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Abstract: In this paper a mixed complementarity eigenproblem (MCEIP) is formulated 
and a method is proposed for its numerical solution. This mathematical 
problem is motivated by the study of divergence instabilities of static 
equilibrium states of finite dimensional mechanical systems with unilateral 
frictional contact. The complementarity eigenproblem is solved by 
transforming it into a non-monotone mixed complementarity problem (MCP), 
which is then solved by using the algorithm PATH. The proposed method is 
used to study some small sized examples and some large finite element 
problems. 

 
1. Introduction 
 

The instability of configurations of static equilibrium of finite 
dimensional plane linearly elastic systems, in frictional contact with a flat 
obstacle, and subjected to constant applied forces, was recently discussed by 
Martins et al. [1]. Some of their results were generalised in Martins and 
Costa [2] for the case of non-linear elastic systems in frictional contact with 
curved obstacles. In the first of the above papers it is shown that a necessary 
and sufficient condition for the occurrence of divergence instability along a 
constant admissible direction, is that an appropriate eigenproblem with the 
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form of an inclusion or a variational inequality is solved, with an appropriate 
sign of the corresponding real eigenvalue (see Section 2 of the present 
paper). Still in the paper [1], a necessary condition and a sufficient condition 
for this type of instability were presented, both of which can be easily 
checked. However, in many circumstances, those conditions do not yield 
sufficiently sharp results, in particular the necessary condition frequently 
gives a poor lower bound estimate for the onset of instability [1]. For this 
reason we propose in the present paper a procedure for the numerical 
solution of the governing inclusion or variational eigenproblem. This is 
achieved by transforming that problem into a complementarity eigenproblem 
(see Section 3), by means of an appropriate change of the contact related 
variables (see, for instance, Klarbring [3]). The problem is subsequently 
transformed into a non-monotone mixed complementarity problem (MCP), 
in which the unknown eigenvalue is treated as a non-negative variable that is 
complementary with an additional variable involved in a normalising 
constraint that prevents the trivial solution (see Section 4). The algorithm 
PATH (Dirkse and Ferris [4]) is successfully applied to solve some small 
sized examples and some finite element problems (see Section 5). 

 
2. Formulation 

 
We consider a finite dimensional linearly elastic system with plane 

motion that may establish frictional contact with a fixed flat obstacle, and 
that is subjected to constant applied forces. The typical situations in mind 
and the largest examples studied in the present paper involve finite element 
discretizations of linearly elastic bodies. 

For sufficiently smooth time evolutions of the contact candidate particle p 
of the system, the normal (N) and the tangential (T) components of the 
vectors (in �2) of the displacements (up(t)), the velocities (u

·
p(t)), and the 

reactions (r p(t)) of the particle p satisfy the (Signorini) unilateral contact 
conditions 

 
 uNp(t) ≤ 0,   rNp(t) ≤ 0,   uNp(t) rNp(t) = 0, (1) 
 

and the (Coulomb) friction law 
 
 |rTp(t)| + µ rNp(t) ≤ 0,   |u 

·
Tp(t)| rTp(t) − µ u ·Tp(t) rNp(t) = 0, (2) 

 
where µ ≥ 0 is the coefficient of friction. 

 We wish to study a particular type of dynamic instability of an 
equilibrium state of the system. The smooth portions of its dynamic 
evolution under constant applied forces f0 ∈ �N, are governed by the 
momentum balance equations 
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 M ü(t) + K  u(t) = f0 + r (t), (3) 

 
where M  is the N x N symmetric positive definite (SPD) mass matrix, K  is 
the N x N SPD stiffness matrix, t ≥ 0 is the time variable, ( 

. 
) denotes the 

time derivative, and u(t) ∈ �N and r (t) ∈ �N are the vectors of the unknown 
generalised displacements and reactions at time t, respectively. The system 
of equations (3) holds together with the unilateral frictional contact 
conditions (1), (2) at each contact candidate particle p, and together with the 
absence of reactions along the degrees of freedom that are not subjected to 
any kinematic constraint: the sub-vector rF(t) of r (t) satisfies 
 

 rF(t) = 0. (4) 
 

On the other hand, an equilibrium state of the system under the same applied 
forces f0 is characterized by a displacement vector u0 ∈ �N and a reaction 
vector r 0 ∈ �N that satisfy the equilibrium equations (let ü ≡≡≡≡ 0 in (3)): 

