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Abstract

In this paper, we discuss the Eigenvalue Complementarity Problem (EiCP) where at least

one of its defining matrices is asymmetric. A sufficient condition for the existence of a solution

to the EiCP is established. The EiCP is shown to be equivalent to finding a global minimum

of an appropriate merit function on a convex set Ω defined by linear constraints. A sufficient

condition for a stationary point of this function on Ω to be a solution of the EiCP is presented.

A branch-and-bound procedure is developed for finding a global minimum of this merit function

on Ω. In addition, a sequential enumerative algorithm for the computation of the minimum

and the maximum eigenvalues is also discussed. Computational experience is included to

highlight the efficiency and efficacy of the proposed methodologies to solve the asymmetric

EiCP.

Key Words: eigenvalue complementarity, extreme eigenvalues, branch-and-bound, global

optimization, nonlinear programming.

1 Introduction

Given a matrix A ∈ Rn×n and a positive definite (PD) matrix B ∈ Rn×n, the Eigenvalue Com-

plementarity Problem (EiCP) consists of finding a real number λ > 0 and a vector x ∈ Rn\{0}
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such that

w = (λB −A)x (1.1)

w > 0, x > 0 (1.2)

xT w = 0, (1.3)

where w ∈ Rn. The EiCP is a particular case of the following Mixed Eigenvalue Complementarity

Problem (MEiCP) introduced in [8]:

w = (λB −A)x (1.4)

wJ > 0, xJ > 0 (1.5)

wT
J xJ = 0 (1.6)

wJ̄ = 0, (1.7)

where x ∈ Rn\{0}, w ∈ Rn, J ⊆ {1, . . . , n}, and J̄ = {1, . . . , n}\J . This MEiCP first appeared

in the study of static equilibrium states of finite dimensional mechanical systems with unilateral

frictional contact [7, 8]. If J = ∅, then the MEiCP reduces to the well-known Generalized Eigen-

value Problem, which lends the name to the problem. Any vector solution x 6= 0 of the MEiCP

(or EiCP) is called a Complementary Eigenvector and λ is a Complementary Eigenvalue. Some

other applications of this type of problem and extensions can be found in [32, 33, 34, 36]. In this

paper, we only address the simple EiCP, where the complementary eigenvectors are nonnegative.

Most of the main results to be presented in this paper can be easily extended to the MEiCP. As

discussed in [30, 21], if A and B are both symmetric matrices, then the EiCP reduces to finding a

stationary point of an appropriate merit function on a specially structured convex set. However, in

general, at least one of these matrices is asymmetric and different approaches need to be developed

for processing the EiCP.

A first approach to solve the asymmetric EiCP is to transform it into a Nonlinear Complemen-

tarity Problem (NCP) with n + 1 complementary variables [8]. Despite the theoretical and even

practical interest of this reduction, the mapping to the NCP is nonmonotone and this has prevented

the use of the most efficient complementary solvers [13] to solve the general EiCP. Among these

techniques, PATH [12] is capable of processing the largest class of NCPs. Computational experience

presented in [30] and in this paper shows that even PATH is not, in general, able to solve the EiCP.

Another interesting formulation of the EiCP is to reduce it to a fixed point problem [9]. A gradient

algorithm to find such a fixed-point has been introduced in [9], but, as before, this technique is

not able to always compute a solution to the EiCP.

In [22], the EiCP has been formulated as a Mathematical Programming Problem with Equilib-

rium Constraints (MPEC). The nonconvexity of the objective function of the MPEC has prevented

the use of efficient methods [5, 17, 18, 20, 23], for finding a global minimum to this problem. There

are a number of efficient algorithms for finding stationary points of MPEC [2, 11, 14, 15, 24, 26].

However, there is no guarantee that such stationary points are solutions of the EiCP. For instance,

computational experience included in [22] has shown that a stationary point for this MPEC can be

found quite efficiently by a Complementarity Active-Set algorithm [24]. As before, the algorithm

cannot always guarantee a solution to the EiCP.

Based on these efforts, a branch-and-bound algorithm for the EiCP was introduced in [22].

The algorithm is able, at least in theory, to generally solve the EiCP, but it is not too efficient
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in practice. It exploits a nonlinear programming (NLP) formulation of the EiCP and seeks a

global minimum for this optimization problem. An interesting property of this NLP is that its

global optimal value is zero provided that the EiCP has a solution. This property is exploited in

the design of a new enumerative algorithm to be introduced in this paper. This algorithm can

also be seen as an extension to the EiCP of an enumerative method that has proved efficient to

process solvable Linear Complementarity Problems [1, 19]. A binary tree is explored based on

the dichotomy for the complementary variables xi = 0 or wi = 0, ∀i ∈ {1, . . . , n}. At each node

of the tree, a stationary point of the so-called complementarity function xT w is found on a set

defined by the original linear constraints along with some equalities related to the complementary

variables that are fixed to zero on the branches connecting the given node to the root node of the

tree. For the EiCP, the enumerative method also considers branchings associated with bisections

of intervals containing the variable xn+1 = λ−1, where λ is the complementary eigenvalue to be

computed by the algorithm. Computational experience with a number of EiCPs has shown that

the algorithm is quite efficient in finding a solution to solvable EiCPs and compares favorably with

the branch-and-bound method introduced in [22] as well as with the popular commercial software

BARON [31] for global optimization.

The design of such an enumerative algorithm has raised the question whether a stationary

point of the merit function of the NLP formulation of the EiCP provides a solution to the EiCP.

A necessary and sufficient condition is established in the present paper, which shows that this

property is related to the values of the Lagrange multipliers associated with two of the linear

constraints of the NLP. Another sufficient condition for the existence of a solution to the EiCP

is also derived when the matrix A is copositive and satisfies a certain R0-property that is defined

in [10]. In particular, an EiCP has a solution provided that the matrix A is strictly copositive,

a class of matrices that has been quite useful in complementarity problems [10, 13] and global

optimization [3].

