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Abstract. In this paper, we are concerned with an efficient algorithm for solving the extreme
Lorentz eigenvalue problem (ELE). The Lorentz eigenvalue problem is an eigenvalue complementarity
problem over the Lorentz cone, and solving ELE is equivalent to testing the Lorentz-copositivity
for a given matrix. Treating ELE as a special eigenvalue problem, we propose a Lanczos-type
method which mimics the Rayleigh–Ritz procedure and is suitable for large-scale and sparse problems.
The numerical behavior and efficiency of the proposed method are supported by the theoretical
convergence results and some preliminary numerical experiments.
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1. Introduction. Given a symmetric matrix A ∈ Rn×n, we consider the mini-
mization problem

(1.1) min
{
qA(xxx) , xxxTAxxx

}
s.t. ‖xxx‖2 = 1, xxx ∈ Kn,

where

Kn ,
{
xxx =

[
α
zzz

]
∈ Rn : ‖zzz‖2 ≤ α

}
.

Points in Kn form a cone, widely known as the Lorentz cone, the second-order cone,
or the ice-cream cone in the literature. The minimization (1.1) is closely related to
the notion of Lorentz-copositivity defined as follows.

Definition 1.1 (see [25] and also [32, Definition 2.1]). Let A ∈ Rn×n be sym-
metric. We say A is Lorentz-copositive if and only if qA(xxx) = xxxTAxxx takes only
nonnegative values on xxx ∈ Kn.
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612 L.-H. ZHANG, C. SHEN, W. H. YANG, AND J. J. JÚDICE

According to Definition 1.1, one can see that A is Lorentz-copositive whenever
the global minimum, denoted as q̂, of (1.1) is nonnegative.

Lorentz-copositivity is a kind of extension of classical copositivity [25, Defini-
tion 1.1], whose definition reads the same as Definition 1.1 except for replacing the
Lorentz cone Kn by the nonnegative orthant Rn+. There has been a wealth of de-
velopment, in both theory and implementation, of copositivity (see, e.g., [25] for a
survey). It is known that there are a couple of equivalent statements for copositiv-
ity [25]; however, unfortunately, testing whether A is copositive is challenging and
indeed a coNP-complete problem, meaning that testing whether A is not copositive
is NP-complete [27]. On the other hand, by using the Lagrange multiplier theory,
the KKT condition of minimizing qA(xxx) over Rn+ is the so-called Pareto eigenvalue
complementarity problem, which consists of solving a pair (λ,xxx) with λ ∈ R (also
known as the Pareto eigenvalue [25, Definition 4.2]) and xxx ∈ Rn\{0} (also known as
the Pareto eigenvector [25, Definition 4.2]) satisfying

(1.2) Rn+ 3 xxx ⊥ Axxx− λxxx ∈ Rn+ and ‖xxx‖ = 1,

where ‖ · ‖ is some norm in Rn. In practice, the `1-norm is used, which gives
eeeTxxx = 1 with eee a vector consisting of ones. The Pareto eigenvalue problem re-
ceives much interest in the optimization community, and there are plenty of re-
search papers devoted to theoretical analysis, applications, and numerical algorithms
[2, 6, 11, 12, 17, 19, 26, 29, 34, 44, 46, 52].

Analogously, the optimality conditions for (1.1) reads as

(1.3) Kn 3 xxx ⊥ Axxx− λxxx ∈ Kn and ‖xxx‖2 = 1

for a pair (λ,xxx) with λ ∈ R. This is referred to as the Lorentz eigenvalue problem
[19] or the second-order cone eigenvalue complementarity problem (SOCEiCP) [16].
A pair (λ,xxx) satisfying (1.3) is called the Lorentz eigenpair with λ and xxx called a
Lorentz eigenvalue and a Lorentz eigenvector, respectively. Algorithms for computing
a Lorentz pair are discussed in [5] when A is symmetric and in [1, 7, 19] for the general
case. These algorithms can also be applied to SOCEiCPs where Kn is the Cartesian
product of multiple Lorentz cones.

It is clear that for a Lorentz eigenpair (λ,xxx),

λ = xxxTAxxx = qA(xxx).

This implies that (1.1) is equivalent to finding a specific Lorentz eigenpair (λ,xxx) so
that λ achieves the minimum. This problem is called the extreme Lorentz eigenvalue
problem (ELE), and its numerical solution is the main purpose of this paper. Indeed,
we have the following.

Proposition 1.1 (see [19, Proposition 4.1]). A symmetric matrix A is Lorentz-
copositive if and only if ELE has a nonnegative optimal value.

It is important to note that the algorithms for SOCEiCP described in [1, 5, 7, 19]
are designed for computing a Lorentz pair whose eigenvalue may be not the smallest.
Hence these procedures cannot be applied to solve ELE. On the other hand, for
the traditional eigenvalue problem there are plenty of state-of-the-art algorithms for
solving both small-to-medium sized problems (e.g., the QR algorithm) and large-scale
problems (e.g., methods based on the Krylov subspace techniques). In addition to
the highly efficient performance numerically, elegant theoretical results have been
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developed. A complete list of this ever-expanding literature is apparently hard to
present, and so we only mention [3, 14, 21, 36, 42, 50] for general discussions.

Treating (1.3) as a specific eigenvalue problem, we attempt to employ the maturely
developed Lanczos method for eigenvalue computations to solve (1.1). Mimicking the
classical Rayleigh–Ritz (RR) procedure (see [36, section 11.3] and [14, Definition 7.1];
also see section 3.1) for the eigenvalue problem, we propose a Lanczos-type method
for the Lorentz eigenvalue problem (LaLoEig). The detailed procedure is presented in
section 3. This method is suitable for large-scale and sparse problems because only
the matrix-vector products are involved for the matrix A, and thereby, its sparsity and
special structure, if any, can be preserved. Moreover, mature and fruitful theoretical
results of the Lanczos method can be used to establish the convergence of LaLoEig.

We organize the paper in the following way. In section 2, we present some prelim-
inary results, including a basic computational procedure for ELE and a brief review
of the trust-region subproblem (TRS). The LaLoEig method is proposed in section 3
with a basic introduction of the RR procedure, the Lanczos method for eigenvalue
problems, and the Lanczos approach for TRS (LTRS). The convergence analysis of
LaLoEig is discussed in section 4. Some preliminary numerical experiments are re-
ported in section 5, and concluding remarks are drawn in section 6.

Notation. Throughout the paper, all vectors are column vectors and are typeset
in bold. The identity matrix in Rn×n is denoted by In = [eee1, eee2, . . . , eeen]. To simplify
our presentation, we adopt MATLAB-like conventions to access the entries of vectors
and matrices. For example, A(k, `) is the (k, `)th entry of A, (k : `) stands for the
set of integers from k to ` inclusively, and A(k : `, i : `) is the submatrix of A that
consists of intersections of row k to row ` and column i to column `.

For the matrix A, A† stands for the pseudoinverse of A, and AT and span(A)
denote its transpose and the range ofA, respectively. The rank ofA is rank(A) = r(A).
The eigendecomposition of A is A = V ΘV T, and its eigenvalues are represented as

θ1 = θ2 = · · · = θj < θj+1 ≤ · · · ≤ θn;

the eigenspace associated with the smallest eigenvalue θ1 is denoted by A1 which is
spanned by V1 = [vvv1, . . . , vvvj ] ∈ Rn×j , i.e., A1 = span(V1) and j = dim(A1).