 
 K  u0 = f0 + r 0, (5) 

 
together with the following form of (4) and of the frictional contact 
conditions at each contact candidate particle p (let u

⋅
p ≡≡≡≡ 0 in (2)): 

 
 rF

0 = 0, (6) 

 uNp
0  ≤ 0,   rNp

0  ≤ 0,   uNp
0 

 rNp
0  = 0,   |rTp

0 | ≤ − µ rNp
0 . (7) 

 
In Martins et al. [1] it is shown that, for t in some right neighbourhood of 

some instant τ (t ∈ [τ, τ + ∆τ[), there exist dynamic solutions of the form 
 

 u(t) = u0 + α(t) v,            r (t) = r 0 + β(t) w, (8) 
 

where v and w define constant directions in the sets of right admissible 
displacement and reaction rates at the equilibrium state (u0, r 0), the function 
of time α is twice continuously differentiable, α and α� are non-negative and 
non-decreasing in [τ, τ + ∆τ [, the function β is continuous, non-negative and 
non-decreasing in the same interval, and the initial values α(τ) ≥ 0, )(τα� ≥ 
0 are arbitrarily small, if and only if there exists a number λ ≥ 0, and two 
vectors v and w in �N, v ≠ 0, such that 

 
(λ2 M  + K ) v = w, 

wf = 0,   
vd = 0, 
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vNsp = 0, 
vTsp sign(rTsp

0
) ≤ 0,   wTsp sign(rTsp

0
) + µ wNsp ≤ 0, 

[wTsp sign(rTp
0
) + µ wNp] [vTsp sign(rTsp

0
)] = 0, 

vNzp ≤ 0, wNzp ≤ 0, vNzp wNzp
 = 0, 

 |wTzp| + µ wNzp ≤ 0,  |vTzp| wTzp − µ vTzp wNzp = 0, (9) 
 

where the following notations were introduced for the equilibrium state 
(u0,r 0): 
f: degrees of freedom not subjected to any kinematic constraint, including 

those of the contact candidate particles that currently are not in contact 
(free); 

z: particles in contact with zero reaction; 
d: particles in contact with reaction strictly inside the friction cone and 

consequent vanishing (right) displacement rate; 
s: particles in contact with non-vanishing reaction on the friction cone and 

consequent possible slip in the near future. 
When the conditions indicated above are satisfied, the equilibrium state 
corresponding to u0 and r 0 is dynamically unstable: a divergence instability.  

The problem (9) can be equivalently written as an inclusion or a 
variational inequality eigenproblem (see Martins et al. [1]). In order to solve 
it numerically, we shall write it now as a complementarity eigenproblem. 

 
3. The complementarity eigenproblems 

 
For simplicity of the presentation, we shall restrict ourselves to the 

transformation of (9) into a complementarity eigenproblem in the particular 
case in which the set of particles in contact with zero reaction (the particles 
z) is empty. This transformation starts with the elimination of both degrees 
of freedom of the particles in contact with reaction strictly inside the friction 
cone (the stick particles d), the elimination of the normal degrees of freedom 
of the particles in contact with non-vanishing reaction on the friction cone 
(the impending slip particles s), and the following change of variables (see 
also Klarbring [3]):  

 

 x = 
�
�
�

�
�
�xf

xTs

 = 
�
�
	



�
�I  0

0 −S
 
�
�
�

�
�
�vf

vTs

 = 
�
�
�

�
�
�vf

−SvTs

 ∈ �N*, (10) 

 y = 
�
�
�

�
�
�yf

yTs

 = 
�
�
�

�
�
�0

−(SwTs+µwNs)
 ∈ �N*, (11) 

 
where I  is an identity (sub-)matrix, S = diag(sign(r

0

Tp)) and N* (≤ N) is the 
number of degrees of freedom of the system that may be (right) active at the 
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equilibrium state (the free f plus the impending slip Ts degrees of freedom). 
In this manner, the following mixed complementarity eigenproblem in λ2 

(MCEIP-λ2) is obtained: find λ2 ≥ 0 and (x, y) ∈ �N* x �N*, with x ≠ 0, such 
that 

 
 (λ2 M*  + K*) x = y , (12) 
 yf = 0 ,  (13) 
 0 ≤ xTs ⊥ yTs ≥ 0 , (14) 

 
where ⊥ denotes orthogonality between the vectors xTs and yTs in the 
euclidean inner product. The matrices M*  and K* are linear pencils of 
matrices in µ, 