We also investigate a new sequential algorithm to find the minimum and maximum comple-

mentary eigenvalues in a given interval [l, u]. The algorithm employs a sequential enumerative

method for a finite number of nested intervals [lk, uk], where [lk+1, uk+1] ⊂ [lk, uk] ⊂ [l, u] for each

k, until it discovers an unsolvable EiCP. A certificate for the nonexistence of a solution to the

last EiCP is provided by the algorithm discussed in [22] and leads to the conclusion that the last

computed λ is the minimum or maximum complementary eigenvalue for the EiCP in the interval

[l, u]. Computational experience reported in this paper shows that this sequential enumerative

algorithm is able to efficiently perform this task.

The remainder of this paper is organized as follows. In Section 2, the existence of a solution

to the EiCP is established. The NLP formulation of the EiCP and the study of stationary points

of its objective function are discussed in Section 3. The enumerative algorithm is introduced

in Section 4. The use of this algorithm to find the minimum and maximum complementary

eigenvalues is addressed in Section 5. Computational experience with this algorithm for solving

EiCPs and computing extremal complementary eigenvalues are reported in Section 6 along with

some concluding remarks.
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2 Existence of a Solution to the Asymmetric EiCP

In this section, we provide a sufficient condition for the existence of a solution to the EiCP. To do

this, we first show that the EiCP is equivalent to a finite dimensional variational inequality [13] on

the simplex

Ω = {x ∈ Rn : eT x = 1, x > 0}, (2.1)

where e ∈ Rn is a vector of ones. Let F : Rn \ {0} −→ Rn be the mapping defined by

F (x) =

(

xT Ax

xT Bx
B −A

)

x, (2.2)

where we assume that B is a strictly copositive (SC) matrix, that is, it satisfies

xT Bx > 0, ∀ 0 6= x > 0. (2.3)

Note that we have relaxed the PD assumption on the matrix B, as any PD matrix is also SC. As

discussed in [13], the variational inequality VI(F, Ω) consists of finding an x̄ ∈ Ω such that

F (x̄)T (x− x̄) > 0, ∀x ∈ Ω. (2.4)

Next, we establish that the EiCP and the VI(F,Ω) are equivalent problems.

Theorem 2.1 If Ω and F are given by (2.1) and (2.2), respectively, then x̄ is a solution of VI(F, Ω)

if and only if x̄ satisfies the complementarity problem

w = (λB −A)x (2.5)

w > 0, x > 0 (2.6)

eT x = 1 (2.7)

xT w = 0 (2.8)

with λ̄ =
x̄T Ax̄

x̄T Bx̄
.

Proof: x̄ is a solution of VI(F, Ω) if and only if x̄ is global minimum of the linear program (LP):

Minimize F (x̄)T (x− x̄)

subject to eT x = 1

x > 0.

Consider the dual to this LP:

Maximize u0

subject to F (x̄) = u0e + w

w > 0.

By the duality theory of linear programming, x̄ is a solution of VI(F, Ω) if and only if it satisfies

the conditions

F (x̄) = u0e + w (2.9)

x̄ > 0, w > 0

x̄T w = 0

eT x̄ = 1.
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In order to prove the theorem, we first show that u0 = 0 in (2.9). Note that

x̄T F (x̄) = u0e
T x̄ + x̄T w,

which implies that

x̄T F (x̄) = u0.

But

x̄T F (x̄) = x̄T

(

x̄T Ax̄

x̄T Bx̄
B − A

)

x̄ = 0,

and u0 = 0. Thus, with λ = x̄T Ax̄/x̄T Bx̄, x̄ is a solution to VI(F, Ω) if and only if x̄ is a solution

to (2.5)-(2.8). �

Since Ω is a convex and compact set, then VI(F, Ω) has a solution [13], a result first established

in [25]. So conditions (2.5)-(2.8) are always satisfied whenever B is an SC matrix. In order to

guarantee a solution to the EiCP satisfying λ > 0, we need a further condition on the matrix A.

To accomplish this, we recall the following definitions (see [10] for instance):

(i) A is a copositive matrix (A ∈ C) if and only if xT Ax > 0 for all x > 0.

(ii) A is an R0 matrix (A ∈ R0) if and only if (x > 0, Ax > 0, xT Ax = 0)⇒ x = 0.

Note also that any strictly copositive matrix is also copositive. We now establish our existence

result for the EiCP.

Theorem 2.2 If B ∈ SC, A ∈ C, and −A ∈ R0, then the EiCP has a solution x̄ with

λ = (x̄T Ax̄)/(x̄T Bx̄) > 0.

Proof: Because A ∈ C and B ∈ SC, there exists an x̄ ∈ K that satisfies (2.5)-(2.8) by the previous

theorem, and such that

λ =
x̄T Ax̄

x̄T Bx̄
> 0.

Now, if λ = 0 then x̄T Ax̄ = 0 and the system (2.5)-(2.8) reduces to

w = −Ax̄

w > 0, x̄ > 0

x̄T w = 0,

which contradicts that −A ∈ R0. �

Note that the theorem is also true if B is a PD matrix, that is, it satisfies

xT Bx > 0, ∀x 6= 0,

because any PD matrix is also SC. Furthermore, any SC matrix A satisfies A ∈ C and −A ∈ R0.

Therefore the EiCP has a solution with λ > 0 if A is a strictly copositive matrix.

In [30], a necessary and sufficient condition for the existence of a solution to the symmetric

EiCP is derived. This result states that if A and B are both symmetric matrices, then the EiCP
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has a solution with λ > 0 if and only if there exists 0 6= x̄ > 0 such that x̄T Ax̄ > 0. The result is

also true if B is a strictly copositive symmetric matrix. For the asymmetric case (A or B or both

asymmetric matrices) the foregoing condition is necessary, because by definition,

λ =
x̄T Ax̄

x̄T Bx̄
> 0

for any solution x̄ to the EiCP. A referee remarked that this condition is not sufficient, by providing

an example with n = 2, B = I2 and

A =

[

−1 1

−2 2

]

.

