefulness. For instance, for the mechanical contact
problem presented in [27], the computation of positive eigenvalues predicts the presence of unstable modes
in mechanical structures.

Although the enumerative algorithm is designed for a special SOCEiCP, it is different from the enumera-
tive algorithm introduced for the SOCEiCP in [12]. First, the objective function of the NLP problem exploits
the definition of the 2n-dimensional SOCEiCP and is therefore different from the one introduced in [12].
A crucial point for the success of the enumerative method is the use of the Reformulation-Linearization
Technique (RLT) bound-factor constraints. Such constraints can be formulated once appropriate bounds for
variables are computed. The procedures for the derivation of these bounds are based on certain sufficient
conditions for the matrices A and C proposed in this paper, which are different from the ones discussed
in [12]. The convergence of the enumerative algorithm is also different from the one established before for the
enumerative method in [12] and is included in this paper. Similar to the SOCEiCP, a semi-smooth Newton
method is developed for the SOCQEiCP that exploits the special structure of the 2n-dimensional SOCEiCP
equivalent to the SOCQEiCP. Furthermore, a hybrid method that combines the enumerative method and
the semi-smooth Newton method is also designed for enhancing the computational efficiency of using just
the former (convergent) algorithm.

We note that the resolution of the eigenvalue problems EiCP and QEiCP is important in many models
of dynamic analysis of structural mechanical systems, vibro-acoustic systems, electrical circuit simulation,
fluid dynamics and contact problems in mechanics (see, for instance, [27, 31]). In some applications, the
knowledge of eigenvalues can avoid the instability and unwanted resonance for a given system. In mechanical
structures, for example, eigenvalues are related to resonance frequency and to the stability analysis of the
corresponding dynamical systems. The computation of eigenvalues becomes crucial to identify damped
eigenvalues corresponding to unstable modes or large vibrations. Recently, it was shown that a wide range
of applications in engineering design, transportation science, game theory, and economic equilibrium, can
be formulated as optimization problems involving second-order cone constraints [23]. Hence, we believe that
the combination of eigenvalue complementarity problems and second-order cone programming problems may
be used to model a large class of practical applications involving engineering design, or stability analysis
in game theory or equilibrium contexts. A detailed study of such applications is recommended for further
investigation.

The remainder of this paper is organized as follows. In Section 2, we first recall the results established
in [5], which reduce the SOCQEiCP into a 2n-dimensional SOCEiCP under some sufficient conditions on
the matrices A and C. As for the SOCEiCP, we introduce an NLP formulation for the 2n-dimensional
SOCEiCP in Section 3, and we establish a necessary and sufficient condition for an SP of this NLP to be
a solution of SOCQEiCP. An enumerative algorithm is next proposed and analyzed in Sections 4 and 5 in
order to provably solve the SOCQEiCP by computing a global minimum of the equivalent NLP formulation.

The semi-smooth Newton method and the hybrid algorithm are discussed in Sections 6 and 7, respec-
tively. Numerical results with a number of test problems are reported in Section 8 in order to illustrate the
efficiency of the hybrid method in practice, and Section 9 closes the paper with some concluding remarks.

2 A 2n-dimensional SOCEiCP
Consider again the SOCQEiCP given by (1.16). Similar to [5], we impose the following (not too restrictive)
conditions on the matrices A and C:

(A1) The matrix A is positive definite (PD), i.e.,

x>Ax > 0, ∀x 6= 0.

(A2) C ∈ S′0 matrix, i.e., x = 0 is the unique feasible solution of

x ∈ K (2.1a)

Cx ∈ K. (2.1b)

Note that a matrix C is S′0 if there is no x 6= 0 satisfying the conditions (2.1) and the regularization constraint
(1.17). Now, consider the following 2n-dimensional SOCEiCP on K × K as defined in [5] along with the
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normalization constraint (1.17):

λ

[
A 0
0 I

] [
y
x

]
−
[
−B −C
I 0

] [
y
x

]
=

[
w
t

]
(2.2a)

y>w + x>t = 0 (2.2b)

x, y, w, t ∈ K (2.2c)

e>(x+ y) = 1. (2.2d)

Then the following property holds [5]:

Proposition 2.1. (i) The SOCEiCP (2.2) has at least one solution (λ, z), with z = (x, y) ∈ R2n.

(ii) In any solution of the SOCEiCP (2.2), t = 0 and λ > 0.

(iii) If (λ, z) is a solution of the SOCEiCP (2.2) with z = (y, x) ∈ R2n, then (λ, (1+λ)x) solves SOCQEiCP
(1.16).

As analyzed in [5], a negative eigenvalue for SOCQEiCP can be guaranteed if B replaces −B in the
definition of the 2n-dimensional SOCEiCP.

Many optimization textbooks [3,26] discuss the importance of scaling in order to improve the numerical
accuracy of the solutions computed by optimization algorithms. We define the following diagonal matrix:

D =
1

α
In, (2.3)

where In is the identity matrix of order n, and where

α =
√

max{|aij |, |bij |, |cij |}, (2.4)

i = 1, . . . , n and j = 1, . . . , n. Then the following properties can be easily shown.

Proposition 2.2. (i) A is PD if and only if DAD is PD.

(ii) C is S′0 if and only DCD is S′0.

Due to Proposition 2.2, the SOCQEiCP(DAD,DBD,DCD) satisfies the assumptions (A1) and (A2) if
A ∈ PD and C belongs to S′0. Therefore, one can always reduce the SOCQEiCP to one where the elements
of the matrix of the problem belong to the interval [−1, 1]. It is easy to show that this scaled SOCQEiCP
has the same eigenvalues of the original problem but the eigenvectors are scaled by a factor 1/α, where α is
given by (2.4).

3 A nonlinear programming formulation for SOCQE-
iCP

In this section, we propose an equivalent nonlinear programming formulation for the 2n-dimensional SOCE-
iCP. By following the approach given in [4] and [12], we introduce the vectors:

yij = λxij , j = 0, 1, . . . , ni − 1, i = 1, . . . , r, (3.1)

vij = λyij , j = 0, 1, . . . , ni − 1, i = 1, . . . , r, (3.2)

where (3.1) follows from the second row in (2.2a), noting that t = 0. Since λ > 0 and t = 0 in any solution
to SOCEiCP (2.2), then y>w = x>w = v>w = 0 in such a solution. This leads to the consideration of the
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following nonlinear program:

NLP1 : Minimize f(x, y, v, w, λ) = ‖y − λx‖2 + ‖v − λy‖2 + (x>w)2 + (y>w)2

+ (v>w)2 (3.3a)

subject to w = Av +By + Cx (3.3b)

‖x̄i‖2 ≤ (xi0)2, i = 1, . . . , r (3.3c)

‖ȳi‖2 ≤ (yi0)2, i = 1, . . . , r (3.3d)

‖v̄i‖2 ≤ (vi0)2, i = 1, . . . , r (3.3e)

‖w̄i‖2 ≤ (wi0)2, i = 1, . . . , r (3.3f)

e>(x+ y) = 1 (3.3g)

e>(y + v) = λ (3.3h)

xi0 ≥ 0, i = 1, . . . , r (3.3i)

yi0 ≥ 0, i = 1, . . . , r (3.3j)

vi0 ≥ 0, i = 1, . . . , r (3.3k)

wi0 ≥ 0, i = 1, . . . , r (3.3l)

where wi = (wi0, w̄
i) ∈ Rni , yi = (yi0, ȳ

i),∈ Rni , vi = (vi0, v̄
i),∈ Rni for i = 1, . . . , r, and w =

(w1, w2, . . . , wr) ∈ Rn, y = (y1, y2, . . . , yr) ∈ Rn, and v = (v1, v2, . . . , vr) ∈ Rn.

