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ABSTRACT
We study splitting methods for solving the Eigenvalue Complemen-
tarity Problem (EiCP). We introduce four variants, which depend on
the properties (symmetry, nonsymmetry, positive definite, negative
definite, indefinite) of the matrices included in the definition of EiCP.
Convergence analyses for each one of these versions of the splitting
method are discussed. Special choices for the splittingmatrices asso-
ciated with these versions are recommended and tested on the solu-
tion of small and large symmetric and nonsymmetric EiCPs. These
experiments show that the four versionsof the splittingmethodwork
well at least for some choices of the splitting matrices. Furthermore,
these versions of the splitting methods seem to be competitive with
themost efficient state-of-the-art algorithms for the solution of EiCP.
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1. Introduction

Given a matrix A ∈ Rn×n and a positive definite (PD) matrix B ∈ Rn×n (i.e. xtBx > 0 for
all x �= 0), the Eigenvalue Complementarity Problem (EiCP) [23,24] consists of finding a
real number λ and vectors x ∈ Rn \ {0} and w ∈ Rn such that

EiCP : w = (λB − A)x (1)

w ≥ 0, x ≥ 0 (2)

xtw = 0. (3)

We also use the notation EiCP(A, B) to represent an EiCP with given matrices A and B.
The problem finds many applications in engineering [22,24] and can be seen as a general-
ization of the well-known Eigenvalue Problem (EiP) [10]. As for the EiP, in any solution of
the EiCP, the scalar λ is called an eigenvalue and x is an eigenvector associated to λ. The
condition xtw = 0 together with the nonnegative requirements on the variables xi and wi
implies that xi = 0 or wi = 0 for each i = 1, 2, . . . , n. These two variables are called com-
plementary. It is known [16] that the EiCP always has a solution, as it can be reformulated
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2 A. N. IUSEM ET AL.

as a Variational Inequality Problem on the simplex [8]

� = {x ∈ R
n : etx = 1, x ≥ 0}. (4)

The existence of a solution to the EiCP is also guaranteed under the weaker hypothesis that
B is Strictly Copositive (SC), that is, when xtBx > 0 for all 0 �= x ≥ 0 [16].

If thematricesA andB are both symmetric andB is PD, the EiCP is called symmetric and
reduces to the problem of finding a Stationary Point (SP) of the so-called Rayleigh Quo-
tient function on the simplex � [23,25], that is, an SP of the following Standard Quadratic
Fractional Program

SQFP : Maximize
xtAx
xtBx

(5)

subject to etx = 1 (6)

x ≥ 0. (7)

A number of techniques have been proposed to solve the EiCP and its extensions
[1,2,14–17,19,21,25,29]. As expected, the symmetric EiCP is easier to solve. Projected-
gradient type algorithms have been proposed in [4,15] for solving SQFP. The structure
of the SQFP is fully exploited for the computation of the gradient and of the projection
required by the algorithm in each iteration. Furthermore, it is possible to design an exact
line search for finding the stepsize in each iteration that essentially requires the solution of
binomial equation. Computational experience illustrates the efficiency of these algorithms
for finding a solution for the symmetric EiCP, see [4,15].

From a computational point of view, the nonsymmetric EiCP is much harder to solve.
A semi-smooth Newton algorithm has been introduced in [1] for the solution of this
case. The algorithm can also be applied to the symmetric EiCP and exploits a formula-
tion of EiCP as a system of nonlinear semi-smooth functions. Despite the efficiency of the
algorithm for solving the EiCP in general, only local convergence is guaranteed and the
algorithm may fail to solve the EiCP in many instances. An enumerative algorithm has
also been recommended in [8] for the symmetric and nonsymmetric EiCP. The algorithm
possesses global convergence to a solution of EiCP. This procedure exploits a nonlinear
programming (NLP) formulation of EiCP consisting of minimizing a nonnegative objec-
tive function on a convex set defined by linear constraints [8]. Since NLP has an optimal
solution with zero optimal value corresponding to a solution of EiCP, the enumerative
algorithm computes stationary points in a structured way until finding one with a zero
optimal value. In [9], this enumerative method is combined with the semi-smoothmethod
mentioned above, in order to enhance its computational efficiency. Among the methods
that have been recommended in the literature for the solution of the nonsymmetric EiCP,
these semi-smooth Newton and hybrid algorithms are considered to be the most effi-
cient and should be used as a benchmark for testing new algorithms such as those to be
introduced in this paper.

In this paper, we discuss splitting methods for the numerical solution of the symmetric
and nonsymmetric EiCP. This kind of methods has been applied for a long time for solving
Linear Algebra problems, like systems of linear equations (see [27] for an early reference)
or Linear Complementarity Problems (LCP; see [6]). On the other hand, to the best of
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our knowledge, it is the first time that this approach is used for solving the symmetric
and nonsymmetric EiCP. For the case of linear equations Ax=bwith given A ∈ Rn×n and
b ∈ Rn, we choose a non-singular matrix D, set E=A−D, and assuming that xk is the kth
iterate generated by the method, we solve the linear system Dx = b′ with b′ = b − Exk,
whose unique solution gives the next iterate xk+1. The matrix D is chosen so that a linear
system with the matrixD is much easier to solve than Ax=b, and the sequence {xk} ⊂ Rn

generated in this fashion is expected to converge to a solution of the original linear system.
We suitably extend this approach to EiCP, and study four variants. In the first one, called
A1, we take A=C−D, where D is a symmetric PD (SPD) matrix and the method consists
of solving, at each step, an LCP with matrixD. When A and B are symmetric, the direction
of the method at iteration k, namely xk+1 − xk, turns out to be an ascent direction for
the Rayleigh quotient, and, hence, it is possible to add a line search ensuring increase of
the quotient, which improves the convergence properties of the algorithm. This version is
called A2.

Another option applies to a PD matrix A and consists of using the splitting A=C−D,
with D a symmetric positive semi-definite (SPSD) matrix and solving in each step an LCP
with matrix λkB + D, where λk = (xk)tAxk/(xk)tBxk. This method, which we call B1, has
the disadvantage that the matrix of each LCP varies along the iterative process, but it turns
out to be numericallymore efficient formany instances whereA is (symmetric or nonsym-
metric) positive definite at least when D=0. In the case in which A and B are symmetric,
it is also possible to add a line search, ensuring increase of the Rayleigh quotient along
the iterative process, improving again the convergence properties of the algorithm. This
variant is called B2 in the sequel.

For all these methods, we prove, under mild assumptions on the EiCP, that if the gen-
erated sequence {xk} is bounded then all its cluster points are solutions of the EiCP. Under
more demanding assumptions on the problem, it is possible to prove that if the sequence
is bounded then it has a unique cluster point. Finding conditions on A, B and D ensur-
ing that the generated sequence is indeed bounded is left as an open problem. The choice
of the splitting matrix D (C=A+D) is a very important issue and is difficult to be done
in practice. In this paper, we report some experiments with very simple splittings for the
algorithms Ai and Bi, i=1,2. For the methods Ai, if A is a negative definite (ND) matrix,
we use D = −1/2(A + At). Hence, D=−A if A is a symmetric ND (SND) matrix. If A
is not ND, the algorithms are applied to a shifted EiCP(A + μB, B) with μ < 0 so that
the matrix A + μB is ND. This shifted EiCP turns out to be equivalent to EiCP(A, B).
For the algorithms Bi, i=1,2, we propose to use D = 0. Other choices for the matrix
D have been considered and tested by us, but they seem not to be better than the ones
mentioned above for general matrices A and B. However, we believe that other choices
for D may be worthwhile for solving large-scale and structured EiCPs that may arise in
applications. A good feature of the choices of the matrix D is that the matrix of each
LCP to be solved by the algorithms Ai and Bi is always PD. This property enables the
use of the so-called Block Principal Pivoting (BPP) algorithm [13] for dealing with these
LCPs. This algorithm has shown to be quite efficient for this task and particularly when
matrix of the LCP is strictly diagonally dominant with positive diagonal elements (see
also [26]).

Computational experiments presented in the paper show that Algorithms A1 and A2
perform quite well for solving EiCP(A, B) with a matrixA (symmetric and nonsymmetric)
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negative definite and D = −1/2(A + At). When A is a PD matrix, Algorithms B1 and B2
with D=0 are not so robust as the methods Ai, i=1,2 in general, but outperform these
latter versions for some instances.

In order to have a better idea of the efficiency of the splitting algorithms for solving
EiCP, we decided to compare them with the best state-of-the-art algorithms introduced
in the literature. For the symmetric EiCP, we used in these experiments the spectral block
active set (SBAS) algorithm [4] and the spectral-projected gradient (SPG) method [15].
Furthermore, for the nonsymmetric EiCP, a hybrid algorithm combining an enumerative
algorithm with a semi-smooth Newton method is surely the most robust procedure to be
employed. Note that the semi-smooth Newton method is solely used when it is able to
compute a solution of EiCP. The numerical experiments showed that splitting algorithms
are in general competitive with those alternative methods. Furthermore, splitting methods
tend to be more efficient for large-scale EiCPs with a sparse matrix B and a sparse or dense
matrix A.

The structure of the paper is as follows. In Section 2, we present and analyse
Algorithm A1. Section 3 is concerned with Algorithm A2, while the algorithms Bi, i=1,
2 are introduced and analysed in Section 4. Computational experiments are reported in
Section 5. Finally, conclusions and a few hints for future research are presented in the last
section of the paper.

2. A splittingmethod for EiCP(A,B)

Given A,B ∈ Rn×n, EiCP(A,B) consists of finding λ ∈ R and 0 �= x ∈ Rn such that

λBx − Ax ≥ 0, (8)

x ≥ 0, (9)

xt(λBx − Ax) = 0. (10)

As is common in the literature of EiCP, we assume from now on that B is a PD matrix.
It follows from its definition that in any solution of EiCP (λ̄, x̄), the value of the comple-
mentary eigenvalue λ̄ is equal to the value of the Rayleigh Quotient at the eigenvector x̄.
Furthermore, this eigenvector x̄ is the solution of the Linear Complementarity Problem
(LCP) obtained from (8) by fixing λ equal to λ̄. Since this LCP is very difficult to solve
and an LCP with an SPD matrix can be solved efficiently, we design an iterative method
requiring in each iteration an EiCP of this last class. In order to achieve this goal, we con-
sider a splitting A=C−D, where D is an SPD matrix. Consider a general iteration k of the
splitting algorithm to be introduced in this section and let be xk the corresponding iter-
ate. Then λk is computed as the value of the Rayleigh Quotient at xk. Furthermore, the
following LCP(qk,D):

Dx + qk ≥ 0, x ≥ 0,

xt(Dx + qk) = 0,

is considered, where

qk = (λkB − C)xk.
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SinceD is an SPDmatrix, then this LCPhas a unique solution xk+1, which can be computed
efficiently by a direct method [5]. Now, either xk+1 equals xk and (xk+1, λk) is a solution of
EiCP or a new iteration is performed with the new iterate xk+1.

