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Abstract: In this paper a mixed complementarityeafgroblem (MCEIP) is formulated
and a method is proposed for its numerical solutibhis mathematical
problem is motivated by the study of divergencetabiities of static
equilibrium states of finite dimensional mechanisgstems with unilateral
frictional contact. The complementarity eigenprobleis solved by
transforming it into a non-monotone mixed completagty problem (MCP),
which is then solved by using the algoritttATH The proposed method is
used to study some small sized examples and sorge faite element
problems.

1. Introduction

The instability of configurations of static equilibrium of finite
dimensional plane linearly elastic systems, in frictional cantaih a flat
obstacle, and subjected to constant applied forces, was recenthsdbtys
Martins et al. [1]. Some of their results were generalised in Martins and
Costa [2] for the case of non-linear elastic systems irdrniat contact with
curved obstacles. In the first of the above papers it is showa tietessary
and sufficient condition for the occurrence of divergence instakiligg a
constant admissible direction, is that an appropriate eigenprobldmtheit
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form of an inclusion or a variational inequality is solved, with an appropriate
sign of the corresponding real eigenvalue (see Section 2 of thenpres
paper). Still in the paper [1], a necessary condition and a sufficient condition
for this type of instability were presented, both of which can bdyeas
checked. However, in many circumstances, those conditions do not yield
sufficiently sharp results, in particular the necessary conditiequéntly

gives a poor lower bound estimate for the onset of instability [df.this
reason we propose in the present paper a procedure for the numerical
solution of the governing inclusion or variational eigenproblem. This is
achieved by transforming that problem into a complementarity eigenproblem
(see Section 3), by means of an appropriate change of the consaetl rel
variables (see, for instance, Klarbring [3]). The problem is subedyue
transformed into a non-monotone mixed complementarity problem (MCP),
in which the unknown eigenvalue is treated as a non-negative variable that is
complementary with an additional variable involved in a normalising
constraint that prevents the trivial solution (see Section 4).alg@ithm

PATH (Dirkse and Ferris [4]) is successfully applied to solve semall

sized examples and some finite element problems (see Section 5).

2. Formulation

We consider a finite dimensional linearly elastic systenh witane
motion that may establish frictional contact with a fixed flattade, and
that is subjected to constant applied forces. The typical situdtioménd
and the largest examples studied in the present paper involveeligibent
discretizations of linearly elastic bodies.

For sufficiently smooth time evolutions of the contact candidate papticle
of the system, the normaN) and the tangentialTf components of the
vectors (inR?) of the displacementsu((t)), the velocities ,(t)), and the
reactions I(,(t)) of the particlep satisfy the (Signorini) unilateral contact
conditions

U ® <0, r <0, u,®)ry®=0, 1)

and the (Coulomb) friction law

a1+ A0 S O [Ur (O] T1(t) = 41U (t) 1y () =0, @)

whereu = 0 is the coefficient of friction.

We wish to study a particular type dfynamic instability of an
equilibrium state of the system. The smooth portions of its dynamic
evolution under constant applied forcésO R, are governed by the
momentum balance equations
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M G(t) + K u(t) =+ r(t), 3

whereM is theN x N symmetric positive definite (SPD) mass matKxjs

the N x N SPD stiffness matrix, = 0 is the time variable, () denotes the
time derivative, andi(t) O R" andr(t) O R" are the vectors of the unknown
generalised displacements and reactions at timespectively. The system
of equations (3) holds together with the unilateral frictional contact
conditions (1), (2) at each contact candidate panticénd together with the
absence of reactions along the degrees of freedom that are natexliije
any kinematic constraint: the sub-veateft) of r(t) satisfies

re(t) =0. (4)
On the other hand, an equilibrium state of the system under the same applied
forcesf’is characterized by a displacement veatbi] RN and a reaction
vectorr® 0 R" that satisfy the equilibrium equations (et 0in (3)):
K u®=f+r° (5)

together with the following form of (4) anolD of the frictional contact
conditions at each contact candidate parpidlet u, = 0in (2)):

rl=0, (6)
U< 0, G <0, ugre, =0, t7ls—purg, @

In Martins et al. [1] it is shown that, foin some right neighbourhood of
some instant (t O [ 7, T+ A1), there exist dynamic solutions of the form

ut) =u + a(t) v, rit) =r°+ Aty w, (8)

wherev andw define constant directions in the sets of right admissible
displacement and reaction rates at the equilibrium atdte?%, the function

of time a is twice continuously differentiabler and ¢ are non-negative and
non-decreasing inf] 7+ Ar|, the functionZis continuous, non-negative and
non-decreasing in the same interval, and the initial vadg&s= 0, a(r) =2