Remark 3.1. Whereas the nonlinear problem NLP1 can be rewritten using a cone-wise formalism, we
prefer to use the component-wise notation adopted above, because it is in line with the enumerative method
presented in Section 5.

Proposition 3.2. The nonlinear problem NLP1 in (3.3) has a global minimum (x∗, y∗, v∗, w∗, λ∗) such
that f(x∗, y∗, v∗, w∗, λ∗) = 0 if and only if (λ∗, x∗, y∗) is a solution of SOCEiCP (2.2) with λ∗ > 0 and
t∗ = 0.

Proof. If the optimal value of NLP1 is equal to zero, all the constraints of the SOCEiCP (2.2) are satisfied
with t∗ = 0. Note that if λ∗ = 0 then y∗ = v∗ = 0 by (3.3d), (3.3e), (3.3h), (3.3j), and (3.3k), and
this contradicts the assumption (A2) by (3.3b), (3.3c), (3.3f), (3.3g), and (3.3i). On the other hand, since
y∗ = λ∗x∗, then λ∗ < 0 is impossible by (3.3g), (3.3i), and (3.3j). The sufficiency implication is obvious.

Since any global minimum of NLP1 is a stationary point (see Remark 3.4 below) and a stationary
point is much easier to compute, it is interesting to investigate when a stationary point of NLP1 provides
a solution of SOCQEiCP. The following proposition addresses this issue.

Proposition 3.3. A given stationary point (x∗, y∗, v∗, w∗, λ∗) of NLP1 (satisfying the KKT conditions)
is a global minimum of the nonlinear problem NLP1 (3.3) with f(x∗, y∗, v∗, w∗, λ∗) = 0 (i.e., a solution to
SOCQEiCP) if and only if the Lagrange multipliers associated with the constraints (3.3g) and (3.3h) are
equal to zero.

Proof. Let α ∈ Rn, β ∈ Rr, µ ∈ Rr, σ ∈ Rr, ζ ∈ Rr, γ ∈ R, ξ ∈ R, δ ∈ Rr, θ ∈ Rr, ν ∈ Rr, and ρ ∈ Rr be
the Lagrange multipliers associated with the constraints (3.3b)–(3.3l), respectively.
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Define

D =



2x10 0 · · · 0
−2x̄1 0 · · · 0

0 2x20 · · · 0
0 −2x̄2 · · · 0
...

... · · ·
...

0 0 · · · 2xr0
0 0 · · · −2x̄r


∈ Rn×r, E =


e1 0 · · · 0
0 e2 · · · 0
..
. 0

. . .
...

0 0 0 er

 ∈ Rn×r, (3.4a)

F =



2y10 0 · · · 0
−2ȳ1 0 · · · 0

0 2y20 · · · 0
0 −2ȳ2 · · · 0
...

... · · ·
...

0 0 · · · 2yr0
0 0 · · · −2ȳr


∈ Rn×r, H =



2w1
0 0 · · · 0

−2w̄1 0 · · · 0
0 2w2

0 · · · 0
0 −2w̄2 · · · 0
...

... · · ·
...

0 0 · · · 2wr0
0 0 · · · −2w̄r


∈ Rn×r, (3.4b)

L =



2v10 0 · · · 0
−2v̄1 0 · · · 0

0 2v20 · · · 0
0 −2v̄2 · · · 0
...

... · · ·
...

0 0 · · · 2vr0
0 0 · · · −2v̄r


∈ Rn×r. (3.4c)

A KKT (stationary) point (x, y, v, w, λ) of the problem NLP1 satisfies the following conditions [3, 26]:

− 2λ(y − λx) + 2(x>w)w = −C>α+Dβ + Eδ + γe (3.5a)

2(y − λx)− 2λ(v − λy) + 2(y>w)w = −B>α+ Fµ+ Eθ + γe+ ξe (3.5b)

2(v − λy) + 2(v>w)w = −A>α+ ξe+ Lγ + Eν (3.5c)

2(x>w)x+ 2(y>w)y + 2(v>w)v = α+Hζ + Eρ (3.5d)

− 2x>(y − λx)− 2y>(v − λy) = −ξ (3.5e)

βi[‖x̄i‖2 − (xi0)2] = 0, i = 1, . . . , r (3.5f)

µi[‖ȳi‖2 − (yi0)2] = 0, i = 1, . . . , r (3.5g)

σi[‖v̄i‖2 − (vi0)2] = 0, i = 1, . . . , r (3.5h)

ζi[‖w̄i‖2 − (wi0)2] = 0, i = 1, . . . , r (3.5i)

δix
i
0 = θiy

i
0 = νiv

i
0 = ρiw

i
0 = 0, i = 1, . . . , r (3.5j)

βi ≥ 0, µi ≥ 0, σi ≥ 0, ζi ≥ 0, δi ≥ 0, θi ≥ 0, νi ≥ 0, ρi ≥ 0, i = 1, . . . , r, (3.5k)

where βi, µi, σi, ζi, δi, θi, νi, and ρi are the i-th components of the vectors β, µ, σ, ζ, δ, θ, ν, and
ρ ∈ Rr, respectively. By multiplying both sides of (3.5a), (3.5b), (3.5c), and (3.5d) by x>, y>, v>, and w>,
respectively, and by using (3.5j), we have

− 2λx>(y − λx) + 2(x>w)2 = −α>Cx+ 2

r∑
i=1

βi(−‖x̄i‖2 + (xi0)2) + γx>e

2y>(y − λx)− 2λy>(v − λy) + 2(y>w)2 = −α>By + 2

r∑
i=1

µi(−‖ȳi‖2 + (yi0)2) + γy>e

+ ξy>e

2v>(v − λy) + 2(v>w)2 = −α>Av + ξv>e+ 2

r∑
i=1

σi(−‖v̄i‖2 + (vi0)2)

2(x>w)2 + 2(y>w)2 + 2(v>w)2 = α>w +

r∑
i=1

ζi(−‖w̄i‖2 + (wi0)2).
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By adding the above equalities and by using (3.3b), (3.3g), (3.3h), (3.5f), (3.5g), (3.5h), and (3.5i), we get

2(x>w)2 + 2(y>w)2 + 2(v>w)2 + 2f(x, y, v, w, λ) = γ + ξλ. (3.7)

If γ = 0 and ξ = 0, then the objective function value is zero, which means that the stationary point
is a solution of SOCQEiCP. Conversely, suppose that (x, y, w, λ) is a solution of SOCQEiCP. Then, by
Proposition 3.2, f(x, y, v, w, λ) is null and the same holds for the terms (x>w)2, (y>w)2, and (v>w)2. Since
f(x, y, v, w, λ) = 0, we have y = λx and v = λy, and so ξ = 0 from (3.5e) and γ = 0 from (3.7).

Remark 3.4. Note that Proposition 3.3 addresses a given stationary point for NLP1 satisfying the KKT
conditions. However, it is important to note that for any given solution (x∗, w∗, λ∗) to SOCQEiCP, there
corresponds a KKT (stationary) point (x∗, y∗, v∗, w∗, λ∗) of NLP1. This follows without the need for
verifying any constraint qualification, since (x∗, y∗, v∗, w∗, λ∗) with y∗ = λ∗x∗ and v∗ = λ∗y is a feasible
solution to NLP1 at which the gradient of the objective function vanishes, and hence a KKT point.

