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Abstract We consider a material and shape optimization problem which involves
a composite rod in contact with a rigid foundation. It is shown that the
problem can be reduced to an optimization problem in some indepen-
dent variables and some variables defined implicitly by the solution of a
linear complementarity problem (LCP) with a positive definite matrix.
A projected-gradient algorithm is proposed that incorporates an efficient
LCP solver to compute function values and gradients. An example is
included to illustrate the suitability of the proposed methodology.

1. Introduction

We address a structural optimization problem which involves a unidi-
rectional fiber reinforced composite rod in contact with a rigid founda-
tion. The purpose of the model is to find the fiber volume fraction and
the size of some geometric parameters of the rod in order to minimize
the compliance of the structure. The variables are continuous and vary

in an admissible set.



The discretization of this optimization problem by using appropriate
finite elements leads to a mathematical programming problem with equi-
librium constraints (MPEC), in which the objective function depends
on the so-called outer independent variables (material and geometric
parameters) and on inner dependent variables, that are the solution of
a linear complementarity problem (LCP), representing the contact rod
problem. Due to the definition of the compliance function, it is possible
to reduce the problem to an optimization problem in the independent
variables. Furthermore the constraints on these variables are simple
lower and upper bounds and the objective function is continuously dif-
ferentiable in its constraint set. A projected-gradient algorithm is pro-
posed for the solution of such an optimization problem. In addition it
is shown that the values of the objective function and of the gradient
in each point used by the algorithm can be obtained by solving special
LCPs with positive definite matrices.

The outline of the upcoming sections is as follows. In section 2 the
optimization rod problem is introduced. The algorithm and its imple-
mentation are discussed in section 3. An example of the application of
the algorithm is included in section 4.

2. Notations and Description of the Problem

Let w be an open, bounded and connected subset of R? and L > 0
be a constant. We denote by @ x [0, L] the set occupied by the rod,
in its reference configuration, with length L and cross section w. We
assume that the material of the rod is an unidirectional fiber reinforced
composite material. We denote by =z = (1,2, ...,z5) € R® the vector
whose s components specify the type and the number of material and
geometric features of the rod under consideration. Moreover we sup-
pose that the rod is clamped at its extremities and is subjected to the
action of applied forces that force a part of the lateral surface of the
rod to be in contact with a rigid foundation. In addition we assume
that the candidate lateral contact surface is plane and perpendicular to
one of the inertia axes of the rod. For a fixed vector z, the continuous
one-dimensional equilibrium model describing this contact rod problem
is a generalization of the Bernoulli-Navier model and it can be mathe-
matically justified by the asymptotic expansion method, as in Trabucho
and Viano (1996) chap.6, for the homogeneous and isotropic case. Using
the finite element method, the discrete formulation, for each z, of the
one-dimensional contact rod model under consideration constitutes the



following discrete variational inequality

vy > Gy}, such that (1)

Find ueU={veR": wv;=0,
Yo eU.

(v — )T (B(z)u — F(z)) > 0,

In (1) n denotes the number of global degrees of freedom of the finite
element mesh of the rod axe [0,L]. The matrix B(z) is the stiffness
matrix and F(z) is the vector associated to the applied forces. B(z)
depends explicitly on z and F may also depend on the components of
. The vector u is the solution of the contact rod model and represents
the approximate displacement of the rod. We remark that u depends
implicitly on z. The notation (v —u)? stands for the transpose of vector
(v —u). The set U is the set of admissible displacements and the sets
J and J are subsets of the global degrees of freedom {1,2,...,n}. The
vectors v; and vy are subvectors of v, with components (vj),.; and
(vr)jer, respectively. The condition v; = 0 corresponds to the clamped
rod condition. The vector §; = (g;);es is independent of = and defines
the gap between the rod and the rigid foundation at the nodes j € J.
The condition v; > g; means that v; > g;, for j € J, and states that
the rod can touch but not penetrate the rigid foundation at node 5 € J.

