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In this paper we study the bilevel linear programming problem with multiple objective functions at 

the upper level (with particular focus on the bi-objective case) and a single objective function at 

the lower level. We have restricted our attention to this problem type because the consideration of 

several objectives at the lower level raises additional issues to the bilevel decision process 

resulting from the difficulty of anticipating a decision from the lower level decision maker. We 

examine some properties of the problem and propose a methodological approach based on the 

reformulation of the problem as a multiobjective mixed 0-1 linear programming problem. The 

basic idea consists in applying a reference point algorithm that has been originally developed as an 

interactive procedure for multiobjective mixed-integer programming. This approach further 

enables to characterize the whole Pareto frontier in the bi-objective case. Two illustrative 

numerical examples are included to show the viability of the proposed methodology. 
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1. Introduction 

Bilevel mathematical programs model hierarchical optimization problems in which 

there are two decision makers that have different objective functions, variables and 

constraints. The decision process is sequential as the upper level decision maker − the 

leader − makes his/her decisions first, anticipating those of the lower level decision 

maker − the follower. The bilevel programming problem has been widely studied and 

most of this research has been devoted to the linear case. For comprehensive references 

on bilevel programming we refer to [6, 12, 13]. In addition, several applications are 

described in [10]. 

The bilevel programming problem considering multiple objectives has great interest for 

many applications, in particular in transportation system planning and traffic 

management. For instance, the manager may want to minimize the total travel time of 

all travellers, to minimize gasoline consumption (by varying the cycle time of traffic 

lights) and to minimize the construction cost of road improvements, so he/she must take 

into account several distinct objective functions. In addition, since the options of the 

manager affect the travel choices of the users, he/she must also accommodate the traffic 

behaviour that results from the individual decisions of the travellers (the lower-level 

problem). A situation of this type can be modelled as a bilevel programming problem 

with multiple objectives at the upper-level. However, in contrast with the vast literature 
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on the bilevel problem, little research work has been done thus far on multiobjective 

bilevel problems.  

Yin [35] and Erkut and Gzara [18] have recognized the importance of considering 

multiple objectives in their bilevel applications for planning transportation systems. Yin 

points out that a multiobjective bilevel modelling approach can be a powerful decision 

tool, and proposes a solution based on genetic algorithms. A numerical experiment was 

conducted on a transportation network design bi-objective problem with a traffic 

assignment lower level problem. Erkut and Gzara deal with a problem of network 

design for hazardous material transportation in which the government designates a 

network and the carriers choose the routes on the network. After a first approach to the 

problem using a bilevel integer formulation, the authors felt the need to extend the 

model to incorporate two objectives at the upper level, the transportation cost and the 

risk. A heuristic was then used to compute nearly Pareto optimal solutions. 

A few more methodological studies can be found in literature on multiobjective bilevel 

problems. Shi and Xia [29, 30] present an interactive algorithm for nonlinear bilevel 

problems with multiple objectives in both levels. The algorithm simplifies the problem 

by transforming it into separate multiobjective decision-making problems at each level, 

using in addition a satisfactoriness concept to model the preferences of the upper level 

decision maker. This work has been extended to three-level multiobjective problems by 

Abo-Sinna and Baky [1] with some modifications in assigning satisfactoriness to each 

objective function at all levels of the problem.  

Zhang et al. [36] have developed an approximation branch-and-bound algorithm to deal 

with bilevel linear problems with fuzzy parameters when the leader or the follower or 

both have multiple objectives.  

Eichfelder [15, 17] has studied the nonlinear multiobjective bilevel programming 

problem with upper level constraints uncoupled from the lower level variables, and 

shows that the constraint set of the upper level problem can be expressed as the set of K-

minimal solutions of a multiobjective problem with respect to a certain closed pointed 

convex cone K. Based on this result, the author proposes an algorithm for problems with 

two objectives at each level and one upper level variable. In [16] these results have been 

extended to problems with upper level constraints that depend on the lower level 

variables.  

Deb and Sinha [11] suggest an evolutionary multi-objective optimization algorithm for 

solving bilevel problems with multiple objectives (in both levels). The basic idea of the 

proposed procedure is to keep two interacting populations in a coevolutionary algorithm 

so that, instead of a serial and complete optimization of the lower level problem for 

every upper level solution, both upper and lower level optimization tasks can be 

pursued simultaneously through iterations. The algorithm was tested using a couple of 

nonlinear problems described in [16]. 

Nishizaki and Sakawa [28] have also addressed the multiobjective bilevel linear 

programming problem with multiple objectives at both levels. Since the leader must 

take into consideration an infinite number of responses of the follower with respect to 

each one of his/her decisions, the authors assume that the leader has some subjective 

anticipation or belief, which can be optimistic, pessimistic or an anticipation arising 

from the past behaviour of the follower. Optimistic anticipation means that the leader 

anticipates that the follower will take a decision desirable for the leader, and pessimistic 

anticipation is the reverse. The solution procedure presented in [28] is based on solving 

interactively a reference point scalarizing program, for which the leader is asked to 

update the reference point. Given a reference point to the upper level objectives, the 

optimistic (pessimistic) anticipation approach assumes that the follower returns the 
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Pareto optimal solution of his/her problem that best (worst) fits the reference point of 

the leader. The procedure stops when the leader is satisfied with the obtained solution.  

The optimistic and the pessimistic anticipation introduced by Nishizaki and Sakawa 

[28] for multiobjective bilevel problems clearly show the difficulties of a bilevel 

decision process when multiple lower level objectives are considered. These difficulties 

naturally have serious implications on the development of an effective solution 

procedure. 

In case the follower has a single objective, it is often assumed that the rational response 

of the follower for a decision of the leader is deterministic. Whenever it is not a 

singleton, an approach consists in assuming that the leader is free to select the solution 

that suits him/her best. This interpretation is legitimate in case side payments are 

allowed; it is the so-called optimistic modelling approach for single-objective bilevel 

problems. When cooperation between the leader and the follower is not allowed, or if 

the leader is risk-averse and wishes to limit the “damage” resulting from an undesirable 

selection, a pessimistic approach can be admitted [10]. Furthermore, intermediate 

approaches between the optimistic and the pessimistic approaches have been discussed 

[24], and a partial cooperation model was proposed in [9], which includes a cooperation 

index reflecting the degree of the follower’s partial cooperation. The discussion of 

optimistic and pessimistic approaches can also be found in [12]. 