In fact xT Ax > 0 for x = [ 1 2 ]T , but the EiCP has no solution λ > 0, as the λ = −1 is the unique

complementary eigenvalue. It also would be interesting to investigate sufficient weaker conditions

guaranteeing that at least one complementary eigenvalue is positive. This is an interesting topic

for future research.

3 A Nonlinear Programming Formulation of the

Asymmetric EiCP

In the previous section, we have shown that the asymmetric EiCP is equivalent to a finite variational

inequality on the simplex. This equivalence has lead to a sufficient condition for the existence of

a solution to the EiCP. However, the mapping F is not monotone on Rn and this precludes the

EiCP to be solved by the efficient algorithms available for processing VIs [13]. Later in section 6

we include some computational results showing that even PATH is not, in general, able to solve the

EiCP. In this paper, we exploit an alternative nonlinear formulation that has been introduced in

[22]. Consider again the EiCP and suppose that this problem is solvable. Therefore, there exists

0 6= x̄ > 0 such that

λ =
x̄T Ax̄

x̄T Bx̄
> 0.

As λ > 0 in any solution of the EiCP, we can introduce the variable xn+1 = λ−1 and the variables

yi, i = 1, . . . , n, defined by y = xn+1x to derive the following equivalent formulation of the EiCP:

w = Bx−Ay

eT x = 1

eT y − xn+1 = 0

x > 0, w > 0, y > 0, xn+1 > 0

xT w = 0

‖y − xn+1x‖2 = 0,
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where ‖ · ‖2 represents the l2 norm. This prompts the following nonlinear programming problem:

Minimize f(x, y, w, xn+1) = (y − xn+1x)T (y − xn+1x) + xT w

subject to

w = Bx−Ay

eT x = 1

eT y − xn+1 = 0

x > 0, w > 0, y > 0, xn+1 > 0,

where the EiCP has a solution if and only if this nonlinear program has a global minimum with

zero optimal value.

In [22], this nonlinear program has been augmented by 2n further constraints to solve the

asymmetric EiCP by a branch-and-bound algorithm. To present these constraints, suppose that the

EiCP has a solution. Then there must exist positive numbers l and u such that 0 < l 6 xn+1 6 u

for any global solution (x, y, xn+1, w) of the foregoing nonlinear program. It is obvious that the

choice of l and u has an important impact on the complexity of finding a solution for the EiCP.

We delay to section 6 the discussion of this issue. Since y = xn+1x in each one of these solutions,

then

lxi 6 xn+1xi = yi

uxi > xn+1xi = yi

for each i = 1, . . . , n. We can therefore add these 2n conditions and obtain the following nonlinear

formulation of the EiCP:

(NLP) Minimize (y − xn+1x)T (y − xn+1x) + xT w

subject to

w = Bx −Ay

eT x = 1

eT y − xn+1 = 0

lxi 6 yi 6 uxi, i = 1, . . . , n

x > 0, w > 0, y > 0, xn+1 > 0.

This leads us to the following result.

Theorem 3.1 The EiCP has a solution x̄, with λ̄ = (x̄T Ax̄)/(x̄T Bx̄) if and only if NLP has a

global minimum (x̄, ȳ, w̄, x̄n+1) with zero optimal value where x̄n+1 = λ̄−1 and ȳ = x̄n+1x̄.

Proof: By the construction of Problem NLP, it is sufficient to show that xn+1 > 0 in any global

minimum of this program. But xn+1 = 0 implies that eT y = 0 and y = 0. Since eT x = 1, then

there is at least an i such that xi > 0. For such an i we have lxi > 0, which contradicts that

yi = 0. Hence, xn+1 > 0 and the equivalence holds. �

Thus, we have shown that the EiCP can be equivalently posed as the nonconvex nonlinear

program NLP having linear constraints. Due to the nonconvexity of the objective function, a
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stationary point of f on the constraint set of the nonlinear program is not necessarily a solution to

the EiCP. Next, we establish a necessary and sufficient condition for such a stationary point to be

a solution of the EiCP, which is related to the values of the Lagrange multipliers associated with

the linear equalities eT x = 1 and eT y − xn+1 = 0.

Theorem 3.2 A stationary point (x̄, w̄, ȳ, x̄n+1) of Problem NLP is a solution of the EiCP if and

only if αi = 0, i = 1, 2, where α1 and α2 are the Lagrange multipliers associated with the linear

equalities eT x = 1 and eT y − xn+1 = 0.

Proof: Let (x, w, y, xn+1) be a stationary point of the nonlinear program (NLP). Using

w = Bx−Ay, we can eliminate the variables wi from NLP to get the following program:

Minimize f(x, y, xn+1) = (y − xn+1x)T (y − xn+1x) + xT (Bx−Ay)

subject to

Bx −Ay > 0 (r > 0)

eT x− 1 = 0 (α1)

eT y − xn+1 = 0 (α2)

−lxi + yi > 0

uxi − yi > 0

}

i = 1, . . . , n
(βi > 0)

(γi > 0)

x > 0 (t > 0)

y > 0 (v > 0)

xn+1 > 0 (tn+1 > 0)

(3.1)

where the dual multipliers are specified within parentheses. Therefore, the stationary point satisfies

the following KKT conditions, in addition to (3.1):

∇x f(x, y, xn+1)−BT r − α1e + lβ − uγ = t

∇y f(x, y, xn+1) + AT r − α2e− β + γ = v

∇xn+1
f(x, y, xn+1) + α2 = tn+1

rT (Bx−Ay) = 0

βi(−lxi + yi) = 0

γi(uxi − yi) = 0

}

i = 1, . . . , n

tT x = vT y = tn+1xn+1 = 0

(r, β, γ, t, v, tn+1) > 0,

(3.2)

where

∇x f(x, y, xn+1) = −2xn+1(y − xn+1x) + (B + BT )x−Ay

∇y f(x, y, xn+1) = 2(y − xn+1x)−AT x

∇xn+1
f(x, y, xn+1) = −2xT (y − xn+1x).