4 Additional constraints for the nonlinear programming
formulation

Following the approach in [12], we show how to compute compact intervals for the variables involved in the
enumerative algorithm to be described in Section 5. In particular, we impose the following bounds on the
variables:

c ≤ x ≤ d (4.1a)

g ≤ y ≤ h (4.1b)

l ≤ λ ≤ u (4.1c)

L ≤ w ≤ U, (4.1d)

where c = [cij ], d = [dij ], g = [gij ], h = [hij ], L = [Lij ], and U = [U ij ], j = 0, 1, . . . , ni− 1, i = 1, . . . , r. In what
follows, we show how to compute the foregoing bounds, and we embed these within an enumerative search
process based on the Reformulation-Linearization Technique [30].

4.1 Lower and upper bounds for the x- and y-variables
Any feasible vectors x and y in the formulation NLP1 belong to the set

∆ = {(x, y) ∈ R2n : e>(x+ y) = 1, xi0 ≥ 0, −1 ≤ xij ≤ 1, yi0 ≥ 0,

− 1 ≤ yij ≤ 1, j = 1, . . . , ni − 1, i = 1, . . . , r}. (4.2)

Accordingly, lower and upper bounds for the variables x and y can be set as

gi0 = ci0 = 0, hi0 = di0 = 1, i = 1, . . . , r (4.3a)

gij = cij = −1, hij = dij = 1, j = 1, . . . , ni − 1, i = 1, . . . , r. (4.3b)

4.2 Upper bound for the variable λ
The next result provides an upper bound for the complementarity eigenvalue λ.

Theorem 4.1. Let µ =
∑n
i=1

(∑n
j=i |bij |+ |cij |

)
+ 1. Then we can take

u =
µ

ȳ>Aȳ> + x̄>x̄
, (4.4)

where (x̄, ȳ) is a global minimum of the following problem

Minimize y>Ay + x>x

subject to (x, y) ∈ ∆, (4.5)

where ∆ is given by (4.2).

Proof. See [12] for the proof.

Due to the assumption (A1), the problem (4.5) is a strictly convex quadratic problem. Hence, this
program has a unique optimal solution, which is a stationary point of the objective function in the simplex
∆.
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4.3 Lower bound for the variable λ
Consider the following convex nonlinear program:

NLP2 : Minimize

r∑
i=1

(yi0 + vi0) (4.6a)

subject to w = Av +By + Cx (4.6b)

(x, y) ∈ ∆ (4.6c)

Li0 ≤ wi0 ≤ U i0, i = 1, . . . , r (4.6d)

vi0 ≥ 0, i = 1, . . . , r (4.6e)

‖x̄i‖2 ≤ (xi0)2, i = 1, . . . , r (4.6f)

‖ȳi‖2 ≤ (yi0)2, i = 1, . . . , r (4.6g)

‖v̄i‖2 ≤ (vi0)2, i = 1, . . . , r (4.6h)

‖w̄i‖2 ≤ (wi0)2, i = 1, . . . , r, (4.6i)

where Li0 and U i0 are, respectively, some finite lower and upper bounds for the variable wi0, which are derived
in Section 4.4.

An optimal solution to NLP2 provides the required lower bound l for the variable λ. Note that NLP2 is
convex (noting that (4.6f)–(4.6i) are equivalent to the corresponding convex Lorentz cone constraints), which
means that a stationary (KKT) point gives a global minimum. This fact is a consequence of Propositions
4.2 and 4.3 stated below.

Proposition 4.2. NLP2 has an optimal solution.

Proof. Let (x̃, ỹ) ∈ ∆ satisfying (4.6f) and (4.6g) and let w̃ satisfying (4.6d) and (4.6i). Hence, (x̃, ỹ, w̃, ṽ)
is a feasible solution of NLP2, where ṽ is the unique solution of the linear system Aṽ = w̃ − Bỹ − Cx̃
(A ∈ PD). So it remains to show that NLP2 has no nonzero recession direction d = [dx, dy , dw, dv ]>, where
dx, dy , dw, dv are the components of d corresponding to the x-, y-, w- and v-variables, respectively. From
(4.6c), (4.6d) and (4.6i), any such recession direction must satisfy dx = dy = dw = 0 and from (4.6b) we
have Adv = 0, which yields dv = 0 because A ∈ PD. Thus the feasible region of NLP2 is nonempty and
bounded, and so NLP2 has an optimal solution.

Proposition 4.3. If C ∈ S′0, then NLP2 has a positive optimal value.

Proof. NLP2 has a zero optimal value if and only if yi0 = vi0 = 0 for all i = 1, . . . , r, which implies together
with (4.6g) and (4.6h) that v = y = 0. Hence there must exist vectors w and x, such that w = Cx and
the constraints (4.6b), (4.6c), (4.6f), (4.6i) hold. This is impossible, because of assumption (A2). Thus, if
C ∈ S′0, we conclude that the lower bound l is strictly positive.

4.4 Lower and upper bounds for the w-variables
In this section, we compute the bounds for each of the r sets of variables wi0 and for w̄i. First of all,
wi0 ≥ 0 ≡ Li0 for i = 1, . . . , r. Moreover, from the equation

w = λ2Ax+ λBx+ Cx, (4.7)

we have

wi0 =
n∑
j=1

(λ2ati,j + λbti,j + cti,j)xj , i = 1, . . . , r, (4.8)

where t1 = 1 and ti = 1 +
∑i−1
k=1 nk, i = 2, . . . , r. Hence, by (4.3),

wi0 ≤
n∑
j=1

(u2|ati,j |+ u|bti,j |+ |cti,j |) ≡ U
i
0, i = 1, . . . , r. (4.9)

Since

‖w̄i‖ ≤ wi0, i = 1, . . . , r, (4.10)
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we get the following lower and upper bounds for the variables wij :

Lij ≡ −U i0 ≤ wij ≤ U i0 ≡ U ij , j = 1, . . . , ni − 1, i = 1, . . . , r. (4.11)

Note that Lij and U ij , j = 0, . . . , ni, i = 1, . . . , r depend on u, which is the upper bound of the variable
λ. Such a value could be modified during the performance of the enumerative method. Therefore, at each
node of the enumerative method, the bounds for the w-variables are updated by using the current value of
u at that node.

4.5 Reformulation-Linearization Technique (RLT) constraints
Given the lower and the upper bounds in (4.1), we can incorporate additional RLT-based constraints [30]
within the nonlinear problem NLP1 in order to design the enumerative method presented in the next section.
We begin by introducing the following n additional variables:

zij ≡ xijwij , j = 0, 1, . . . , ni − 1, i = 1, . . . , r. (4.12)

By using the approach in [30], we define nonnegative bound-factors for the x-, y-, w-, and λ-variables as
follows: (x− c) and (d− x); (y − g) and (h− y); (w − L) and (U − w); and, (λ− l) and (u− λ). Then we
generate the so-called bound-factor RLT constraints by considering the following product restrictions:

[cij ≤ xij ≤ dij ] ∗ [Lij ≤ wij ≤ U ij ], j = 0, 1, . . . , ni − 1, i = 1, . . . , r (4.13)

[cij ≤ xij ≤ dij ] ∗ [l ≤ λ ≤ u], j = 0, 1, . . . , ni − 1, i = 1, . . . , r (4.14)

[gij ≤ yij ≤ hij ] ∗ [l ≤ λ ≤ u], j = 0, 1, . . . , ni − 1, i = 1, . . . , r. (4.15)