There is, however, a major difference between this case and the multiobjective one. In 

the single-objective case, the reaction solutions are alternative optima to the follower 

with respect to a decision of the leader, i.e., they all attain the same value of the 

follower’s objective. In case of multiple objectives at the lower level, there is no single 

optimal objective value to the follower, but rather a set of nondominated objective 

vectors in which a better value for one objective can only be obtained if at least one of 

the other objectives is worsened. Therefore, a compromise solution taking into account 

the multiple objective functions must be selected but, unless a scalar-valued utility 

function is assumed a priori (which turns the lower level problem into a single-

objective one), the follower’s decision may be very difficult to anticipate. This 

uncertainty on the behaviour of the follower puts additional difficulties for the 

development of a procedure that can provide effective decision aid in multiobjective 

bilevel problems.  

These considerations have led us to restrict our attention to the bilevel linear 

programming problem with multiple objectives at the upper level and a single objective 

at the lower level. In addition, we have assumed that the problem has no lower level 

variables in the upper level constraints. In this paper we examine some properties of this 

type of problem and we propose a methodological approach based on its reformulation 

as a multiobjective mixed 0-1 linear programming problem. Particular attention is given 

to the bi-objective case. 

An interactive reference point procedure developed by Alves and Clímaco [2] for 

multiobjective mixed-integer linear programming is used to compute Pareto optimal 

solutions to the multiobjective bilevel problem. This procedure exploits the use of 

branch-and-bound techniques for solving successive reference point scalarizing 

programs in which the reference point is automatically updated to perform a directional 

search for Pareto optimal solutions. It is shown that this approach can be further used to 

fully determine the Pareto region of a bi-objective problem (i.e., to act as a generating 

method) except for a gap between continuous solutions that can be set as small as the 

user wishes. 

The remainder of this paper is organized as follows. In section 2, the problem is 

formulated and basic concepts of bilevel and multiobjective programming are 
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introduced. Some characteristics of the multiobjective bilevel linear problem with 

multiple objectives at the upper level are also examined in this section. Section 3 shows 

a relation between the induced region of the bilevel linear problem and the set of Pareto 

optimal solutions of a multiobjective linear program and discusses the difficulties of 

profiting from that result to develop an effective procedure for multiobjective bilevel 

linear problems. In section 4 the problem is reformulated as a multiobjective mixed 0-1 

linear problem. Section 5 introduces the methodological approach by introducing the 

interactive reference point procedure in [2] for multiobjective mixed-integer linear 

programming and proposing a generating algorithm for the bi-objective case. Two 

illustrative examples of the application of this algorithm to bi-objective bilevel 

problems are included in section 6 and some conclusions and perspectives on future 

work are included in section 7.  

2. The bilevel linear programming problem with multiple objectives at the upper 

level 

2.1 Problem definition 

The Multi-Objective Bi-Level Linear Problem (MOBLLP) can be expressed as follows: 

 ydxcyxF
yx

1
1

1
11

,
),(max +=  

 ... 

 ydxcyxF
kkk

yx

11

,
),(max +=     

 s.t. 11 bxA ≤  

   0≥x  

   { }0,:)(maxarg 2222 ≥≤+=∈ ybyBxAydyfy
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(1) 

where 1
nx ℜ∈  and 2

ny ℜ∈  are the upper level and lower level decision variables, 

respectively, k is the number of objective functions of the leader, 11 n
i

c ℜ∈ , 21 n
i

d ℜ∈ , 

i=1,...,k, 22 nd ℜ∈ , 111 nmA ×ℜ∈ , 11 mb ℜ∈ , 122 nmA ×ℜ∈ , 222 nmB ×ℜ∈ , 22 mb ℜ∈  and 

cx  represents the inner product of two vectors c and x. 

In a bilevel problem, the upper level decision maker (leader), makes his/her decision 

first and through his choice of 1
nx ℜ∈  reduces the set of feasible choices available to the 

lower level decision maker (follower). Next, the follower reacts to the leader’s decision 

by choosing an 2
ny ℜ∈  that optimizes his/her objective function. Hence, the follower 

indirectly affects the leader’s solution space and outcomes for his/her single or multiple 

objective functions. 

The following sets should be considered. 

S is the constraint region of the MOBLLP, which includes all the constraints of the 

leader and of the follower. We assume that S is non-empty and compact and it is defined 

as follows: 

 S = { }0,0,,:),( 22211 ≥≥≤+≤ yxbyBxAbxAyx  

P(x) is the follower’s rational reaction set to a given x: 

 { }0,:)(maxarg)( 222 ≥−≤= yxAbyByfxP
y

 

The feasible set for the leader, which is called the induced region, is defined as 

 { })(,),(:),( xPySyxyxIR ∈∈=  
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In terms of the above notation, the MOBLLP can be written as 
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It should be noted that the MOBLLP formulation presented in (1) considers upper level 

constraints uncoupled from the lower level variables. Actually, many authors define the 

bilevel problem without upper level constraints while others consider upper level 

constraints involving both upper and lower level variables. It has been shown that IR is 

not necessarily a connected set when there exist upper level constraints containing some 

lower level variables y. On the other hand, IR is always connected when the variables y 

are not included in the upper-level constraints. For a discussion on this topic we refer to 

[4, 25]. Consequently, the multiobjective problem to be studied in this paper has a 

connected feasible region. 

2.2 Basic concepts in multiobjective optimization 

In this section we only present a few basic concepts on multiobjective optimization that 

are used in the rest of the paper. Mathematical foundations and methods of multicriteria 

(multiobjective) optimization can be found in the books [14], [26] and [31]. 

To facilitate the exposition of the concepts, consider a multiobjective optimization 

problem defined generically as follows: 

 )(max
1

xz
x

  

 ... 

 )(max xz
k

x
    

 s.t. x ∈ X 

 

(3) 

Let Z denote the image of X in the objective function (criterion) space: 

{ }XxxzxzxzzzZ
k

k ∈==ℜ∈= )),(),...,(()(:
1

 

In multiobjective optimization there is not, in general, a feasible solution that optimizes 

simultaneously all objective functions. Thus, the concept of optimal solution is replaced 

by Pareto optimal, efficient or nondominated solution. Although these designations can 

be considered interchangeable, some authors prefer to use ‘Pareto optimal’ or ‘efficient’ 

for decision vectors x and ‘nondominated’ for criterion vectors z belonging to Z [31]. 

We do not make any particular distinction, adopting herein the ‘Pareto optimal’ 

designation for the solutions and referring to the set of nondominated criterion vectors 

as the Pareto frontier. 

A solution Xx ∈'  ( Zz ∈' ) is Pareto optimal, efficient or nondominated if and only if 

there is no other Xx ∈ such that )'()( xzxz
jj

≥  for all j=1,...,k and )'()( xzxz
jj

>  for at 

least one j. 

In other words, Xx ∈'  ( Zz ∈' ) is Pareto optimal iff there is no other Xx ∈ such that 

z = z(x) dominates 'z = z( 'x ), according to the following definition of dominance: 
kz ℜ∈  dominates kz ℜ∈'  if and only if 

jj
zz '≥  for all j=1,...,k and 

jj
zz '>  for at least 

one j. 
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A solution Xx ∈'  ( Zz ∈' ) is said to be a weakly Pareto optimal solution if and only if 

there is no other Xx ∈ such that )'()( xzxz
jj

>  for all j=1,...,k. 