 
 M* = M*(µ) = M 0 + µ M1,      K* = K*(µ) = K 0 + µ K1 , (15) 
 

with the structure exemplified below for K*: 
 

 K0 = 
�
�
	



�
�  K f,f −K f,TsS

−SKTs,f SKTs,TsS
 ,   K 1 = 

�
�
	



�
�    0    0

 −KNs,f K Ns,TsS
 .  (16) 

 
The matrices M 0 and K 0 in the linear pencils M*  and K* are SPD matrices. 
In fact M 0 and K 0 are similar to the SPD principal sub-matrices of M  and K  
corresponding to the f plus the Ts degrees of freedom, because the diagonal 
transformation of variables in (10) is orthogonal. By continuity in µ, it 
follows that, for sufficiently small µ, the matrices M*  and K* are  positive 
definitive (PD). Note also that in the case of a diagonal mass matrix M , the 
matrix M* equals the matrix M 0, so that it is also diagonal and PD. 

It is now quite simple to recover the sufficient condition and the 
necessary condition that were used in [1] to study this problem. A sufficient 
condition for the occurrence of a divergence instability of the form (8) is that 
there is λ ≥ 0 and x ∈ �N*, with x ≠ 0, such that  

 
 (λ2 M*  + K*) x = 0 , (17) 
 xTs ≥ 0. (18) 
 
Note that this particular case of (12) - (14) results from a priori assuming 
that the solution satisfies yTs = 0, i.e. the reactions of the contact particles in 
impending slip (the s particles) remain on the boundary of the friction cone, 
which means that those particles remain in impending slip or do initiate 
sliding. Note also that the simplicity of (17), (18) relatively to (12) - (14) is 
that now (17) is a linear eigenproblem, and the additional inequalities in (18) 
can be checked a posteriori. On the other hand, doing the inner product of 



6 A. Pinto da Costa, I.N. Figueiredo, J.J. Júdice and J.A.C. Martins
 
(12) with x, it is immediately seen that a necessary condition for the 
occurrence of a divergence instability of the form (8) is that 
 
 the matrix M*(µ) is not PSD or the matrix K*(µ) is not PD. (19) 
 
Since, as mentioned above, the matrices M*(µ) and K*(µ) are PD for 
sufficiently small µ, we can immediately conclude that no divergence 
instability of the type (8) can occur for sufficiently small coefficients of 
friction. Furthermore, in the particular case of a diagonal mass matrix, the 
necessary condition (19) reduces to:  
 
 the matrix K*(µ) is not PD, (20) 
 
because, as observed above, M* is then diagonal and PD. A related result in 
a continuum framework can be found in Chateau and Nguyen [5]. 
Continuing to consider, for simplicity, this particular case of diagonal M  and 
M*, the minimum eigenvalue of the symmetric part of K* (which is relevant 
for (20)) is necessarily smaller or equal [1] to the real part of all eigenvalues 
of K* (which are evaluated in (17)); this is one of the main reasons for the 
necessary condition (20) to be satisfied (much) earlier than the sufficient 
condition (17).  

A related problem that deserves special attention consists of computing 
the values of the friction coefficient µ and the associated mode shapes that 
correspond to the transition between stability and instability of a given 
equilibrium state. This is expressed by the condition λ = 0 in (12), leading 
thus to the formulation of a mixed complementarity eigenproblem in µ 
(MCEIP-µ): find µ ≥ 0 and (x, y) ∈ �N* x � N*, with x ≠ 0, such that  

 
 (K 0 + µ K 1) x = y , (21) 
 yf = 0 , (22) 
 0 ≤ xTs ⊥ yTs ≥ 0 . (23) 