Let X and L be two subspaces of Rn with χ = dim(X) ≤ dim(L) = `, and let X
and L be orthonormal basis matrices of X and L, respectively. We denote by σi for
1 ≤ i ≤ χ, in ascending order, the singular values of LTX. The χ canonical angles
∠i(X,L) from X to L, in descending order, are defined by [31]

(1.4) 0 ≤ ∠i(X,L) , arccosσi ≤
π

2
for 1 ≤ i ≤ χ.

We set

∠(X,L) , diag(∠1(X,L), . . . ,∠χ(X,L)),(1.5)

sin∠(X,L) , diag(sin∠1(X,L), . . . , sin∠χ(X,L))(1.6)

and analogously define cos∠(X,L) and tan∠(X,L). When χ = `, it is known that
the distance (in the `2-norm) between X and L is (see, e.g., [21, section 2.6.3])

(1.7) ‖ sin∠(X,L)‖2 = ‖PX − PL‖2,

where PX and PL stand for the orthogonal projections onto X and L, respectively.
Also, for a given nonzero xxx ∈ Rn, we will use ∠(xxx,L) to denote ∠(span(xxx),L), and
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by definition, it follows that

cos∠(xxx,L) =
‖LTxxx‖2
‖xxx‖2

and sin∠(xxx,L) =
√

1− cos2 ∠(xxx,L).

For the cone Kn, we denote its interior and boundary by

int(Kn) , {xxx ∈ Kn : xxx(1) > ‖xxx(2 : n)‖2} and bd(Kn) , {xxx ∈ Kn : xxx(1) = ‖xxx(2 : n)‖2},

respectively.

2. Breaking down the ELE problem.

2.1. Preliminary results. We begin with a geometrically obvious result about
the Lorentz cone Kn.

Proposition 2.1. Let L be an orthonormal basis for a subspace L ⊆ Rn. Then
(i) L ∩ (Kn\{0}) 6= ∅ if and only if ∠(eee1,L) ≤ π

4 ;
(ii) L ∩ int(Kn) 6= ∅ if and only if ∠(eee1,L) < π

4 .

Remark 2.1. For this proposition, we remark that the Lorentz cone Kn is a special
case of the so-called revolution cone [45] defined by

Rev(b, φ) = {xxx ∈ Rn : (cosφ)‖xxx‖2 ≤ 〈b,xxx〉}

associated with a given unit norm b and a φ ∈ [0, π2 ]. It is clear that Kn =
Rev(eee1,

π
4 ), and Proposition 2.1 is a necessary and sufficient condition for the non-

trivial intersection between Kn and a linear subspace L [45]. Also, for a given
Rev(b, φ), we can transfer any zzz ∈ Rev(b, φ) into xxx ∈ Kn by the transformation
xxx = diag(1, In−1 cotφ)Hzzz, where H is the Householder transformation satisfying
Hb = eee1; therefore, our discussions in this paper can also be applied to the revolution
cone.

Next, we provide some basic facts about the Lorentz eigenvalue problem. Follow-
ing [46], we define the Lorentz spectrum

σ(A,Kn) , {λ ∈ R : (λ,xxx) is a Lorentz eigenpair of (1.3) for some xxx}.

It is known that for a symmetric A, σ(A,Kn) contains a finite number of Lorentz
eigenvalues [46, Corollary 4.5]. This means that we can order all the Lorentz eigen-
values as

λ1 ≤ λ2 ≤ · · · ≤ λt,

and thus the extreme Lorentz eigenvalue λ1 = q̂ is also the global minimum of ELE
(1.1). Moreover, it obviously holds that

σ(A,Kn) = σint(A,Kn) ∪ σbd(A,Kn),

where σint(A,Kn) (resp., σbd(A,Kn)) consists of all Lorentz eigenvalues, each admit-
ting a Lorentz eigenvector xxx ∈ int(Kn) (resp., xxx ∈ bd(Kn)). We should be aware
that σint(A,Kn) and σbd(A,Kn) are not necessarily disjoint because some Lorentz
eigenvalue could possibly have Lorentz eigenvectors both in int(Kn) and on bd(Kn);
moreover [46]

λ ∈ σint(A,Kn) ⇐⇒ λ is an eigenvalue of A associated with an eigenvector in int(Kn).

In particular, we have the following.
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Lemma 2.1. If (λ,xxx) is a Lorentz eigenpair and xxx ∈ int(Kn), then (λ,xxx) is also
an eigenpair of A.

Proof. The assertion can be verified easily using xxxT(Axxx − λxxx) = 0, xxx ∈ int(Kn),
Axxx− λxxx ∈ Kn, and the Moreau orthogonal decomposition theorem.

2.2. Basic computational steps for ELE. If for the extreme Lorentz eigen-
value λ1 there is a Lorentz eigenvector x̂xx ∈ int(Kn), then (λ1, x̂xx) is the eigenpair of
A and λ1 = θ1 is the smallest eigenvalue of A. Otherwise, any associated Lorentz
eigenvector x̂xx must be on the boundary x̂xx ∈ bd(Kn). We point out that the latter
case happens only if the eigenspace of A associated with the smallest eigenvalue θ1 is
separated from Kn. This is shown in the following theorem.

Theorem 2.1. Let A1 be the eigenspace of A associated with the smallest eigen-
value θ1.

(i) If A1∩(Kn\{0}) 6= ∅, then λ1 = θ1, and an eigenvector in Kn of A associated
with θ1 solves ELE (1.1).

(ii) If A1 ∩ (Kn\{0}) = ∅, then θ1 < λ1 ∈ σbd(A,Kn), and any Lorentz eigen-

vector associated with λ1 is given by x̂xx =
√

2
2 [ 1

ŝss ] ∈ bd(Kn), where ŝss ∈ Rn−1

solves the following problem:

(2.1) min
‖sss‖2=1

1

2
sssTHsss+ sssTggg,

where

A =

[
a11 gggT

ggg H

]
, ggg ∈ Rn−1, H ∈ R(n−1)×(n−1).

Proof. For (i), note that

θ1 = min
‖xxx‖2=1

qA(xxx) ≤ min
‖xxx‖2=1, xxx∈Kn

qA(xxx) = λ1,

and if A1∩(Kn\{0}) 6= ∅, any unit `2-norm vector in A1∩(Kn\{0}) solves ELE (1.1).
For (ii), assume that there is a Lorentz eigenpair (λ1, x̂xx) with x̂xx ∈ int(Kn). Then

by Lemma 2.1, we know that (λ1, x̂xx) is also an eigenpair of A. But the assumption
A1 ∩ (Kn\{0}) = ∅ implies that λ1 > θ1 and vvvT

1 x̂xx = 0, where vvv1 ∈ A1 has unit
`2-norm. Consider the point of the form ψx̂xx + βvvv1. Note that for any β 6= 0 and
ψ2 + β2 = 1,

‖ψx̂xx+ βvvv1‖2 = 1 and qA(ψx̂xx+ βvvv1) = λ1ψ
2 + θ1β

2 < λ1.

For sufficiently small β 6= 0, let ψ =
√

1− β2. Since x̂xx ∈ int(Kn), we have ‖ψx̂xx +
βvvv1‖2 = 1, ψx̂xx+ βvvv1 ∈ Kn, and qA(ψx̂xx+ βvvv1) < λ1, which contradicts that λ1 is the
minimum of ELE (1.1). Therefore, x̂xx ∈ bd(Kn) holds and the remaining conclusion
follows directly.