Although the set of weakly Pareto optimal solutions includes the set of Pareto optimal 

solutions, for the sake of simplicity we only refer to ‘weakly Pareto optimal’ a solution 

for which the Pareto optimality condition does not hold. 

The Pareto optimal set is, in general, nonconvex (even in multiobjective linear 

programming) and may be not connected. According to Miettinen [26, p.20], the 

connectedness of the sets of Pareto optimal solutions and weakly Pareto optimal 

solutions is an important feature because it is often useful to know how well we can 

move continuously from one (weakly) Pareto optimal solution to another one. Several 

results have been established for the connectedness of the Pareto optimal set. In 

particular, this set is connected if the feasible region is convex and compact and the 

maximizing objective functions are concave or strictly quasiconcave (see, e.g. [7]). As it 

is shown later, the Pareto optimal set of a MOBLLP may be not connected. 

Another fundamental concept for the study of the MOBLLP is the distinction between 

supported and unsupported Pareto optimal solutions. A nondominated criterion vector 

Zz ∈'  is called unsupported if it is dominated by any infeasible convex combination 

(i.e. not belonging to Z) of other nondominated criterion vectors. Otherwise, 'z  is a 

supported nondominated criterion vector. Inverse images, Xx ∈' , of supported 

(unsupported) nondominated criterion vectors Zz ∈'  are supported (unsupported) 

Pareto optimal solutions. 

Unsupported Pareto optimal solutions cannot be obtained by optimizing scalar surrogate 

functions consisting of weighted-sums of the objective functions. As is shown next, a 

MOBLLP may admit not only supported but also unsupported Pareto optimal solutions. 

It should also be remarked that for the linear bilevel programming problem an optimal 

solution can be found at a vertex of the set S (the constraint region) − see e.g. [6] or 

[12] for a proof. In MOBLLP the set of Pareto optimal solutions (or even weakly Pareto 

optimal solutions) may be not equal to the union of faces of this set, as is shown in the 

next example. 

2.3 An example of MOBLLP 

Let us now illustrate the concepts previously defined using a MOBLLP example with 

two objective functions. 

Example 1. 

xyxF
yx

2),(max
1

,
−=   

yxyxF
yx

5),(max
2

,
+−=   

s.t.   yyf
y

−=)(max  

 s.t.   x − 2y ≤ 4  
(1)

 

   2x – y ≤ 24    
(2) 

   3x + 4y ≤ 96     
(3)

 

   x + 7y  ≤ 126    
(4)

 

   -4x + 5y ≤ 65  
(5)

 

     x  + 4y  ≥ 8  
(6)

 

    x, y ≥ 0 

The problem is depicted in Figure 1. 
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Figure 1. Graphical representation of example 1. 

 

The induced region, IR, is [DE]∪[EB]∪[BA].  

Graphically, we can also determine the whole Pareto optimal set (a subset of IR) for this 

bi-objective bilevel problem, which is {D}∪]CB]∪[BA]. The values of the decision 

variables and the upper level objective functions in the points A, B, C and D are shown 

in Table 1. 
 

Table 1. Values of the (weakly) Pareto optimal extreme points of example 1. 

 x y F1 F2 

A 17.45455 10.90909 -34.9091 37.09091 

B 14.66667 5.333333 -29.3333 12 

C 13.33333 4.666667 -26.6667 10 

D 0 2 0 10 
 

The following issues can be observed: 

− D is the Pareto optimal solution that maximizes F1 and A is the Pareto optimal 

solution that maximizes F2. 

− Solutions from C to D (exclusive) of the induced region are not Pareto optimal 

as they are dominated by D. Comparing with C, D is superior only in F1 being 

equal in F2. Hence, C is a weakly Pareto optimal solution. 

− Only A and D are supported Pareto optimal solutions. All the others are 

unsupported, because there are convex combinations of A and D that would 

dominate them if they were feasible, i.e., if they belonged to IR. 

− The Pareto optimal set is not connected. 

Figure 2 shows the Pareto optimal points in the objective space (Pareto frontier). 
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Figure 2. The Pareto frontier of example 1. 

 

This example shows that the Pareto optimal set of a MOBLLP may be not connected 

and may have unsupported solutions. Furthermore, unsupported solutions may 

constitute the major part of the Pareto optimal set. Hence, they should not be 

disregarded. 

3. Reduction of the induced region to a multiobjective linear problem 

The equivalence between a linear bilevel programming problem and linear optimization 

over the Pareto optimal set of a multiobjective linear problem (MOLP) was first 

presented by Fülöp [21] and this is also summarized in the book by Dempe [12, pp.33-

34]. Recently, this result has been exploited by Glackin et al. [22], who has proposed an 

algorithm based on MOLP for solving the linear bilevel problem.  

Basically, this result establishes a relation between the induced region, IR, and the 

Pareto optimal set of a MOLP. This property holds for both the single-objective bilevel 

linear problem and for the MOBLLP (1) as we have only considered multiple objectives 

at the upper level which do not affect the induced region. This relation can be stated as 

follows. 

Consider the MOBLLP defined in (1) with any k ≥1, and the definitions above for S and 

IR. Then, IR coincides with the Pareto optimal set of the following MOLP with n1+2 

objective functions: 

 ydyf
yx

2

,
)(max =  

 
i

yx
x

,
max   ,    i =1,…, n1 

 ∑
=

−
1

1
,

max

n

i
i

yx
x     

 s.t. (x,y) ∈ S 

(4) 

Moreover, different formulations of the MOLP (4) can be considered provided that the 

coefficient vectors of the last n1+1 objective functions constitute a set of generators of 
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the cone 1
nℜ . The proof of this result is included in the Appendix (Proposition 1) for a 

more general MOLP formulation. 

Although this result is theoretically interesting, its use in practice is at least doubtful due 

to the large number of objective functions in the MOLP.  

Suppose that we wish to exploit this result to solve a MOBLLP by using a procedure 

which computes several Pareto optimal solutions to (4) that are evaluated by the upper 

level objective functions of the MOBLLP and then selects the nondominated points. 

Even if we generate all the Pareto optimal extreme points of (4) or a more extended set 

of Pareto optimal solutions, attempting to have a representative set of the induced 

region of the MOBLLP, we have no guarantee that the selected solutions are Pareto 

optimal solutions to the MOBLLP. The following example illustrates this drawback. 

Example 2. 