The formal steps of Algorithm A1 are presented below.

Algorithm A1
� Initialization Step

(i) Choose an SPD matrix D ∈ Rn×n and define C = A + D.
(ii) Choose a positive tolerance ε and 0 �= x0 ∈ R

n+.

� Iterative Step
(i) Given xk ∈ Rn, define

λk = (xk)tAxk

(xk)tBxk
, (11)

qk = (λkB − C)xk.

(ii) Take xk+1 as the unique solution of LCP(D, qk).
(iii) Terminate when ‖xk+1 − xk‖ < ε.

Observe that, as an immediate consequence of Iterative Step, we have, for all k ≥ 1:

λkBxk − Cxk + Dxk+1 ≥ 0, (12)

xk ≥ 0, (13)

(xk+1)t(λkBxk − Cxk + Dxk+1) = 0, (14)

(xk)t(λkBxk − Cxk + Dxk) = 0, (15)

where (12)–(14) are the explicit expression of the fact that xk+1 solves LCP(D, qk) and (15)
follows by rewriting (11).

Proposition 2.1: Let {(xk, λk)} be the sequence generated by Algorithm A1.

(i) xk �= 0 for all k ≥ 0.
(ii) Algorithm A1 is well defined.

Proof: (i) We proceed by induction. x0 �= 0 by the Initialization Step. Assume by induc-
tion that xk �= 0. If xk+1 = 0, then λkBxk − Cxk ≥ 0 by (12). Then, by (13),

(xk)t(λkBxk − Cxk) ≥ 0. (16)

Rewrite (15) as

0 = (xk)t(λkBxk − Cxk) + (xk)tDxk. (17)
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Since the first term in the right-hand side of (17) is nonnegative by (16), and the second
one is strictly positive, because D is PD and xk �= 0 by the inductive hypothesis, (17)
entails a contradiction. Hence xk+1 �= 0, completing the inductive step.

(ii) By (i), given xk and λk, xk+1 is well defined. It remains to check that λk+1 is also well
defined. This is a consequence of item (i), which implies that xk+1 �= 0, and the positive
definiteness of B, which ensures that the denominator of (11) does not vanish.

�

Define 〈·, ·〉D, ‖·‖D as 〈x, y〉D = xtDy, ‖x‖D = √〈x, x〉D = √
xtDx. Since D is SPD,

〈·, ·〉D is an inner product and ‖·‖D is a norm.

Proposition 2.2: Let {xk} be the sequence generated by AlgorithmA1. Then, for all k ∈ N,

(i) 〈xk+1, xk〉D ≥ ∥∥xk∥∥2D ,
(ii) ∥∥∥xk+1 − xk

∥∥∥2
D

≤
∥∥∥xk+1

∥∥∥2
D

−
∥∥∥xk

∥∥∥2
D
, (18)

(iii) {∥∥xk∥∥D} is strictly increasing.

Proof: (i) By (12) and (13), (xk)t(λkBxk − Cxk + Dxk+1) ≥ 0. This implies that

〈xk, xk+1〉D = (xk)tDxk+1 ≥ (xk)t(Cxk − λkBxk) = (xk)tDxk =
∥∥∥xk

∥∥∥2
D
,

using (12) and (13) in the inequality, and (15) in the second equality.
(ii)

∥∥∥xk+1 − xk
∥∥∥2
D

=
∥∥∥xk+1

∥∥∥2
D

+
∥∥∥xk

∥∥∥2
D

− 2〈xk+1, xk〉D

≤
∥∥∥xk+1

∥∥∥2
D

+
∥∥∥xk

∥∥∥2
D

− 2
∥∥∥xk

∥∥∥2
D

(19)

=
∥∥∥xk+1

∥∥∥2
D

−
∥∥∥xk

∥∥∥2
D
, (20)

using item (i) in the inequality.
(iii) Immediate from item (ii).

�

Proposition 2.3: Let {(x, λk)} be the sequence generated by Algorithm A1. Then for all
k ∈ N,

(i) The sequence {λk} is bounded.
(ii) Assume that {xk} is bounded. Then,

(a) limk→∞
∥∥xk+1 − xk

∥∥
D = 0.

(b) If (x̄, λ̄) is a cluster point of {(xk, λk)}, then the pair (x̄, λ̄) solves EiCP(A,B).
(c) The whole sequence {λk} converges to some complementary eigenvalue λ∗ of

EiCP(A,B).
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Proof: (i) Define x̃k = ∥∥xk∥∥−1 xk, which is well defined by Proposition 2.1(i). Dividing
the numerator and the denominator of (11) by

∥∥xk∥∥, we have

λk = (x̃k)tAx̃k

(x̃k)tBx̃k
. (21)

Since
∥∥x̃k∥∥ = 1 for all k, both the numerator and the denominator of the right-hand

side of (21) are bounded. Since B is PD and x̃k �= 0 for all k by Proposition 2.1(i),
the denominator of (21) is bounded away from 0. The conclusion follows.

(ii-a) Since {xk} is bounded, we may take γ such that
∥∥xk∥∥2D ≤ γ for all k. By applying

Proposition 2.2(ii) and summing (18) with k between 0 and �, we obtain

�∑
k=0

∥∥∥xk+1 − xk
∥∥∥2
D

≤
∥∥∥x�+1

∥∥∥2
D

− ∥∥x0∥∥2D ≤
∥∥∥x�+1

∥∥∥2
D

≤ γ (22)

for all �. Hence, the series
∑∞

k=0
∥∥xk+1 − xk

∥∥2
D is summable, implying the result.

(ii-b) Consider a subsequence {(xjk , λjk)} of {(xk, λk)} such that limk→∞(xjk , λjk) = (x̄, λ̄).
By item (ii-a), limk→∞ xjk+1 = x̄. Now, we take limits as k → ∞ along the chosen
subsequence in (12), (13) and (15). Taking into account that A=C−D, we obtain
respectively,

0 ≤ λ̄Bx̄ − Cx̄ + Dx̄ = λ̄Bx̄ − Ax̄, (23)

x̄ ≥ 0, (24)

0 = x̄t(λ̄Bx̄ − Cx̄ + Dx̄) = x̄t(λ̄Bx̄ − Ax̄). (25)

Comparing (8)–(10) to (23)–(25), we observe that in order to establish that (x̄, λ̄)

solves EiCP(A,B) it only remains to prove that x̄ �= 0. It follows from Proposi-
tion 2.2(iii) that 0 <

∥∥x0∥∥D <
∥∥xk∥∥D for all k, so that 0 < ‖x̄‖D and hence x̄ �= 0.

(ii-c) Define W = {x ∈ R
n+ : ‖x‖D ≥ ∥∥x0∥∥D}. By Proposition 2.2(iii), {∥∥xk∥∥D} is non-

decreasing, so that {xk} ⊂ W for all k. Observe that the Rayleigh Quotient function
ϕ : Rn+ → R defined as

ϕ(x) = xtAx
xtBx

(26)

is continuous onW because B is PD and
∥∥x0∥∥D > 0. In view of item (ii-a), it follows

from (11) and the continuity of ϕ onW that limk→∞(λk+1 − λk) = 0. Since {λk} is
bounded by item (i), we can apply Ostrowsky’s Theorem [20] for establishing that
the set of cluster points of {λk} is compact and connected.On the other hand, by item
(ii-b) such set of cluster points is contained in the set of complementary eigenvalues
of EiCP(A,B), known to be finite. Since the only finite and connected subsets ofR are
the singletons, we conclude that the set of cluster points of {λk} is a singleton {λ∗},
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so that {λk} converges to λ∗, which is a complementary eigenvalue for EiCP(A,B)
by item (ii-b). �

Next we present sharper convergence results for the sequence {xk} generated by
Algorithm A1, assumed to be bounded, under some additional conditions on λ∗ :=
limk→∞ λk. We will say that a complementary eigenvalue λ of EICP(A,B) is strict if for
any solution (λ, x) of EiCP(A,B) it holds that x + (λB − A)x > 0 (i.e. there exists no index
i for which both xi and [(λB − A)x]i vanish). For x ∈ R

n+, we define

I(x) := {i : xi > 0}. (27)

As it is usual in the complementary eigenvalue literature, we will use the complementary
variables w. We define wk ∈ Rn as wk = (λkB − A)xk. It is easy to check that (12) and (14)
can be rewritten in terms of wk as

D(xk+1 − xk) + wk ≥ 0, (28)

(xk+1)t[D(xk+1 − xk) + wk] = 0. (29)

Proposition 2.4: Let I(x) be the set defined by (27). If the sequence {xk} generated by
Algorithm A1 is bounded, and λ∗ = limk→∞ λk is a strict complementary eigenvalue for
EiCP(A,B), then I(x̄) = I(ȳ) for any two cluster points x̄, ȳ of {xk}.
Proof: Assume that x̄, ȳ are two cluster points of {xk}. By Proposition 2.3(ii-b), both
(x̄, λ∗) and (ȳ, λ∗) solve EiCP(A,B). Let w̄, v̄ be the corresponding complementary vari-
ables, i.e. w̄ = (λ∗B − A)x̄, v̄ = (λ∗B − A)ȳ. Note that both w̄ and v̄ are cluster points of
the sequence {wk}. Furthermore, Proposition 2.3(1-a) and the definition of wk imply that

lim
k→∞

(wk+1 − wk) = 0. (30)

By strict complementarity of λ∗, I(x̄) = {i : w̄i = 0}, I(ȳ) = {i : v̄i = 0}. Suppose that
I(x̄) �= I(ȳ). Then, there exists i such that 0 = v̄i < w̄i or 0 = w̄i < v̄i. Without loss of gen-
erality, assume that the first case occurs. Nowwe consider subsequences {xjk}, {x�k} of {xk}
such that limk→∞ xjk = x̄, limk→∞ x�k = ȳ. Redefining the subsequences if needed, we
may assume, without loss of generality, that they are interlaced, i.e. that jk < �k < jk+1 for
all k. Fix any ε such that

0 < ε < w̄i. (31)

In view of Proposition 2.3(ii-a) and (30), we can choose k̂ such that∣∣∣[D(xk+1 − xk)]i
∣∣∣ ≤ ε, (32)