By Proposition 2.1, it appears that the computational step for checking if A1 ∩
(Kn\{0}) 6= ∅ is simple. Suppose V1 ∈ Rn×j is the orthonormal basis matrix for A1.
Then

A1 ∩ (Kn\{0}) 6= ∅ ⇐⇒ ‖V T
1 eee1‖22 ≥

1

2
.

Theorem 2.1 together with the above equivalence provides a computational ap-
proach (Algorithm 2.1) for solving ELE (1.1). This procedure starts by checking the
assumption in Theorem 2.1(i). If it does not hold, the related problem (2.1) is solved.
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Algorithm 2.1 Basic procedure for solving ELE (1.1)

Input: a symmetric matrix A;
Output: an extreme Lorentz eigenpair (λ1, x̂xx) of A;

1: compute the orthonormal basis matrix V1 ∈ Rn×j for the eigenspace of A1 asso-
ciated with the smallest eigenvalue θ1 of A;

2: if 2‖V T
1 eee1‖22 ≥ 1, then either x̂xx =

V1V
T
1 eee1

‖V T
1 eee1‖2

or x̂xx = − V1V
T
1 eee1

‖V T
1 eee1‖2

solves (1.1) and

λ1 = θ1;

3: otherwise solve (2.1) for ŝss and x̂xx =
√

2
2 [ 1

ŝss ] ∈ bd(Kn) and λ1 = qA(x̂xx).

We should point out that Algorithm 2.1 is only suitable for small-to-medium
sized n, as it involves solving a classical eigenvalue problem. The detailed procedure
of LaLoEig for large-scale problems is to be presented in section 3.

2.3. The trust-region subproblem. We next discuss the related problem (2.1)
briefly. Note that for any ν ∈ R, (2.1) is equivalent to

(2.2) min
‖sss‖2=1

1

2
sssTHνsss+ sssTggg, where Hν = H − νIn−1.

If we choose ν so that Hν is not positive definite, then (2.2) is equivalent to the
so-called trust-region subproblem (TRS):

(2.3) min
‖sss‖2≤1

1

2
sssTHνsss+ sssTggg.

The well-known optimality conditions of the global optimal solution of (2.3) due to
Moré and Sorensen [33] (see also [47] and [35, Theorem 4.1]) read as follows.

Lemma 2.2. The vector ŝss is a global optimal solution of the trust-region problem
(2.3) if and only if ŝss is feasible and there is a scalar %̂ ≥ 0 such that the following
conditions are satisfied:

(Hν + %̂In−1)ŝss = −ggg, %̂(1− ‖ŝss‖2) = 0, Hν + %̂In−1 is positive semidefinite.(2.4)

Let the spectral decomposition of H be

(2.5) H = U diag(ω1, ω2, . . . , ωn−1)UT , UΩUT

and H1 be the invariant subspace associated with the smallest eigenvalue ω1 = ω2 =
· · · = ωp. Thus U1 = [uuu1, . . . ,uuup] ∈ R(n−1)×p is an orthonormal basis matrix for H1

and U = [U1, U2] and H2 = span(U2).

There are two cases (e.g., [24, 33, 35]) of (2.3) to be considered:
1. The degenerate case [24, Lemma 2.2] (or the hard case [35])1 means that

(2.6) ggg ⊥ H1 and ‖(Hν − (ω1 − ν)In−1)†ggg‖2 = ‖(H − ω1In−1)†ggg‖2 ≤ 1

and the corresponding KKT multiplier is %̂ = −ω1 + ν. There are multiple
global solutions ŝss, each taking the form [24, Lemma 2.2]

(2.7) ŝss = −(H − ω1In−1)†ggg + τuuu ∀uuu ∈ H1 and ‖uuu‖2 = 1,

with
τ2 = ∆2 − ‖(H − ω1In−1)†ggg‖22 ≥ 0.

1We adopt the definitions of degenerate and nondegenerate cases of [24, Lemma 2.2] in this paper.
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2. The nondegenerate case [24, Lemma 2.2] (or the easy case [35]) is the situation
where (2.6) is no longer true. In this case, the corresponding KKT multiplier
is %̂ > −ω1 + ν. The unique global solution [24, Lemma 2.2] satisfies

(Hν + %̂In−1)ŝss = −ggg.

Because of its vital role in numerous applications, there are several algorithms
for solving (2.3). Basically, these algorithms can be classified into two categories:
algorithms based on matrix factorizations for small-to-medium sized dense problems
(see, e.g., [33, 35]) and factorization-free algorithms for large-scale sparse problems
(see, e.g., [22, 23, 24, 35, 37, 38, 39, 40, 48, 49, 51, 53]).

The Moré–Sorensen method [33] is probably the most well-known method for
small-to-medium sized dense problems and is frequently embedded into procedures
as a building block for solving relevant subproblems within large-scale computational
problems. This is the case of the Lanczos-type method proposed in [23] (see also [9,
Chapter 5]) for the large-scale TRS problem (2.3). In particular, a Lanczos method
[23, section 5] for TRS (LTRS) basically follows the RR procedure (see section 3.1),
whose convergence analysis was recently established in [55]. We show that LTRS
can be perfectly built into the framework of our new algorithm LaLoEig because the
standard Lanczos method for computing approximately the orthonormal basis matrix
V1 of A1 and LTRS can be nicely incorporated. The detailed procedure is to be shown
in section 3.

3. Lanczos method for the Lorentz eigenvalue problem.

3.1. Rayleigh–Ritz procedure and the (block) Lanczos method. Since
our new method LaLoEig is a Krylov subspace algorithm and follows the Rayleigh–Ritz
(RR) procedure, we first present a brief and general explanation of the RR procedure
(see [36, section 11.3] and [14, Definition 7.1]) for the symmetric eigenvalue problem
Axxx = λxxx. Basically, the RR procedure consists of the following three steps:

(a) seek a good subspace together with an orthonormal basis Qk that approxi-
mates the eigenspace of A;

(b) form Tk = QT
kAQk and compute the eigenpairs (νi, rrri) of Tk;

(c) form the Ritz pairs (νi, Qkrrri) as approximates to the eigenpairs of A.
In practice, an orthonormal basis Qk of the subspace in (a) is commonly generated

by the classical Lanczos three-term recurrence [43, Algorithm 6.15], which is a single-
vector version of the Lanczos process. It is well known that, unless a certain deflating
strategy is employed, the single-vector version can only find one copy of any multiple
eigenvalue and also possesses slow convergence toward clustered eigenvalues (see [36,
section 13.10] and more recently [31]). Since Algorithm 2.1 requires checking if A1 ∪
(Kn\{0}) is nonempty, we prefer to use the block (or the band) Lanczos process [10,
20] as it is capable of finding all copies of a multiple eigenvalue with a suitable block
size; in other words, the block Lanczos process is able to achieve (or approximate) an
orthonormal basis matrix for A1.

There are several versions of the block Lanczos process (see, e.g., [4, 36, 41]),
but the simplest version [10, 20] proceeds as presented in Algorithm 3.1. Note that
Algorithm 3.1 with b = 1 is the classical three-term-recurrence single-vector Lanczos
process.

Starting from the initial orthogonal matrix G1 ∈ Rn×b with the block size b ≥ 1
and assuming r(Z) = b for i = 1, 2, . . . , k at line 8, the block Lanczos process in
Algorithm 3.1 generates an orthonormal basis Qk , [G1, . . . , Gk] ∈ Rn×bk of the
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Algorithm 3.1 Simple block Lanczos process

Given a symmetric A ∈ Rn×n and an initial orthogonal matrix G1 ∈ Rn×b, this generic
block Lanczos process generates the Krylov subspace Kk(A,G1) and the orthonormal
basis Qk = [G1, . . . , Gk].