Consider the following MOBLLP: 

),(max
1

,
yxF

yx
 = 2x1 − 4x2 + y1 − y2 

),(max
2

,
yxF

yx
 = −x1 + 2x2 − y1 + 5y2 

s.t.  )(max yf
y

 = 3y1 + y2 

 s.t.   4x1 + 3x2 + 2 y1 + y2 ≤ 60 

   2x1 +  x2 + 3 y1 + 4y2 ≤ 60 

   x1 , x2 , y1 , y2 ≥ 0 

 

The formulation (4) with respect to this MOBLLP is the following: 

)(max
,

yf
yx

 = 3y1 + y2 

yx,
max  x1  

yx,
max  x2  

yx,
max  − x1 − x2 

s.t.   4x1 + 3x2 + 2 y1 + y2 ≤ 60 

 2x1 +  x2 + 3 y1 + 4y2 ≤ 60 

     x1 , x2 , y1 , y2 ≥ 0 

 

Using a Vector Maximum Algorithm [31] for computing all the Pareto optimal basic 

solutions of problem (4) we find 5 solutions which are shown in Table 2. These 

solutions form the set of extreme points of the induced region of the MOBLLP. 

 
Table 2. Pareto optimal extreme points of formulation (4) w.r.t. the MOBLLP of example 2. 

 x1 x2 y1 y2 f(y)  F1(x, y) F2(x, y) 

solution 1 0 0 20 0 60  20 −20 

solution 2 15 0 0 0 0  30 −15 

solution 3 0 20 0 0 0  −80 40 

solution 4 0 8.5714 17.1429 0 51.429  −17.143 0 

solution 5 7.5 0 15 0 45  30 −22.5 

 

The evaluation of these solutions by F1 and F2, whose values are also shown in Table 2, 

indicates that solution 1 and solution 5 are dominated by solution 2, while solutions 2, 3 
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and 4 are nondominated within this set. Solutions 2 and 3 are definitely Pareto optimal 

solutions to the MOBLLP, because these are the single extreme points of the induced 

region that optimize individually F1 and F2, respectively. However, no such guarantee 

exists in what concerns the Pareto optimality of solution 4.  

Actually, a further study of this bi-objective bilevel problem (using the procedure 

presented in section 5) enables us to conclude that solution 4 is not a Pareto optimal 

solution to the MOBLLP, as it is dominated by feasible convex combinations of 

solutions 2 and 3, e.g. (x1, x2, y1, y2) = (9.351, 7.532, 0, 0) where (F1, F2) = (−11.428, 

5.714), among others. 

This example shows that an effective approach to deal with the MOBLLP based on the 

reduction of the induced region to a MOLP may be difficult to implement. Therefore, 

other type of procedures must be designed to address the problem and, in particular, to 

compute Pareto optimal solutions. A possible strategy may be the transformation of the 

MOBLLP into another problem that can be efficiently solved using a suitable 

procedure. This is the approach followed in this work, which is based on the 

reformulation of the MOBLLP as a multiobjective mixed integer linear programming 

problem. 

4. Reformulation of the MOBLLP as a multiobjective mixed 0-1 linear problem 

A bilevel linear programming problem can be reformulated as a mathematical program 

with complementarity constraints, which in turn is equivalent to a mixed integer (0-1) 

linear programming problem [5, 20]. In this section we follow these transformations to 

reduce MOBLLP to a multiobjective mixed-integer (0-1) linear problem (MOMILP). 

Consider the MOBLLP formulation stated in (1). This problem can be first reformulated 

as a multiobjective linear program with complementarity constraints (5), which contains 

the primal and dual constraints associated to the follower’s problem and the 

corresponding complementarity slackness conditions [6, 12, 23]: 

 ydxc(x,y)F
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where 2λ mℜ∈ . 

Using the transformations discussed in [5], the complementarity constraints can be 

replaced by linear constraints with binary variables and problem (5) is reformulated as 

the following MOMILP:  

  ydxc(x,y)F
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 ... 
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11

,
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(6) 
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   22λ dB ≥  

   0≥y , 0≥x , 0λ ≥  

   

evy Μ≤Μ+  
22λ dvB ≤Μ−  

{ } 21,0
m

u ∈ , { } 21,0
n

v ∈  
 

where Μ represents a large finite positive constant and e a vector of appropriate 

dimension and all elements equal to one. 

As a direct consequence of the results proved by Audet et al. [5] for the single-objective 

case, the following result can be stated. 

Proposition 2 − Suppose that ( )',' yx  is a Pareto optimal solution of the MOBLLP (1). 

Then, there exist a large finite constant M>0 and 2'λ mℜ∈ , { } 21,0'
m

u ∈ , { } 21,0'
n

v ∈  such 

that ( )',','λ,',' vuyx  is a Pareto optimal solution of (6). Also, for such an M, if 

( )',','λ,',' vuyx  is a Pareto optimal of the last problem, then ( )',' yx  is a Pareto optimal 

solution of the MOBLLP (1). 

5. A methodology based on a MOMILP procedure 

Methods for computing Pareto optimal solutions to a multiobjective programming 

problem work in general by transforming the multiobjective problem into a 

parameterized single-objective problem − a scalarizing program − such that the 

optimum of the scalarizing program for a set of parameters corresponds to a Pareto 

optimal solution, or at least a weakly Pareto optimal solution, to the multiobjective 

problem. Different scalarization techniques can be used, e.g. optimization of weighted-

sums of the objective functions, constraint techniques or reference point techniques. 

Discussions on this topic can be found in [14] and [19], among others. 

Multiobjective bilevel linear problems admit not only supported but also unsupported 

Pareto optimal solutions and the latter type of solutions should not be disregarded as it 

may constitute the major part of the Pareto optimal set. Unsupported Pareto optimal 

solutions cannot be reached by optimizing simple weighted-sums of the objective 

functions even if a complete parameterization on the weights is attempted. In contrast to 

the weighted-sum scalarization, reference point techniques [33] can reach both 

supported and unsupported Pareto optimal solutions, thus being more adequate to deal 

with the MOBLLP. 

Reference point approaches [33] can be seen as a generalization of goal programming. 

The reference point can be interpreted as a goal but the sense of “coming close” changes 

to “coming close or better”, which does not mean minimization of a distance but rather 

the optimization of an achievement scalarizing function [34]. 