∣∣∣wk+1
i − wk

i

∣∣∣ ≤ ε

2
, (33)

for all k ≥ k̂. Furthermore, ∣∣∣w�+k
i

∣∣∣ =
∣∣∣w�k

i − v̄i

∣∣∣ ≤ ε

2
(34)

for all k such that �k > k̂, using the fact that limk→∞ w�k = v̄ and v̄i = 0. It follows
from (31) and (32) that for jk ≥ k̂, [D(xjk+1 − xjk]i + wjk

i > 0, so that, by (29) and (13), we
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get xjk+1
i = 0.On the other hand, by (34) there exists a first index pk ≥ jk such thatw

pk
i ≤ ε,

and it satisfies pk ≤ �k. By (32) and the definition of pk, we have [D(xr+1 − xr)]i + wr
i > 0

for all r such that jk < r < pk, so that xr+1
i = 0 by (28), (29) and (11). Since jk ≤ pk ≤ �k

for all k, {pk} is an infinite sequence. We look now at the subsequences {xpk}, {wpk}, with pk
larger than k̂. We have xpki = 0, ε/2 ≤ wpk ≤ ε, using (33) in the left inequality. Let (z̄, ū)
be a cluster point of {(xpk ,wpk)}. We conclude that z̄i = 0, |ūi| ≤ ε. Since ε is arbitrary, we
have shown that for all small enough ε > 0, there exists a cluster point (zε , uε) of {(xk,wk)}
with zε

i = 0, uε
i ∈ [0, ε). Since the set of cluster points of {(xk,wk)} is closed, again by

Ostrowski’s Theorem, we may take limits with ε → 0 and obtain a cluster point (ẑ, û) of
{(xk,wk)}, with 0 = ẑi = ûi, associated to the strictly complementary eigenvalue λ∗, which
entails a contradiction. This contradiction comes from assuming that I(x̄) �= I(ȳ), and so
I(x̄) = I(ȳ) for any two cluster points x̄, ȳ of {xk}. �

Still under the assumption of boundedness of {xk}, we present next an additional prop-
erty of λ∗ = limk→∞ λk, besides strict complementarity, which guarantees convergence of
the whole sequence {xk}.

For a given subset I ⊂ {1, 2, . . . , n}, we denote as xI the vector with components xi (i ∈
I) and by AI ,BI the principal minors of A,B respectively associated to the index set I, i.e.
AI = {Aij : i, j ∈ I}, BI = {Bij : i, j ∈ I}. Assume now that (x, λ) solves EiCP(A,B), and take
I = I(x) = {i : xi > 0}. Note that xI fully determines x, because xi = 0 for all i /∈ I. It is
well known that in such a situation λ and xI are a generalized eigenvalue and eigenvector
respectively for the pair AI ,BI , i.e. it holds that λBIxI − AI = 0, or equivalently, since B is
non-singular and the same holds for all its principal minors, λ, xI are a standard eigenvalue
and eigenvector respectively of the matrix B−1

I AI .

Proposition 2.5: Assume that the sequence {xk} generated by Algorithm A1 is bounded,
and that λ∗ = limk→∞ λk (which exists by Proposition 2.3(ii-c)), is a strictly complementary
eigenvalue for EiCP(A,B). Let I = I(x̄) be the set defined in (27) for x = x̄ a cluster point of
{xk}. If λ∗ has multiplicity 1 as a root of the characteristic polynomial of B−1

I AI , then the
whole sequence {xk} converges to a complementary eigenvector x∗ of EiCP(A,B) associated
to λ∗, and x∗

I is an eigenvector of B−1
I AI with associated eigenvalue λ∗.

Proof: By Proposition 2.4, the set I is uniquely determined, since it does not depend on
the choice of a particular cluster point of {xk}. Take any cluster point x̄ of {xk}, which
exists by Proposition 2.3(ii-b). Since {∥∥xk∥∥D} is non-decreasing by Proposition 2.2(ii),
and bounded by assumption, it converges, say to σ . Note that

∥∥xk∥∥D = ∥∥xkI∥∥DI
, so that

‖x̄I‖DI = σ . In view of the comments above, x̄I is an eigenvector of B−1
I AI with associ-

ated eigenvalue λ∗ such that ‖x̄I‖DI = σ . The assumption on the multiplicity of λ∗ as an
eigenvalue of B−1

I AI implies that the set of its associated eigenvectors is a halfline, and
hence there exists a unique one with a given prescribed norm. We have proved that x̄I is
uniquely determined, i.e. that {xkI } has a unique cluster point, say x∗

I . Since I(x) = I for any
cluster point x of {xk} by Proposition 2.4, it follows that xi = 0 for any i /∈ I and any clus-
ter point x of {xk}, i.e. limk→∞ xki = 0 for all i /∈ I. Defining x∗

i = 0 for i /∈ I, we conclude
that limk→∞ xk = x∗, and x∗ is a complementary eigenvector of EiCP(A,B) with associated
complementary eigenvalue λ∗, again by Proposition 2.3(ii-b). �
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3. A splittingmethod with line search for the symmetric case

In this section, we assume thatA and B are symmetric matrices. Hence B is an SPDmatrix.
Consider ϕ : Rn → R as defined by (26). Observe that

∇ϕ(x) = 2
xtBx

[
A − xtAx

xtBx
B
]
x = 2

xtBx
[A − ϕ(x)B] x. (35)

If {xk} is the sequence generated by AlgorithmA1, then, in view of (11), we get λk = ϕ(xk)
and then, using (35),

∇ϕ(xk) = 2
(xk)tBxk

[A − λkB] xk. (36)

Define σk ∈ R, uk ∈ Rn as σk = 2/(xk)tBxk, uk = (λkB − A)xk. Note that σk > 0 and
that (36) can be rewritten as

∇ϕ(xk) = −σkuk. (37)

It turns out that (xk+1 − xk)t∇ϕ(xk) > 0 for all k, which suggests the introduction of a
variant of Algorithm A1, to be called Algorithm A2, which adds a line search in the direc-
tion (xk+1 − xk) so as to insure that ϕ increases along the algorithm, in which case {λk}
turns out to be also increasing, and hence convergent, without assuming boundedness of
{xk}. We introduce Algorithm A2 before establishing the above announced result.

Algorithm A2
� Initialization Step

Same as the Initialization Step of Algorithm A1 in Section 2.

� Iterative Step
(i) Given xk ∈ Rn, define

λk = (xk)tAxk

(xk)tBxk
. (38)

qk = (λkB − C)xk.

(ii) Define yk as the unique solution of LCP(D, qk),

dk = yk − xk, (39)

xk+1 = xk + αkdk, (40)

withαk ∈ (0, 1] obtained through a line search formaximizingϕ, thus guaranteeing
that ϕ(xk) < ϕ(xk+1).

(iii) Terminate when ‖xk+1 − xk‖ < ε.

Proposition 3.1: (i) Algorithm A2 is well defined, and 0 �= xk ≥ 0 for all k.
(ii) If {xk} be the sequence defined by Algorithm A2, then the sequence {∥∥xk∥∥D} is non-

decreasing.
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Proof: (i) We proceed by induction. The result holds for k=0 by the Initialization Step.
Assume now that xk is well defined and nonnegative.We claim first that dk is an ascent
direction for ϕ, which is essential for performing the line search. Thus we must prove
that

∇ϕ(xk)tdk > 0 (41)

for all k. Note that

λkBxk − Cxk + Dyk ≥ 0, (42)

yk ≥ 0, (43)

(yk)t(λkBxk − Cxk + Dyk) = 0, (44)

which hold by the same argument as given for (12)–(14) in the case of Algorithm A1,
i.e. they are a consequence of (38) and the fact that yk solves LCP(D, qk). Since
xk ≥ 0 by the inductive hypothesis, yk ≥ 0 by (43), and αk belongs to (0, 1], it fol-
lows from (39) and (40) that xk+1 ≥ 0. We still need to prove that xk+1 �= 0. Using
the same argument as in the proof of Proposition 2.1(i) with yk substituting for xk+1,
we conclude that yk �= 0. Since xk is in the segment between xk and yk which are both
nonnull and nonnegative, it follows that xk+1 �= 0. It remains to be seen that αk can
be chosen so that ϕ(xk) < ϕ(xk+1), i.e. that dk is an ascent direction for ϕ at xk. We
rewrite (42) and (44) as

uk + Ddk = (λkB − A)xk + D(yk − xk) ≥ 0, (45)

(yk)t(uk + Ddk) = (yk)t[(λkB − A)xk + D(yk − xk)]

= (yk)t(λkBxk − Cxk + Dyk) = 0, (46)

using the definition of uk and the fact that D=C−A. In view of (45) and the fact that
xk is nonnegative by the inductive hypothesis, we obtain

(xk)t(uk + Ddk) ≥ 0. (47)

Subtracting (46) from (47), we get

− (dk)t(uk + Ddk) = (xk − yk)t(uk + Ddk) ≥ 0. (48)

It follows from (48) that (dk)t(uk + Ddk) ≤ 0. Then,

0 < (dk)tDdk ≤ (−uk)tdk = σ−1
k [∇ϕ(xk)tdk], (49)

using (37) and the fact that D is PD in the leftmost inequality. Since σk > 0, (41) fol-
lows from (49), establishing the claim. Hence, we have proved that dk is an ascent
direction for ϕ at xk. It follows that the line search in the Iterative Step will provide a
value ofαk > 0 so thatϕ(xk+1) = ϕ(xk + αkdk) > ϕ(xk), and thereforeAlgorithmA2
is well defined.



12 A. N. IUSEM ET AL.

(ii) Since the definition of yk in Algorithm A2 coincides with the definition of xk+1 in
Algorithm A1, Proposition 2.2(ii) holds for Algorithm A2 with yk substituting for
xk+1, namely

∥∥∥yk − xk
∥∥∥2
D

≤
∥∥∥yk

∥∥∥2
D

−
∥∥∥xk

∥∥∥2
D
,

so that
∥∥xk∥∥D ≤ ∥∥yk∥∥D. From (39)–(40) and the fact that αk ∈ (0, 1], we obtain that

xk+1 belongs to the segment between yk and xk, and then the conclusion follows from
the convexity of ‖·‖D.

�

Corollary 3.2: The sequence {λk} defined by Algorithm A2 is convergent.

Proof: By (38), λk = ϕ(xk). By Proposition 3.1, {λk} is increasing. On the other hand,
{λk} is bounded, with the same argument as used in the proof of Proposition 2.3(i) for
Algorithm A1. The conclusion follows. �

Next, we prove a convergence result for Algorithm A2 similar to the one established for
Algorithm A1 in Proposition 2.3, with a rather different proofline.