0 are arbitrarily smalljf and only ifthere exists a number= 0, and two
vectorsv andw in R", v # 0, such that

(FM +K)v=w,
Wf:0,
Vg =0,
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=0,
TSp3|gr(rTS,Q <0, w S|gr(rTSF) + U Wy < 0
[We,, SIGN(T1) + 4 Wy ] [Vr,, SiONrred] =
sz< O V\/sz< O VszWsz O

|VVTZ[J tH sz< O | [J Wsz HV. Tzp sz: 0’ (9)

whe[);e the following notations were introduced for the equilibrium state

(ur
. degrees of freedom not subjected to any kinematic constrainidiingl
those of the contact candidate particles that currently are rootniact
(free);

Z particles in contact witheroreaction;

d: particles in contact with reaction strictly inside the tfoe cone and
consequent vanishing (righd)splacementate;

S particles in contact with non-vanishing reaction on the frictimmecand
consequent possibsip in the near future.

When the conditions indicated above are satisfied, the equilibrium stat

corresponding ta® andr® is dynamically unstable: a divergence instability.
The problem (9) can be equivalently written as an inclusion or a

variational inequality eigenproblem (see Marttsl.[1]). In order to solve

it numerically, we shall write it now as a complementarity eigenproblem.

3. The complementarity eigenproblems

For simplicity of the presentation, we shall restrict ourselweshe
transformation of (9) into a complementarity eigenproblem in thécphat
case in which the set of particles in contact with zero @acthe particles
2) is empty. This transformation starts with the elimination ohlu#grees
of freedom of the particles in contact with reaction strictly ing@efriction
cone (the stick particlad), the elimination of the normal degrees of freedom
of the particles in contact with non-vanishing reaction on thednatone
(the impending slip particles), and the following change of variables (see
also Klarbring [3]):

_ Xt B I 0 |[v v .
. {XTS} _|: 0 -S } {VTS} B {—SVTS} DR, (10)

—{y}—{ 0 }DRN" 11
y - yT - _(SWTS+/'NVN5> , ( )

wherel is an identity (sub-)matrix$ = diag(sigr(rfp)) andN* (£ N) is the
number of degrees of freedom of the system that may be (righv@ at the
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equilibrium state (the frekplus the impending slips degrees of freedom).
In this manner, the followingnixed complementarity eigenproblém 4>
(MCEIP-4°) is obtainedfind A= 0and (x, y) O R" x R, with x # 0, such
that

(AM*+K*) x =y, (12)
Y, =0, (23)
0<xs0yrs=20, (14)

where O denotes orthogonality between the vect®gs and yrs in the
euclidean inner product. The matrickt* and K* are linear pencils of
matrices ind,

M* = M*(1) =Mo+ uM;,  K*=K*(1) =Ko+ Ky, (15)

with the structure exemplified below f&r*:

Kir  —KirsS 0 0
Ko = , K]_ = . (16)
—SKrst SKrs 1 “Knst Kns s

The matricesvl, andK, in the linear pencils1* andK* are SPD matrices.

In fact My andK are similar to the SPD principal sub-matriced/oaindK
corresponding to theplus theTs degrees of freedom, because the diagonal
transformation of variables in (10) is orthogonal. By continuityyjnit
follows that, for sufficiently smalls, the matriceM* andK* are positive
definitive (PD). Note also that in the case of a diagonal mmasgx M, the
matrix M* equals the matrii, so that it is also diagonal and PD.

It is now quite simple to recover the sufficient condition and the
necessary condition that were used in [1] to study this prol#lesnfficient
conditionfor the occurrence of a divergence instability of the form (8) is that
there isd = 0 andx 0O RY", with x # 0, such that

(AS°M*+K*) x=0, (17)
Xrs 2> 0. (18)

Note that this particular case of (12) - (14) results feopriori assuming

that the solution satisfigg. = 0, i.e. the reactions of the contact particles in
impending slip (thes particles) remain on the boundary of the friction cone,
which means that those particles remain in impending slip or dataiti
sliding. Note also that the simplicity of (17), (18) relativedy(12) - (14) is

that now (17) is a linear eigenproblem, and the additional inequalities in (18)
can be checked posteriori On the other hand, doing the inner product of
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(12) with x, it is immediately seen tha necessary conditioffior the
occurrence of a divergence instability of the form (8) is that

the matrixM*( 1) is notPSDor the matrixK*( ) is notPD. (19)