Consider the general formulation (3) of a multiobjective optimization problem. Let 

q∈ℜk
 denotes a criterion reference point, which may represent aspiration levels that the 

decision maker would like to attain for the objective functions. Let us consider the 

min-max scalarizing program ( ){ })(maxmin
...1

xzq
ii

kiXx
−

=∈
 which projects q onto the (weakly) 

Pareto frontier. Since the optimal solution to this scalarizing program may be only a 

weakly Pareto optimal solution, the term 







− ∑

=

k

i
i

xz
1

)(ρ  is usually added to the 

scalarizing function to ensure the Pareto optimality condition (where ρ>0 is a constant 

small enough).  
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The augmented scalarizing program is thus, ( )








−− ∑
=

=∈

k

i
iii

kiXx
xzxzq

1
...1

)(ρ)(maxmin , which 

is equivalent to:  

 







− ∑

=

k

i
i

x
xz

1
α,

)(ραmin   

 s.t. 
ii

qxz ≥+ α)(   i =1,...,k 

   Xx ∈  

   ℜ∈α  

(7) 

 

If q is a non-attainable point then the optimal solution to (7) is the Pareto optimal 

solution closest to q according to the (augmented) Tchebycheff metric. If q is attainable, 

the scalarizing program (7) does not minimize a distance. Instead, it tries to improve the 

reference point and consequently a Pareto optimal solution is produced. Actually, this is 

an achievement scalarizing program and the outcome is always a Pareto optimal 

solution.  

Several other related scalarizing programs have been proposed in the literature, in 

particular, the weighted Tchebycheff scalarizing program [8, 32] which has been widely 

used. In general, a fixed reference point (which must be non-attainable) is used and the 

weights are the controlling parameters. So, the main difference between the 

achievement scalarizing program (7) and the weighted Tchebycheff scalarizing program 

is the dependence on controlling parameters, the reference levels in the former case and 

the weights in the latter one. 

Whatever the controlling parameters are (weights, reference levels or both), there might 

exist ranges of parameter values that lead to the same Pareto optimal solution. 

Therefore, not only the effectiveness of a multiobjective method relies on the 

availability of a suitable single-objective optimization algorithm, but also depends on 

the way the parameters are changed. In generating methods, which aim to generate the 

whole set or a representative subset of Pareto optimal solutions, the variation of 

parameters is controlled by the algorithm. In interactive methods, which alternate 

computation phases with decision making phases, the variation of parameters results 

from preference information provided by the decision maker. In both types of methods, 

sensitivity information on the variation of parameters can be very useful to avoid 

computing the same Pareto optimal solution more than once. This kind of information is 

especially relevant in problems with discrete variables or discontinuities in the Pareto 

region, which is the case of the MOBLLP. 

Alves and Clímaco [2, 3] developed an interactive reference point procedure and 

software for the multiobjective mixed-integer linear problem (MOMILP), which uses 

the scalarizing program (7) to compute Pareto optimal solutions. The procedure is 

mainly devoted to perform directional searches by solving the parametric optimization 

problem (7) with the parameter vector q. The mixed-integer scalarizing programs are 

successively solved by a branch-and-bound method using a single tree. Sensitivity 

analysis and post-optimality techniques have been developed to change automatically 

the reference point throughout a directional search and to use the previous branch-and-

bound tree as a starting structure to solve the next scalarizing programs. 

This approach can be applied to the MOBLLP after reformulating the problem as a 

MOMILP. Although the procedure has been developed to be an interactive method, it 

can be further used to generate the whole Pareto frontier of bi-objective bilevel linear 
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problems, thus providing a generating method. The steps of this algorithm are presented 

below after a brief description of the interactive procedure. 

So, let us start by introducing the interactive procedure proposed in [2]. Firstly, the 

payoff table of the MOMILP may be computed. This is an optional step that aims at 

providing some initial useful information for the decision maker (DM) that helps 

him/her to choose a first reference point. The payoff table is of the form of Table 3 

where the rows are criterion vectors resulting from individually maximizing each one of 

the objectives. A two phase optimization process is used to avoid weakly Pareto optimal 

solutions in the payoff table. This process is also referred to as a lexicographic 

optimization approach and consists of first solving for each i =1,…,k, 

{ }Xxxz
i

x
∈:)(max  and then the program { }*)(,:)(max

iiij j
x

zxzXxxz ≥∈∑ ≠
, where *

i
z  

is the maximum of zi(x) obtained in the first optimization phase. Let i
x  be the computed 

Pareto optimal solution for the objective zi(x). Its criterion vector is 

z
i
 = z( ix ) = ),...,,...,(

1
i
k

i
i

i zzz , where i
i

z = *
i

z , and it constitutes the i
th

 row of the payoff 

table. 

The main diagonal of the payoff table is formed by the so-called ideal point 

z
*
= ),...,,( **

2
*
1 k

zzz , which is suggested to the DM to be the first reference point. 

 
Table 3. Payoff table. 

 z1 z2 … zk 

z
1 *

1z  1
2z  … 

1
kz  

z
2 2

1z  *
2z  … 

2
kz  

… … … … … 

z
k kz1  kz2  … 

*
kz  

 

The main cycle of the algorithm is as follows: 

• Construct a new reference point q . 

• Compute a Pareto optimal solution by solving the mixed-integer program (7) 

with q = q . 

• Terminate when the DM is satisfied and does not want to continue the search 

for new Pareto optimal solutions. 

A new reference point can be chosen by the DM or it is automatically changed by the 

procedure (except in the first iteration) if the DM wants to perform a directional search. 

In the latter case, the DM just specifies an objective function, say zj, he/she wants to 

improve with respect to the previous Pareto optimal solution. Then, the procedure 

increases the j
th

 component of the reference point (
j

q ) keeping the other components 

equal. The amount by which 
j

q  is increased is determined by sensitivity analysis using 

information provided by the previous branch-and-bound tree. This process ensures that 

the next Pareto optimal solution is close to, but different from, the previous Pareto 

optimal solution. The next computing phase does not start a new branch-and-bound tree, 

but rather uses the previous one to proceed to the optimization of the new scalarizing 

program. 

The algorithm of this interactive reference point procedure can be stated as follows. 

Step 0 [optional]. Compute the payoff table of the MOMILP. 
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Step 1. Ask the DM to specify a reference point q ∈ℜk
. 

 At the first interaction it is proposed by default the ideal point of the MOMILP 

(or the ideal point of the linear relaxation of the problem if the Step 0 has not 

been performed). 

 Solve the mixed-integer program (7) with q = q  using a branch-and-bound 

method to obtain a Pareto optimal solution. 

Step 2. If the DM does not want to compute more Pareto optimal solutions, stop. 

 Otherwise, if the DM is willing to indicate explicitly a new reference point, 

return to Step 1. 

 Else, go to Step 3. 

Step 3. Ask the DM to choose one of the objectives he/she wishes to improve in relation 

to the previous Pareto optimal solution. Let zj be the objective specified by the 

DM. 

 A directional search is carried out by considering reference points of the form 

( )
kjj

qqq ,...,θ,...,
1

+  with 0>θ j  to produce a sequence of Pareto optimal 

solutions that successively improve zj. The computation of new solutions 

throughout this direction stops when the DM wishes or a Pareto optimal solution 

that optimizes zj has been reached. 

 Return to Step 2. 