In (4.13), we consider the nonnegative product of each of the two bound-factors associated with the xij-

variable (i.e., (xij − cij) and (dij − xij)) with each of the two bound-factors associated with the wij-variable

(i.e., (wij − Lij) and (U ij − wij)), for each j = 0, 1, . . . , ni − 1, i = 1, . . . , r, which are subsequently linearized

using the substitutions specified in (4.12). In the same way, we consider the nonnegative products of the
bound-factors associated with the x-variables (i.e., (xij−cij) and (dij−xij)) and y-variables (i.e., (yij−gij) and

(hij −yij)) with the bound-factors for the λ-variable (i.e., (λ− l) and (u−λ)) together with the substitutions

(3.1) and (3.2). The following resulting 12n constraints are then incorporated within the nonlinear program
NLP1:

zij ≥ cijwij + Lijx
i
j − cijLij , j = 0, 1, . . . , ni − 1, i = 1, . . . , r (4.16a)

zij ≥ dijwij + U ijx
i
j − dijU ij , j = 0, 1, . . . , ni − 1, i = 1, . . . , r (4.16b)

zij ≤ cijwij + U ijx
i
j − cijU ij , j = 0, 1, . . . , ni − 1, i = 1, . . . , r (4.16c)

zij ≤ dijwij + Lijx
i
j − dijU ij , j = 0, 1, . . . , ni − 1, i = 1, . . . , r (4.16d)

yij ≥ xij l + cijλ− cij l, j = 0, 1, . . . , ni − 1, i = 1, . . . , r (4.16e)

yij ≥ xiju+ dijλ− diju, j = 0, 1, . . . , ni − 1, i = 1, . . . , r (4.16f)

yij ≤ xiju+ cijλ− ciju, j = 0, 1, . . . , ni − 1, i = 1, . . . , r (4.16g)

yij ≤ xij l + dijλ− dij l, j = 0, 1, . . . , ni − 1, i = 1, . . . , r (4.16h)

vij ≥ yij l + gijλ− gij l, j = 0, 1, . . . , ni − 1, i = 1, . . . , r (4.16i)

vij ≥ yiju+ hijλ− hiju, j = 0, 1, . . . , ni − 1, i = 1, . . . , r (4.16j)

vij ≤ yiju+ gijλ− giju, j = 0, 1, . . . , ni − 1, i = 1, . . . , r (4.16k)

vij ≤ yij l + hijλ− hij l, j = 0, 1, . . . , ni − 1, i = 1, . . . , r. (4.16l)

The complementarity constraint x>w =
∑r
i=1(xi)>wi is the sum of nonnegative terms, noting that

(xi)>wi = xi0w
i
0 + (x̄i)>w̄i ≥ xi0wi0 − ‖x̄i‖‖w̄i‖ ≥ 0, i = 1, . . . , r. (4.17)

This means that to have x>w = 0 with x ∈ K and w ∈ K, we must have (xi)>wi = 0 for i = 1, . . . , r. So
we can remove the quadratic term (x>w)2 from the objective function and, instead, add the term shown in
(4.19a) along with the following r linear constraints:

ni−1∑
j=0

zij = 0, i = 1, . . . , r. (4.18)
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Accordingly, the nonlinear programming formulation of SOCQEiCP, which we propose to solve by means of
the enumerative method presented in the next section, is given as follows:

NLP3 : Minimize f̃(x, y, v, w, λ, z) = ‖y − λx‖2 + ‖v − λy‖2 + ‖z − x ◦ w‖2

+ (y>w)2 + (v>w)2 (4.19a)

s.t. w = Av +By + Cx (4.19b)

‖x̄i‖2 ≤ (xi0)2, i = 1, . . . , r (4.19c)

‖ȳi‖2 ≤ (yi0)2, i = 1, . . . , r (4.19d)

‖v̄i‖2 ≤ (vi0)2, i = 1, . . . , r (4.19e)

‖w̄i‖2 ≤ (wi0)2, i = 1, . . . , r (4.19f)

e>(x+ y) = 1 (4.19g)

e>(y + v) = λ (4.19h)

(4.1) (4.19i)

(4.16) (4.19j)

(4.18) (4.19k)

where ◦ is the Hadamard product. Note that NLP3 is a convex constrained program with a nonconvex
objective function, where (4.19c)–(4.19f) are equivalent to the corresponding Lorentz cone inclusion con-
straints.

Similar to Proposition 3.2 for the nonlinear problem NLP1, the following results hold for NLP3:

Proposition 4.4. SOCQEiCP has a solution (x̃, w̃, λ̃) if and only if (x̃, ỹ, ṽ, w̃, λ̃, z̃) is a global minimum

of NLP3 with f̃(x̃, ỹ, ṽ, w̃, λ̃, z̃) = 0.

Proposition 4.5. For any given solution (x∗, w∗, λ∗) to SOCQEiCP, there corresponds a stationary point
(x∗, y∗, v∗, w∗, λ∗, z∗) of NLP3.

5 An enumerative method
In this section, we introduce an enumerative algorithm for finding a global minimum to the nonlinear prob-
lem NLP3. This is done by exploring a binary tree that is constructed by partitioning the intervals [cij , d

i
j ]

associated with the variables xij , j = 0, 1, . . . , ni − 1, i = 1, . . . , r and the interval [l, u] associated with the
variable λ. The steps of the enumerative method are as follows:

————————————————————————————————————————
Algorithm 1 Enumerative algorithm for SOCQEiCP
————————————————————————————————————————

. Step 0 (Initialization)

Set ε1 > 0 and ε2 > 0. Set k = 1 and find a stationary point (x̃, ỹ, ṽ, w̃, λ̃, z̃) of NLP3(1). If NLP3(1)
is infeasible, then SOCQEiCP has no solution; terminate. Otherwise, let P = {1} be the set of open

nodes, set UB(1) = f(x̃, ỹ, ṽ, w̃, λ̃, z̃) and let N = 1 be the number of generated nodes.

. Step 1 (Choice of node)
If P = ∅ terminate; SOCQEiCP has no solution. Otherwise, select k ∈ P such that UB(k) = min{UB(i) :

i ∈ P}, set P = P \ {k}, and let (x̃, ỹ, ṽ, w̃, λ̃, z̃) be the stationary point that was previously found at
this node.

. Step 2 (Branching rule)
Let

θ1 = max
{
|z̃ij − x̃ijw̃ij | : j = 0, 1, . . . , ni − 1, i = 1, . . . , r

}
(5.1)

θ2 = max
{
|ỹij − λ̃x̃ij |, |ṽij − λ̃ỹij | : j = 0, 1, . . . , ni − 1, i = 1, . . . , r

}
(5.2)

and let the maximum in (5.1) be achieved by (i∗, j∗).

(i) If θ1 ≤ ε1 and θ2 ≤ ε2 then λ̃ yields a quadratic complementary eigenvalue within the tolerance

ε2 with (1 + λ̃)x̃ being a corresponding quadratic eigenvector.