Proposition 3.3: Let {xk}, {λk} be the sequences generated by Algorithm A2. If the sequence
{xk} is bounded and (x̄, λ̄) is a cluster point of {(xk, λk)}, then the pair (x̄, λ̄) solves EiCP(A,B)

and the sequence {λk} converges to some complementary eigenvalue λ̄.

Proof: The proof consists of observing that Algorithm A2 is an instance of a projected
descent direction method applied to the problem

min−ϕ(x) s.t. x ≥ 0. (50)

Such method generates a sequence {zk} of the form

zk+1 = P(zk − βkwk), (51)

where P is the orthogonal projection onto R
n+, uk is a descent direction for −ϕ at xk

and βk > 0 is determined through a line search. Indeed, (39) and (40) imply that xk+1

is obtained through a line search in the direction dk, which is a descent direction for −ϕ

by (41). On the other hand, by Proposition 3.1, xk ≥ 0 for all k, so that xk+1 = P(xk+1) =
P(xk − αkdk). Hence, Algorithm A2 has the prescribed form for a projected descent direc-
tion method. The well-known convergence theory for the projected descent direction
method establishes that if {zk} given by (51) is bounded, and

− ∇ϕ(zk)twk ≤ −η

∥∥∥wk
∥∥∥2 (52)

for some η > 0, then all cluster points of {zk} are stationary points for problem (50). Since
{xk} is assumed to be bounded, there exists ρ > 0 such that

∥∥xk∥∥ ≤ ρ for all k. Let μ be
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the smallest eigenvalue of D and ν the largest eigenvalue of B. In view of (49) and the fact
that both B and D are both SPD, we have

−∇ϕ(xk)td ≤ −σkdkDdk ≤ −σkμ
∥∥∥dk

∥∥∥2 = − 2
(xk)tBxk

μ

∥∥∥dk
∥∥∥2 ≤ − 2

νρ2μ

∥∥∥dk
∥∥∥2 .

Hence, (52) holds with zk = xk, wk = dk and η = 2μ/νρ2. We conclude from the con-
vergence theorem for the projected descent direction method that all cluster points of
{xk} are stationary points for problem (50). By Proposition 3.1(ii),

∥∥xk∥∥D ≥ ∥∥x0∥∥D, so that
‖x̄‖D ≥ ∥∥x0∥∥D > 0, using the fact that x0 �= 0. Hence, x̄ �= 0. It is well known that if x̄ is a
nonnull stationary point for problem (50), then the pair (x̄,ϕ(x̄)) is a solution of EiCP(A,B).
Note that {λk} converges by Corollary 3.2, to some real number, say λ̄, and in view of (38)
and the continuity of ϕ, we have that λ̄ = ϕ(x̄), completing the proof. �

Remark 3.4: If A is an ND matrix, then D = −1/2(A + At) is an SPD matrix and can be
used in the splitting of A. So, D=−A if A is a symmetric ND matrix. If A is not an ND
matrix there exists a μ < 0 such that A + μB is ND. In this case, Algorithms Ai, i=1,2,
should find a solution for EiCP (A,B) by solving the shifted EiCP (A + μB, B). These two
problems are equivalent, as (x, λ) is a solution of EiCP(A, B) if and only if (x, λ + μ) is a
solution of EiCP(A + μB, B).

4. Splittingmethods for the case of positive definite A

In this section, we propose two splitting methods, related to Algorithms A1 and A2, which
work under the assumptions that A is (symmetric or nonsymmetric) PD and B is SPD.
As in the ND case, if A is not PD, there exists a μ > 0 such that A + μB is PD and a
solution of EiCP can be found by solving its equivalent shifted EiCP(A + μB, B). So, the
first hypothesis on A is not restrictive at least in theory. However, both the new algorithms
of this section require B to be symmetric while the symmetry of B is not necessary for the
Algorithm A1.

4.1. AlgorithmB1

We define next the first method, called Algorithm B1. We assume that the matrix D of the
splitting A=C−D is symmetric positive semi-definite (SPSD).

Comparing Algorithms A1 and B1, we note that the only difference is that in the Linear
Complementarity Problem the matrix λkB has been moved from the right-hand side qk
(which became rk in AlgorithmB1) to thematrix argument, whichwasD in AlgorithmsA1
and B2 and became Ek = λkB + D in Algorithm B1. Since A is PD and B is SPD, λk > 0
for all k. Moreover, since D is SPSD, then Ek is an SPD matrix for all k. When looking at
the more explicit relations describing the Iterative Step, namely (12)–(15), this difference
translates into substituting xk+1 for xk in two instances. Indeed, for Algorithm B1 we have,
instead of (12)–(15),

λkBxk+1 − Cxk + Dxk+1 ≥ 0, (54)

xk ≥ 0, (55)
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Algorithm B1
� Initialization Step

(i) Choose an SPSD matrix D and define C = A + D.
(ii) Choose a positive tolerance ε and 0 �= x0 ∈ R

n+.

� Iterative Step
(i) Given xk ∈ Rn, define

λk = (xk)tAxk

(xk)tBxk
, (53)

rk = −Cxk.

(ii) Let xk+1 as the unique solution of LCP(λkB + D, rk).
(iii) Terminate when ‖xk+1 − xk‖ < ε.

(xk+1)t(λkBxk+1 − Cxk + Dxk+1) = 0, (56)

(xk)t(λkBxk − Cxk + Dxk) = 0, (57)

and the only changes with respect to Algorithm A1 occur in the first terms of the right-
hand side of (54) and (56). Note that as for the Algorithm A1, LCP (54)–(57) has a unique
solution for each k.

4.2. AlgorithmB2

Next we define Algorithm B2, similar to Algorithm A2, which demands that A and B are
SPD matrices.

Algorithm B2
� Initialization Step

Same as the Initialization Step of Algorithm B1 in Section 4.1.

� Iterative Step
(i) Given xk ∈ Rn, define

λk = (xk)tAxk

(xk)tBxk
, (58)

rk = −Cxk.

(ii) Define yk as the unique solution of LCP(λkB + D, rk),

dk = yk − xk, (59)

xk+1 = xk + αkdk, (60)
with αk ∈ (0, 1] obtained through a line search for maximizing ϕ, thus guarantee-
ing that ϕ(xk) < ϕ(xk+1).

(iii) Terminate when ‖xk+1 − xk‖ < ε.
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Note that Algorithm B2 consists of adding to Algorithm B1 a line search between the
current iterate and the solution of the Linear Complementary Problem, preciselymirroring
the line search added to Algorithm A1 in order to obtain Algorithm A2.

We have obtained so far quite limited convergence results for Algorithm B1, while our
results for Algorithm B2 are virtually equivalent to those established in Proposition 3.3 for
Algorithm A2. We start with two elementary results on Algorithm B1.

Proposition 4.1: Let {(xk, λk)} be the sequence generated by Algorithm B1.

(i) xk �= 0 for all k ≥ 0.
(ii) λk > 0 for all k ≥ 0.
(iii) Algorithm B1 is well defined.

Proof: Similar to the proof of Proposition 2.1.We proceed by induction. Assuming induc-
tively that xk �= 0, λk > 0, we must prove that xk+1 is well defined and nonnull, and that
λk+1 is also well defined and positive. Since in this section, both A and B are assumed to
be PD, it follows from (58) that λk > 0. As D is SPSD, then λkB + D is PD. It follows that
LCP(λkB + D, rk) has a unique solution, i.e. xk+1 is well defined. We claim that xk+1 �= 0.
Otherwise, we get from (54)–(55) that −(xk)Cxk ≥ 0, and then from (57),

0 = (xk)t(λkB + D)xk − (xk)tCxk ≥ (xk)t(λkB + D)xk. (61)

SinceλkB + D is PD, (57) contradicts the inductive hypothesis that xk �= 0.Wehave proved
that xk+1 �= 0. Then, it follows from (58) that λk+1 is well defined and positive. �

Proposition 4.2: Let {(xk, λk)} be the sequence generated by Algorithm B1. If {xk} converges
to some x∗ �= 0, then {λk} converges to λ∗ = ϕ(x∗), with ϕ as in (26), and (x∗, λ∗) solves
EiCP(A,B).

Proof: It suffices to invoke the continuity of ϕ and take limits with k → ∞ in (54)–(56),
obtaining that the pair (x∗, λ∗) satisfies (8)–(10). �

The remainder of the analysis holds for Algorithm B2 but not for B1. We will point
out later on the critical point which precludes the extension of the following results to
Algorithm B1. Define Ek = λkD + B, 〈u, v〉Ek = utEkv, ‖u‖Ek = √〈u, u〉Ek . This notation
makes sense because, under the hypotheses of this subsection, B is SPD, and D is SPSD, so
that λkB + D is also SPD. We start by showing the Algorithm B2 is also well defined.

Proposition 4.3: Algorithm B2 is well defined, and 0 �= xk ≥ 0 for all k.

Proof: Again, we proceed by induction. Using the same argument as in the proof of Propo-
sition 4.2with yk instead of xk+1, we obtain that yk is well defined, nonnegative andnonnull.
Since 0 �= xk ≥ 0 by inductive assumption, and xk+1 belongs to the segment between xk
and yk, we conclude that xk+1 is also well defined, nonnegative and nonnull, so that the
only remaining task consists of proving that dk is an ascent direction for ϕ at xk, i.e. that
∇ϕ(xk)tdk > 0 for all k. Recall that, in viewof (37),∇ϕ(xk) = σk[A − λkB]xk, withσk > 0.
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Now, it is clear from the definition of Algorithm B2 that (54)–(57) hold with yk substi-
tuting for xk+1. Since xk ≥ 0 for all k as established above, multiplying xk by (54) and
subtracting (57) with yk instead of xk+1, we get

0 ≤ (xk − yk)t
[
λkByk − Cxk + Dyk

]
= (xk − yk)t

[
λkByk − Cxk + Dxk + D(yk − xk)

]

= (xk − yk)t
[
λkByk − Axk + D(yk − xk)

]

= (xk − yk)t
[
λkBxk − Axk + (λkB + D)(yk − xk)

]

= (xk − yk)t
[
λkBxk − Axk

]
−

∥∥∥yk − xk
∥∥∥2
Ek

= 1
σk

(dk)t∇ϕ(xk) −
∥∥∥dk

∥∥∥2
Ek
,

so that

0 < σk

∥∥∥dk∥∥∥2
Ek

≤ ∇ϕ(xk)tdk,

and dk is an ascent direction for ϕ at xk. Hence, performing a line search starting with
α = 1, we will find a value of αk such that xk+1 = xk + αkdk satisfies ϕ(xk) < ϕ(xk+1),
completing the induction step and the proof. �

We continue the convergence analysis of Algorithm B2 with some intermediate results.