1: Z = AG1, A1 = GT
1 Z;

2: Z = Z −G1A1;
3: perform orthogonalization on Z to obtain Z = G2B1, where G2 ∈ Rn×b satisfying
GT

2 G2 = Ib and B1 ∈ Rb×b;
4: for i = 2, . . . , k do
5: Z = AGi, Ai = GT

i Z;
6: Z = Z −GiAi −Gi−1B

T
i−1;

7: if Z = 0, then break;
8: find an orthonormal basis Gi+1 for Z so that Z = Gi+1Bi, Gi+1 ∈ Rn×r(Z);
9: end for

Krylov subspace

(3.1) Kk(A,G1) = span(G1, AG1, . . . , A
k−1G1) = span(G1)⊕ · · · ⊕ span(Gk).

Compactly, the process yields the relationship

(3.2) AQk = QkTk + [0n×(k−1)b, Gk+1Bk],

where

Tk = QT
kAQk =


A1 BT

1

B1 A2 BT
2

. . .
. . .

. . .

Bk−2 Ak−1 BT
k−1

Bk−1 Ak

 ∈ Rkb×kb(3.3)

is the so-called Rayleigh quotient matrix with respect to Kk(A,G1) and is the pro-
jection of A onto Kk(A,G1), too.

The modified Gram–Schmidt process or the rank-revealing QR factorization (see,
e.g., [21]) can be implemented to find an orthonormal basis Gi+1 for Z at line 8. Sup-
pose at the ith iteration r(Z) < b; then Gi+1 at line 8 consists of r(Z) columns which
are obtained through removing the linearly dependent vectors in Z and orthogonaliz-
ing the remaining columns.2 In this case, Gi+1 ∈ Rn×r(Z), but the relationship (3.2)
(with k = i) is still valid; the number of columns of G` in the subsequent Gi+2, . . . , Gk
is nonincreasing, and the breakdown happens when Z = 0 at line 7. We will see later
that such a breakdown is welcome, implying that the exact solution of ELE (1.1) can
be obtained.

The RR procedure with the (block) Lanczos process yields the (block) Lanczos
method for solving the symmetric eigenvalue problem. In particular, suppose b ≥
j = dim(A1) and an approximation of the eigenspace A1 associated with the extreme
eigenvalue θ1 is desired. Then we can compute the eigenpairs (νi, rrri) for i = 1, 2, . . . , kb
of Tk and approximate the eigenpairs of A using the Ritz pairs (νi, Qkrrri). As kb� n
holds in general, the state-of-the-art eigensolvers such as the QR algorithm can be used

2In MATLAB, Gi+1 can be simply obtained via Gi+1 = orth(Z).
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for obtaining accurate eigenpairs of Tk. There has been a wealth of development, in
both theory and implementation, of Lanczos-based methods, and we refer the reader to
[14, 36] for a complete development up to 1998. More recent investigation [30, 31, 43]
provides more detailed convergence analysis and shows that, under certain conditions
of distribution of the eigenvalues θi and the choice of G1, the first j Ritz vectors Qkrrri
for i = 1, 2, . . . , j form an accurate orthonormal basis Ṽ1 for the eigenspace A1, and
the dimension j = dim(A1) can be gradually reflected as k increases.

3.2. Lanczos method for TRS (LTRS). Suppose an accurate approximation

of A1 together with an orthonormal basis Ṽ1 is achieved by the block Lanczos method.
Then according to Algorithm 2.1, we next check if 2‖Ṽ T

1 eee1‖22 ≥ 1. The algorithm
terminates whenever this condition is fulfilled; otherwise, the TRS (2.1) needs to be
solved. Fortunately, in this scenario, the information produced by the block Lanczos
process can be further utilized efficiently and essentially, with no extra significant
computational costs. In other words, the main computation complexity is roughly
the same as for computing an accurate approximation of A1.

To see why this is possible, we first briefly review the Lanczos method (LTRS)
for TRS (2.1) proposed in [23] (see also [9, Chapter 5]). LTRS basically follows the
RR procedure, too. At the kth iteration, it generates the kth Krylov subspace

Kk(Hν , ggg) = Kk(H,ggg) = span(ggg,Hggg, . . . ,Hk−1ggg)

via the Lanczos process, i.e., Algorithm 3.1 with b = 1. Suppose Πk is the orthonor-
mal basis matrix for Kk(H,ggg) and, thereby, Πk(:, 1) = Πkeee1 = ggg/‖ggg‖2. The kth
approximate sssk of (2.1) is defined as the solution to

(3.4) min
sss∈Kk(H,ggg),‖sss‖2≤1

{
1

2
sssTHνsss+ sssTggg

}
.

Denoting sss ∈ Kk(H,ggg) by sss = Πkyyy for yyy ∈ Rk, we know that sssk = Πkyyyk, where yyyk is
defined as the solution to the projected and reduced TRS:

(3.5) yyyk = argmin
‖yyy‖2≤1

{
1

2
yyyTΠT

k HνΠkyyy + ‖ggg‖2eeeT
1 yyy

}
.

As the size k of the projected TRS (3.5) is small in general, sophisticated solvers based
on matrix-factorization such as certain modifications of the Moré–Sorensen method
[33] can be employed as the computational cost of solving (3.5) is roughly negligible.
Numerical testing for LTRS indicates that it is very efficient, especially when TRS
(2.1) is not close to the degenerate case; moreover, the theoretical convergence is
recently established in [55].

3.3. Algorithmic framework: LaLoEig. To see how to incorporate the block
Lanczos method for computing an (approximate) orthonormal basis of A1 in solving
(2.1), we use the trick of choosing

G1(:, 1) = G1eee1 = eee1 ∈ Rn.

In other words, we select the initial block G1 whose first column is eee1 in Algorithm 3.1.
Noting that Qk = [G1, G2, . . . , Gk] ∈ Rn×kb is an orthonormal basis for Kk(A,G1),
such a choice of G1 implies that

(3.6) Qk = [G1, G2, . . . , Gk] =

[
1 0T

0 Q̂k

]
, with Q̂T

k Q̂k = Ikb−1,
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and

(3.7) T̂k , Tk(2 : kb, 2 : kb) = Q̂T
kHQ̂k ∈ R(kb−1)×(kb−1).

It is also true that by xxx = Qkyyy, the constraint

{xxx : xxx ∈ Kk(A,G1), ‖xxx‖2 = 1 and xxx ∈ Kn}

is equivalent to {Qkyyy : ‖yyy‖2 = 1 and yyy ∈ Kbk}. Most importantly, we have the
following theorem.

Theorem 3.1. Suppose the initial orthogonal block G1 ∈ Rn×b (b ≥ 1) satisfies
G1(:, 1) = eee1 ∈ Rn and Qk = [G1, . . . , Gk] ∈ Rn×kb is the orthonormal basis for
Kk(A,G1) generated by the block Lanczos process in Algorithm 3.1. Then

Kk−1(H,ggg) ⊆ span(Q̂k).

If b = 1, then
Kk−1(H,ggg) = span(Q̂k).

Proof. It is clear that Kk(A,eee1) ⊆ Kk(A,G1) = span(Qk). Assume that

Wk = [www1,www2, . . . ,wwwk] ∈ Rn×k

is the orthonormal basis matrix for Kk(A,eee1) generated by the Lanczos process start-
ing from eee1. Note that Wk(:, 1) = Wkeee1 = www1 = eee1 and also

Wk =

[
1 0T

0 Ŵk

]
.