Since, as mentioned above, the matribd¥ ) and K*(u) are PD for
sufficiently small i, we can immediately conclude thab divergence
instability of the type(8) can occur for sufficiently small coefficients of
friction. Furthermore, in the particular case afiagonal mass matrjxthe
necessary conditio(il9) reduces to:

the matrixK*( 1) is notPD, (20)

because, as observed abdvé,is then diagonal and PD. A related result in
a continuum framework can be found in Chateau and Nguyen [5].
Continuing to consider, for simplicity, this particular case of diagbhahd
M*, the minimum eigenvalue of the symmetric parkdaf(which is relevant
for (20)) is necessarily smaller or equal [1] to the real glaatl eigenvalues
of K* (which are evaluated in (17)); this is one of the main reasonthéor
necessary condition (20) to be satisfied (much) earlier than tfieiesuif
condition (17).

A related problem that deserves special attention consists qfution
the values of the friction coefficiept and the associated mode shapes that
correspond to the transition between stability and instability ofvang
equilibrium state. This is expressed by the condifion 0 in (12), leading
thus to the formulation of anixed complementarity eigenproblem 4n
(MCEIP-4): find = 0and(x, y) DRV x R, with x # 0, such that

Ko+ Ky x=y, (21)
yfzo! (22)
0<xs0yrs=20. (23)

Before turning to the numerical solution of the complementarity
eigenproblems introduced in this section, we wish to mention an
enumerative procedure that yields all the solutions of the mixed
complementarity eigenproblems (12) - (14) or (21) - (23). For instdnee,
problem MCEIPA? (12) - (14) can be solved by computing the solutions of a
set of s linear eigenproblems, each of them followed by checking some
appropriate inequalitiesy is the number of particles in impending slip at the
equilibrium state. Each of those linear eigenproblems is obtainadkigri
assuming a specific combination of admissible near future evoldtotise
s particles. Some of those particles are assumed to bestarkéa subvector
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XS-FiSC" of Xrs is assumed to be null), while the contact reactions of the other
ones (theslip or impending slip ones) are assumed to remain on the
boundary of the friction cone (a subvec}(?)"'gp of y1s is assumed to be null).

IC

After elimination of the assumed stick variablﬁ?;s( = 0) for each specific
combination of near future evolutions, and denoting

Xt
= Xinp ’ (24)

the problem (12) - (14) can be simplified to a linear eigenprobletheof
form

X1

(M +K)X =0, (25)

followed by the verification of the inequalities

v 0, x3P > 0. (26)

The small sized example presented in Section 5 is solved by us&g t
enumerative procedure. However, the rapid growth of the number of linear
eigenproblems with the number of slip particles makes it impestiblise
such method in systems with many contact particles. Finallg, warth
noting that the linear eigenproblem corresponding to the sufficienttcamdi

(9) is justoneof the 2s linear eigenproblems considered in this enumerative
procedure (25), (26).

4. Numerical solution of the complementarity eigenproblems

In the previous section two complementarity eigenproblems were
defined, namely the MCEIR? (12)-(14) and the MCEIR(21)-(23). In this
section we establish their equivalency to non-linear mixed complantgnt
problems. This is done by introducing a normalising constraint and an
additional non-negative variablg) that is complementary to the eigenvalue
(A? or £); this one, in turn, is also considered as an additional non-negative
variable.

Proposition 1. The MCEIPu defined in (21)-(23) has a solution if and
only if there is a solution to the followingixed complementarity problem
(MCP-4): find (x, £) O RV and(y, ») O RV** such that

Ko+ 4Ky x=y, (27)
e Xrs=C+ ), (28)
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y, =0, (29)
0< (Xrs 1) O (y1s ) 20, (30)

wheree is a vector of dimensions will all components equal to 1, ards
an arbitrary positive real number.

Proof. Letx, y andu solve the MCEIP4. Then x5 # 0, becausess =0
andx # 0 would imply x # 0, which is impossible, since the equations in
(21) corresponding to the free degrees of freetimould reduce to

Ksi X =0,

K:s being a SPD matrix. Thewx, () and §, J), with y= 0, solve the MCP-
1 (27)-(30), with ¢ = €" x7s > 0. Note that this positive value ofs arbitrary,
because the norm of the vectorsindy that solve the eigenproblem (21)-
(23) is arbitrary.