(3.3)

Hence, the following equalities hold:

− 2xn+1(y − xn+1x) + (B + BT )x−Ay −BT r − α1e + lβ − uγ = t (3.4)

2(y − xn+1x)−AT x + AT r − α2e− β + γ = v (3.5)

− 2xT (y − xn+1x) + α2 = tn+1. (3.6)
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Multiplying both sides of these equalities by xT , yT , and xn+1, respectively, and using (3.2),

we obtain

− 2xn+1x
T (y − xn+1x) + xT (B + BT )x− xT Ay − xT BT r − α1x

T e + lxT β − uxT γ = 0 (3.7)

2yT (y − xn+1x) − yT AT x + yT AT r − α2y
T e− yT β + yT γ = 0 (3.8)

− 2xn+1x
T (y − xn+1x) + xn+1α2 = 0. (3.9)

Now, adding the equalities (3.7) and (3.8), and using xT BT r = yT AT r from (3.2), we have

2(y − xn+1x)T(y − xn+1x) + 2xTBx− 2xTAy − α1x
Te + lxTβ − uxTγ − α2y

Te− yTβ + yTγ = 0.

Furthermore, using lxT β = yT β, uxT γ = yT γ, eT x = 1, and eT y = xn+1 from (3.2), we get

2(y − xn+1x)T (y − xn+1x) + 2xT (Bx−Ay) = α1 + α2xn+1. (3.10)

If α1 = α2 = 0, then the value of the objective function is zero, which means that the stationary

point is a solution of the EiCP. Conversely, suppose that the stationary point (x, w, y, xn+1) of

NLP is a solution of the EiCP. Then f(x, y, w, xn+1) = 0 and xn+1 > 0 by the proof of Theorem

3.1. Therefore, (3.9) implies that

α2 = 2xT (y − xn+1x) = 0.

Furthermore, α1 = 0 by (3.10). �

As discussed in [10, 22], if B and A are both symmetric matrices, then the EiCP reduces to

finding a stationary point of an appropriate merit function on the simplex Ω. This property is a

consequence of the fact that it is possible to prove that the Lagrange multiplier associated with the

linear constraint eT x = 1 is exactly zero for this stationary point [30, 22]. In the asymmetric case,

however, this result is no longer true, which means that stationary points of the nonlinear program

(NLP) may not lead to solutions of the EiCP. Nevertheless, the computation of stationary points

for NLP is a valuable tool for the design of an enumerative method to solve with the EiCP. This

is discussed in the next section.

4 An Enumerative Algorithm for the EiCP

In this section, we propose a new enumerative algorithm for finding a solution to the EiCP. The

algorithm has similarities with an enumerative method for linear complementarity problems dis-

cussed in [1, 19] and a branch-and-bound method for the EiCP introduced in [22]. Due to the

structure of problem NLP for solving the EiCP, two types of branching strategies are incorporated

in the algorithm (similar to the discussion in [22]), namely a branching on the complementary pair

of variables and a partitioning of the interval [l, u] for the variable xn+1. These two branching

schemes are illustrated in Figure 1.

For a given node k, the restrictions imposed on the branches in the path from this node to the
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k+1 k+2

k
yi = xi=0 wi=0

for some suitable index i ∈ {1, . . . , n}

k+1 k+2

k
xn+1 6 d xn+1 > d

for some suitable value d ∈ (l, u)

Figure 1: Branching scheme of the algorithm

root node must be considered. Let us assume that these constraints are given by

l̄ xi 6 yi 6 ū xi, ∀i ∈ J̄

yi = xi = 0, ∀i ∈ J

wi = 0, ∀i ∈ I,

where l 6 l̄ < ū 6 u,J ⊆ {1, . . . , n}, J̄ = {1, . . . , n} \ J , and J ∩ I = ∅. Consider the sets

K = I ∪ J, Ī = {1, . . . , n} \ I, and K̄ = {1, . . . , n} \K.

The subproblem at node k is then given as follows:

NLP(k) Minimize f(x, y, w, xn+1) = (y − xn+1x)T (y − xn+1x) + xT
K̄

wK̄

subject to w = Bx−Ay

eT xJ̄ = 1

eT yJ̄ − xn+1 = 0

l̄ 6 xn+1 6 ū

l̄ xj 6 yj 6 ū xj , j ∈ J̄

xJ̄ > 0, wĪ > 0, yJ̄ > 0

yj = xj = 0, j ∈ J

wi = 0, i ∈ I.

(4.1)

At each node k of the tree, the algorithm first searches for a stationary point to the corresponding

program NLP(k). If the objective function value at this stationary point is zero, then a solution

to the EiCP is at hand and the algorithm terminates. Otherwise, two new nodes are created by

partitioning the node k and the process is repeated. The algorithm also includes heuristic rules

for choosing the open node of the list and for deciding which of the two branching strategies of

Figure 1 should be used at the selected node k whenever a stationary point having a positive

objective value has been found for NLP(k). The formal steps of the algorithm are presented next.

Enumerative Algorithm

Step 0 Let ǫ be a positive tolerance. Put k = 1, I = ∅, J = ∅, and find a stationary point

(x̄, ȳ, w̄, x̄n+1) of NLP(1). If NLP(1) is infeasible, then EiCP has no solution; terminate.

Otherwise, let L = {1} be the set of open nodes, set UB(1)=f(x̄, ȳ, w̄, x̄n+1), and let N = 1

be the number of nodes generated.
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Step 1 If L = ∅, terminate; EiCP has no solution. Otherwise, select k ∈ L such that

UB(k) = min{UB(i) : i ∈ L},

and let (x̄, ȳ, w̄, x̄n+1) be the stationary point found at this node.