 
Before turning to the numerical solution of the complementarity 

eigenproblems introduced in this section, we wish to mention an 
enumerative procedure that yields all the solutions of the mixed 
complementarity eigenproblems (12) - (14) or (21) - (23). For instance, the 
problem MCEIP-λ2 (12) - (14) can be solved by computing the solutions of a 
set of 2ns linear eigenproblems, each of them followed by checking some 
appropriate inequalities; ns is the number of particles in impending slip at the 
equilibrium state. Each of those linear eigenproblems is obtained by a priori 
assuming a specific combination of admissible near future evolutions for the 
s particles. Some of those particles are assumed to become stick (a subvector 
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x Ts  

stick of xTs is assumed to be null), while the contact reactions of the other 
ones (the slip or impending slip ones) are assumed to remain on the 
boundary of the friction cone (a subvector yTs  

slip of yTs is assumed to be null). 
After elimination of the assumed stick variables (x Ts  

stick = 0) for each specific 
combination of near future evolutions, and denoting 
 

 x−−−− = 
�
�
�

�
�
�xf

x Ts
slip , (24)  

 
the problem (12) - (14) can be simplified to a linear eigenproblem of the 
form 

 
 (λ2 M

−−−−
 + K

−−−−
) x−−−− = 0, (25)  

 
followed by the verification of the inequalities 
 
 y Ts

stick
 ≥ 0, x Ts

slip
 ≥ 0. (26)  

 
The small sized example presented in Section 5 is solved by using this 
enumerative procedure. However, the rapid growth of the number of linear 
eigenproblems with the number of slip particles makes it impossible to use 
such method in systems with many contact particles. Finally, it is worth 
noting that the linear eigenproblem corresponding to the sufficient condition 
(9) is just one of the 2ns linear eigenproblems considered in this enumerative 
procedure (25), (26). 
 
4. Numerical solution of the complementarity eigenproblems 

 
In the previous section two complementarity eigenproblems were 

defined, namely the MCEIP-λ2 (12)-(14) and the MCEIP-µ (21)-(23). In this 
section we establish their equivalency to non-linear mixed complementarity 
problems. This is done by introducing a normalising constraint and an 
additional non-negative variable (γ) that is complementary to the eigenvalue 
(λ2 or µ); this one, in turn, is also considered as an additional non-negative 
variable. 

 
Proposition 1. The MCEIP-µ defined in (21)-(23) has a solution if and 

only if there is a solution to the following mixed complementarity problem 
(MCP-µ): find (x, µ) ∈ �N*+1 and (y, γ) ∈ �N*+1 such that 

 
 (K 0 + µ K1) x = y, (27) 
 eT xTs = c + γ, (28) 
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 yf = 0,  (29) 

 0 ≤ (xTs, µ) ⊥ (yTs, γ) ≥ 0, (30) 
 

where e is a vector of dimension ns will all components equal to 1, and c is 
an arbitrary positive real number. 

  
Proof. Let x, y and µ solve the MCEIP-µ. Then  xTs ≠ 0, because xTs = 0 

and x ≠ 0 would imply xf ≠ 0, which is impossible, since the equations in 
(21) corresponding to the free degrees of freedom f would reduce to  

 
K f,f xf = 0, 

 
K f,f being a SPD matrix. Then (x, µ) and (y, γ), with γ = 0, solve the MCP-
µ (27)-(30), with c = eT xTs > 0. Note that this positive value of c is arbitrary, 
because the norm of the vectors x and y that solve the eigenproblem (21)-
(23) is arbitrary. 

Conversely, let (x, µ) and (y, γ) solve the MCP-µ (27)-(30). Then eT xTs = 
c + γ for some c > 0, so that eT xTs > 0, xTs ≠ 0, and, consequently, x ≠ 0. 
Hence x, y and µ  solve the MCEIP-µ (21)-(23). 

 
We can now deduce an equivalent formulation for the MCEIP-λ2. 
 
Proposition 2. The MCEIP-λ2 (12)−(14) has a solution if and only if 

there is a solution to the following mixed complementarity problem (MCP-
λ2): find (x, λ2) ∈ �N*+1 and (y, γ) ∈ �N*+1 such that 

 
 (λ2

 M* + K*) x = y, (31) 
 yf = 0, (32) 
 eT xTs = c + γ, (33) 
 0 ≤ (xTs, λ2) ⊥ (yTs, γ) ≥ 0, (34) 

 
where, again, e is a vector of dimension ns will all components equal to 1, 
and c is an arbitrary positive constant. 

 
Proof. Let x, y and λ2 be a solution to the MCEIP-λ2. Then xTs ≠ 0, 

because xTs = 0 and x ≠ 0 would imply xf ≠ 0, which is impossible, since the 
equations in (12) corresponding to the free degrees of freedom f would 
reduce to  

 
(λ2 M f,f + K f,f) xf = 0, 
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with M f,f and K f,f both SPD and λ2 ≥ 0. Then (x, λ2) and (y, γ), with γ = 0, 
solve the MCP-λ2 (31)-(34), with c = eT xTs > 0. Note that the observation 
and the arguments presented in the final part of the proof of Proposition 1 
can also be applied to conclude the present proof. 