Conversely, letx, ) and §, }) solve the MCP (27)-(30). There xys =
c + yfor somec > 0, so thae' x> 0, Xrs# 0, and, consequently, # 0.
Hencex, y andu solve the MCEIR# (21)-(23).

We can now deduce an equivalent formulation for the MCEIP-
Proposition 2. The MCEIP-4* (12)-(14) has a solution if and only if

there is a solution to the followingixed complementarity probleiCP-
A9): find (x, A% ORY**and(y, ) O RV** such that

(S°M* + K*) x =, (31)
yi =0, (32)

e Xrs=C+ ), (33)

O< (XTSl AZ) 0 (YTs, » 2 0, (34)

where, againe is a vector of dimensiong will all components equal to 1,
andc is an arbitrary positive constant.

Proof. Let x, y and A? be a solution to the MCEIR% Thenxys # 0,
becauses = 0 andx # 0 would imply x; # 0, which is impossible, since the
equations in (12) corresponding to the free degrees of freédeould
reduce to

(AP’ My +Kig) % =0,
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with M;; andK;; both SPD andi® > 0. Then(x, A% and §, }), with y= 0,
solve the MCPA? (31)-(34), with ¢ = €' x> 0. Note that the observation
and the arguments presented in the final part of the proof of Propdkition
can also be applied to conclude the present proof.

Remark. SinceKq is SPD, any solution to the MCEJPhasy/ > 0 (recall
also section 3). Consequently the complementary varjadeishes, so that
the choice of a positive constanas data for the MCR-specifies the value
of € Xrg i.e., the { norm of the vectokr. In the case of the MCH- the
same conclusion can be obtained wipeis not a solution to the MCEIR-
because in this situatiod’ # 0 and, again, the complementary variaple
equals zero.

It may be of interest to search for solutions to the MCE&\#th 1 below
or above a certain prescribed valug) (For that purpose one has to change a
non-negative variable in the MCP-(27)-(30): in order to search for
solutions withi < 1 (or (= Lh), one has to consider the new variafte (o
= u(or = - ), and then to replagein (27) by - { (or o + ), and to
replaceu in (30) by ¢. Similar procedures can also be followed for the
MCEIP-A°.

Propositions 1 and 2 show that the solution of the eigenproblems under
study can be obtained by processing two mixed non-linear complementarity
problems. There are a number of algorithms for solving these prabléms
reader can find in [6] a list of some relevant approaches forinearl
complementarity problems (NCP). More recently, interior-point @lgos
[7, 8, 9] and a Newton's method for solving systems of non-differeatiabl
equations [10], based on the so called Fischer function, have also been
recommended for this type of problems. The latter algorithms amalys
quite efficient, but unfortunately they require the monotonicity of the
function, or some similar property, to be useful. The complementarity
problems discussed in this section do not share this property. Thehadgori
PATHdescribed in [4] is an algorithm that can process non-monotone mixed
complementarity problems and then has been our choice to process the
problems discussed in this section. We recall B&IH is a robusGAMS
implementation [11] of a path following technique that was first discussed in
Ralph [12] and later improved by Dirkse and Ferris [11]. This algori
exploits the equivalence of a mixed complementarity problem wsystem
of nondifferentiable equatioiyx) = 0, whereF is the so-called normal map
due to Robinson [13]. The zero of the function is computed by a path
generation technique that in each iteration pursues a root of a linear
approximation of the normal map at the current iterate. This is done by using
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a pivotal scheme similar to the well-known Lemke algorithm %], A
non-monotone line-search technique [16] is also included to guarantee
sufficient decrease of the Euclidean norm of the normal map. Toethaig
possesses strong global convergence properties [4]. As discuskedaxt
section, the algorithm has been able to process all the non-linear
complementarity problems tried so far that were known to have some
solution. A theoretical investigation of this behaviour is certaingubject

for future research.

5. Examples and numerical results

The first example involves two particles of masseach, supported by
linear elastic springs of stiffneksand in contact with an horizontal obstacle
(see Fig. 1). The same example was discussed earlier byaAthi€urnier
[17] in the context of non-uniqueness of solution to incremental quasi-static

Figure 1.A structure with two contact particles leadingnaltiple solutions of MCEIRA?.

problems with friction.