Proposition 4.4: Let {(xk, λk)} be the sequence generated by Algorithm B2. Then

(i) 〈x, yk〉Ek ≥ ∥∥xk∥∥2Ek for all k.
(ii)

∥∥xk∥∥2Ek + ∥∥yk − xk
∥∥2
Ek ≤ ∥∥yk∥∥2Ek for all k.

(iii)
∥∥xk∥∥Ek ≤ ∥∥xk+1

∥∥
Ek

for all k.
(iv) The sequence λk is non-decreasing and convergent.

Proof: (i) Since xk ≥ 0 for all k, multiplying xk by (54) we get 0 ≤ (xk)t(λkByk − Cxk +
Dyk) = (xk)t[(λkB + D)yk − Cxk], implying that

〈yk, xk〉Ek = (xk)tEkyk ≥ (xk)tCxk = (xk)t(λkB + D)xk =
∥∥∥xk

∥∥∥2
Ek
,

using (57) in the second equality.
(ii) Follows easily from item (ii).
(iii) By (ii),

∥∥xk∥∥EK ≤ ∥∥yk∥∥Ek for all k. Since xk+1 belongs to the segment between xk and
yk, the result follows from the convexity of ‖·‖Ek .

(iv) Since λk = ϕ(xk), we conclude from the Iterative Step of Algorithm B2 (in par-
ticular, from the use of the line search in the computation of xk+1), that λk is
non-decreasing. Since {λk} is bounded above, with the same argument as in the proof
of Proposition 2.3(i), we obtain that the sequence is convergent. �

Let λ∗ = limk→∞ λk, which exists by Proposition 4.4(iii), and E∗ = λ∗B + D.
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Proposition 4.5: Let {(xk, λk)} be the sequence generated by Algorithm B2. Then 0 <∥∥x0∥∥E0 ≤ ∥∥xk∥∥E∗ for all k, and {xk} is bounded away from 0.

Proof: Note first that, since 0 < λk ≤ λk+1 ≤ λ∗, then it follows from the definition of Ek
that ‖x‖Ek ≤ ‖x‖Ek+1 ≤ ‖x‖E∗ for all x ∈ Rn and all k. Now, invoking Proposition 4.4(iii),

∥∥x0∥∥E0 ≤ ∥∥x1∥∥E0 ≤ ∥∥x1∥∥E1 ≤ · · ·
∥∥∥xk−1

∥∥∥
Ek−1

≤
∥∥∥xk

∥∥∥
Ek−1

≤
∥∥∥xk

∥∥∥
Ek

≤
∥∥∥xk

∥∥∥
E∗ ,

and the conclusion follows. �

We comment now on the obstacles in the way of establishing better convergence results
for Algorithm B1, under the assumption of boundedness of {xk}. The essential ingredient
for proving that cluster points of the sequence {xk} generated byAlgorithmB1 are solutions
of EiCP(A,B) would be a proof of the fact that the difference of consecutive iterates goes
to zero, in which case the limit of a convergent subsequence {xjk} would also be the limit
of {xjk+1} and the optimality would result from taking limits in (54), (55) and (57) along
the subsequence. In the case of Algorithm A1, the fact that the difference between con-
secutive iterates eventually vanishes follows from (22), which comes from summing (18).
For Algorithm B1, we have, instead of (18),

∥∥xk+1 − xk
∥∥2
Ek

≤ ∥∥xk+1
∥∥2
Ek

− ∥∥xk∥∥2Ek , which
can be proved as in Proposition 4.4(ii). The difficulty lies in the fact that when summing
this inequality, say with k between 1 and �, the sum in the right-hand side is not telescopic
any more, and hence we do not have cancellations. This is due to the fact that the norm
changes with k in each term of the summation, because the same happens with the matrix
in each LCP subproblem: for Algorithm A1 it is always the same matrix, namely D, while
for Algorithm B1 we use Ek in iteration k. Nevertheless, it follows easily from summing the
inequality above that

�∑
k=1

∥∥∥xk+1 − xk
∥∥∥2
D

≤ γ̂ +
�∑

k=1

(λk−1 − λk)
∥∥∥xk

∥∥∥2
B
, (62)

where γ̂ is an upper bound for
∥∥xk∥∥2Ek , which exists because {λk} is bounded and {xk} is

assumed to be bounded. In fact, if the sequence {λk} generated by Algorithm B1 is either
non-decreasing or non-increasing, it is easy to get a constant upper bound for the left-hand
side of (62), entailing that the difference between consecutive iterates of {xk} eventually
vanishes, from which the optimality of the cluster points of the sequence is an easy con-
sequence. Indeed, if {λk} is non-decreasing, then the summation in the right-hand side
of (62) is non-positive and the left-hand side is bounded by γ̂ ; if {λk} is non-increasing,
then the left-hand side is bounded by γ̂ + λ0γ̄ , where γ̄ is an upper bound for

∥∥xk∥∥2B. Since
it seems very unlikely that the sequence {λk} be non-decreasing (unless we force it to be
so, e.g. through a line search, as done in Algorithm B2), and even less likely that it be non-
increasing (because xk+1 − xk is an ascent direction for ϕ), we refrained from pursuing
this proofline in detail.

We establish next the main convergence result for Algorithm B2.
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Proposition 4.6: Let {(xk, λk)} be the sequence generated by Algorithm B2. If the sequence
{xk} is bounded and (x̄, λ̄) is a cluster point of {(xk, λk)}, then the pair (x̄, λ̄) solves EiCP(A,B)

and the sequence {λk} converges to some complementary eigenvalue λ̄.

Proof: The proof is similar to the one of Proposition 3.3 for Algorithm A2. It is easy to
conclude from the definition of Algorithm B2 and Proposition 4.3 that it is an instance of
the descent direction method applied to minimizing ϕ on the nonnegative orthant. Again,
if we prove that there exist some η > 0 such that−∇ϕ(xk)tdk ≤ −η

∥∥dk∥∥2 for all k, then all
cluster points of {zk} are stationary point for such optimization problem, and the value of η
given in the proof of Proposition 3.3, namely η = 2μ/νρ2, does the job, also in this case. By
Proposition 4.5, {xk} is bounded away from 0, and hence all its cluster points are nonnull.
Again, if x̄ is a nonnull stationary point for the problem of maximizing ϕ over the nonneg-
ative orthant, then the pair (x̄,ϕ(x̄)) is a solution of EiCP(A,B). By Proposition 4.4(iv), λ̄ is
the limit of the sequence λk. Since λ(k) = ϕ(xk), we conclude that λ̄ = ϕ(x̄), completing
the proof. �

Remark 4.7: In practice, D should be chosen as an SPSD matrix such that Ek = λkB + D
is PD for each k. Since A is (symmetric or nonsymmetric) PD and B is SPD, then D=0 is
an obvious choice.

5. Numerical experiments

In this section, we describe how we set up the numerical experiments, that is how we
chose the matrices A and B for each set of problems and we present important details
for the implementation of the proposed algorithms. Finally, we discuss their numeri-
cal performance for computing complementary eigenvalues. The splitting methods were
implemented in MATLAB environment [18] (version 8.6, R2015b) and performed on an
Intel Core i7 clocked at 2.40GHz.

5.1. Test problems

As discussed before, an EiCP can always be reduced to an equivalent EiCP with a PD or
ND matrix A by shifting. We have taken into consideration this property by generating
only test problems where A belongs to one of these two classes of matrices. Furthermore,
for all the algorithms to be applied we also require the matrix B to be SPD. For the set of
Test Problems 1 and 2, we set A as a nonsymmetric ND matrix of the form

A = G + μI, (63)

with G being a randomly generated matrix with elements uniformly distributed in the
interval [1, 10] andμ < 0 chosen such thatA is ND. Thematrix Bwas taken as the identity
matrix in Test Problems 1, while in Test Problems 2, B is a symmetric strictly diagonally
dominant matrix with positive diagonal elements of the following form:

bi,i = 10, i = 1, . . . , n, (64a)

bi,j = −1, j = i + 1, . . . , i + 4, i = 1, . . . , n, (64b)
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bi,j = −1, j = i − 1, . . . , i − 4, i = 1, . . . , n. (64c)

Hence, B is an SPD matrix [5]. For the above test problems, we denote each instance
by RAND(n), where n represents the order of the matrices A and B (we considered
n = 10, 20, 30, 40, 50, 100, 250, 500, 750, 1000).

Test Problems 3 considerB as the identitymatrix andA=−H, whereH is an SPDmatrix
from the Harwell–Boeing collection [11]. Then A is SND. Each problem is denoted by the
name used in the collection and the order of each matrix A (and also B) is included in
brackets after the corresponding notation.

In Test Problems 4 and 5, the matrix A is a nonsymmetric PD matrix of the form (63)
with μ > 0. As before, these two sets of test problems differ on the matrix B, which is
the identity in Test Problems 4 and has the form (64) in the second case. Finally, in Test
Problems 6, we considered B as the identity matrix and A=H, where H is an SPD matrix
from the Harwell–Boeing collection [11].

Note that for all the instances of Test Problems 1, 2, 4 and 5, the matrix A is dense, as all
the elements are nonzero. The 1-norm condition number estimate of A and B is indicated
in the following tables in the columns titled condA and condB, respectively. The matrices of
Test Problems 3 and 6 are sparse, and the number of nonzero elements of these matrices is
given in the column titled Nnzeros.

5.2. Implementation details

In each iteration of the splitting algorithms presented in this paper, an LCP(M,q) is solved,
withM=D for AlgorithmsA1 andA2 andM = λkB + D for Algorithms B1 and B2, where
λk > 0 is the Rayleigh Quotient estimation of a complementary eigenvalue computed at
iteration k. It is well known that ifM is PD, then LCP(M,q) has a unique solution for each
vector q [5]. Furthermore, for this class of matrices LCP can be solved very efficiently by
the so-called Block Principal Pivoting (BPP) algorithm [13]. Our splittings suggested in
Remark 3.4 for Algorithms A1 and A2 and in Remark 4.7 for Algorithms B1 and B2 lead
to an LCP with a PD matrix in each iteration. Furthermore, for Algorithms A2 and B2 we
use the exact line search described in [4].

The initial point for the splitting algorithms is another important issue. As in [4], in
our experiments, we use a canonical vector es, which is chosen by a preprocessing tech-
nique based on the following property: (λ, x) = (aii/bii, ei) is a solution of EiCP if and
only if ri = min{aiibji − ajibii : j = 1, . . . , n} ≥ 0. The preprocessing technique investi-
gates whether the above property is true for some i = 1, . . . , n. In the positive case, a
solution of EiCP is at hand. Otherwise, ri < 0, ∀i = 1, . . . , n, and the canonical vector
es is chosen so that s = argmax{ri : i = 1, . . . , n}.