We show that Ŵk = [ŵww1, ŵww2, . . . , ŵwwk−1] ∈ R(n−1)×(k−1) is the orthonormal basis
matrix for Kk−1(H,ggg) generated by the Lanczos process.

To this end, we assume that the compact relation of the Lanczos process (i.e.,
Algorithm 3.1 with b = 1) applying to Kk(A,eee1) starting from eee1 is

(3.8) AWk = WkCk + βkwwwk+1eee
T
k and WT

k AWk = Ck ∈ Rk×k,

where Ck is tridiagonal, WT
k wwwk+1 = 0, and βk = ‖Awwwk −wwwkCk(k, k) −wwwk−1Ck(k −

1, k)‖2. This relation also implies that

Wk(:, 2) = www2 =

[
0

ggg/‖ggg‖2

]
, i.e., ŵww1 = ggg/‖ggg‖2.

Moreover, by the structure of Wk and (3.8), the following relation also holds:

HŴk = ŴkCk(2 : k, 2 : k) + βkŵwwk+1eee
T
k−1,

where Ck(2 : k, 2 : k) = ŴT
k HŴk ∈ R(k−1)×(k−1) is tridiagonal and ŵwwk+1 = wwwk+1(2 :

k). As a result, Ŵk is indeed the orthonormal basis matrix of Kk−1(H,ggg) generated

by the Lanczos process, i.e., Kk−1(H,ggg) = span(Ŵk). On the other hand, from

span(Wk) = Kk(A,eee1) ⊆ Kk(A,G1) = span(Qk),

it holds that span(Ŵk) ⊆ span(Q̂k), and

Kk−1(H,ggg) = span(Ŵk) ⊆ span(Q̂k)

as required.
When b = 1, it is easy to see that span(Ŵk) = Kk−1(H,ggg) = span(Q̂k).
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Algorithm 3.2 Algorithmic framework of LaLoEig for solving ELE (1.1)

Input: a symmetric A;
Output: an (approximate) extreme Lorentz eigenpair (qA(x̂xxk), x̂xxk) of (λ1, x̂xx);

1: choose an initial block G1 ∈ Rn×b (b ≥ 1) satisfying GT
1 G1 = Ib and G1(:, 1) = eee1;

2: apply the block Lanczos method to get the (approximate) smallest eigenvalue θ̃1

and an (approximate) orthonormal basis Ṽ1 ∈ Rn×j of the eigenspace A1. Let Qk
be the orthonormal basis generated by the block Lanczos process (Algorithm 3.1)
for Kk(A,G1) and satisfy (3.2);

3: if 2‖Ṽ T
1 eee1‖22 ≥ 1, then either x̂xxk =

Ṽ1Ṽ
T
1 eee1

‖Ṽ T
1 eee1‖2

or x̂xxk = − Ṽ1Ṽ
T
1 eee1

‖Ṽ T
1 eee1‖2

solves (approxi-

mately) (1.1) and λ1 ≈ θ̃1;
4: otherwise solve

(3.9) yyyk = argmin
‖yyy‖2=1, yyy∈Rkb−1

{
1

2
yyyTT̂kyyy + ‖ggg‖2eeeT

1 yyy

}
,

with T̂k = Tk(2 : kb, 2 : kb), and set x̂xxk =
√

2
2 [

1
Q̂kyyyk

] ∈ bd(Kn) and λ1 ≈ qA(x̂xxk).

Algorithm 3.3 Algorithmic framework of LaLoEig(k) for solving ELE (1.1)

Input: A symmetric matrix A;

Output: The best approximate extreme Lorentz eigenpair (λ
(k)
1 , x̂xx(k)) over

Kk(A,G1);

1: choose an initial block G1 ∈ Rn×b (b ≥ 1) satisfying GT
1 G1 = Ib and G1(:, 1) = eee1;

2: for k = 1, 2, . . . , until convergence do
3: compute an orthonormal basis Qk of Kk(A,G1) and the block tridiagonal Tk =

QT
kAQk ∈ Rkb×kb given in (3.3) by the block Lanczos process;

4: solve the projected smaller size ELE problem:

(3.10) yyyk , argmin
‖yyy‖2=1, yyy∈Kkb

qTk
(yyy);

5: set x̂xx(k) = Qkyyyk and λ
(k)
1 = qA(x̂xx(k)) = qTk

(yyyk);
6: end for

With Theorem 3.1, we are now in a position to present the algorithmic framework
of LaLoEig. It basically follows Algorithm 2.1 but with the efficient treatments for
Steps 1 and 4.

Remark 3.1. There are several remarks for Algorithm 3.2.
1. The choice of the block size b in general should be larger than the dimension
j = dim(A1); however, as j is unknown a priori, a relatively big b can be
initialized and the block Lanczos method can give the information of the
dimension of A1. In practice, b = 2 or 3 works well. Also, one can employ the
adaptive block Lanczos algorithm [54], which adaptively chooses the block
size b according to clustering of Ritz values, and can find an approximation
of A1.

2. A large Lanczos step k delivers an accurate θ̃1 = ν1, and an accurate solution
to (2.1) as well. Under certain conditions, we see in section 4 that a breakdown
(i.e., Z = 0 at line 7 of Algorithm 3.1) in the Lanczos process not only
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implies that θ̃1 = θ1 exactly, but also ensures that Qkyyyk solves (2.1) exactly,
too. There are mature convergence results for the block Lanczos method
for the eigenvalue problem which provide certain criteria for the choice of k.
Moreover, a recent convergence analysis made for LTRS in [55] enables us
to present a detailed analysis for the accuracy of both the eigenspace A1 (in
step 2 of Algorithm 3.2) and the solution (2.1) (in step 5 of Algorithm 3.2)
in section 4.

3. The minimization problem in step 5 represents the projected and reduced
problem of (2.1) onto span(Q̂k) via the relation sss = Q̂kyyy. The projected
problem is stated as

yyyk = argmin
‖yyy‖2=1, yyy∈Rkb−1

{
1

2
yyyTQ̂T

kHQ̂kyyy + yyyTQ̂T
k ggg

}
,

and reformulating it into the form (3.9) follows from (3.6), (3.7), and Q̂T
k ggg =

‖ggg‖2eee1.
4. As described in section 2.3, problem (3.9) can be rewritten as a TRS problem.

Note that kb − 1 � n in general, and we then can solve (3.9) using some
sophisticated TRS solver.

3.4. LaLoEig(k): A variant of LaLoEig. It is worth mentioning that Algo-
rithm 3.2 alternatively can be implemented as a projection method, which iteratively
produces a block Krylov subspace Kk(A,G1), and then projects the original ELE (1.1)
onto Kk(A,G1) to formulate a much smaller size ELE. Solving the projected ELE,
one then has the kth iteration, which is indeed the best approximation of ELE (1.1)
over Kk(A,G1). This alternative version is denoted by LaLoEig(k) and summarized in
Algorithm 3.3. This version indicates more clearly why our method indeed follows the
RR procedure and is an extension of the (block) Lanczos method for the symmetric
eigenvalue problem.

4. Convergence analysis. LaLoEig Algorithm 3.2 basically consists of two pro-
cedures, i.e., the block Lanczos method for the eigenvalue problem and the Lanczos
method for TRS. Next, we provide an analysis on the accuracy for these procedures.
Since the behavior of both procedures is already known, we can use this knowledge to
shed light on the numerical performance of LaLoEig Algorithm 3.2 and also LaLoEig(k)
Algorithm 3.3.