The system has four degrees of freedom and the generalised
displacements = (Ur1, Uy, Ur, Uyp) are used. The external applied forEes
andf; are such that both particles are in a state of impending slip towards the
right or towards the left. The mass and stiffness matricéiseafystem are,
respectively,

c2+1 -cs -1 0
-cs &+1 0 O
-1 0 c2+1 cs

0 0 cs &+1
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Table 1.Static equilibrium state, conditions on the data and solutions of
MCEIP-A* for the structure with two contact particles of Fig. 1

s | S Conditions on the

Solutions of MCEIPA?
data

22 :% [— (c2+1) +\/1+(,uc3)2|

X
+1 | 2+2-(w)?<0 Xpq > 0 arbitrary, xq, T
\1+(egZ+ics

Y11=¥1,=0 (SLIP - SLIP)

Xr1 > 0 arbitrary;
X2 =0;

yr1=0;

Y12 = KXy

(SLIP - STICK)
X =0;

Xpp > 0 arbitrary;
Yr1 = KX
Yr2=0

(STICK - SLIP)
Xr, > 0 arbitrary;
-1 X2 =0;

yr =0

Y12 =KXy

2= _% (@+1- 9 (SLIP - STICK)
X1 = 0;

Xpp > 0 arbitrary;
Yr1 = KX
Yr2=0

(STICK - SLIP)
X1 = %12
/12:—%(02+ 2- 19 =Xi 0 ar_bitrary;
Yr1=Y¥r2 =0
(SLIP - SLIP)

k
2+ 1-cs<0 F=- (@ +1-

+1

2+ 2-cs<0

+1 - No Solution

-1 /12=§ [- +1) +1+(eT

e
-1 ?+2- (%<0 XT1 :\/ﬁ)zﬂﬁs . Xpp > 0 arbitrary;
Y=Y, =0 (SLIP - SLIP)
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wherel denotes the & 4 identity matrix,s = sin ¢ ¢ = cos ¢ andgis the
angle between the inclined springs and the horizontal.

For the previously described system, the problem MCEIB-find A? >
0 and &1, X2, Yr1, Yr2), With (%71, X2) # (0, 0), such that

A2m+k (c2+1-1cs §) -5 Sk XT1 Y11
-S Sk Pk (P+ites S) | xr2) Ly

{XTl} {YTl}

0< O >0,

XT2 Y12

where$, = sigr(rTop), andxr, andyr, are defined as in (10) and (11).

Four different combinations of signs for the tangential reactiorst, exi
each one corresponding to a different static equilibrium state. Table
contains the solution sets of the above MCHP{or each of those
combinations of signs of the static tangential reactions. When battlgsmr
are in a state of impending slip to the same side, there rnsost one
solution; when the left particle is in impending slip towards thletrand the
right one is in impending slip towards the left, no divergence ingyabf
the type (8) is found; when the left particle is in impending shpards the
left and the right particle is in impending slip towards the righén,
depending on the data, there are at most two or three solutions.

As mentioned earlier, all the solutions for this small sizedhaeical
system could be calculated by the enumerative procedure presetited in
end of section 3. But the algorithPATH was also tested in these small
problems. For the sets of numerical data used, the algoR#mH was
always able to find the corresponding complete solution set presented i
Table 1. For the particular cases that have two solutions witreliff values
of A%, the technique mentioned in Section 4 for searching solutionsifvith
below or above a certain fixed valueBfwas successfully applied.

The second example involves a rectangular polyurethane block sliding on
an araldite obstacle that was studied experimentally by Vilisehand
Zeghloul ([18], [19]). In the numerical simulations we assume thagltstic
block slides on a flat rigid obstacle. The block is discretizak svuniform
mesh of 800 linear P1 finite elements that has 21 contact candidate node
(see Fig. 2). The elastic properties are: modulus of elasticify MPa,
Poisson's ratio = 0.48. The geometric parameters are l&éngtl80 mm,
heigrr;[gH = 40 mm and thickness = 9.6 mithe density of the material is 1.2
kg/dnr.
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The block is submitted to a quasi-static loading consisting €@ifst
prescribed displacements on the side CD, which is symmetrisadsed
against the obstacle until the resultant of the normal reactions onBiige A
55N. Then the loading proceeds by prescribing an horizontal motion of the
side CD towards the left. In this tangential loading phase, theessive
equilibrium states have a growing region of nodes in impending slip
spreading from right to left.