 
Remark. Since K 0 is SPD, any solution to the MCEIP-µ has µ > 0 (recall 

also section 3). Consequently the complementary variable γ vanishes, so that 
the choice of a positive constant c as data for the MCP-µ specifies the value 
of eT xTs, i.e., the l1 norm of the vector xTs. In the case of the MCP-λ2 the 
same conclusion can be obtained when µ is not a solution to the MCEIP-µ, 
because in this situation λ2 ≠ 0 and, again, the complementary variable γ 
equals zero. 

 
It may be of interest to search for solutions to the MCEIP-µ with µ below 

or above a certain prescribed value (µ0). For that purpose one has to change a 
non-negative variable in the MCP-µ (27)-(30): in order to search for 
solutions with µ ≤ µ0 (or µ ≥ µ0), one has to consider the new variable ζ = µ0 

− µ (or ζ = µ  − µ0), and then to replace µ in (27) by µ0 – ζ (or µ0 + ζ), and to 
replace µ in (30) by ζ. Similar procedures can also be followed for the 
MCEIP-λ2. 

 
Propositions 1 and 2 show that the solution of the eigenproblems under 

study can be obtained by processing two mixed non-linear complementarity 
problems. There are a number of algorithms for solving these problems. The 
reader can find in [6] a list of some relevant approaches for non-linear 
complementarity problems (NCP). More recently, interior-point algorithms 
[7, 8, 9] and a Newton's method for solving systems of non-differentiable 
equations [10], based on the so called Fischer function, have also been 
recommended for this type of problems. The latter algorithms are usually 
quite efficient, but unfortunately they require the monotonicity of the 
function, or some similar property, to be useful. The complementarity 
problems discussed in this section do not share this property. The algorithm 
PATH described in [4] is an algorithm that can process non-monotone mixed 
complementarity problems and then has been our choice to process the 
problems discussed in this section. We recall that PATH is a robust GAMS 
implementation [11] of a path following technique that was first discussed in 
Ralph [12] and later improved by Dirkse and Ferris [11]. This algorithm 
exploits the equivalence of a mixed complementarity problem with a system 
of nondifferentiable equations F(x) = 0, where F is the so-called normal map 
due to Robinson [13]. The zero of the function is computed by a path 
generation technique that in each iteration pursues a root of a linear 
approximation of the normal map at the current iterate. This is done by using 



10 A. Pinto da Costa, I.N. Figueiredo, J.J. Júdice and J.A.C. Martins
 
a pivotal scheme similar to the well-known Lemke algorithm [14, 15]. A 
non-monotone line-search technique [16] is also included to guarantee 
sufficient decrease of the Euclidean norm of the normal map. The algorithm 
possesses strong global convergence properties [4]. As discussed in the next 
section, the algorithm has been able to process all the non-linear 
complementarity problems tried so far that were known to have some 
solution. A theoretical investigation of this behaviour is certainly a subject 
for future research. 

 
5. Examples and numerical results 

 
The first example involves two particles of mass m each, supported by 

linear elastic springs of stiffness k, and in contact with an horizontal obstacle 
(see Fig. 1). The same example was discussed earlier by Alart and Curnier 
[17] in the context of  non-uniqueness of solution  to incremental quasi-static 

kk

k k

k1 2

m m

N

T

φ

 

Figure 1. A structure with two contact particles leading to multiple solutions of MCEIP-λ2. 

problems with friction. 
The system has four degrees of freedom and the generalised 

displacements u = (uT1, uN1, uT2, uN2) are used. The external applied forces f1 
and f2 are such that both particles are in a state of impending slip towards the 
right or towards the left. The mass and stiffness matrices of the system are, 
respectively,  

 M  = m I  ,      K  = k 

�
�
�
	



�
�
�c2+1 −cs −1 0

−cs s2+1   0 0

−1   0 c2+1 cs

  0   0  cs s2+1

 , 
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Table 1. Static equilibrium state, conditions on the data and solutions of 
MCEIP-λ2 for the structure with two contact particles of Fig. 1 

S1 S2 
Conditions on the 

data 
Solutions of MCEIP-λ2 

 