In order to clarify the dependence on z of B and F we describe next
the structure of the element stiffness matrix and of the element vec-
tor force. We denote by h; the amplitude of the generic finite element
[¢i, Yi+1] subset of [0, L]. Then the corresponding element stiffness ma-
trix B; is
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where F, |w| and I depend on z and represent respectively the longi-
tudinal modulus of the material, the area of the cross section and the
moment of inertia. Assuming now that ¢ and p are the uniformly dis-
tributed forces per unit of length in the direction of the rod axis and
in the direction perpendicular to the rod axis, respectively, then the
element vector force F';(z) is defined by

= (a7 _ |9hi  phi phi qhi phi _ phi
By =15 5 o 3 3 12 | (3)



We remark that (1) is an obstacle problem. In particular it can be re-

formulated as a mixed complementarity problem. To see this, we denote
by K and H the subsets of indices defined by K = {1,2,..n} \ {J U J}
and H = K U J, respectively. By performing the change of variables

veU<=v—-—geU={veR": v;=0, v;>0} (4)
where the vector g € R" is defined by

then problem (1) is equivalent to the following mixed complementarity
problem
Find we R¥, we R such that
A(z)u — F(z) =w
uy >0, wy>0, wg=0,
u?wJ =0.

The number |H]| is the cardinal of H, A is a submatrix of B and F is a
subvector of F' — Bg, whose elements have indices in H, that is,

A(z) = Bpp(z) and F(z) = (F(z) — B(z)g9) g- (7)

(6)

We remark that u is a solution of (6) if and only if u + g is a solution of
problem (1).

The structural optimization problem considered in this paper consists
of finding an equilibrium point of the contact rod problem that mini-
mizes the compliance function and therefore maximizes the stiffness of
the structure. Due to the equivalence shown above, this problem can
be written as the following mathematical programming problem with
equilibrium constraints (MPEC):

[ minf(z,u) = min Jul A(z)u
subject to :
MPEC uER‘H|, w € R (8)
ze€X and Alz)u = F(z) = w
uy >0, wy>0, wg=0
| ulwy = 0.

The set X is the set of admissible material and geometric parameters
defined by X = {z = (z1,...,25) € R*: ™" <z; <z, i =1,..., s},
where ;™™ and z]"®* are real constants. The objective function 0(z,u)
satisfies

1

O(z,u) = §uTA(m)u = %UT(w + F(z)) = %uTF(x) (9)



because of the complementarity condition uw = 0. Therefore, for each

z, 0(z,u) is the compliance of the rod constrained by the zero obstacle
and subjected to the action of applied loads represented by the vector
(F(z) — B(z)g)g- If g = 0 then O(z,u) is exactly the compliance of
the rod with applied forces F(z) and constant zero obstacle. We refer
to Petersson (1995) for a justification of other definitions of stiffness
measure in structural optimization.

3. A Projected-Gradient Algorithm for the
MPEC

Consider the inner complementarity problem of the MPEC. Since for
each z € X the matrix A(z) is symmetric positive definite, then this
complementarity problem has a unique solution. Hence it is possible to
write the MPEC as the following optimization problem in the variable
x

min f(z) = min 0(z, u(x))

subject to z € X (10)

where u depends implicitly and uniquely on x through the complemen-
tarity problem. In general, the non-smoothness of u(z) with respect
to the variable £ may originate the non-smoothness of the objective
function f. In fact, u is a Lipschitz function on the feasible set X,
the directional derivative u/(z,Z) of u at z in the direction Z exists,
but the gradient V,u(z) of u at z does not exist if the coincidence
set {j € J: wj(z) =0, uj(z) = 0} is not empty (see, Harker and
Pang (1990) or Haslinger and Neittaanméaki (1997) for a justification
of these statments). Thus non-smooth optimization algorithms such as
subgradient and bundle methods (see Outrata et al. (1998)) should be
recommended to solve (10), in general. Nevertheless for the particular
objective function f defined in problem (10) the gradient of f, V,f,
exists and is defined by

Vof (@) = VoF (2) u(z) — %u(x)TVxA(:v)u(:v). (11)

For each z, the vector u(z) is the solution of the complementarity pro-
blem and V F and VA are the gradients of F' and A defined by

VoF(z) = (Vo Fi(x))icr, ViA(z) = (Vedij(®))ijen  (12)

with F; and A;; the elements of F' and A respectively. Assuming that
F and A are of class C! with respect to z, the gradient V,f is of class
C°. We observe that formula (11) can be obtained by calculating the
directional derivative f'(z,Z) of f at the point x in the direction Z. In



fact it follows from the definition of f and the complementarity problem
(6) that

fl(z, %) = u(ac)TA(:v)u'(a:, z)+ %u(x)TA'(x,fc)u(a:) (13)

where A'(z, %) is the directional derivative of f at z in the direction
and u'(z,Z) satisfies