Step 2 Let

θ1 = max{w̄ix̄i : i ∈ K̄} = w̄rx̄r

θ2 = max{|ȳi − x̄n+1x̄i| : i ∈ J̄} = |ȳs − x̄n+1x̄s|.

(i) If max{θ1, θ2} 6 ǫ then λ = x̄−1
n+1 and x̄ yield a complementary eigenvalue and eigen-

vector, respectively (within the tolerance ǫ); terminate.

(ii) If θ1 > θ2, branch on the complementary variables (w̄r , x̄r) associated with θ1 and

generate two nodes, N + 1 and N + 2.

(iii) If θ1 6 θ2, then partition the interval
[

l̄, ū
]

at node k into
[

l̄, x̃n+1

]

and [x̃n+1, ū] to

generate two nodes, N + 1 and N + 2, where

x̃n+1 =







x̄n+1 if min{(x̄n+1 − l̄), (ū− x̄n+1)} > 0.1 (ū− l̄)

ū+l̄
2 otherwise.

Step 3 For each of t = N + 1 and t = N + 2, find a stationary point (x̃, ỹ, w̃, x̃n+1) of NLP(t). If

NLP(t) is feasible, set L = L ∪ {t} and UB(t)=f(x̃, ỹ, w̃, x̃n+1). Set L = L \ {k} and return

to Step 1.

The following result establishes that the enumerative algorithm is able to find a solution to a

solvable EiCP.

Theorem 4.1 Either the algorithm terminates finitely with a solution to the EiCP including pos-

sibly an indication that no such solution exists or an infinite binary tree is created such that along

any infinite branch of this tree, any accumulation point of stationary point of NLP(k) generated

by the algorithm solves the EiCP.

Proof: The case of finite convergence is obvious. Otherwise, suppose that an infinite tree is

generated. An accumulation point of the stationary points of NLP(k) along an infinite branch for

a suitable index set K yields in the limit

{γk}K −→ γ∗, [lk, uk]K −→ [l∗, u∗],

where γk = (wk, xk, yk, xk
n+1) is the solution at node k, and {lk, uk} are the lower and upper

bounds for the variable xn+1 at node k. Following exactly the same arguments used in the proof

of Theorem 4 of [22], we can show that

x∗
n+1 = l∗ or x∗

n+1 = u∗
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with θ1 −→ 0 and θ2 −→ 0, and

eT y∗ = x∗
n+1 (4.2)

y∗ = x∗
n+1x

∗ (4.3)

w∗ = −x∗
n+1Ax∗ + Bx∗ (4.4)

w∗
i x∗

i = 0, i = 1, . . . , n. (4.5)

By the definition of the algorithm, we have x∗ > 0, w∗ > 0, y∗ > 0, and 0 < l 6 l∗ 6 x∗
n+1 6 u∗ 6

u. Hence, γ∗ = (w∗, x∗, y∗, x∗
n+1) is a feasible solution of NLP. Furthermore, by (4.3) and (4.5),

the value of the objective function at γ∗ is zero. Thus, x∗ and λ∗ = 1
x∗

n+1

solve the EiCP. �

Note that there is no restriction on the classes of the matrices A and B for Theorem 4.1 to

hold.

It follows from this theorem that the enumerative algorithm is always able to find a solution

for the EiCP whenever it exists. If the EiCP has no solution, then the algorithm fathoms nodes

finitely to terminate with an empty list of open nodes, where UB(r) > 0 for all visited nodes r

such that NLP(r) is feasible. This also means that NLP has a global minimum with a positive

objective function value.

An important issue for the algorithm is the choice of the initial values l and u utilized in the

program NLP. The value l should be near-zero and u should be large enough to guarantee the

existence of an eigenvalue x̄n+1 inside this interval. However, large values of u may result in

computational difficulties for the algorithm. A heuristic procedure for the choice of these values

l and u is discussed in [22] and has been used in the present enumerative method. As such, our

algorithm essentially seeks a solution to the EiCP that has an eigenvalue within the specified

interval [l, u], if it exists.

5 Computation of the Minimum and Maximum

Complementary Eigenvalues

In practice, it is of interest to compute the minimum and maximum eigenvalues for the EiCP

within a given interval [l, u] with l > 0 and u > l. We describe next a simple technique to find

such extremal eigenvalues for the EiCP based on the enumerative algorithm introduced in the

previous section. Suppose that we wish to compute the minimum eigenvalue λ > 0 of the EiCP.

Since xn+1 = λ−1, then the maximum value of xn+1 in the interval [l, u] should be computed. The

enumerative algorithm discussed above can be employed initially to find an EiCP solution with

x̄n+1 ∈ [l, u]. Now, either x̄n+1 = u and the minimum eigenvalue is at hand or a smaller eigenvalue

may exist corresponding to xn+1 ∈ [x̄n+1(1+ǫ+), u] for a small ǫ+ > 0. The enumerative algorithm

can be applied again for this new interval [l, u], where l ≡ x̄n+1(1 + ǫ+). If the resulting EiCP has

no solution, then λ = x̄−1
n+1 is an ǫ+-approximate minimum complementary eigenvalue. Otherwise,

the EiCP is solvable in the new interval and a revised value x̃n+1 is computed at an EiCP solution

such that x̄n+1 < x̃n+1. The procedure is then repeated. The steps of this sequential algorithm

are presented below.
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Sequential Enumerative Method

Step 0 Let ǫ+ > 0 be a positive tolerance. Find a solution (x̄, x̄n+1) of the EiCP by the enumerative

algorithm. If such a solution does not exist, terminate the algorithm with an indication that

the EiCP has no solution with xn+1 ∈ [l, u].

Step 1 Let l = x̄n+1(1 + ǫ+) and apply the enumerative algorithm to solve the EiCP in the new

interval [l, u] via the corresponding NLP.