In order to analyse the efficiency of the splitting algorithms, we solved nonsymmetric
EiCPs presented in Section 5.1, by using the semi-smooth Newton algorithm presented in
[1] and the hybrid method proposed in [9]. A semi-smooth Newton algorithm has been
introduced in [1] and solves EiCP by exploiting its formulation as a system of semi-smooth
equations. The algorithm employs generalized Jacobians in each iteration and possesses
fast local convergence under mild hypotheses. However, global convergence to a solu-
tion of EiCP cannot be guaranteed and the algorithm may fail for some instances. The
hybrid algorithm possesses global convergence to a solution of EiCP and is known to be
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quite efficient for the solution of small- andmedium-scale EiCPs. The algorithm combines
the semi-smooth Newton algorithm with a global convergent enumerative method that is
designed for finding a global minimum with a zero optimal value of an NLP formulation
of the EiCP. This hybrid algorithm may start with the semi-smooth Newton method if we
believe that a good initial point is at hand. In general, the hybrid method starts by applying
the enumerative method. During this phase, when the current feasible solution of NLP is
sufficiently close to a possible global minimum of NLP, i.e. when the value of the objec-
tive function of NLP is sufficiently small, then the algorithm switches to the semi-smooth
Newton algorithm by using as initial point the current solution provided by the enumera-
tive method. Now, either the semi-smooth Newton algorithm is able to find a solution of
EiCP or the enumerative algorithm continues at the current node. The whole procedure is
repeated and is able to find a solution of EiCP by one of the semi-smooth or enumerative
methods. The experiments of solving Test Problems 4 and 5 by these methods are shown
in Section 5.5.

The EiCPs solved in Test Problems 3 and 6 are symmetric, that is, both A and B are
symmetric matrices. So, these EiCPs can be solved by computing a stationary point of
SQFP (5)–(7). The spectral projected-gradient (SPG) and the spectral block active set
algorithm (SBAS) discussed in [4,15], respectively, are particularly recommended to deal
with the symmetric EiCP. The results in [4] are used as a comparison with the algorithms
presented in this paper.

All the algorithms are implemented in MATLAB and the IPOPT (Interior Point OPTi-
mizer) solver [28] has been used to find a (local) solution to the NLP problems at each
node of the enumerative method.

5.3. Performance for an NDmatrix A

In this section, we report the performance of Algorithms A1 and A2 for solving test
problems with A ∈ ND. Algorithm B1 can be applied to Test Problems 1, 2 and 3 and
Algorithm B2 to Test Problems 3 by solving the shifted EiCP(A + μB, B) with μ > 0 such
that A + μB is a PD matrix. However, the numerical results of our experiments showed
that both the algorithms Bi perform much worse for solving the shifted EiCP than the
algorithms Ai for solving the original EiCP. So, we do not report the results of these exper-
iments. In the following tables, we show the results obtained by solving the test problems
with choices for the matrixD and the initial point discussed in Section 5.2. In these tables,
we include the value of the computed complementary eigenvalue, the number of iterations
required by the selected algorithm, and CPU time in seconds. The columns titled as ‘wBPP’,
‘bBPP’, and ‘avBPP’ indicate the number of iterations for BPP algorithm for theworst and the
best performance, and the average number of iterations, respectively. Furthermore, the col-
umn titled ‘comp’ shows the value of xtw at the solution, while the column titled ‘dualfeas’
reports the value of min{wi : i = 1, . . . , n}. Note that these two values give an idea of the
accuracy of the solution computed by the algorithms. In fact, the smaller these positive
values are the more accurate the computed solutions are.

The value of tolerance to terminate the algorithms is 10−6 for all test problems and the
maximum number of iterations is set as 300 for Test Problems 1 and 2 and as 5000 for Test
Problems 3.
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Table 1. Performance of Algorithm A1 for solving Test Problems 1 and 2.

Problem condA condB λ iter CPU wBPP bBPP avBPP comp dualfeas

B= I
RAND(10) 1.22e+01 1 −10.630146 12 1.10161e−01 3 2 2.91 −4.26707e−06 −2.58335e−06
RAND(20) 2.83e+01 1 −10.658875 11 1.22833e−02 3 2 2.90 5.54662e−06 −9.15831e−07
RAND(30) 4.06e+01 1 −10.846811 10 1.11439e−02 3 3 3.00 1.15138e−05 −1.93478e−06
RAND(40) 5.28e+01 1 −10.365389 9 8.23782e−03 3 2 2.88 3.28932e−05 −4.96388e−06
RAND(50) 6.43e+01 1 −10.691757 9 9.55812e−03 3 3 3.00 4.52737e−05 −3.06775e−06
RAND(100) 1.25e+02 1 −10.577362 9 1.52249e−02 3 3 3.00 2.44659e−06 −4.46459e−07
RAND(250) 2.90e+02 1 −10.612081 8 4.79972e−02 4 3 3.71 2.63120e−04 −1.50714e−06
RAND(500) 5.68e+02 1 −10.631220 9 2.15858e−01 4 3 3.75 −1.31414e−04 −1.00978e−06
RAND(750) 8.35e+02 1 −10.622299 9 5.52857e−01 4 3 3.88 −2.40220e−04 −1.70783e−06
RAND(1000) 1.10e+03 1 −10.607556 9 9.96421e−01 4 3 3.75 −3.19461e−04 −1.70220e−06

B defined in (64)
RAND(10) 1.22e+01 5.58e+00 −2.594865 26 1.23734e−01 5 3 3.12 2.70677e−06 −9.00452e−06
RAND(20) 2.83e+01 7.96e+00 −3.338590 18 1.85861e−02 5 3 3.18 −3.90017e−06 −1.29536e−05
RAND(30) 4.06e+01 8.70e+00 −3.990632 16 1.68964e−02 6 3 3.27 9.21808e−06 −1.24422e−05
RAND(40) 5.28e+01 8.91e+00 −4.123274 15 1.68537e−02 4 3 3.14 8.11490e−06 −9.07478e−06
RAND(50) 6.43e+01 8.97e+00 −4.423012 14 1.55113e−02 3 3 3.00 1.35331e−05 −2.09608e−05
RAND(100) 1.25e+02 8.99e+00 −4.796597 11 1.83945e−02 5 3 3.20 9.55654e−06 −4.69789e−05
RAND(250) 2.90e+02 8.99e+00 −5.104439 10 5.26103e−02 4 3 3.78 −3.31713e−06 −2.32356e−05
RAND(500) 5.68e+02 8.99e+00 −5.211826 9 1.79398e−01 4 3 3.75 2.24735e−04 −1.21403e−05
RAND(750) 8.35e+02 8.99e+00 −5.241951 9 4.74475e−01 4 3 3.75 2.99049e−04 −1.94029e−05
RAND(1000) 1.10e+03 8.99e+00 −5.251345 9 9.32925e−01 4 3 3.75 2.84014e−04 −4.14814e−06

In Test Problems 1 and 2, thematrixA is ND, but not symmetric and AlgorithmA2 can-
not be used for solving these test problems. As stated above, we choseD = −1/2(A + At).
So, the resulting EiCP(A,B) were solved by Algorithm A1. Table 1 includes the numerical
results of all the experiments for solving Test Problems 1 and 2. They show that the split-
ting Algorithm A1 was very efficient for solving all those problems with nonsymmetric
ND matrices. In fact, the number of iterations and CPU time are always quite small and
the accuracies of the computed solutions (measured by the quantities comp and dualfeas)
are quite good. Furthermore, the BPP algorithmwas quite efficient for solving the required
LCPs as the number of iterations for this algorithm is at maximum 6. Note that no canon-
ical vector is a solution of these EiCPs as the preprocessing technique mentioned before
was not able to find a solution of the EiCP.

In Tables 2 and 3, we report the performance of Algorithms A1 and A2 for solving Test
Problems 3. Note that, also in this case, all the instances were solved within the allowed
number of iterations and stopping tolerance. It is important to add that Algorithms A1
and A2 work particularly well for the largest EiCP instances with very sparse matrices.
This is noticed by the reduced number of iterations required by these algorithms for the
last three EiCPs. Finally, the use of the line search technique seems to have no impact on
the efficiency of the splitting algorithm as Algorithms A1 and A2 perform in a very similar
way.

5.4. Performance for a PDmatrix A

In this section, we report the performance of the proposed splitting algorithms for dealing
with Test Problems 4, 5 and 6, in which A is a symmetric or nonsymmetric PDmatrix. We
show the performance of Algorithms B1 and B2 for solving these EiCPs. As already stated,
we noted that Algorithms A1 and A2 perform better when the matrix A is ND. For this
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Table 2. Performance of Algorithm A1 for solving Test Problems 3.

Problem condA Nnzeros λ iter CPU wBPP bBPP avBPP comp dualfeas

BCSSTK02(66) 1.30e+04 4340 −6.15318e+00 72 1.77752e−01 10 2 2.24 −6.45819e−10 −1.21102e−06
BCSSTK04(132) 5.60e+06 3420 −6.62140e+00 201 2.12439e−01 11 2 2.10 −1.00844e−09 −1.77936e−06
BCSSTK05(153) 3.50e+04 2421 −6.19116e+02 29 4.32233e−02 14 2 2.79 1.26639e−09 −1.26523e−05
BCSSTK10(1086) 1.30e+06 20400 −8.54132e+01 345 1.12597e+00 38 2 2.28 −5.57161e−08 −1.69793e−05
BCSSTK27(1224) 7.70e+04 56126 −2.09016e+02 403 2.10972e+00 35 2 2.35 −4.09381e−10 −1.33348e−04
s1rmq4m1(5489) 3.21e+06 239433 −3.85009e−01 14 2.32216e+00 48 2 6.92 −2.33476e−10 −3.39730e−07
s1rmt3m1(5489) 5.38e+06 198723 −3.85016e−01 12 1.97820e+00 60 2 8.82 9.53655e−09 −1.68196e−08
s2rmq4m1(5489) 1.15e+08 238813 −3.88911e−04 10 1.92511e+00 52 2 9.33 −1.59936e−10 −8.72999e−07

Table 3. Performance of Algorithm A2 for solving Test Problems 3.