A(w)u'(w,ilz "z,Z) + F'(z,7) — A'(z, T)u(z)

uw(z)Tw'(z,%) =0 (14)

with w/(z, %) and F' (z,%) the directional derivatives of w and F at z in
the direction Z, respectively. Introducing (14) in (13), the term u'(z, %)
disappears. Since A and F are of class C*, then A'(z,%) = V,A-% and
F'(z,%) = V,F - %, where the dot means the usual euclidean product in
R#. Tt is now easy to obtain the expression (11).

Therefore for the specific problem (10) it is possible to apply a classical
projected gradient method. The steps of this algorithm are described
next, where Px represents the projection on the set X.

Projected-Gradient Algorithm
m Let 2° € X and € > 0 be a given tolerance.
s Fork=0,1,2,...

— Compute Vf(2¥), y* = Px (2"~ V, f(2*)) and p* = y* —z*.
— If ||p*|| < ¢, stop with (z*,u(z¥)) a solution of the MPEC.
— Compute the stepsize oy, €]0, 1] using the Armijo Criterion

f(zF 4+ app®) < f(2F) + cap Vo f (@F)Tp* (15)
with 0 < c < 1.
» Update zFt1 = 2% 4 qppF.

As discussed in Nocedal et al. (1999) this algorithm possesses global
convergence to a stationary point of the function f(z) on the convex set
X. In order to compute objective function and gradient values and to
employ the Armijo criterion, a complementarity algorithm is required to
evaluate u(z*) and u(z* + agpF), that are the solutions of the comple-
mentarity problem (6) for z = z* and = = z* 4 ayp*, respectively. Since
the matrix A(z) is symmetric positive definite for each z € X, the block
pivoting or interior-point algorithms should be recommended to process
these LCPs (see Fernandes et al. (2002)). Furthermore for this problem
the projection is quite simple to obtain because the set X consists of
simple bounds on the variables ;.



4. A Numerical Example

We have tested the previous algorithms in an example. The material is
an unidirectional fiber reinforced composite material, whose longitudinal
modulus is E = EfVy + Ep,(1 — Vy) with Ef the modulus of the fiber,
E,;, the modulus of the matrix and V; the fiber volume fraction which
belongs to [0,1]. The optimization variable is V; and the data of the
problem are displayed in the table below.

Table 1. Data of the Example

Parameter Value
E,, (GPa) — modulus of the matrix 3.45

E; (GPa) — modulus of the fiber 86

Vf"‘i“, V" — lower and upper bounds for V; 0.01, 0.99
L (m) — length of the rod 10

g (N) — distributed force in the direction of the rod axis —18000
p (N) — distributed force in the direction perpendicular to the rod axis =~ —200

g (m) — obstacle (constant) —0.001
|w| (m?) — area of the cross section 0.004
I(m*) — moment of inertia 2.1e7

The symbols (GPa), (N) and (m) denote the units Giga Pascal, New-
ton and meter, respectively. The interval [0,10] has been discretized
with 50 finite elements, whose length h; is constant and equal to 0.2.

The projected-gradient algorithm has successfully found an optimal
solution Vy = 0.3518 in 7 iterations. We have employed the block pivot-
ing algorithm described in Fernandes et al. (2002) to process the LCP’s
required by the projected-gradient method. The block pivoting algo-
rithm has required a total of 150 iterations to process all the 44 LCP’s
needed by the projected-gradient algorithm. In these tests the subrou-
tine beamZ2e of the CALFEM toolbox of MATLAB has been used to
evaluate the stiffness matrix A and the force vector F. The comple-
mentarity algorithm has been implemented in MATLAB. The figure 1
shows the plot of the equilibrium bending displacement of the rod, at
the optimum value V; = 0.3518.

As stated in this section, the projected gradient algorithm has per-
formed well for solving this example of MPEC problem discussed in this
paper. Further computational investigation is required to evaluate the
performance of the algorithm in practice. A description of this experi-
ence will be reported in the near future.



Figure 1.  Bending displacement of the rod for V; = 0.3518
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