For characterizing the convergence of the Lanczos method for either the eigen-
value problem or TRS, the Chebyshev polynomials play an important role. The kth
Chebyshev polynomial of first kind is given by

Tk(t) = cos(k arccos t) for |t| ≤ 1

=
1

2

[(
t+
√
t2 − 1

)k
+
(
t+
√
t2 − 1

)−k]
for |t| ≥ 1.

Because of its numerous nice properties, the Chebyshev polynomial plays a critical
role in numerical analysis and computations. A distinctive property of Tk(t) says that
|Tk(t)| ≤ 1 for |t| ≤ 1 and |Tk(t)| grows extremely fast for |t| > 1. A result due to
Chebyshev himself (see [8, p. 65]) says that if p(t) is a polynomial of degree no bigger
than k and |p(t)| ≤ 1 for −1 ≤ t ≤ 1, then |p(t)| ≤ |Tk(t)| for any t outside [−1, 1].

Let us begin with the block Lanczos method for the eigenvalue problem based
upon the recent convergence analysis presented in [31]. Assume that

(4.1) rank(GT
1 V1) = dim(A1) = j ≤ b.
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Define an orthogonal projection Pb onto the eigenspace associated with the first small-
est b eigenvalues of A:

Pb = [vvv1, . . . , vvvb][vvv1, . . . , vvvb]
T.

The assumption (4.1) ensures that there exists a matrix X0 ∈ Rn×j such that [31]

span(X0) ⊆ span(G1) and PbX0 = V1.

With these settings and applying directly [31, Theorem 4.1], we have the following.

Theorem 4.1. Under the assumption (4.1), suppose Gi ∈ Rn×b for i = 1, 2, . . . , k
and let Tk = QT

kAQk ∈ Rkb×kb be given by (3.3) with the orthonormal basis Qk of
the Krylov subspace Kk(A,G1). Let (νi, rrri) for i = 1, 2, . . . , kb be the eigenpairs of Tk
and Ṽ1 = Qk[rrr1, . . . , rrrj ] ∈ Rn×j be an approximate orthonormal basis for A1. Then

(4.2) εk , ‖ sin∠(A1, span(Ṽ1))‖2 ≤
ϕ‖ tan∠(A1, span(X0))‖2

Tk−1(1 + 2κ)
,

where ∠(A1, span(Ṽ1)) and ∠(A1, span(X0)) are defined according to (1.5),

ϕ = 1 +
c

νj+1 − θ1
‖PbA(In − Pb)‖2, κ =

θj+1 − θ1

θn − θj+1
,

and c is a constant between 1 and π/2.

Theorem 4.1 provides a priori bounds and reveals the convergence behavior of the
block Lanczos method for achieving an approximate eigenspace span(Ṽ1) of A1. The
dominant factor is the Chebyshev polynomial Tk−1(1 + 2κ), which grows extremely
fast for a big κ (see [31] for more discussions and numerical examples). Not indicated
in Theorem 4.1, we also point out that when the breakdown in the Lanczos process
Algorithm 3.1 occurs, it implies that the exact eigenspace A1 is found [14, 20, 31].

With the help of Lemma 4.1 (see, e.g., [28, Theorem 3.2]), Theorem 4.1 also
implies that LaLoEig in Algorithm 3.2 is able to identify the two different situations
in Algorithm 2.1. Furthermore, it offers an approximate solution for each one of the
cases.

Lemma 4.1. For any unit norm xxx, we have

(4.3)
∣∣∣sin∠(xxx,A1)− sin∠(xxx, span(Ṽ1))

∣∣∣ ≤ ‖ sin∠(A1, span(Ṽ1))‖2.

Remark 4.1. We now are able to describe the two situations that may occur in
LaLoEig Algorithm 3.2.

(i) A1 ∩ int(Kn) 6= ∅. In this case, by Proposition 2.1, sin∠(eee1,A1) <
√

2/2.
Therefore, under the assumption (4.1), we know by Lemma 4.1 that

sin∠(eee1, span(Ṽ1)) ≤ εk + sin∠(eee1,A1),

where εk is given by (4.2). After k Lanczos steps satisfying

(4.4) sin∠(eee1, span(Ṽ1)) ≤ εk + sin∠(eee1,A1) ≤
√

2

2
,

and by Proposition 2.1 again, LaLoEig Algorithm 3.2 identifies that the solu-
tion x̂xx of ELE (1.1) is characterized by Theorem 2.1(i). Moreover, LaLoEig
produces the Ritz vector Qkrrr1 or −Qkrrr1 (the one in Kn) and the Ritz value
ν1 as the approximates for x̂xx and qA(x̂xx), respectively.
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(ii) A1 ∩ (Kn\{0}) = ∅. In this case, by Proposition 2.1, sin∠(eee1,A1) >
√

2/2.
Therefore, under the assumption (4.1), we know by Lemma 4.1 that

sin∠(eee1, span(Ṽ1)) ≥ sin∠(eee1,A1)− εk.

After k Lanczos steps satisfying

(4.5) sin∠(eee1, span(Ṽ1)) ≥ sin∠(eee1,A1)− εk >
√

2

2
,

LaLoEig Algorithm 3.2 identifies that the solution x̂xx of ELE (1.1) is charac-
terized by Theorem 2.1(ii). In this case, the LTRS method is consequently
called to yield an approximate solution of ELE (1.1), whose analysis of the
accuracy is summarized in Theorem 4.2.

Theorem 4.2. Under the assumptions of Theorem 4.1 and additionally G1(:, 1) =

eee1, let x̂xxk =
√

2
2 [

1
Q̂kyyyk

], where yyyk is the solution to (3.9), which is the nondegenerate

case, and Q̂k = Qk(2 : n, 2 : kb) is defined in (3.6). If A1 ∩ (Kn\{0}) = ∅, then

0 ≤ qA(x̂xxk)− qA(x̂xx) ≤ 2‖H + %̂In−1‖2ζ2
k ,(4.6)

‖x̂xxk − x̂xx‖2 ≤ 2
√
κ ζk,(4.7)

where %̂ is the Lagrangian multiplier of (2.2) given in Lemma 2.2,

(4.8) ζk = min

{
2‖ggg‖2εrak (η)

ωn−1 − ω1
,

1

Tk−1(η)

}
,

εrak (η) =
(η +

√
η2 − 1 )2−k

η2 − 1
, η =

κ + 1

κ − 1
, κ =

ωn−1 + %̂

ω1 + %̂
,

and ω1 ≤ · · · ≤ ωn−1 are the eigenvalues of H.

Proof. By Theorem 2.1, the condition A1∩(Kn\{0}) = ∅ implies that the solution

x̂xx of ELE (1.1) is on the boundary of Kn, i.e., x̂xx =
√

2
2 [ 1

ŝss ], where ŝss is the solution to (2.1)
or, equivalently, (2.2). Recall that the block Lanczos process generates Kk(A,G1) and

Theorem 3.1 shows Kk−1(H,ggg) ⊆ span(Q̂k). Also, we have mentioned in Remark 3.1

that sssk = Q̂kyyyk satisfies

sssk = argmin
‖sss‖2=1, sss∈span(Q̂k)

{
f(sss) ,

1

2
sssTHsss+ sssTggg

}
.

Therefore,

(4.9) f(sssk) ≤ min
‖sss‖2=1, sss∈Kk−1(H,ggg)

f(sss).

Let
s̃ssk = argmin

‖sss‖2=1, sss∈Kk−1(H,ggg)

f(sss).