 

+1 

 

 

c2 + 2 − (µs)2 ≤ 0 

λ2 = 
k
m [ ]− (c2+1) + 1+(µcs)2  

xT1 > 0 arbitrary,   xT2 = 
xT1

1+(µcs)2+µcs
 

yT1 = yT2 = 0   (SLIP - SLIP) 

xT1 > 0 arbitrary; 

xT2 = 0;  

yT1 = 0;  

yT2 = k xT1 

(SLIP - STICK) 

 
 
 
 

c2 + 1 − µcs ≤ 0 

 
 
 
 

λ2 =  − 
k
m (c2 + 1 − µcs) 

 
xT1 = 0;  

xT2 > 0 arbitrary; 

yT1 = k xT2; 

yT2 = 0  

(STICK - SLIP) 
xT1 > 0 arbitrary; 

xT2 = 0; 

yT1 = 0; 

yT2 = k xT1 

(SLIP - STICK) 

 
 
 
 

λ2 =  − 
k
m (c2 + 1 − µcs) 

xT1 = 0;  

xT2 > 0 arbitrary; 

yT1 = k xT2; 

yT2 = 0  

(STICK - SLIP) 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
+1 

 

 

 

 

 

 

 

 

 

 

 

−1 
 
 
 
 
 
 

 

c2 + 2 − µcs ≤ 0 

 

λ2 = − 
k
m (c2 + 2 − µcs) 

xT1 = xT2 

= x > 0 arbitrary; 
yT1 = yT2 = 0 

(SLIP - SLIP) 

 

+1 

 
− 
 

 

No Solution 

 

 

 
 
 
−1  

 

−1 

 

 

c2 + 2 − (µs)2 ≤ 0 

λ2 = 
k
m [ ]− (c2 + 1) + 1+(µcs)2  

xT1 = 
xT2

1+(µcs)2+µcs
   ,   xT2 > 0 arbitrary; 

yT1 = yT2 = 0   (SLIP - SLIP) 
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where I  denotes the 4 x 4 identity matrix, s = sin φ, c = cos φ, and φ is the 
angle between the inclined springs and the horizontal.  

For the previously described system, the problem MCEIP-λ2 is: find λ2 ≥ 
0 and (xT1, xT2, yT1, yT2), with (xT1, xT2) ≠ (0, 0), such that 

 

�
�
	



�
�λ2m + k (c2+1−µcs S1)        − S1 S2 k

       − S1 S2 k λ2m+k (c2+1+µcs S2)
 
�
�
�

�
�
�xT1

xT2
 = 
�
�
�

�
�
�yT1

yT2
 

  

0 ≤ 
�
�
�

�
�
�xT1

xT2
 ⊥ 
�
�
�

�
�
�yT1

yT2
 ≥ 0, 

 
where Sp = sign(rTp

0
), and xTp and yTp are defined as in (10) and (11). 

Four different combinations of signs for the tangential reactions exist, 
each one corresponding to a different static equilibrium state. Table 1 
contains the solution sets of the above MCEIP-λ2, for each of those 
combinations of signs of the static tangential reactions. When both particles 
are in a state of impending slip to the same side, there is at most one 
solution; when the left particle is in impending slip towards the right and the 
right one is in impending slip towards the left, no divergence instability of 
the type (8) is found; when the left particle is in impending slip towards the 
left and the right particle is in impending slip towards the right, then, 
depending on the data, there are at most two or three solutions. 

As mentioned earlier, all the solutions for this small sized mechanical 
system could be calculated by the enumerative procedure presented in the 
end of section 3. But the algorithm PATH was also tested in these small 
problems. For the sets of numerical data used, the algorithm PATH was 
always able to find the corresponding complete solution set presented in 
Table 1. For the particular cases that have two solutions with different values 
of λ2, the technique mentioned in Section 4 for searching solutions with λ2 
below or above a certain fixed value of λ2 was successfully applied. 
 