The core of this algorithm is Step 3 and the way a directional search is performed. It 

consists of optimizing successive scalarizing programs (7) that only differ in the right-

hand side of the j
th

 constraint (a special constraint that results from the integration of the 

j
th

 objective into the scalarizing program). Postoptimality techniques have been 

developed to perform this task. This is an iterative process with two main phases: 

   (i)  sensitivity analysis, 

   (ii) updating the branch-and-bound tree. 

The sensitivity analysis (i) returns a parameter value 
j
θ > 0 such that the structure of the 

previous branch-and-bound tree remains unchanged for variations in 
j

q  up to 
j

q +
j
θ . 

This means that reference points ( )
kjj

qqq ,...,θ,...,
1

+  with 
jj
θθ ≤  either lead to the 

same Pareto optimal solution or lead to different Pareto optimal solutions that are easily 

computed because they come from the same node of the branch-and-bound tree. In the 

latter case, distinct Pareto optimal solutions may be computed for different specific 

parameter values under 
j
θ  and these solutions are presented to the DM (who can 

interactively control the proximity of solutions he/she wants to visualize). In both cases, 

the branch-and-bound tree is then updated (ii) for 
j
θ  slightly over 

j
θ  and a Pareto 

optimal solution is produced. It may happen that this solution is the same as the last one 

because the 
j
θ  returned by the sensitivity analysis can be only a lower bound for the 

true maximum value of the parameter. In that case (which occurs more often in all-

integer programs than in mixed-integer models) the process automatically returns to (i), 

and the iterative process finishes when a new Pareto optimal solution is obtained in (ii), 

which is then presented to the DM. 

A detailed description of the sensitivity analysis as well as the updating process of the 

branch-and-bound tree can be found in [2]. 
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Concerning the application of the algorithm to the MOBLLP and, in particular, to 

generate the Pareto frontier of a bi-objective problem, the following features may be 

highlighted. 

− The user can define a stepsize µ, which represents the maximum variation (in 

percentage) that the DM wishes for the value of an objective function when continuous 

Pareto optimal solutions are computed.  

− The procedure recognizes when it reaches a Pareto optimal solution that maximizes 

one of the objectives of the multiobjective problem (even if the payoff table was not 

initially computed). Therefore, if a directional search is performed to improve zj and a 

Pareto optimal solution maximizing zj is at hand, the procedure indicates that no more 

improvement in this objective function is possible and the directional search finishes. 

 

Now suppose that we wish to examine the whole Pareto frontier of a bi-objective 

problem. Then we can either start in the optimum of the first objective and perform a 

directional search in order to improve the second objective, or we can do the reverse. 

Since the increase of an objective function implies the decrease of the other, the Pareto 

frontier is fully determined using such an approach, except for a gap between 

continuous solutions which is controlled by the stepsize µ. Therefore, we must only 

ensure that the initial reference point leads to a Pareto optimal solution that maximizes 

one of the objectives. Without loss of generality, consider that we start in the optimum 

of z1(x).  

So, z1(x) is firstly maximized using a lexicographic optimization approach to ensure that 

a Pareto optimal solution, say 1x , is obtained. Let ),( 1
2

1
1

1 zzz =  be the corresponding 

nondominated criterion vector, where *
1

1
1

zz =  is the maximum value of z1(x) over X. 

Solution 1x  also optimizes the achievement scalarizing program (7) for the reference 

point q = 1z  provided that the constant ρ  in (7) is set small enough, i.e. it satisfies ρ <ρ′  

for a certain ρ′ . In fact the following result holds: 

Proposition 3 − Consider the bi-objective programming problem 

 )(max
1

xz
x

       

 )(max
2

xz
x

    

 s.t.       x ∈ X 

 

Let Z denote the feasible region in the criterion space (i.e. image of X) and Znd its subset 

corresponding to the nondominated criterion vectors. Let 1x
 
be a Pareto optimal 

solution that maximizes z1(x) in the feasible region X and 
nd

Zz ∈1  be its criterion 

vector. Then, x
1
 optimizes the following scalarizing program for which the criterion 

vector 1z  is uniquely determined: 

 { }






 −− ∑ ==∈

2

12,1
)(ρ)(maxmin

i iii
iXx

xzxzq  

with 1zq =  and 

 0 < ρ < 













>−
−

−
∑

∑
=

=
∈

0)(:
)(

min
2

1
1

2

1
1

1
1
1

}{\ 1 i ii

i ii
zZz

zz
zz

zz

nd
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Proof. Consider a feasible solution Xx ∈  whose criterion vector is Zz ∈  such that 

( ))(),(
21

xzxzz = ≠ 1z . 

 Since *
1

1
1

zz =  is the maximum of z1(x) and 1z  is a nondominated vector, then 

α = { })(max
2,1

xzq
ii

i
−

=
= { }

2
1
21

1
1

2,1
,max zzzz

i
−−

=
 is strictly positive for Zz ∈ \{ 1z }. 

 On the other hand, 1α = { })(max 1

2,1
xzq

ii
i

−
=

= 0 for 1zq = . 

 Thus, 1z  is the unique criterion vector that optimizes the scalarizing program 

for 1zq =  if  

 ∑ =
−

2

1
1ρ

i i
z < α  ∑ =

−
2

1
ρ

i i
z  , ∀ Zz ∈ \{ 1z } 

 This means that we must have ρ <

∑ =
−

2

1
1)(

α

i ii
zz

 whenever 0)(
2

1
1 >−∑ =i ii

zz , 

for all Zz ∈ \{ 1z }. 

 If z  is nondominated, then 1
1

z >
1

z , 1
2

z <
2

z  and α = 1
1

z −
1

z . If z  is dominated 

then α ≥ 1
1

z −
1

z . 

 Hence, it suffices for ρ to be defined as in this proposition for 1z  uniquely 

optimizing the scalarizing program with 1zq = . 

 

Note that, in practice, a small positive value of ρ, e.g. 10
-3

 or 10
-4

 is normally suitable. 

Moreover, in this particular case, if ρ was not chosen appropriately because it was set 

too high, the obtained solution would not be the solution that optimizes z1(x), i.e. 1z , 

but rather another nondominated solution close to it. Since 1z  is known in advance, the 

difference would be detected and the search could then be restarted with a lower ρ. 

Once a bi-objective bilevel linear programming problem has been transformed into a bi-

objective mixed-integer linear program, the following generating algorithm can be used 

to characterize its Pareto frontier.  

Step 0. Compute the payoff table of the bi-objective problem or just a Pareto optimal 

solution that maximizes z1(x). Let ),( 1
2

1
1

1 zzz =  be its criterion vector. 

Step 1. Define the first reference point as q = 1z . 

 Solve the mixed-integer program (7) using a branch-and-bound method as in 

Step 1 of the interactive algorithm. 

Step 2. Choose z2(x) to be improved.  