So s̃ssk is indeed the approximate solution to (2.2) obtained from LTRS in the (k−1)th
iteration, and the convergence result of [55] for LTRS can be applied to get

0 ≤ f(s̃ssk)− f(ŝss) ≤ 2‖H + %̂In−1‖2ζ2
k ,
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where ζk is defined by (4.8). With x̂xxk =
√

2
2 [

1
Q̂kyyyk

] =
√

2
2 [ 1

sssk ], the inequality (4.6)
follows due to

0 ≤ qA(xxxk)− qA(x̂xx) = f(sssk)− f(ŝss) ≤ f(s̃ssk)− f(ŝss) ≤ 2‖H + %̂In−1‖2ζ2
k .

The a priori upper bound (4.7) follows directly from [55]. This completes the proof.

It is worth pointing out that the above convergence analysis established for
LaLoEig Algorithm 3.2 can also be applied to LaLoEig(k) Algorithm 3.3. In particu-
lar, these results reveal that after k steps with k satisfying either (4.4) or (4.5), the
two possible situations in (3.10) coincide with those in (1.1), and the accuracy of the
corresponding approximate solution is well characterized. The breakdown situation
in the Lanczos process Algorithm 3.1 is not revealed in bounds of Theorem 4.2 which
are a priori. Fortunately, it has been shown [23, 55] that when the breakdown occurs,

sssk = Q̂kyyyk is an exact solution to the associated TRS (2.1) and hence x̂xxk =
√

2
2 [ 1

sssk ] is
an exact solution to ELE (1.1).

5. Numerical experiments. In this section, we provide preliminary numerical
experiments of Algorithm 3.3 in a MATLAB environment (version 7.11, R2010b). For
evaluation of its performance, we also report numerical results of Algorithm 2.1 with
the MATLAB build-in routine eigs in step 1 and sophisticated TRS solvers in step 2.
In particular, we choose two TRS solvers for comparison. The first one is a semidefinite
programming primal-dual method [18] (denoted by FW), and the other is LSTRS
proposed in [39] and based on a formulation of TRS as a parameterized eigenvalue
problem. In the MATLAB environment, both FW3 and LSTRS4 are available on the
internet. All our tests were conducted on a PC under the Windows 7 (64bit) system
with Intel Core i5-3230M CPU (2.6 GHz) and 4 GB memory.

We describe briefly the parameters used in each algorithm. For Algorithm 3.3,
we set

k = 100, b = 2, G1(:, 1) = eee1, G1(:, 2 : b) = randn(n, b− 1)

and used QR factorization to orthogonalize the columns of G1. In the block Lanczos
process (see Algorithm 3.1), we chose the rank-revealing QR factorization [21] to get
the orthogonal matrix Gi+1, and the modified Gram–Schmidt process was applied
to reorthogonalize Z and Qi. For the projected ELE problem (3.10), we invoked
the MATLAB build-in routine trust,5 which is stable and suitable for the small-size
TRS. As for FW and LSTRS in step 2 of Algorithm 2.1, we modified some subroutines
and parameters so that all solvers can compute a solution within roughly the same
accuracy. In particular, we extended FW so that it can accept a matrix-vector multi-
plication routine instead of the Hessian matrix, and set the duality gap tolerance as
dgaptol = 10−8. For the eigensolver called inside LSTRS, the MATLAB build-in rou-
tines eig and eigs are employed for dense matrices and sparse matrices, respectively,
where default options are used.

To compare the accuracy of solutions computed by different solvers, we adopted
the error of the related KKT system (1.3) as a measure of the quality of the computed
solution. Specially, the total error Etotal consists of three parts: Exxx corresponding to

3FW is available at http://www.math.uwaterloo.ca/∼hwolkowi/henry/software/trustreg.d/.
4LSTRS is available at http://ta.twi.tudelft.nl/wagm/users/rojas/lstrs.html.
5The built-in MATLAB routine trust is available in MATLAB 7.0 (R14). trust can be used

for small- to medium-size trust-region subproblems because it solves the related secular equation in
which the full eigendecomposition of the coefficient matrix is computed.
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the (relative) feasibility of xxx ∈ Kn, Eyyy corresponding to the (relative) feasibility of

(5.1) yyy =
Axxx− λxxx
‖Axxx− λxxx‖2

∈ Kn,

and Ec corresponding to the complementarity xxxTyyy = 0, where xxx is a computed solution
and λ = xxxTAxxx; that is,

Etotal = Exxx + Eyyy + Ec

= max(0, |xxx(1)| − ‖xxx(2 : n)‖2) + max(0, |yyy(1)| − ‖yyy(2 : n)‖2) + |xxxTyyy|.

We remark that the vector yyy (5.1) in Eyyy is so defined because the solutions of our
test problems fall in the case (ii) of Theorem 2.1. The situation (i) of Theorem 2.1
is of little interest to us in the numerical testing because it is exactly the traditional
extreme eigenvalue problem and does not reflect the specific feature of ELE (3.10).

5.1. Performance on random dense matrices. We first test random matri-
ces generated by the MATLAB build-in function randn for two specific types of dense
matrices:

(I) H = G+GT, where G = randn(n),
(II) H = GGT − In, where G = randn(n),

with the size n varying from 1000 to 3000. We remark that in type (II), the matrix
−In is added to GGT so that the resulting H is not positive definite.

In our numerical testing, for each dimension n of types (I) and (II), we generated
10 random cases. All algorithms solved these problems successfully, and we present the
average performance of the CPU time in seconds and the accuracy for each method.
The detailed numerical results are reported in Table 5.1, where t(s) stands for the
executing CPU time in seconds.

Table 5.1
Numerical results on random dense matrices.

H = G+GT H = GGT − In
n LaLoEig FW LSTRS LaLoEig FW LSTRS

Etotal t(s) Etotal t(s) Etotal t(s) Etotal t(s) Etotal t(s) Etotal t(s)

1000 2.24E-13 0.2 7.41E-12 1.04 3.76E-05 9.6 4.67E-13 0.2 3.05E-11 8.3 2.94E-05 1.6

1200 4.59E-13 0.3 4.11E-12 1.36 1.53E-05 17.8 2.16E-12 0.3 9.85E-12 11.5 3.69E-05 2.8

1400 1.75E-12 0.3 9.10E-12 1.88 2.34E-05 32.2 7.02E-13 0.3 3.52E-11 15.2 3.59E-05 43.9

1600 6.65E-12 0.4 5.39E-12 2.47 1.54E-05 44.4 1.00E-12 0.4 2.07E-11 19.0 5.45E-05 66.2

1800 7.22E-12 0.4 8.09E-12 3.15 1.15E-05 66.5 1.35E-12 0.4 2.76E-11 23.4 4.10E-05 86.2

2000 9.40E-12 0.5 1.00E-11 3.90 1.11E-05 95.5 7.22E-13 0.5 1.36E-11 29.1 4.22E-05 120.7

2200 6.56E-12 0.6 6.21E-12 5.11 1.06E-05 117.8 4.22E-13 0.6 3.00E-11 34.3 2.75E-05 166.1

2400 6.61E-12 0.7 1.72E-11 5.79 4.00E-05 164.7 4.91E-13 0.7 4.80E-11 40.7 3.27E-05 451.8

2600 4.35E-12 0.8 6.50E-12 7.31 1.41E-05 215.3 1.76E-12 0.8 2.89E-11 48.3 5.04E-05 262.4

2800 5.52E-12 0.8 2.71E-12 8.08 9.16E-06 253.5 1.18E-12 0.9 1.46E-11 54.2 3.12E-05 323.8

3000 4.34E-12 0.9 7.55E-12 9.10 1.44E-05 355.3 8.23E-13 0.9 3.01E-11 60.9 4.53E-05 390.5

The numerical results displayed in Table 5.1 indicate that both FW and LSTRS
converge much faster for the problems of type (I) than for those of type (II). The
reason behind this performance is that the condition numbers (approximately O(106))
of matrices of type (II) are larger than those (approximately O(103)) of matrices of
type (I). On the contrary, there is no significant increase of CPU time for our algorithm
LaLoEig. Overall, Table 5.1 shows that our algorithm is efficient for ELE (1.1) and
outperforms the other two solvers in terms of the accuracy of the computed solution
and computational costs.
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5.2. Performance on sparse matrices. In this subsection, we test the perfor-
mance of our algorithm on some symmetric sparse problems taken from the University
of Florida sparse matrix collection [13] with no particular preference in the selections.
Table 5.2 gives 20 test matrices and their corresponding characteristics, where n is
the size of the matrix, nnz is the number of nonzero entries, nnz/n2 is the sparsity,
and cond is the condition number obtained by the MATLAB routine condest.