10



(ii) If θ1 > θ2 then partition the interval [c̃i
∗
j∗ , d̃

i∗
j∗ ] for the variable x̃i

∗
j∗ at node k into [c̃i

∗
j∗ , x̂

i∗
j∗ ] and

[x̂i
∗
j∗ , d̃

i∗
j∗ ] to generate two new nodes N + 1 and N + 2, where

x̂i
∗
j∗ =

x̃
i∗
j∗ if min{(x̃i∗j∗ − c̃

i∗
j∗ ), (d̃i

∗
j∗ − x̃

i∗
j∗ )} ≥ 0.1(d̃i

∗
j∗ − c̃

i∗
j∗ )

d̃i
∗

j∗+c̃i
∗

j∗
2

otherwise.
(5.3)

(iii) If θ1 ≤ θ2 then partition the interval [l̃, ũ] for λ̃ at node k into [l̃, λ̂] and [λ̂, ũ] to generate two new
nodes N + 1 and N + 2, where

λ̂ =

{
λ̃ if min{(λ̃− l̃), (ũ− λ̃)} ≥ 0.1(ũ− l̃)
ũ+l̃
2

otherwise.
(5.4)

. Step 3 (Solve, Update and Queue)

For each of ν = N + 1 and ν = N + 2, find a stationary point (x̂, ŷ, v̂, ŵ, λ̂, ẑ) of NLP3(ν). If NLP3(ν)

is feasible, set P = P ∪ {ν} and UB(ν) = f(x̂, ŷ, v̂, ŵ, λ̂, ẑ). Return to Step 1.

Below, we state the main convergence theorem for the foregoing enumerative algorithm for solving
SOCQEiCP. The proof closely follows that in [21], but we include the details for the sake of insights and
completeness.

Theorem 5.1. The enumerative algorithm for NLP3 run with ε1 = 0 and ε2 = 0 either terminates finitely
with a solution to SOCQEiCP, or else, an infinite branch-and-bound (B&B) tree is generated such that
along any infinite branch of this tree, any accumulation point of the stationary points obtained for NLP3

solves SOCQEiCP.

Proof. The case of finite termination is obvious. Hence, suppose that an infinite B&B tree is generated, and
consider any infinite branch. For notational convenience, denote ζ ≡ (x, y, v, w, λ, z) and let {ζs}S , with
s ∈ S, be a sequence of stationary points of NLP3 that correspond to nodes on this infinite branch. Then,
by taking a subsequence if necessary, we may assume

{ζs}S → ζ∗, {[cs, ds]}S → [c∗, d∗], and {[ls, us]}S → [l∗, u∗],

where [cs, ds] and [ls, us] respectively denote the vectors of bounds on x and λ at node s ∈ S of the B&B
tree. We will show that ζ∗ yields a solution to SOCQEiCP.

Note that along the infinite branch under consideration, we either branch on λ infinitely often, or else,

there exists some index-pair (̂i, ĵ) such that we branch on the interval for xî
ĵ

infinitely often. Let us assume

the latter (the case of branching on λ infinitely often is similar, as discussed below), and suppose that this
sequence of partitions corresponds to nodes indexed by s ∈ S1 ⊆ S. By the partitioning rule (5.3), since the

interval length for xî
ĵ

decreases by a geometric ratio of at most 0.9 over s ∈ S1, we have in the limit that

c∗î
ĵ

= d∗î
ĵ

= x∗î
ĵ

= ν∗, say. (5.5)

Furthermore, from (5.5) and the RLT bound-factor constraints (4.16a)–(4.16d), we have in the limit
that

z∗î
ĵ

= w∗î
ĵ
ν∗ = w∗î

ĵ
x∗î
ĵ
. (5.6)

Moreover, by the selection of the index-pair (̂i,ĵ) for s ∈ S1, via (5.1) and (5.2) and the branching
selection rule, we get that θ1 → 0 and so θ2 → 0 as well. (The case of branching on λ infinitely often likewise
leads to l∗ = u∗ in the limit, which from (4.16e)–(4.16l) yields that (3.1) and (3.2) hold true in the limit,
and so again both θ1 and θ2 approach zero in the limit.) Thus in either case, we get in the limit as s→∞,
s ∈ S1, that

z∗ij = w∗ij x
∗i
j , y

∗i
j = λ∗x∗ij , and v∗ij = λ∗y∗ij , j = 0, 1, . . . , ni − 1, i = 1, . . . , r, (5.7)

or that (3.1), (3.2), and (4.12) hold true in the limit at ζ∗. Consequently, the set of constraints (4.19b) yields
from (5.7) that, in the limit, w∗ −Aλ∗y∗ −By∗ − Cx∗ = 0, i.e., by applying the second set of identities in
(5.7), we have

w∗ = λ∗2Ax∗ + λ∗Bx∗ + Cx∗. (5.8)

Furthermore, by (4.18) and (5.7), we get
x∗>w∗ = 0. (5.9)

Likewise, from (4.19c)–(4.19f), (3.3i)–(3.3l), and (5.7), we get

x∗ ∈ K and w∗ ∈ K. (5.10)

Thus, (5.8)–(5.10) imply that the (x∗, w∗, λ∗)-part of ζ∗ represents a solution to SOCQEiCP.
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There are a couple of insightful points worth noting in regard to the proof of Theorem 5.1. First,
observe that by (5.7) and (5.9), we get that f̃(ζ∗) = 0 in the limit, as expected by Proposition 4.4. Second,
observe that for (5.7) to hold true, i.e., for (5.6) to be a consequence of (5.5) (and similarly for the case of
branching infinitely often on λ variable), we need just one pair of the four constraints from (4.16a)–(4.16d)
(and likewise, one pair from each of (4.16e)–(4.16h) and (4.16i)–(4.16l)). However, we carry the entire set
(4.16) because they assert additional valid inequalities that serve to assist in the convergence process.

6 A semi-smooth algorithm
In this section, we use a semi-smooth algorithm for solving the SOCQEiCP (2.2). Due to Proposition 3.2,
we know that t = 0 and the complementarity constraints (2.2b) can be replaced by

(xi)>ti = (yi)>wi = 0, i = 1, . . . , r. (6.1)

As in [12], we use the so-called natural residual function ϕiNR : Rni × Rni → Rni associated with the
second-order cone Ki, which is defined by

ϕiNR(xi, ti) = xi − PKi
(xi − ti) (6.2)

ϕiNR(yi, wi) = yi − PKi
(yi − wi), (6.3)

where PKi
(ηi) is the projection of a vector ηi = (ηi0, η̄

i) ∈ R × Rni−1 onto the second-order cone Ki for
each i = 1, . . . , r, i.e.,

PKi
(ηi) = arg min

τi∈Ki

‖τ i − ηi‖. (6.4)

The natural residual function ϕiNR satisfies the following relations:

ϕiNR(xi, ti) = 0⇔ xi ∈ Ki, ti ∈ Ki, (xi)>ti = 0 (6.5)

ϕiNR(yi, wi) = 0⇔ yi ∈ Ki, wi ∈ Ki, (yi)>wi = 0. (6.6)

Consider the functions Φ1(x, t) : Rn × Rn → Rn and Φ2(y, w) : Rn × Rn → Rn defined by

Φ1(x, t) =

ϕ
1
NR(x1, t1)

...
ϕrNR(xr, tr)

 and Φ2(y, w) =

ϕ
1
NR(y1, w1)

...
ϕrNR(yr, wr)

 . (6.7)

Then the SOCQEiCP (2.2) can be reformulated as follows:

Ψ(x, y, w, t, λ) =


Φ1(x, t)
Φ2(y, w)

(λA+B)y + Cx− w
λx− y − t

e>(x+ y)− 1

 = 0. (6.8)

Algorithm 2 given below describes the steps of the semi-smooth algorithm for finding a solution of (6.8).
Here, the Clarke generalized Jacobian of Φ at (x, y, w, t, λ) has the following form:

GJ(x, y, w, t, λ) =


In − Ṽ 0 0 Ṽ 0

0 In − V̂ V̂ 0 0
C (λA+B) −In 0 Ay
λIn −In 0 −In x
e> e> 0 0 0

 , (6.9)

where In denotes the n× n identity matrix and Ṽ , V̂ ∈ Rn×n are given as follows:

Ṽ =


Ṽ 1 0 0

0
. . . 0

0 0 Ṽ r

 , V̂ =


V̂ 1 0 0

0
. . . 0

0 0 V̂ r

 . (6.10)

The matrices Ṽ i and V̂ i, i = 1, . . . , r can be explicitly computed as in [12], by considering the spectral fac-

torization of vectors in Rn specified by the Jordan algebra [11]. The matrices Ṽ i and V̂ i may be set-valued,
and so in our numerical experiments we chose one value in the set and used it in the computation of the
Clarke generalized Jacobian.
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————————————————————————————————————————
Algorithm 2 Semi-smooth Newton algorithm
————————————————————————————————————————

. Step 0 (Initialization)

Let (x̂, ŷ, ŵ, t̂, λ̂) be an initial point such that (x̂, ŷ) ∈ ∆ and let ε̃1 and ε̃2 be selected positive tolerances.

. Step 1 (Newton direction)

Compute the Clarke generalized Jacobian GJ at (x̂, ŷ, ŵ, t̂, λ̂) as in (6.9). If GJ(x̂, ŷ, ŵ, t̂, λ̂) is singular,
stop, and terminate with an unsuccessful termination. Otherwise, find the semi-smooth Newton direction

GJ(x̂, ŷ, ŵ, t̂, λ̂)


dx
dy
dw
dt
dλ

 = −Ψ(x̂, ŷ, ŵ, t̂, λ̂)

with Ψ given in (6.8).

. Step 2 (Update)
Compute the new point

x̃ = x̂+ dx, ỹ = ŷ + dy , w̃ = ŵ + dw, t̃ = t̂+ dt, and λ̃ = λ̂+ dλ

and let x̂ = x̃, ŷ = ỹ, ŵ = w̃, t̂ = t̃, and λ̂ = λ̃. Compute Φ1(x̂, t̂) and Φ2(ŷ, ŵ) as in (6.7). If the
conditions

max{‖ŵ − (λ̂A+B)ŷ − Cx̂‖, ‖t̂− λ̂x̂+ ŷ‖} ≤ ε̃1
and

max{‖Φ1(x̂, t̂)‖, ‖Φ2(ŷ, ŵ)‖} ≤ ε̃2

hold, then stop with λ̂ being a quadratic complementary eigenvalue, t̂ = 0 in this solution and (1 + λ̂)x̂
being the corresponding quadratic complementary eigenvector (see Proposition 2.1(iii)). Otherwise, go
to Step 1.

7 A hybrid method
In order to combine the benefits of the enumerative method (Algorithm 1) with that of the semi-smooth
Newton method (Algorithm 2), (as borne by our computational results reported in Section 8), we also explore
the following hybrid algorithm:
————————————————————————————————————————
Algorithm 3 Hybrid algorithm
————————————————————————————————————————

. Step 0 (Initialization)
Let ε̄1 and ε̄2 be two positive tolerances for switching from the enumerative method to the semi-smooth.
Apply Step 0 of Algorithm 1 and let ε1 < ε̄1 and ε2 < ε̄2, where ε1 and ε2 are the tolerances used
in Algorithm 1. Let nmaxit be the maximum number of iterations allowed to be performed by the
semi-smooth method (whenever it is called).

. Step 1 (Choice of node)
Apply Step 1 of Algorithm 1.

. Step 2 (Decision step)

Let (x̃, ỹ, ṽ, w̃, λ̃, z̃) be the stationary point associated with the selected node k and compute θ1 and θ2
in (5.1) and (5.2), respectively.

(i) If θ1 ≤ ε1 and θ2 ≤ ε2 stop with a solution of SOCQEiCP.

(ii) If θ1 ≤ ε̄1 and θ2 ≤ ε̄2 then apply Algorithm 2. If Algorithm 2 terminates with a solution

(x∗, y∗, w∗, t∗, λ∗) then stop and set λ̃ = λ∗ and x̃ = x∗. Otherwise, Algorithm 2 terminates

without success (GJ(x̃, ỹ, w̃, t̃, λ̃) is singular or the number of iterations is equal to nmaxit); go to
Step 2(iii).
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(iii) Apply Steps 2 and 3 of Algorithm 1 by continuing with the node k and the solution (x̃, ỹ, ṽ, w̃, λ̃, z̃)
given at the beginning of this step, but skip Step 2(i) and the last instruction of Step 3 of Algorithm
1. Return to Step 1.

8 Computational experience
In this section, we discuss the numerical performance of the proposed algorithms for computing quadratic
complementary eigenvalues. The algorithms have been implemented in MATLAB [24] and the IPOPT
(Interior Point OPTimizer) solver [35] has been used to find a (local) solution to the nonlinear problem
NLP3(k) in (4.19) at each node k.

For the first class of problems, say Test Problems 1, the matrices A and −C were both chosen as the
identity matrix, while the matrix B was randomly generated with elements uniformly distributed in the
intervals [0, 1], [0, 5], [0, 10], and [0, 20]. For these preliminary test problems we have taken r = 1. These
problems are denoted by RAND(0,m, n), where 0 and m are the end-points of the interval, and n represents
the dimension of the problem, i.e., of the matrices A, B, C ∈ Rn×n. We have considered for generating B,
n = 5, 10, 20, 30, 40, and 50. Each SOCQEiCP was suitably scaled by using the arguments in Section 2
and with the normalization constraint

∑r
k=1 x

k
0 = 1. We solved Test Problems 1 by using the algorithms

presented in this paper and the commercial software BARON in order to compare their computational
efficiency. The values of tolerances used in the enumerative algorithm and the semi-smooth method were set
by considering our experience for the proposed algorithms, while BARON was used with default options.

In Section 8.3, the efficiency of the hybrid algorithm was also investigated for solving more structured
problems. First, we analyzed Test problems 1 with r > 1, then K is the Cartesian product of Lorentz cones
Ki as in (1.10).

We also considered another set of test problems where the matrix A is generated as

A = µI +G, (8.1)

with G being a randomly generated matrix having elements uniformly distributed in the interval [1, 10] and

µ >
|min{0, θ}|

2
, where θ is the smallest eigenvalue of G+G>, so that A ∈ PD. The matrices B and C were

chosen as in Test Problem 1 and r = 1. Let us call this set of experiments: Test Problems 2.
Finally, the hybrid algorithm was used to solve SOCQEiCP with a bigger dimension for the matrices

A,B,C, in particular n = [100, 250, 500, 1000]. The matrices were chosen as in both Test Problems 1 and 2
and r = 1.

8.1 Performance of the enumerative method
Table 1 reports the computational experience when solving Test Problems 1 with r = 1. The enumerative
method was run with the tolerances ε1 = 10−5 and ε2 = 10−5. In this table, we report the computed
value of the eigenvalue, the value of the function f derived at the solution, the value of the lower and
upper bounds for λ computed as in Sections 4.3 and 4.2, respectively, the number of nodes enumerated by
the algorithm, and the CPU time in seconds. Furthermore, the column titled “Fe” reports the value of
‖w− λ2Ax− λBx−Cx‖∞ derived at the solution, while the last column titled “compl” shows the value of
x>w at this solution. The value zero in the column titled “Nodes” indicates that a solution to SOCQEiCP
was found at the root node itself. The symbol * indicates that the enumerative algorithm was not able to
solve the problem, i.e., the algorithm attained the maximum number of iterations, fixed as nmax = 300. In
this case we include the value of the objective function, the corresponding value of “Fe”, and “compl” for
the best stationary point available at termination.