This same example was studied earlier in [1], also by the Bte@ment
method, but using only the necessary (19) and the sufficient (17), (18)
conditions for divergence instability recalled in Section 3 of tresemt
paper. For the value of the coefficient of frictign= 1.1) identified from the
experimental results of Villechaise and Zeghloul ([18], [19]), the migale
results showed that the necessary condition (19) is satisfiecadyyalong
the tangential loading process; however, for all the succesgikbeum
configurations of the block along that tangential loading, the suificie
condition (17), (18), that involves slip of all nodes in impending sliolld
never be satisfied. The objective of the continuation of that studlein
present paper is thus to check if, after the necessary conditgatiséed,
there exist or not instability modes of a type different from the all-slip smode
of the sufficient condition (17), (18).

With this purpose, we search first for solutions to the MCER-the
equilibrium states obtained wita= 1.1, along the tangential loading of the
block, i.e. we search for the values of the coefficient of éncthat would
originate a transition from stability to instability in that dimium
configuration. Nontrivial eigenvectors of MCE[Pwere obtained when 11
or more contact nodes were in a state of impending slip. It is ftwatdhe
values ofy that solve the MCEIR+decrease with the increase of the number
of nodes in impending slip in the successive equilibrium configurations.
Moreover, the eigenvectors of the MCElRssociated with higher values of
L correspond to modes having, in average, a larger number of impending slip
nodes that get stuck.

For an equilibrium state having the two left nodes stutle 15
intermediate nodes in impending slip and the 4 nodes on the right free, the
algorithmPATH converged to a solution of the MCEIPThat solution has
a very large value off (60.81) and a mode represented in Fig. 2, where an
impending slip node (the fourth from the left) becomes stuck. Forathe s
equilibrium configuration, the classical eigenproblem corresponding to the
sufficient condition (17), (18) was solved, showing that no postiegists
that corresponds to an admissible non-trivial solution with all impending slip
nodes ¢) in impending slip or in slip (the sufficient condition (17), (18)
could not be satisfied).
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=60.81

PXIXPIXIXIXIXIXY
XXX XXX
XXX IXIXIXIX]
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XXX IXIXIXIXIX]
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XXXXIXIXIXIXX
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XPXXIXIXIXIXIXIXIX]
DXXIXIXIXIXIXIXIX)
RXXXXXIXIXIXIXIX]
RXXXIXIXIXIXIX]
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X
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X
X
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X
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Figure 2.An instability mode in the transition between digband instability foru

171

(solution of MCEIPg)
1.71). The corresponding divergence eigenmode is represented

For the final equilibrium state of the loading process, for whichlihe

nodes on the left are in impending slip and the 4 nodes on the righeayre f
a nontrivial eigenvector could be found for a much lower coefficient of

Figure 3.An instability mode in the transition between digband instability foru
friction (¢

by the sufficient condition (17), (18) (an all-slip mode). For the same
equilibrium configuration and choosing/a> 1.71 the MCEIR¥ has a

in Fig. 3. Since all the nodes in impending slip do slide, this modeéda g
similar non-trivial eigenvector and a positive eigenvaltie 0.
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For other meshes and other aspect rakidls, the same trends were
observed in the behaviour of the system.

6. Conclusions

In this paper a method to solve a mixed complementarity eigenproblem
(MCEIP) has been proposed. The motivation to study this mathematical
problem was the divergence instability of static equilibriumtestaof
mechanical systems with unilateral frictional contact. The cemehtarity
eigenproblem has been transformed into a non-monotone mixed
complementarity problem (MCP), and the algoritR’TH has been applied
to solve small sized examples and large finite element problems.

e In all the small sized examples, all the existing solutions could be
obtained with thé?ATHalgorithm.
« In the large finite element simulations with the block of Zeghkmd

Villechaise [18], [19], it has been observed that:

- whenever solutions were known to exist [dikslip solutions of the
sufficient condition (17), (18)] thePATH algorithm always
converged to one suctl-slip solution;

- in some cases whem@dl-slip solutions did not exist [the sufficient
condition (17), (18) could not be satisfied] other solutions with slip
and stick were obtained, but only for very large values of

- for reasonably small values pf no solutions different from thel-
slip solutions provided by the sufficient condition (17), (18) were
found.
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