The second example involves a rectangular polyurethane block sliding on 
an araldite obstacle that was studied experimentally by Villechaise and 
Zeghloul ([18], [19]). In the numerical simulations we assume that the elastic 
block slides on a flat rigid obstacle. The block is discretized with a uniform 
mesh of 800 linear P1 finite elements that has 21 contact candidate nodes 
(see Fig. 2). The elastic properties are: modulus of elasticity = 5 MPa, 
Poisson's ratio = 0.48. The geometric parameters are length L = 80 mm, 
height H = 40 mm and thickness = 9.6 mm. The density of the material is 1.2 
kg/dm3. 
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The block is submitted to a quasi-static loading consisting first of 
prescribed displacements on the side CD, which is symmetrically pressed 
against the obstacle until the resultant of the normal reactions on side AB is - 
55N. Then the loading proceeds by prescribing an horizontal motion of the 
side CD towards the left. In this tangential loading phase, the successive 
equilibrium states have a growing region of nodes in impending slip 
spreading from right to left. 

This same example was studied earlier in [1], also by the finite element 
method, but using only the necessary (19) and the sufficient (17), (18) 
conditions for divergence instability recalled in Section 3 of the present 
paper. For the value of the coefficient of friction (µ = 1.1) identified from the 
experimental results of Villechaise and Zeghloul ([18], [19]), the numerical 
results showed that the necessary condition (19) is satisfied very early along 
the tangential loading process; however, for all the successive equilibrium 
configurations of the block along that tangential loading, the sufficient 
condition (17), (18), that involves slip of all nodes in impending slip, could 
never be satisfied. The objective of the continuation of that study in the 
present paper is thus to check if, after the necessary condition is satisfied, 
there exist or not instability modes of a type different from the all-slip modes 
of the sufficient condition (17), (18). 

With this purpose, we search first for solutions to the MCEIP-µ at the 
equilibrium states obtained with µ = 1.1, along the tangential loading of the 
block, i.e. we search for the values of the coefficient of friction that would 
originate a transition from stability to instability in that equilibrium 
configuration. Nontrivial eigenvectors of MCEIP-µ were obtained when 11 
or more contact nodes were in a state of impending slip. It is found that the 
values of µ that solve the MCEIP-µ decrease with the increase of the number 
of nodes in impending slip in the successive equilibrium configurations. 
Moreover, the eigenvectors of the MCEIP-µ associated with higher values of 
µ correspond to modes having, in average, a larger number of impending slip 
nodes that get stuck. 

For an equilibrium state having the two left nodes stuck, the 15 
intermediate nodes in impending slip and the 4 nodes on the right free, the 
algorithm PATH converged to a solution of the MCEIP-µ. That solution has 
a very large value of µ (60.81) and a mode represented in Fig. 2, where an 
impending slip node (the fourth from the left) becomes stuck. For the same 
equilibrium configuration, the classical eigenproblem corresponding to the 
sufficient condition (17), (18) was solved, showing that no positive λ exists 
that corresponds to an admissible non-trivial solution with all impending slip 
nodes (s) in impending slip or in slip (the sufficient condition (17), (18) 
could not be satisfied). 
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Figure 2. An instability mode in the transition between stability and instability for µ = 60.81 
(solution of MCEIP-µ) 

 

Figure 3. An instability mode in the transition between stability and instability for µ = 1.71 
(solution of MCEIP-µ) 

For the final equilibrium state of the loading process, for which the 17 
nodes on the left are in impending slip and the 4 nodes on the right are free, 
a nontrivial eigenvector could be found for a much lower coefficient of 
friction (µ = 1.71). The corresponding divergence eigenmode is represented 
in Fig. 3. Since all the nodes in impending slip do slide, this mode is given 
by the sufficient condition (17), (18) (an all-slip mode). For the same 
equilibrium configuration and choosing a µ > 1.71 the MCEIP-λ2 has a 
similar non-trivial eigenvector and a positive eigenvalue λ2 > 0.  
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For other meshes and other aspect ratios H/L, the same trends were 
observed in the behaviour of the system. 

 
6. Conclusions 

 
In this paper a method to solve a mixed complementarity eigenproblem 

(MCEIP) has been proposed. The motivation to study this mathematical 
problem was the divergence instability of static equilibrium states of 
mechanical systems with unilateral frictional contact. The complementarity 
eigenproblem has been transformed into a non-monotone mixed 
complementarity problem (MCP), and the algorithm PATH has been applied 
to solve small sized examples and large finite element problems. 
• In all the small sized examples, all the existing solutions could be 

obtained with the PATH algorithm. 
• In the large finite element simulations with the block of Zeghloul and 

Villechaise [18], [19], it has been observed that: 
- whenever solutions were known to exist [the all-slip solutions of the 

sufficient condition (17), (18)] the PATH algorithm always 
converged to one such all-slip solution;  

- in some cases where all-slip solutions did not exist [the sufficient 
condition (17), (18) could not be satisfied] other solutions with slip 
and stick were obtained, but only for very large values of µ; 

- for reasonably small values of µ, no solutions different from the all-
slip solutions provided by the sufficient condition (17), (18) were 
found. 