As a benchmark for comparison, we solved these same problems using BARON (Branch-And-Reduce
Optimization Navigator [34]), which is an optimization solver for the global solution of algebraic nonlinear
programs and mixed-integer nonlinear problems. This software package implements a branch-and-reduce
algorithm, enhanced with a variety of constraint propagation and duality techniques for reducing ranges of
variables in the course of the algorithm. The code for solving the nonlinear problem NLP1 given in (3.3)
was implemented in the General Algebraic Modeling Systems (GAMS) language [7] and the solver BARON
was used with default options. The numerical results for solving the same set of test problems as above are
displayed in Table 2. We use the notation * to indicate that BARON was not able to find a solution to
SOCQEiCP.

Comparing Tables 1 and 2, we see that the enumerative method terminated prematurely with just an
approximate global optimizer for five test problems, while BARON failed to find a global minimum for nine
instances. The values of “Fe” and “compl” obtained with the application of the enumerative algorithm are
similar, in general, to those delivered by the global minima given by BARON. Moreover, the computational
time for the enumerative method was comparable to that required by BARON.
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Problem λ f l u Nodes CPU Fe compl
RAND( 0, 1, 5) 1.082938 4.26029e-09 0.020000 35.272922 0 2.34870e+00 2.02926e-06 3.96564e-05
RAND( 0, 1, 10) 1.593798 6.52343e-11 0.627456 124.253405 0 2.08824e+00 8.70040e-07 2.70959e-06
RAND( 0, 1, 20) 1.659763 2.81584e-10 0.553049 427.686658 0 1.84855e+00 2.00214e-06 6.42486e-06
RAND( 0, 1, 30) 1.946947 4.98848e-08 0.515724 937.744286 5 4.28787e+01 9.32290e-06 5.27508e-05
RAND( 0, 1, 40) 1.706686 5.06694e-08 0.376076 1688.709420 7 9.30902e+01 6.55095e-06 6.76991e-05
RAND( 0, 1, 50) 2.074764 5.37378e-08 0.660755 2598.493157 11 2.58905e+02 4.25443e-06 4.89964e-05
RAND( 0, 5, 5) 3.460789 4.95718e-09 0.396632 77.997883 0 1.71447e+00 2.68093e-06 5.76957e-06
RAND( 0, 5, 10) 1.523588 2.24121e-09 0.211826 331.050776 0 2.96092e+00 1.33716e-06 1.75369e-05
RAND( 0, 5, 20) 2.812431 2.68931e-07 0.108645 1220.999048 11 6.63263e+01 2.01636e-06 6.22590e-05
RAND( 0, 5, 30) 8.890165 2.42596e-07 0.279609 2834.246323 29 1.88836e+02 1.05060e-05 6.48083e-06
RAND( 0, 5, 40) 7.126082 1.48623e-05 0.000002 4919.380520 17 2.15128e+02 3.95135e-07 7.52232e-05
RAND( 0, 5, 50) 6.778310 2.30355e-08 0.108923 7658.289831 33 6.82388e+02 2.69855e-06 3.66761e-06
RAND( 0, 10, 5) 1.721980 4.55823e-10 0.071138 146.082341 0 5.04101e+00 9.90465e-07 6.38694e-06
RAND( 0, 10, 10) * [2.14363e-04] 1.92697e-04 1.75494e-02
RAND( 0, 10, 20) 10.831012 1.28806e-06 0.026954 2253.090185 45 3.24989e+02 6.65534e-06 1.02847e-05
RAND( 0, 10, 30) 13.028430 4.62255e-09 0.177992 5015.490181 15 1.21843e+02 6.12185e-06 5.10067e-07
RAND( 0, 10, 40) * [1.50762e-03] 6.12468e-03 1.18574e-01
RAND( 0, 10, 50) 13.738982 3.98646e-04 0.000278 13714.150693 67 1.56999e+03 4.50216e-05 1.05689e-04
RAND( 0, 20, 5) 16.255630 1.90235e-09 0.317963 267.804999 9 3.63311e+01 2.43221e-06 1.99696e-07
RAND( 0, 20, 10) * [2.61659e-06] 8.19066e-05 8.79952e-03
RAND( 0, 20, 20) 21.691343 6.55340e-08 0.030432 4217.129671 41 3.16184e+02 8.94613e-06 6.82192e-07
RAND( 0, 20, 30) 25.043734 4.32816e-06 0.137434 9410.157670 53 7.09780e+02 3.06579e-06 3.42778e-06
RAND( 0, 20, 40) * [7.78051e-01] 8.06774e-03 2.59614e-03
RAND( 0, 20, 50) * [2.71665e-04] 3.34161e-02 4.24448e-03

Table 1: Performance of the enumerative method for solving the scaled SOCQEiCP - Test
Problems 1 with r = 1.

8.2 Performance of the semi-smooth method
Test Problems 1 with r = 1 were solved by using the semi-smooth Newton algorithm presented in Section 6
and the results are shown in Table 3. The starting point was chosen as λ = 1, (x0, x̄, y0, ȳ) = (1/2, 0, 1/2, 0),
w = λ2Ax + λBx + Cx, and t = λx − y. The algorithm was run with ε̃1 and ε̃2 both equal to 10−4. In
Table 3, we report the value of the computed eigenvalue, the number of iterations taken by the algorithm
to converge, and the CPU time in seconds. The notation “*” indicates that the algorithm was not able
to converge within the maximum number of iterations, which was set at 100. Note that the semi-smooth
method is much faster than the enumerative algorithm for obtaining a solution, but on the other hand, it is
often not able to converge within the given number of iterations.

8.3 Performance of the hybrid method
For all the instances of Test Problems 1 for which the enumerative method required more than one node
for finding a solution, we applied the hybrid method proposed in Section 7. The values of the tolerances ε̄1
and ε̄2 used to switch from the enumerative method to the semi-smooth Newton method were set to 10−1.
For the semi-smooth Newton algorithm, the values of the tolerances to terminate the algorithm were taken
as ε̃1 = 10−4 and ε̃2 = 10−4. The maximum number of iterations for the semi-smooth method was fixed as
100.

Table 4 displays the value of the computed eigenvalue, the number of nodes enumerated by the algorithm,
the number of times that the semi-smooth Newton method was called, which we indicate as “Ntime”, the
CPU time in seconds, and the values of “Fe” and “compl” defined as above.

We observe that the additional use of the semi-smooth Newton method greatly improved the efficiency
and efficacy of the enumerative method. Indeed, the algorithm was able to find a solution by enumerating
a fewer number of nodes and successfully solved all the test problems.

In Table 5, we report the results obtained for Test Problems 1, considering n = [30, 40, 50, 100] and
r = 5, 10. These numerical results indicate that the performance of the hybrid algorithm does not seem to
be much influenced by the number r of cones Ki.