 Choose a stepsize µ >0 that defines an acceptable gap between continuous 

Pareto optimal solutions. 

 Perform a directional search as in Step 3 of the interactive algorithm stopping 

when a Pareto optimal solution that maximizes z2(x) is reached. 

 

In this algorithm, µ represents the maximum value that is allowed for the ratio 

)~/()( 1
2

*
222

zzzz prevnew −− , where newz  and prevz  are the criterion vectors of two continuous 

Pareto optimal solutions, the new and the previous one, respectively; *
2

~z  is an 

approximation for the maximum of z2 (e.g. the maximum of z2 in the linear relaxation of 
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the problem) or its true maximum value if the payoff table has been fully computed in 

Step 0. 

The algorithm has been stated for starting at the optimum of z1 and finishing at the 

optimum of z2. Naturally, starting at the optimum of z2 and selecting then the first 

objective to be improved is another possibility to compute the Pareto frontier of the bi-

objective problem. In this case, µ is used for restricting differences in z1. 

6. Two examples of the application of the MOMILP procedure to bi-objective 

bilevel linear problems 

Consider again the bi-objective bilevel linear problem presented in example 1, which is 

graphically depicted in Figure 1. This problem is firstly reformulated as the following 

bi-objective linear problem with complementarity constraints. 

xyxF
yx

2),(max
1

,
−=   

yxyxF
yx

5),(max
2

,
+−=   

s.t.    x − 2y ≤ 4 
 

 2x – y ≤ 24  
 

 3x + 4y ≤ 96    

 x + 7y  ≤ 126    

 −4x + 5y ≤ 65  

  x  + 4y  ≥ 8  

 2λ1 + λ2 − 4λ3 − 7λ4 − 5λ5 + 4λ6 ≤ 1  

 (x − 2y − 4).λ1 = 0 

 (2x – y − 24).λ2 = 0 

 (3x + 4y − 96).λ3 = 0 

 (x + 7y − 126).λ4 =0 

 (–4x + 5y − 65).λ5 = 0 

 (− x − 4y + 8).λ6 = 0 

 (2λ1 + λ2 − 4λ3 − 7λ4 − 5λ5 + 4λ6  − 1). y = 0 

 x, y ≥ 0 

 λi ≥ 0 ,  i =1,...,6   

Next, the problem is reformulated as the following MOMILP. 

xyxF
yx

2),(max
1

,
−=   

yxyxF
yx

5),(max
2

,
+−=   

s.t.   x − 2y ≤ 4 
 

 2x – y ≤ 24  
 

 3x + 4y ≤ 96    

 x + 7y  ≤ 126    

 −4x + 5y ≤ 65  

  x  + 4y  ≥ 8  

 2λ1 + λ2 − 4λ3 − 7λ4 − 5λ5 + 4λ6 ≤ 1  

 x, y ≥ 0 

 λi ≥ 0 ,  i =1,...,6   

x − 2y + Mu1 ≥ 4 

λ1 + Mu1 ≤ M 

2x – y + Mu2 ≥ 24 

λ2 + Mu2 ≤ M 

3x + 4y + Mu3 ≥ 96 

λ3 + Mu3 ≤ M 

x + 7y + Mu4 ≥ 126 

λ4 + Mu4 ≤ M 

–4x + 5y + Mu5 ≥ 65 

λ5 + Mu5 ≤ M 

− x − 4y + Mu6 ≥ −8 

λ6 + Mu6 ≤ M 
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2λ1 + λ2 − 4λ3 − 7λ4 − 5λ5 + 4λ6 + Mv1 ≥ 1 

y + Mv1 ≤ M 

ui ∈ {0,1} , i =1,…,6 

v1 ∈ {0,1} 

where M >0 is a suitable large number.  

 

This formulation (considering M=150) has been introduced into the MOMILP software 

that implements the methodology described in the previous section. This software has 

been developed in Delphi 2007 for Windows. It upgrades the procedure described above 

which has been previously implemented within a broader decision support system [3].  

The generating algorithm is applied to this problem. The payoff table is firstly 

computed (Table 4). It is composed by the criterion vectors of the Pareto optimal 

solutions that optimize individually each objective function, which have been denoted 

by D and A in Figure 1, respectively.  

 
Table 4. Payoff table of example 1. 

 F1 F2 

D 0 10 

A -34.9091 37.09091 

 

The reference point q = (0, 10) is chosen to start the search for Pareto optimal solutions 

and the corresponding mixed-integer scalarizing program (7) is solved by the branch-

and-bound method. Its optimal solution is the Pareto optimal solution that maximizes F1 

whose criterion vector is z
 
=(0,10). Let z denote a criterion vector (F1, F2) of any Pareto 

optimal solution. 

The directional search is then selected to compute Pareto optimal solutions that 

successively improve F2, and the stepsize µ=0.5% is chosen. Next, the procedure 

performs a sensitivity analysis on the previous branch-and-bound tree and changes the 

reference point to q =(0, 36.773). The branch-and-bound tree is updated to find the 

optimal solution of the scalarizing program for the new q and a new Pareto optimal 

solution is obtained whose criterion vector is z =(-26.727, 10.045). This Pareto optimal 

solution is nearby the weakly Pareto optimal solution denoted by C in Figure 1. Note 

that the procedure needs to make a major change in q2 in order to “jump” the 

discontinuity in the Pareto region. In this case the stepwise µ cannot be fulfilled, as the 

solutions are not continuous. 

The next solution throughout the directional search has z =(-27.908, 10.181) and it is 

found using the reference point q =(0, 37.089). Then, z =(-27.0886, 10.3164) is 

computed using q =(0, 37.405). The directional search continues in the same way by 

computing very close Pareto optimal solutions until the optimum of F2 is reached when 

q =(0, 72.1). In this directional search a total of 202 Pareto optimal solutions are 

computed with a total CPU time < 0.001 seconds (on a computer with Core 2 CPU 

6700, 2.66 GHz, 2 GB of RAM). Figure 3 shows the criterion points for all the Pareto 

optimal solutions computed by the algorithm. As was expected, apart from the scale, 

this graph is similar to the one presented in Figure 2 (Pareto frontier that has been 

produced by a graphical analysis). 
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Figure 3. Nondominated criterion points produced by the MOMILP software for the example 1. 

 

Let us present another example. 

A larger dimensional bi-objective bilevel linear problem (example 3) was randomly 

generated and solved. The total number of variables is 50 where 20 are controlled by the 

follower (thus, n1 =30 and n2=20). The problem was generated in a manner similar to 

that of Glackin et al. [22]. The number of constraints is 0.4 times the total number of 

variables (we considered 50% in the upper level and 50% in the lower level, thus 

m1 =10 and m2 =10). The coefficients of the matrices A
1
, A

2
 and B

2
 range from -15 to 45 

with a fraction of nonzero entries of 0.4. The right-hand side values of b
1
 and b

2
 are 

uniformly distributed between 0 and 50, and we considered that all constraints are 

inequality constraints of type ‘≤’ (to facilitate feasibility). The coefficients of the upper 

and lower level objective functions are uniformly distributed between -20 and 20. 