 
References 

 
[1] J.A.C. Martins, S. Barbarin, M. Raous, A. Pinto da Costa, Dynamic 

stability of finite dimensional linearly elastic systems with unilateral contact 
and Coulomb friction, Computer Methods in Applied Mechanics and 
Engineering, 177/3-4 (1999), 289-328. 

 
[2] J.A.C. Martins, A. Pinto da Costa, Stability of finite dimensional 

nonlinear elastic systems with unilateral contact and friction, Int. J. Solids 
Structures, 37(18) (2000), 2519-2564. 
 

[3] A. Klarbring, Contact, friction, discrete mechanical structures and 
mathematical programming, Lecture notes for the CISM course Contact 
Problems: Theory, Methods, Applications, 1997. 

 



16 A. Pinto da Costa, I.N. Figueiredo, J.J. Júdice and J.A.C. Martins
 

[4] S.P. Dirkse, M.C. Ferris, The PATH solver: A non-monotone 
stabilitization scheme for mixed complementarity problems, Optimization 
Methods and Software, 5 (1995), 123-156. 

 
[5] X. Chateau, Q.S. Nguyen, Buckling of elastic structures in unilateral 

contact with or without friction, Eur. J. Mech. A/Solids 10(1) (1991), 71-
89. 

 
[6] P. Harker and J.S. Pang, Finite-dimensional variational inequalities 

and nonlinear complementarity problems: a survey of theory, algorithms 
and applications, Mathematical Programming, 48 (1990) 161-220. 

 
[7] P. Tseng, An infeasible path-following method for monotone 

complementarity problems, SIAM Journal on Optimization , 7 (1997) 386-
402. 

 
[8] S. Bellavia and M. Macconi, An inexact interior point method for 

monotone nonlinear complementarity problems, Manuscript, Universitá di 
Firenze, 1999. 

 
[9] M. Kojima, T. Noma and A. Yoshise, Global convergence in 

infeasible interior-point algorithms, Mathematical Programming, 65 
(1994) 43-72. 

 
[10] T. De Luca, F. Facchinei and C. Kanzow, A semismooth equation 

approach to the solution of nonlinear complementarity problems, 
Mathematical Programming, 75 (1996) 407-439. 

 
[11] S. Dirkse, M. Ferris, P. Preckel and T. Rutherford, The GAMS 

callable program library for variational and complementarity solvers, 
Technical Report 94-07, Computer Sciences Department, Madison, 
Wisconsin. 

 
[12] D. Ralph, Global convergence of damped Newton's method for 

nonsmooth equations via the path search, Mathematics of Operations 
Research, 19 (1994), 352-389. 

 
[13] S. Robinson, Normal maps induced by linear transformations, 

Mathematics of Operations Research, 17 (1992) 691-714. 
 



A complementarity eigenproblem with frictional contact 17
 

[14] R.W. Cottle, J.-S. Pang, R.E. Stone, The linear complementarity 
problem, Academic Press-Computer Science and Scientific Computing, 
1992. 

 
[15] K.G. Murty, Linear complementarity, linear and nonlinear 

programming (Internet edition), 1997. 
 

[16] L. Grippo, F. Lampariello and S. Lucidi, A class of nonmonotone 
stabilization methods in unconstrained optimization, Numerische 
Mathematik , 59 (1991) 779-803. 
 

[17] P. Alart, A. Curnier, Contact discret avec frottement: unicité de la 
solution - Convergence de l'algorithm, École Polytechnique Féderale de 
Lausanne, 1987. 

 
[18] T. Zeghloul, B. Villechaise, Phénomènes de glissments partiels 

découlant de l'usage de la loi de Coulomb dans un contat non lubrifié, 
Materiaux et Techniques - Spécial Tribologie, Décembre (1991) 10-14. 

 
[19] T. Zeghloul, B. Villechaise, Stress waves in a sliding contact, Part 

1: experimental study, Proc. 22nd Leeds Lyon Symposium on Tribology, 
Lyon, 5-8 September (1995). 
 