Step 2 If NLP is infeasible, or if the enumerative algorithm terminates (finitely) with an indication

that no EiCP solution exists, then λ = x̄−1
n+1 is the smallest eigenvalue and x̄ is the corre-

sponding eigenvector. Otherwise, let (x̃, ỹ, w̃, x̃n+1) be the new EiCP solution found. Replace

x̄← x̃, and x̄n+1 ← x̃n+1, and go to Step 1.

The algorithm for finding the maximum eigenvalue λ (smallest xn+1 in a given interval [l, u]) is

similar to the procedure above. However, it is the upper-bound u that has to be updated, which can

be done by resetting u = x̄n+1(1 − ǫ+). In either case, the procedure loops finitely because of the

discrete steps taken, requiring O (log(u/l)/ log(1 + ǫ+)) and O (log(l/u)/ log(1 − ǫ+)) sequential

iterations, respectively, for the two cases.

It immediately follows from the description of the algorithm, that the last NLP to be solved

by the enumerative algorithm has a global minimum with a positive objective function value.

Contrary to the case of a solvable EiCP, given an interval for xn+1, it is important to generate

positive lower bounds at open nodes for an unsolvable EiCP to accelerate the convergence process

by virtue of pruning the tree at such nodes. Lower bounds for the enumerative method have

been designed in [22]. We recommend a switching point within the enumerative process where the

algorithm computes lower bounds instead of upper bounds. Heuristic rules for this switching point

are presented below.

Rules for switching from the computation of upper bounds to lower bounds

(i) Switch at a node k and for all its descendants if

ū− l̄ 6 p(u− l),

where 0 < p < 1 is a specified threshold, [l, u] is the original interval for the variable xn+1,

and
[

l̄, ū
]

is the current interval for xn+1 at node k.

(ii) Switch at a node k and for all its descendants if

|I ∪ J | > q n,

where 0 < q < 1 is a specified threshold and I and J represent the set of fixed w̄i and x̄i

variables at node k.

The choice of p and q depends on the number of complementary variables and on the amplitude

of the interval [l, u] of the EiCP. In the next section, some experience is reported with the sequential

algorithm incorporating this switching procedure.
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6 Computational Experience

In this section, we report computational experience for the proposed algorithms and implementa-

tion strategies. All the experiments have been performed on a Pentium III 1.0 GHz machine with

2 gigabytes of RAM memory. The enumerative method was coded in GAMS [4] and the solutions

of NLP(k) associated with the different nodes k were obtained by the MINOS [28] solver. The

branch-and-bound algorithm [22] was implemented in FORTRAN 77 with version 10 of the Intel

FORTRAN compiler [6]. The solver BARON [31, 35], with a GAMS implementation, was also

used to solve the NLP. The BARON code implements a branch-and-reduce algorithm for global

optimization.

For our test EiCP problems, B was taken as a real positive definite (PD) matrix and A as a real

matrix belonging to the pentadiagonal [29, page 380] or Fathy [29, page 311] classes, or taken

from the Matrix Market repository [27], or in some cases as a randomly generated matrix. For

each set of problems, the initial interval bounds for the variable xn+1, l and u, have been chosen

by trial and error so that EiCP has a solution xn+1 ∈ [l, u].

The test problems of Table 1 are scaled according to the described procedure in [22, Section

5]. Scaling is an important tool for improving the efficacy of the algorithm, particularly when A

is ill-conditioned. In our experiments, we have chosen symmetric matrices that have also been

used in tests with other alternative techniques [21] as well as asymmetric matrices. We have also

solved the problems discussed in [8] by modifying the enumerative algorithm in order to process

the corresponding MEiCPs.

6.1 Symmetric EiCPs

The test cases for this experiment are from [21], where B is the identity matrix (In) and A is a

matrix from the pentadiagonal or Fathy classes. These matrices are symmetric positive definite,

but ill-conditioned. In Table 1 we present the results with the enumerative method, where xn+1 is

the computed inverse of the complementary eigenvalue found. The value of the tolerance ǫ has been

set equal to 10−6 in these tests, which is sufficiently stringent for a global optimization algorithm.

Furthermore, l and u have been set equal to 10−2 and 500, respectively. We have used l = 10−3 for

the Fathy class with dimensions 300, 400, and 500, because the corresponding inverse eigenvalue is

quite small for these problems. The notations NC, NP, and N stand for the number of branchings

performed on the complementary variables, the number of partitions of the interval for xn+1, and

the total number of investigated nodes required by the algorithm. Furthermore, ‘Order’ represents

the dimension (n) of the EiCP, It is the number of iterations performed (pivotal operations), and

T is the CPU time in seconds.

The results show that the enumerative method solves all the test problems at the initial node

itself, without performing any branching.

As discussed in [21, 30], symmetric EiCPs can be solved by finding a stationary point of an

appropriate merit function on the simplex Ω. A computational study of the efficiency of active-

set, interior-point, and spectral projected-gradient (SPG) algorithms for solving the symmetric

EiCP is reported in [21]. The results displayed in Table 1 and Table 4 of [21] show that, for the

same termination tolerance, the enumerative method outperforms the active-set and interior-point

algorithms, which is quite remarkable. The reasons for this behavior have to do with the sparsity
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A Order
(n)

xn+1 T It NP NC N

100 2.4489E-2 0.11 328 0 0 1

200 1.2226E-2 0.56 599 0 0 1

300 7.6815E-3 1.83 842 0 0 1

F
a
t
h
y

400 5.3621E-3 3.64 894 0 0 1

500 4.2104E-3 7.06 946 0 0 1

100 1.0000 0.14 640 0 0 1

200 1.0000 0.57 1330 0 0 1

300 1.0000 1.40 2130 0 0 1

400 1.0000 2.63 2956 0 0 1

p
e
n
t
a
d
i
a
g
o
n
a
l

500 1.0000 4.48 3956 0 0 1

Table 1: Performance of the enumerative algorithm for symmetric EiCPs.

of the constraints and of the Hessian of the objective function of NLP and from the fact that no

branching is required for processing these problems. However, the SPG algorithm is still more

efficient than the enumerative method for this special symmetric case.