In order to get the reformulation of the MOBLLP n2 constraints and m2 continuous 

variables are first added to transform it into a single level problem with 

complementarity constraints. Then 2(m2 + n2) constraints and (m2+n2) binary variables 

are further included to obtain a MOMILP. Thus, the bi-objective mixed-integer problem 

to be addressed has 60 continuous variables, 30 binary variables and 100 constraints. 

We fixed the constant M to 100 times the largest coefficient of the model (i.e. M=5000). 

We performed two directional searches with this problem, one starting at the optimum 

of F1 and then searching for Pareto optimal solutions that successively improve F2, and 

the other is the reverse search (starting at the optimum of F2 and then improving F1). 

These computations were also useful to test the accuracy of the value assigned to M. We 

found that all the computed solutions satisfy the complementarity conditions stated in 

the corresponding bi-objective linear problem with complementarity constraints. 

In both directional searches we set the stepsize µ equal to 0.5%. This defines a gap 

between two consecutive solutions, which is measured by the relative difference in the 

values of F2 in the first search and in the values of F1 in the second search. 

In the first directional search, 304 Pareto optimal solutions were computed. The first 

solution required a CPU time of 0.13 seconds while all the others required a total time 
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of 2.05 seconds (a mean less than 0.007 seconds per solution). This discrepancy 

between the first time and the others is due to the computing process which does not 

start a new branch-and-bound tree in each new optimization phase, but rather updates 

the previous one.  

In the second directional search, a total of 272 Pareto optimal solutions were obtained 

with a CPU time of 0.30 seconds for computing the first solution and 2.03 seconds for 

computing all the others. 

Figure 4 shows the criterion points of the Pareto optimal solutions obtained in (a) the 

first search (from the optimum of F1 to the optimum of F2) and in (b) the second search 

(from the optimum of F2 to the optimum of F1). The proximity of the solutions is 

different in (a) and (b) although the same stepsize has been used, because this parameter 

restricts the distance between two solutions in one axis, F2 or F1 respectively. 

 

 
 

Figure 4. Nondominated criterion points produced by the MOMILP software for the example 3. 

(a) Directional search from the optimum of F1 to the optimum of F2  (b) Directional search from the 

optimum of F2 to the optimum of F1. 

 

7. Conclusions 

In this paper we have studied the bilevel linear programming problem with multiple 

objectives at the upper level (MOBLLP). We have further discussed the potentialities of 

a reference point algorithm to solve the MOBLLP and its use as a generating method for 

bi-objective problems. It has been shown that the procedure can fully determine the 

Pareto frontier of a bi-objective problem except for a gap between continuous Pareto 

optimal solutions, which can be as small as the user wishes.  

Although the proposed approach is viable to solve any MOBLLP, it requires the 

reformulation of the problem as a multiobjective mixed 0-1 linear programming 

problem. The MOBLLP is firstly transformed into a multiobjective linear program with 

complementarity constraints and these constraints are then converted into linear 

constraints with binary variables. This latter conversion needs the addition of 2(m2 + n2) 

constraints and (m2+n2) binary variables to the problem, where m2 and n2 are the 

numbers of lower-level constraints and variables, respectively. Furthermore, it may be 

difficult to define a suitable large number for the constant M in this formulation. 

Therefore, we aim to develop another procedure which can be applied directly to 
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multiobjective linear problems with complementarity constraints and also exploits the 

enumerative tree to solve successive reference point scalarizing programs. 
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Appendix 

Proposition 1 − Consider the single or multi-objective bilevel linear programming 

problem MOBLLP defined in (1) with k≥1 and the definitions above for S and IR. Then 

IRyx ∈),(  if and only if Eyx ∈),(  where E is the set of Pareto optimal solutions of a 

MOLP with n1+2 objective functions, defined as: 

 ydyf
yx

2

,
)(max =  

 xv i

yx,
max   ,     i =1,…, n1+1 

 s.t. (x,y) ∈ S 

with { }121 1,...,, +nvvv  a minimal set of generators of the cone 1
nℜ  (i.e., any point 

of 1
nℜ can be reached by some nonnegative linear combination of the v

i
). 

 

Proof.  

 a) First we assume that IRyx ∈),( . We want to prove that Eyx ∈),( . 

 As { })(,),(:),(),( xPySyxyxIRyx ∈∈=∈ , then Syx ∈),(  and y ∈ P( x ), which 

means that y  maximizes f over S( x )={ }0,: 222 ≥−≤ yxAbyBy . Suppose that 

Eyx ∉),( . Then, there exists another (x, y)∈ S such that ydyd 22 ≥  and xvxv ii ≥  

for all i=1,…, n1+1, with at least one strict inequality.  

 Since { }121 1,...,, +nvvv  is a set of generators of the cone 1
nℜ , for each n1-

dimensional unit vector e
j
=(0,0,…,1,…,0) with j

th
 entry equal to 1 and all the 

others equal to zero, there are constants )(

1
α

j , )(

2
α

j ,…, )(

1
1

α
j

n +
 ≥ 0 such that 

∑
+

=

=

1

1

)(
1

α

n

i

ij

i
j ve . Analogously, there are )(

1
β

j , )(

2
β

j ,…, )(

1
1

β
j

n +
 ≥ 0 such that 

∑
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=−

1

1

)(
1

β

n

i

ij

i
j ve . If xvxv ii ≥  for all i, then )(α

1

1

)(
1

xxv

n

i

ij

i
−∑

+

=

= )( xxe j − = 

0≥−
jj

xx  and )(β

1

1

)(
1

xxv

n

i

ij

i
−∑

+

=

= )( xxe j −− = 0≥+−
jj

xx . So, 
jj

xx =  for every 

j=1,…,n1. Thus, the strict inequality must be regarding the first objective 

function, that is, )()( yfyf > . However, this contradicts the fact that y ∈ P( x ). 

Hence, Eyx ∈),( . 

 b) Now we assume that Eyx ∈),(  and we want to prove that IRyx ∈),( . 

 Suppose that IRyx ∉),( . As Eyx ∈),( , then Syx ∈),( . Therefore, the condition 

IRyx ∉),(  holds only if y ∉ P( x ), i.e. if there exists another Syx ∈),(  such that 

)()( yfyf > . Under these circumstances, in the MOLP the criterion vector of 

),( yx  dominates the criterion vector of ),( yx , because it is superior in the first 

objective function and equal in the others. This contradicts the hypothesis that 

Eyx ∈),( . Hence, IRyx ∈),( . 