Table 5.2
Test sparse matrices.

Matrix n nnz Sparsity(%) cond Kind

Dubcova1 16129 253009 0.10% 2.62E+03 2D/3D problem

EX6 6545 295680 0.69% 1.79E+18 combinatorial problem

OPF 3754 15435 141478 0.06% 2.99E+09 power network

PGPgiantcompo 10680 48632 0.04% 6.55E+04 undirected multigraph

Pres Poisson 14822 715804 0.33% 3.20E+06 computational fluid dynamics

Si5H12 19896 738598 0.19% 3.00E+04 theoretical/quantum chemistry

ca-AstroPh 18772 396160 0.11% 6.55E+04 undirected graph

ca-HepPh 12008 237010 0.16% 6.55E+04 undirected graph

cvxqp3 17500 114962 0.04% 2.17E+16 optimization problem

flowmeter0 9669 67391 0.07% 2.71E+07 model reduction problem

fv1 9604 85264 0.09% 1.28E+01 2D/3D problem

fxm3 6 5026 94026 0.37% 6.55E+04 optimization problem

man 5976 5976 225046 0.63% 6.55E+04 structural problem

nd3k 9000 3279690 4.05% 5.95E+07 2D/3D problem

nemeth01 9506 725054 0.80% 3.80E+02 theoretical/quantum chemistry

net25 9520 401200 0.44% 6.55E+04 optimization problem

rajat06 10922 46983 0.04% 2.23E+05 circuit simulation problem

ramage02 16830 2866352 1.01% 6.55E+04 computational fluid dynamics

stokes64s 12546 140034 0.09% 1.20E+18 computational fluid dynamics

t2dah 11445 176117 0.13% 1.26E+17 model reduction problem

Table 5.3
Numerical results on sparse matrices.

Matrix
LaLoEig FW LSTRS

Etotal t(s) Etotal t(s) Etotal t(s)

Dubcova1 4.91E-12 1.2 6.89E-14 2.9 4.17E-06 1.8

EX6 4.11E-13 0.6 3.24E-14 3.7 1.09E-07 2.7

OPF 3754 9.84E-16 1.1 9.42E-11 0.5 * *

PGPgiantcompo 2.22E-16 0.8 2.73E-14 0.5 1.16E-04 0.3

Pres Poisson 9.58E-06 1.2 4.52E-01 453.3 1.13E-04 58.7

Si5H12 1.67E-15 1.6 5.41E-11 4.7 5.84E-09 5.1

ca-AstroPh 3.87E-09 1.4 8.79E-14 2.4 1.59E-04 0.9

ca-HepPh 1.39E-14 0.9 3.01E-14 0.7 1.47E-07 0.6

cvxqp3 3.96E-13 1.2 1.14E-12 112.0 9.77E-06 41.0

flowmeter0 2.71E-15 0.8 3.28E-10 0.2 3.20E-05 0.2

fv1 4.74E-10 0.7 1.54E-14 4.9 9.60E-06 1.0

fxm3 6 3.33E-16 0.4 1.38E-12 3.6 2.00E-07 3.4

man 5976 2.22E-12 0.6 6.25E-11 2.5 6.56E-05 0.8

nd3k 3.62E-12 1.7 8.30E-08 217.4 6.77E-05 91.1

nemeth01 1.05E-10 0.9 3.52E-01 130.4 2.05E-04 29.2

net25 6.85E-11 0.9 7.37E-14 0.6 2.65E-07 0.3

rajat06 2.15E-14 0.8 1.24E-11 1.2 7.77E-05 1.0

ramage02 8.42E-11 2.0 1.19E-14 5.7 7.55E+00 5.6

stokes64s 5.50E-09 1.0 3.06E-01 216.4 4.40E-06 22.5

t2dah 2.16E-15 0.9 4.90E-14 0.2 * *

The performance of the three algorithms for this set of test problems is summa-
rized in Table 5.3, where “∗” means that LSTRS fails due to the call of eigs within
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the iteration. The numerical results displayed in this table are consistent with the
conclusions drawn from Table 5.1. In particular, Algorithm 3.3 generally has a stable
performance in terms of the speed and the accuracy of the computed solution.

A much clearer demonstration of the results in Table 5.1 is through the per-
formance profiles proposed by Dolan and Moré [15]. In particular, suppose that ϑ
denotes one of the three tested algorithms, and Ω stands for the set consisting of 20
problems listed in Table 5.2. In terms of the executing CPU time, for a particular

algorithm ϑ and a test problem $ ∈ Ω, we can compute ς = log2( t(ϑ,$)
bestt($) ), where

t(ϑ,$) represents the CPU time that the algorithm ϑ uses for solving the problem
$ and “best t($)” means the smallest CPU time among the three algorithms. Note
that the value ς implies that for the test problem $, the solver ϑ is roughly at worst
2ς times slower than the best in terms of executing CPU time. In the left figure in
Figure 5.1, we plot the curve

yϑ(x) =
1

20
× size

{
$ ∈ Ω : log2

(
t(ϑ,$)

best t($)

)
≤ x

}
with respect to x for three algorithms. Analogously, the right figure in Figure 5.1 is
the performance profile for the accuracy. Both performance profiles demonstrate the
efficiency of the algorithm LaLoEig on the test problems in Table 5.2.
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Fig. 5.1. Performance profile for CPU time (left) and the accuracy (right).

6. Concluding remarks. In this paper, we have numerically treated a special
Lorentz eigenvalue problem, namely solving the extreme Lorentz eigenvalue problem
(ELE). This problem is intimately related to that of testing the Lorentz-copositivity
of the given matrix A. We developed our method by first breaking down ELE into two
basic computational procedures: the extreme eigenvalue problem of A and the trust-
region subproblem, both of which can be tackled within a Rayleigh–Ritz framework;
our numerical scheme then effectively takes advantage of the choice of the initial vector
in the Lanczos process and finds an approximate solution of ELE using a single Krylov
subspace. The convergence behavior is discussed in theory, and preliminary numerical
results on dense and sparse matrices are reported and show the efficiency for solving
ELE.

Our development for ELE in this paper is an example of applying the Krylov sub-
space and Rayleigh–Ritz framework to solve the cone-constrained eigenvalue problem.
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Since the Krylov subspace–type method usually is efficient for finding a specific set of
eigenpairs, two of our future topics include developing Lanczos methods for Lorentz
eigenvalue problems over multiple Lorentz cones [16] and for Lorentz quadratic eigen-
value problems [5].
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