We have also tested the solution of these EiCPs by exploiting its reduction to a VI discussed in

section 2. The Mixed Nonlinear Complementarity Problem (MNCP) equivalent to this VI is given

by

F (x)− λe = w

eT x = 1

x > 0, w > 0

λ unrestricted

We have applied PATH for finding a solution of the corresponding MNCPs associated with the

symmetric EiCPs introduced before. For all the test problems, PATH was unable to find a solution to

these EiCPs. This clearly shows that PATH is, in general, unable to solve symmetric or asymmetric

EiCPs.

6.2 Asymmetric EiCPs

The first set of asymmetric test problems were taken from [22], where B = In and A is an asym-

metric matrix whose elements were randomly generated and uniformly distributed in the intervals

[−1, 1] or [0, 1]. The letters “ma” and “mp” are used to identify these intervals, respectively, in

Table 2. The number presented after these letters represents the order (n) of the matrices A and

B. Furthermore, the interval [l, u] of the NLP associated with the EiCP is also specified in Table

2. The results reported in Table 2 include the performances of the branch-and-bound algorithm

discussed in [22], the proposed enumerative method, and the BARON/GAMS procedure for solving

these EiCPs, which are known to have solutions. To allow a comparison of results, we used the

termination tolerance of 10−6 for all these methods. The symbol (***) used in this table, as well
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as in the subsequent tables, indicates that the particular algorithm was unable to solve a given

problem within the set limits.

The results show that the enumerative method is more efficient than the other two algorithms

for processing solvable EiCPs, as it requires a small number of branchings, fewer iterations, and

lesser CPU time to terminate. Furthermore, the gap between the performances of the enumerative

and the branch-and-bound algorithms increases with the dimension of the processed EiCP. Note

that the branch-and-bound method of [22] and BARON were unable to find a solution for one of

the EiCPs. A possible reason for this better behavior of the enumerative method over the two

alternative branch-and-bound algorithms lies on the fact that solution of the EiCP is a global

minimum of the NLP formulation discussed in section 3 with a zero optimal value. The knowledge

of this global optimal value is a stopping criterion for the termination of the enumerative algorithm.

On the contrary, branch-and-bound algorithms are based on the construction of good lower-bounds

and do not exploit this condition as a stopping criterion.

Enumerative Method BARON/GAMS

A Order
(n)

xn+1 T It NP NC N xn+1 T N

bfw62a 62 1.3139 0.01 4 0 0 1 0.3883 0.19 1

ck104 104 1.5654 0.01 14 0 0 1 3.8944 7.75 1

fs 183 1 183 1.0000 0.01 4 0 0 1 383.5406 5.15 1

gre 115 115 7.8750 0.01 10 0 0 1 7.8750 3.84 1

impcol c 137 7.6771 0.36 959 0 0 1 0.1000 4.46 1

olm100 100 1.624E-2 0.01 3 0 0 1 ***

rw136 136 30.9687 0.02 40 0 0 1 30.9687 10.18 1

west0167 167 0.6793 0.04 99 0 0 1 0.3607 26.06 1

Table 3: Performance of the enumerative algorithm and BARON for asymmetric EiCPs with

matrices from the Matrix Market repository.

In a second set of test problems, B was taken as a matrix from the Murty class and A as an

asymmetric indefinite matrix from the Matrix Market repository. The results for the proposed

enumerative method and BARON/GAMS using these problems are presented in Table 3. Note

that the dimensions of these EiCPs are larger than the previous ones, but the conclusion about

the comparative performances of the algorithms is similar.

As discussed before, the values of l and u have to be chosen a priori so that at least an eigenvalue

lies inside the interval [l, u]. To undergo a sensitivity analysis on the values of l and u, we have

fixed l = 0.1 and change u from a relatively small value to a very large one. The results of this

sensitivity analysis on an asymmetric EiCP with the matrix ma30 and a symmetric EiCP with

the matrix pentadiagonal of order 100 are displayed in Tables 4 and 5 and clearly show that the

efficiency of the algorithm does not seem to be quite influenced by the magnitude of the interval

[l, u].
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u xn+1 T It NP NC N

10 0.5769 0.03 170 0 0 1

100 1.8299 0.26 2099 7 0 14

104 0.5769 0.03 302 0 0 1

106 0.5769 0.04 313 0 0 1

Table 4: Solution of EiCP with an asymmetric matrix and four different intervals for the variable

xn+1.

u xn+1 T It NP NC N

10 0.7702 0.41 1644 0 0 1

100 0.7539 0.69 2886 0 0 1

104 0.9875 0.96 4167 0 0 1

106 1.0000 0.87 3596 0 0 1

Table 5: Solution of EiCP with a symmetric matrix and four different intervals for variable xn+1.

6.3 Engineering Application

The results for using the enumerative method to solve three EiCPs associated with the engineering

model described in [8] are presented in Table 6. In this table, λ is the computed complementary

eigenvalue of the MEiCP, and |s| is the number of nodes in impending slip [8] and equals the

number of complementary variables of the MEiCP. The values of l and u have been taken as 10−2

and 500, respectively. As the value of xn+1 is usually quite small for the MEiCP-λ2, we have used

l = 10−6 for these three problems.

Problem Order
(n)

|s| λ T It NP NC N

I 9 3 4.0052 0.01 64 0 0 1

II 9 3 3.2157 0.01 71 0 0 1

M
E

iC
P

-λ

III 35 5 3.1866 0.01 157 0 0 1

I 9 3 3.871E-3 0.01 24 0 0 1

II 9 3 2.199E-4 0.01 15 0 0 1

M
E

iC
P

-λ
2

III 35 5 2.756E-5 0.04 540 3 0 5

Table 6: Performances of the enumerative algorithm for the engineering problems discussed in [8].