Problem condA Nnzeros λ iter CPU wBPP bBPP avBPP comp dualfeas

BCSSTK02(66) 1.30e+04 4340 −6.15318e+00 72 7.80361e−02 10 2 2.24 −6.45819e−10 −1.21102e−06
BCSSTK04(132) 5.60e+06 3432 −6.62140e+00 201 2.12336e−01 11 2 2.10 −2.29675e−10 −1.77936e−06
BCSSTK05(153) 3.53e+04 2421 −6.19116e+02 29 4.00051e−02 14 2 2.79 −5.01549e−09 −1.26524e−05
BCSSTK10(1086) 1.31e+06 20400 −8.54132e+01 345 1.29363e+00 38 2 2.28 −2.38315e−07 −1.69793e−05
BCSSTK27(1224) 7.70e+04 56126 −2.09016e+02 403 2.37267e+00 35 2 2.35 −4.09417e−10 −1.33348e−04
s1rmq4m1(5489) 3.21e+06 239433 −3.85009e−01 14 2.48711e+00 48 2 6.92 −9.59145e−10 −3.39730e−07
s1rmt3m1(5489) 5.38e+06 198723 −3.85016e−01 12 2.08252e+00 60 2 8.82 8.21915e−09 −1.68204e−08
s2rmq4m1(5489) 3.22e+08 238813 −3.88911e−04 10 2.01258e+00 52 2 9.33 1.63350e−11 −8.72999e−07

reason, we present the solution of the same test problems by shifting the original matrix A
as A + μB, with μ < 0 and chosen such that A + μB is ND.

As before, the value of tolerance to terminate the algorithms is 10−6 for all the test prob-
lems and themaximumnumber of iterations is set as 300 in the first two test problems, and
as 5000 in Test Problems 6.

The numerical results of solving Test Problems 4 and 5 reported in Table 4 show that
Algorithm B1 perform in a way similar to Algorithm A1 for solving the similar Test Prob-
lems 1 and 2. BPP algorithm is even more efficient for dealing with the LCP required in
each iteration. Since the matrices of these LCPs are strictly diagonally dominant with pos-
itive diagonal elements, these experiments confirm the great efficiency of BPP algorithm
to solve an LCP with such a class of matrices [26].

We shifted the matrix A in Test Problems 4 in order to obtain an ND matrix and we
solved the resulting EiCP(A + μB, B) withμ < 0 by using Algorithm A1. The results, dis-
played in Table 5, show that Algorithm A1 efficiently solved all the instances. Although
the number of required iterations is bigger than that required by Algorithm B1, the
computational time is still very small so as the values in the last two columns.

In Tables 6 and 7, we present the results of Algorithms B1 and B2 for solving Test Prob-
lems 6, which are the same problems solved in [4]. As in [4], all the problems were scaled
according to the procedure described in [14]. Note that the splitting algorithms were able
to solve all the problems. As before, it seems that the use of the line search has no impact on
the efficiency of this variant of the splitting algorithm, as Algorithms B1 and B2 perform
in a very similar way. The same test problems were solved by Algorithms A1 and A2 by
considering a shifted SNDmatrix. The corresponding results are showed in Tables 8 and 9
and show that Algorithms A1 and A2 solved very efficiently all these problems.

As for the EiCP with symmetric NDmatrices, Algorithm A1 (and A2) seem to perform
verywell for large-scale symmetric EiCPswhen the SPDmatrixA is large and sparse. In our
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Table 4. Performance of Algorithm B1 for solving Test Problems 4 and 5.

Problem condA condB λ iter CPU wBPP bBPP avBPP comp dualfeas

B= I
RAND(10) 9.42e+01 1 65.628911 12 6.86685e−03 2 2 2.00 −9.43720e−06 −1.00526e−05
RAND(20) 2.09e+03 1 123.771740 12 7.95694e−03 2 2 2.00 −1.72867e−06 −9.63468e−06
RAND(30) 1.03e+03 1 185.930994 11 6.73599e−03 2 2 2.00 −6.09484e−06 −6.89856e−06
RAND(40) 6.88e+03 1 241.820799 11 6.79372e−03 2 2 2.00 −2.31446e−06 −2.02950e−06
RAND(50) 2.57e+03 1 306.894486 15 9.83093e−03 2 2 2.00 7.63928e−07 −3.94007e−06
RAND(100) 8.34e+03 1 584.491662 10 5.55566e−01 2 2 2.00 8.97367e−07 −2.38216e−06
RAND(250) 1.17e+04 1 1429.103943 9 4.60674e−02 2 2 2.00 −5.53884e−07 −1.47538e−06
RAND(500) 2.55e+05 1 2827.577620 8 1.38157e−01 2 2 2.00 3.61825e−06 −5.63005e−06
RAND(750) 8.44e+04 1 4229.275068 8 2.89069e−01 2 2 2.00 1.01651e−06 −2.50049e−06
RAND(1000) 1.82e+05 1 5617.498456 8 4.88537e−01 2 2 2.00 −8.21974e−07 −1.32529e−06

B given by (64)
RAND(10) 9.42e+01 5.58e+00 15.447736 8 8.32302e−03 2 2 2.00 −1.52406e−06 −1.11256e−06
RAND(20) 2.09e+03 7.96e+00 41.816969 8 4.55666e−03 2 2 2.00 −4.21824e−07 −1.92430e−06
RAND(30) 1.03e+03 8.70e+00 71.823927 8 5.55609e−03 2 2 2.00 −3.86187e−07 −1.11698e−06
RAND(40) 6.88e+03 8.91e+00 99.533528 8 5.72159e−03 2 2 2.00 6.34172e−06 −9.00441e−07
RAND(50) 2.57e+03 8.97e+00 130.372316 7 4.57248e−03 2 2 2.00 −3.94954e−05 −6.31265e−06
RAND(100) 8.34e+03 8.99e+00 268.140323 8 7.13308e−01 2 2 2.00 1.50083e−06 −3.39707e−07
RAND(250) 1.17e+04 8.99e+00 685.167495 7 8.80536e−02 2 2 2.00 3.10199e−05 −4.61664e−06
RAND(500) 2.55e+05 8.99e+00 1378.802331 7 3.43613e−01 2 2 2.00 −4.63677e−06 −1.13262e−06
RAND(750) 8.44e+04 8.99e+00 2074.489158 7 6.58229e−01 2 2 2.00 −8.81876e−07 −6.23184e−07
RAND(1000) 1.82e+05 8.99e+00 2764.906847 7 1.15825e+00 2 2 2.00 −4.21272e−07 −3.26782e−07

Table 5. Performance of Algorithm A1 for solving Test Problems 4 and 5, with a shifted Amatrix.

Problem condA condB λ iter CPU wBPP bBPP avBPP comp dualfeas

B= I
RAND(10) 8.89e+00 1 −15.099369 14 1.18758e−01 3 2 2.08 −2.14945e−06 −2.21869e−06
RAND(20) 1.62e+01 1 −18.138062 11 7.80958e−03 3 2 2.10 2.83959e−06 −2.60456e−06
RAND(30) 9.90e+00 1 −38.071466 12 7.57728e−03 3 2 2.09 2.15033e−06 −6.29441e−06
RAND(40) 1.36e+01 1 −45.174376 12 7.21936e−03 3 2 2.09 −3.33915e−06 −3.76009e−06
RAND(50) 1.17e+01 1 −58.785153 12 7.91940e−03 3 2 2.09 −6.29173e−06 −6.43847e−06
RAND(100) 1.79e+01 1 −78.549972 11 9.71219e−03 3 2 2.10 2.63267e−06 −1.79271e−06
RAND(250) 2.45e+01 1 −126.386143 10 1.74558e−02 3 2 2.11 1.46856e−06 −9.41413e−07
RAND(500) 3.47e+01 1 −177.863553 9 5.01653e−02 3 2 2.13 −2.53723e−05 −1.48843e−06
RAND(750) 3.54e+01 1 −255.355521 9 1.17962e−01 3 2 2.13 −2.42062e−05 −1.30335e−06
RAND(1000) 4.76e+01 1 −260.370783 9 2.40239e−01 3 2 2.13 3.04112e−06 −2.21559e−07

B given by (64)
RAND( 10) 8.89e+00 5.58e+00 −3.617326 41 1.85492e−01 4 3 3.13 5.48184e−06 −1.31431e−05
RAND( 20) 1.62e+01 7.96e+00 −5.536750 29 3.17392e−02 4 3 3.11 −4.46606e−06 −2.38530e−05
RAND( 30) 9.90e+00 8.70e+00 −13.044711 87 2.30121e−01 5 3 3.95 1.27788e−05 −3.13080e−05
RAND( 40) 1.36e+01 8.91e+00 −17.070718 72 6.23715e−02 5 3 3.14 −1.73384e−06 −7.02762e−05
RAND( 50) 1.17e+01 8.97e+00 −23.000144 123 1.64172e−01 5 3 3.99 1.35113e−05 −6.93900e−05
RAND(100) 1.79e+01 8.99e+00 −34.786430 43 6.18236e−02 4 3 3.05 1.59829e−05 −9.58710e−05
RAND(250) 2.45e+01 8.99e+00 −60.428459 25 5.50755e−02 3 2 2.25 −2.55110e−06 −1.63434e−04
RAND(500) 3.47e+01 8.99e+00 −87.009985 19 1.31842e−01 3 2 2.22 −1.50078e−05 −1.44350e−04
RAND(750) 3.54e+01 8.99e+00−125.838980 18 3.04071e−01 3 2 2.24 −3.10385e−05 −3.39770e−04
RAND(1000) 4.76e+01 8.99e+00−128.800807 15 4.83246e−01 3 2 2.21 −1.07187e−05 −4.75847e−04

next experiment, we studied the proposed algorithms for solving large-scale nonsymmetric
EiCP when A is a dense PDmatrix. To do this, we considered large instances of Test Prob-
lems 5, in particular we set n = [5000, 6000, 7000, 8000, 9000, 10000] andwe generated the
matrices A and B as explained in Section 5.1. We solved these problems by Algorithm A1,
by shifting the matrixA, and by Algorithm B1. The numerical results of these experiments



24 A. N. IUSEM ET AL.

Table 6. Performance of Algorithm B1 for solving Test Problems 6.

Problem condA Nnzeros λ iter CPU wBPP bBPP avBPP comp dualfeas

BCSSTK02(66) 1.30e+04 4340 1.02480e+00 79 5.85288e−02 2 2 2.00 −1.83868e−12 −1.61444e−08
BCSSTK04(132) 5.60e+06 3432 1.19001e+00 593 5.31760e−01 2 2 2.00 −2.29388e−12 −4.96939e−07
BCSSTK05(153) 3.53e+04 2421 8.57875e−01 33 3.18356e−02 2 2 2.00 −1.25706e−12 −4.97074e−11
BCSSTK10(1086) 1.31e+06 20400 4.70079e−02 3520 1.16391e+02 2 2 2.00 −9.38009e−14 −1.42185e−08
BCSSTK27(1224) 7.70e+04 56126 1.06951e+00 132 5.97071e+00 2 2 2.00 −1.92779e−12 −7.41130e−07
s1rmq4m1(5489) 3.21e+06 239433 1.31175e+00 2571 3.76096e+03 2 2 2.00 −2.60604e−12 −3.30718e−07
s1rmt3m1(5489) 5.38e+06 198723 1.22843e+00 4565 6.58323e+03 2 2 2.00 −2.45817e−12 −1.00903e−07
s2rmq4m1(5489) 3.22e+08 238813 1.30810e+00 3053 4.35372e+03 2 2 2.00 −2.64365e−12 −3.29944e−07

Table 7. Performance of Algorithm B2 for solving Test Problems 6.