Table 6 shows that the performance of the hybrid method for solving small dimensional Test Problems 2
is quite good. In fact, the algorithm was always able to terminate without branching. We have only included
the case of r = 1, as similarly to the Test Problems 1 the performance of the algorithm does not seem to
deteriorate when there exists more than one cone Ki (r > 1). Tables 7 and 8 present the performance of the
hybrid method for solving SOCQEiCPs of larger dimension. In Table 7, we use the notation “*” to indicate
that the hybrid method was not able to find a solution to SOCQEiCP. This occurred due to the inability
of the NLP solver IPOPT to compute an SP of large-scale NLPs at some node of the tree generated by the
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Problem λ f CPU Fe Compl
RAND( 0, 1, 5) 1.082341 4.31470e-10 2.02500e+00 1.30062e-06 1.10085e-05
RAND( 0, 1, 10) 1.593563 4.55799e-10 1.50600e+00 1.58997e-06 6.75148e-06
RAND( 0, 1, 20) 1.660184 2.16221e-12 4.34000e+00 1.27705e-08 4.36405e-07
RAND( 0, 1, 30) 1.942111 6.28458e-11 4.65900e+00 3.23224e-08 1.81879e-06
RAND( 0, 1, 40) 1.704470 1.17660e-16 3.73360e+01 5.45797e-10 3.08607e-09
RAND( 0, 1, 50) *
RAND( 0, 5, 5) 3.459575 1.30447e-11 2.24100e+00 1.07787e-06 2.88253e-07
RAND( 0, 5, 10) 1.446998 2.99299e-10 1.12800e+00 4.96887e-06 6.29473e-06
RAND( 0, 5, 20) 2.710466 6.54488e-15 6.15600e+00 2.51409e-11 1.02480e-08
RAND( 0, 5, 30) 8.877550 9.33578e-14 2.99770e+01 2.08784e-10 3.85227e-09
RAND( 0, 5, 40) *
RAND( 0, 5, 50) *
RAND( 0, 10, 5) 1.718571 3.15284e-11 2.51100e+00 1.50084e-06 1.54437e-06
RAND( 0, 10, 10) 4.330785 4.12716e-10 1.04500e+00 7.50345e-07 1.05383e-06
RAND( 0, 10, 20) *
RAND( 0, 10, 30) 13.019492 8.08185e-12 2.24020e+01 5.76955e-09 1.67219e-08
RAND( 0, 10, 40) *
RAND( 0, 10, 50) *
RAND( 0, 20, 5) 16.260461 1.01362e-12 4.65100e+00 3.12245e-07 -3.51639e-10
RAND( 0, 20, 10) 2.940613 1.02493e-11 1.42800e+00 1.69245e-07 3.48378e-07
RAND( 0, 20, 20) *
RAND( 0, 20, 30) 25.225560 4.50830e-14 1.37040e+02 4.04710e-07 2.52569e-08
RAND( 0, 20, 40) *
RAND( 0, 20, 50) *

Table 2: Performance of BARON for solving the scaled SOCQEiCP - Test Problems 1 with
r = 1.

hybrid algorithm. It is important to add that the hybrid algorithm was able to solve all Test Problems 2 of
larger dimension and some of the larger dimensional Test Problems 1. As before, we have only considered
the simpler case of r = 1, as the performance of the hybrid algorithm does not seem to be much influenced
by an increase of the number r of cones Ki.

In summary, we recommend the proposed hybrid algorithm for solving small and medium scale SOCE-
iCPs. The algorithm also seems to be able to solve larger problems but its efficiency depends on the efficacy
of the NLP solver required for the computation of SPs of NLPs associated with the nodes that are generated
during the solution process.

9 Conclusions
In this paper, we have investigated the solution of the Second-Order Cone Quadratic Eigenvalue Comple-
mentarity Problem, SOCQEiCP(A,B,C), with A ∈ PD and C ∈ S′0. By exploiting the equivalence between
the n-dimensional SOCQEiCP and a suitable 2n-order SOCEiCP, we introduced an appropriate Nonlin-
ear Programming (NLP) formulation for the latter having a known global optimal value. An enumerative
method was developed for solving this NLP formulation and was proven to globally converge to a solution
of the SOCQEiCP. However, for some test problems, the enumerative method was able to compute only an
approximate solution in practice. Hence, a hybrid method that combines the enumerative algorithm with a
semi-smooth method was proposed for implementation, and numerical results were presented to demonstrate
that this hybrid method is quite efficient for solving SOCQEiCP.
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Problem λ Nodes Ntime CPU Fe compl
RAND( 0, 1, 5) 0.507923 0 1 3.23268e+00 3.39037e-11 -3.91813e-10
RAND( 0, 1, 10) 0.436174 0 1 3.76220e+00 9.42866e-09 -6.49900e-09
RAND( 0, 1, 20) 0.354956 0 1 6.32724e+00 4.09118e-09 -1.03500e-08
RAND( 0, 1, 30) 0.364482 0 1 6.41729e+00 1.12094e-11 -3.00790e-11
RAND( 0, 1, 40) 0.350691 0 1 9.06318e+00 6.55479e-13 -9.55104e-13
RAND( 0, 1, 50) 0.282274 0 1 8.66157e+00 4.18338e-12 -9.19511e-13
RAND( 0, 5, 5) 0.601275 0 0 7.63706e-01 7.45369e-07 2.15762e-05
RAND( 0, 5, 10) 0.874923 0 1 1.27381e+00 4.84486e-12 -1.17259e-12
RAND( 0, 5, 20) 0.491872 0 1 1.60495e+00 7.69552e-11 -2.39343e-11
RAND( 0, 5, 30) 0.560976 0 1 4.13364e+00 2.06329e-12 -3.80205e-12
RAND( 0, 5, 40) 0.450423 0 1 6.69110e+00 6.59862e-10 -2.46968e-10
RAND( 0, 5, 50) 0.497433 0 1 9.94207e+00 2.74173e-10 -2.42885e-10
RAND( 0, 10, 5) 2.439656 0 1 1.23137e+00 4.09995e-08 2.66742e-09
RAND( 0, 10, 10) 0.883004 0 1 4.43661e+00 8.65339e-11 -5.91115e-12
RAND( 0, 10, 20) 0.763963 0 1 1.09788e+01 2.60727e-12 -2.56096e-12
RAND( 0, 10, 30) 0.643874 0 1 5.76569e+00 1.17444e-11 -8.30925e-12
RAND( 0, 10, 40) 0.573783 0 1 9.53772e+00 3.43679e-12 -2.06868e-12
RAND( 0, 10, 50) 1.019625 0 1 5.49344e+00 1.54778e-11 -1.34171e-11
RAND( 0, 20, 5) 0.319510 0 1 4.42838e+00 5.72875e-14 -4.34999e-14
RAND( 0, 20, 10) 1.764161 0 1 1.25310e+00 4.37855e-13 -1.19113e-13
RAND( 0, 20, 20) 1.061790 0 1 3.04612e+00 7.96641e-14 -6.04378e-14
RAND( 0, 20, 30) 1.567029 0 1 3.12999e+00 6.67869e-16 -1.76942e-16
RAND( 0, 20, 40) 1.658715 0 1 8.73667e+00 4.83487e-13 -1.56009e-12
RAND( 0, 20, 50) 1.184286 0 1 5.10534e+00 6.66613e-10 -1.25037e-10

Table 6: Performance of the hybrid method for solving the scaled SOCQEiCP - Test Prob-
lems 2 with r = 1.

Problem λ Nodes Ntime CPU Fe compl
RAND( 0, 1, 100) 2.604932 0 1 1.00762e+01 8.32667e-16 -4.44089e-16
RAND( 0, 1, 250) 3.848789 0 1 1.14371e+02 2.62984e-15 -1.31622e-16
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