The three examples are associated with models of rectangular blocks sliding on a surface that

may be considered as a rigid obstacle. Problem I models a square block and the other two

problems model a rectangular block where the height is half the length. In fact, the second and

third problems represent the same problem with different meshes. Also, we modified the code for

the enumerative method to deal with unrestricted variables. The results of Table 6 show that

the enumerative method was able to solve these MEiCPs efficiently without branching on the
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complementary variables.

6.4 Finding Maximum and Minimum Eigenvalues

Finally, Table 7 presents the results for the sequential algorithm for computing the maximum

eigenvalue for several test cases of dimension up to 30. Here, Nsol represents the number of

computed EiCP solutions. The matrix A is of the Fathy class, or pentadiagonal, or tridiagonal

[16] with nonzero elements given by

A(i, i) = 4, i = 1, . . . , n

A(i− 1, i) = −1

A(i, i− 1) = −1

}

i = 2, . . . , n.

The value ǫ+ = 0.05 has been used in the updating formula in Step 2 of the sequential enumerative

algorithm. Furthermore, † represents the algorithm has not been able to confirm that the maximum

eigenvalue was found after 2500 nodes.

As discussed in Section 5, for the sequential enumerative algorithm, we have utilized some

heuristic rules for switching from the computation of upper bounds to lower bounds. These rules

are based on two threshold parameters, p and q, that govern the switching nodes. Based on some

preliminary tests, we have used p = q = 1/2 for these runs.

A n λ Nsol It NP NC N T

5 2.3449 1 196 0 5 12 0.07

10 4.3634 1 946 0 10 22 0.17

15 6.3875 1 2122 0 15 32 0.35

F
a
t
h
y

20 8.4124 1 3570 0 20 42 0.68

25 10.4386 1 5822 0 25 52 1.28

30 12.4646 1 8632 0 30 62 2.14

5 1.2357 2 268 0 7 17 0.10

10 1.2887 3 4974 15 90 212 0.92

15 1.3080 3 28833 8 254 528 4.45

20 1.3045 3 87108 40 721 1525 11.30

25 1.2954 3 150381 152 1101 2509 16.70†

p
e
n
t
a
d
i
a
g
o
n
a
l

30 1.3092 3 162838 100 1151 2505 17.30†

5 4.0000 1 93 0 12 26 0.02

10 4.0000 1 1318 0 143 288 0.20

15 4.0000 1 15347 0 1251 2503 2.44†

20 4.0000 1 33786 0 1251 2503 4.21†

t
r
i
d
i
a
g
o
n
a
l

25 4.0000 1 42279 0 1251 2503 5.27†

30 4.0000 1 47048 0 1251 2503 6.15†

Table 7: Performance of the sequential enumerative algorithm for finding the maximum comple-

mentary eigenvalue of symmetric EiCPs.
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The numerical results show that the algorithm consumes a reasonable amount of effort for

solving such problems. Furthermore, the number of updates (Nsol) for xn+1 is quite small. Actually,

Nsol = 1 in many cases, which means that the first complementary eigenvalue computed by the

enumerative method is the maximum complementary eigenvalue of the EiCP. The algorithm is

usually quite fast to obtain the maximum eigenvalue, but confirming that such a maximum has been

found is usually quite time consuming. In some examples, the algorithm attained the maximum

number of nodes allowed without confirming that the maximum eigenvalue has been achieved.

In the next experience, we have tried to find the maximum and the minimum eigenvalues for

some of the EiCPs with asymmetric matrices introduced in section 6.2. We set the tolerances

ǫ+ = 0.05 and ǫ− = 0.05 as before, and we used l = 10−2 and u = 500 in all the experiences. As

before, † represents that the algorithm was unable to confirm that the maximum eigenvalue was

found after 2500 nodes.

A λ Nsol It NP NC N T

ma6 1.1091 3 1708 5 53 120 0.61

ma10 0.4823 1 27334 66 779 1691 5.67

ma20 1.7921 2 106733 17 1235 2505 11.90†

ma30 1.7334 1 136850 13 1238 2503 15.70†

ma40 3.1125 1 192706 15 1236 2503 30.40†

ma50 2.7017 3 287740 16 1240 2514 50.40†

Table 8: Performance of the sequential enumerative algorithm for finding the maximum eigenvalue

of asymmetric EiCPs.

A λ Nsol It NP NC N T

ma6 0.9044 1 98 13 4 36 0.01

ma10 0.4823 1 8804 39 275 629 1.35

ma20 1.5845 1 808 14 1 31 0.08

ma30 0.1819 6 79773 84 1182 2535 8.99†

ma40 2.8609 2 22154 23 208 465 2.86

ma50 0.5443 10 129771 148 1164 2629 23.60†

Table 9: Performance of the sequential enumerative algorithm for finding the minimum eigenvalue

of asymmetric EiCPs.

The numerical results displayed in Tables 7, 8 and 9 seem to indicate that the sequential

enumerative algorithm has a similar performance for solving asymmetric and symmetric EiCPs.

7 Conclusions

In this paper, an asymmetric Eigenvalue Complementary Problem (EiCP) is discussed. A suffi-

cient condition for the existence of a solution was first established. An enumerative algorithm was
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proposed for finding a solution of the EiCP, if it exists. The algorithm adopts a new nonlinear

programming formulation (NLP) of the EiCP motivated by, but different from, that introduced in

[22] and implements branching strategies similar to those incorporated in the branch-and-bound

method discussed in [22]. The proposed algorithm, however, has an added facility to possibly ter-

minate early (even at the root node in some cases) based on a necessary and sufficient optimality

utilized in this paper. A sequential algorithm based on these enumerative and branch-and-bound

algorithms was also proposed to compute the maximum and the minimum complementary eigen-

values. Computational experience reported on a variety of problems demonstrate the relative

efficiency of the new proposed methodologies over the algorithm of [22] as well as over the com-

mercial software BARON. We believe that this type of enumerative algorithm can be useful for the

solution of other structured complementary problems that often appear in engineering applications.

This is a topic recommended for future investigation.
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