Problem condA Nnzeros λ iter CPU wBPP bBPP avBPP comp dualfeas

BCSSTK02(66) 1.30e+04 4340 1.02480e+00 79 5.73456e−02 2 2 2.00 −1.83868e−12 −1.61444e−08
BCSSTK04(132) 5.60e+06 3432 1.19001e+00 593 4.23137e−01 2 2 2.00 −2.29388e−12 −4.96939e−07
BCSSTK05(153) 3.53e+04 2421 8.57875e−01 33 2.36030e−02 2 2 2.00 −1.25706e−12 −4.97074e−11
BCSSTK10(1086) 1.31e+06 20400 4.70079e−02 3520 5.02517e+01 2 2 2.00 −9.38492e−14 −1.42185e−08
BCSSTK27(1224) 7.70e+04 56126 1.06951e+00 132 2.84235e+00 2 2 2.00 −1.92779e−12 −7.41130e−07
s1rmq4m1(5489) 3.21e+06 239433 1.31175e+00 2571 8.34752e+02 2 2 2.00 −2.61089e−12 −3.30718e−07
s1rmt3m1(5489) 5.38e+06 198723 1.22843e+00 4565 1.58702e+03 2 2 2.00 −2.45817e−12 −1.00903e−07
s2rmq4m1(5489) 3.22e+08 238813 1.30810e+00 3053 9.99547e+02 2 2 2.00 −2.64365e−12 −3.29944e−07

Table 8. Performance of Algorithm A1 for solving Test Problems 6, with a shifted matrix A.

Problem condA Nnzeros λ iter CPU wBPP bBPP avBPP comp dualfeas

BCSSTK02( 66) 2.48e+00 4340 −3.725258 2 9.27609e−02 3 3 3.00 −1.31073e−08 −7.68075e−05
BCSSTK04(132) 1.89e+00 3432 −3.350679 2 4.27694e−03 3 3 3.00 −4.36045e−09 −7.05687e−05
BCSSTK05(153) 2.78e+00 2421 −2.943277 69 7.14022e−02 4 2 2.13 −6.16498e−06 −2.50742e−05
BCSSTK10(1086) 4.02e+00 20400 −4.002941 2 1.06979e−02 3 3 3.00 −9.33448e−07 −1.22438e−03
BCSSTK27(1224) 4.08e+00 56126 −4.078541 2 1.55765e−02 4 4 4.00 −5.36495e−07 −8.42754e−04
s1rmq4m1(5489) 3.91e+00 39433 −4.011281 2 1.99958e−01 4 4 4.00 −3.51905e−07 −5.34151e−04
s1rmt3m1(5489) 3.82e+00 98723 −4.014641 2 1.94493e−01 4 4 4.00 −2.09611e−07 −4.08494e−04
s2rmq4m1(5489) 3.89e+00 38813 −4.004969 2 1.88591e−01 3 3 3.00 −2.93536e−09 −4.87054e−05

Table 9. Performance of Algorithm A2 for solving Test Problems 6, with a shifted matrix A.

Problem condA Nnzeros λ iter CPU wBPP bBPP avBPP comp dualfeas

BCSSTK02(66) 2.48e+00 4340 −3.725258 2 1.64026e−02 3 3 3.00 −1.31073e−08 −7.68075e−05
BCSSTK04(132) 1.89e+00 3432 −3.350679 2 2.50113e−03 3 3 3.00 −4.36045e−09 −7.05687e−05
BCSSTK05(153) 2.78e+00 2421 −2.943277 69 5.68438e−02 4 2 2.13 −6.16498e−06 −2.50742e−05
BCSSTK10(1086) 4.02e+00 20400 −4.002941 2 6.86064e−03 3 3 3.00 −9.33448e−07 −1.22438e−03
BCSSTK27(1224) 4.08e+00 56126 −4.078541 2 9.58222e−03 4 4 4.00 −5.36495e−07 −8.42754e−04
s1rmq4m1(5489) 3.91e+00 39433 −4.011281 2 1.37201e−01 4 4 4.00 −3.51905e−07 −5.34151e−04
s1rmt3m1(5489) 3.82e+00 98723 −4.014641 2 1.35653e−01 4 4 4.00 −2.09611e−07 −4.08494e−04
s2rmq4m1(5489) 3.89e+00 38813 −4.004969 2 1.33916e−01 3 3 3.00 −2.93536e−09 −4.87054e−05

included in Tables 10 and 11 confirm the efficiency of the proposed algorithms, as all the
instances were accurately solved in a small number of iterations and computational time.

The numerical experiments reported in this section lead to our recommendation of
using Algorithm A1 for the solution of an EiCP with a symmetric or nonsymmetric ND
matrix A and D = −1/2(A + At) (D=−A if A is SND). If A is SND, then Algorithm A2
is a valid alternative to Algorithm A1. If A is not ND, then a solution of EiCP can still be
computed efficiently by Algorithms A1 and A2 (in the symmetric case ) applied to a shifted
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Table 10. Performance of Algorithm A1 for solving large instances of Test Problems 5, with a shifted
matrix A.

Problem condA condB λ iter CPU wBPP bBPP avBPP comp dualfeas

RAND(5000) 8.95e+01 8.99e+00 −321.644427 12 1.50643e+01 3 2 2.27 5.75963e−05 −2.42853e−04
RAND(6000) 8.99e+01 8.99e+00 −380.387984 12 2.46081e+01 3 2 2.27 5.99037e−05 −2.62447e−04
RAND(7000) 1.04e+02 8.99e+00 −380.780731 11 3.37807e+01 3 2 2.30 1.82876e−04 −6.02156e−04
RAND(8000) 1.05e+02 8.99e+00 −426.238660 11 4.89954e+01 3 2 2.30 1.80370e−04 −6.03307e−04
RAND(9000) 1.12e+02 8.99e+00 −459.240911 11 6.94255e+01 3 2 2.30 1.62765e−04 −4.79112e−04
RAND(10000) 1.03e+01 8.99e+00 −558.102886 11 8.36563e+01 3 2 2.30 2.59913e−04 −1.20086e−03

Table 11. Performance of Algorithm B1 for solving large instances of Test Problems 5.

Problem condA condB λ iter CPU wBPP bBPP avBPP comp dualfeas

RAND(5000) 2.74e+06 8.99e+00 13800.782159 6 1.11416e+01 2 2 2.00 −3.60803e−06 −3.57341e−06
RAND(6000) 1.83e+06 8.99e+00 16557.773299 6 1.62209e+01 2 2 2.00 3.47488e−06 −3.45744e−06
RAND(7000) 1.81e+06 8.99e+00 19312.184161 6 2.41998e+01 2 2 2.00 9.11727e−06 −2.48884e−06
RAND(8000) 2.00e+06 8.99e+00 22066.676993 6 3.53896e+01 2 2 2.00 5.89925e−06 −2.12796e−06
RAND(9000) 2.79e+06 8.99e+00 24819.123060 6 5.18718e+01 2 2 2.00 −1.05008e−05 −1.98170e−06
RAND(10000) 2.60e+07 8.99e+00 27577.374734 6 6.87384e+01 2 2 2.00 −2.99658e−09 −1.56846e−06

Table 12. Performance of Algorithms SPG and SBAS for solving Test Problems 6.

Solver Problem λ iter

SPG BCSSTK02(66) 1.04140e+00 48
SBAS 1.02480e+00 62
SPG BCSSTK04(132) 1.19001e+00 91
SBAS 1.19001e+00 97
SPG BCSSTK05(153) 1.02522e+00 947
SBAS 8.57875e−01 20
SPG BCSSTK10(1086) 1.45692e+00 5000*
SBAS 4.70079e−02 454
SPG BCSSTK27(1224) 1.31341e+00 5000*
SBAS 1.30785e+00 192
SPG s1rmq4m1(5489) 1.31175e+00 440
SBAS 1.31175e+00 403
SPG s1rmt3m1(5489) 1.22843e+00 386
SBAS 1.22843e+00 1077
SPG s2rmq4m1(5489) 1.30810e+00 5000*
SBAS 1.30810e+00 347

EiCP(A + μB, B) with μ < 0 such that A + μB is ND. Algorithms B1 and B2 can also be
very efficient to deal with an EiCP with a PD matrix A but do not seem so robust as their
corresponding versions A1 and A2.

5.5. Comparisonwith other algorithms

In this section, we include numerical results on the solutions of the test problems with a
PDmatrix by some algorithms that are considered to be the best for solving the symmetric
and nonsymmetric EiCPs. Note that we only consider Test Problems 4, 5 and 6, as these
are the ones whose numerical results for all the four versions of the splitting method have
been reported before in this paper and in [4] (symmetric instances).

For the symmetric EiCP, we include in Table 12 the results reported in [4] for solving
Test Problems 6 by the spectral block active set (SBAS) algorithm and spectral-projected
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Table 13. Performance of the semi-smooth Newton method for solving Test Problems 4 and 5.

Problem λ Iter CPU comp dualfeas

B= I
RAND(10) 66.805433 11 1.81041e−02 −2.99923e−08 −3.01356e−07
RAND(20) 128.390806 14 3.65155e−03 −5.56204e−10 −5.63503e−09
RAND(30) 178.657680 10 2.26015e−03 −2.42309e−08 −1.08491e−07
RAND(40) 242.214753 7 2.84879e−03 −1.31110e−09 −4.28940e−09
RAND(50) 304.231260 10 1.53517e−02 −1.21935e−09 −6.09147e−08
RAND(100) 585.038741 14 2.96391e−02 −1.76570e−10 −1.24657e−09
RAND(250) 1431.727973 11 1.25984e−01 −1.73999e−12 −4.41910e−10
RAND(500) 2829.469606 9 5.53335e−01 −3.09304e−15 −1.97238e−14
RAND(750) 4222.157448 18 2.83971e+00 −1.73143e−11 −1.54318e−10
RAND(1000) 5613.654481 14 4.54821e+00 −4.70814e−10 −4.72324e−07

B given by (64)
RAND(10) 15.641489 9 1.62196e−02 −1.15809e−08 −3.27750e−08
RAND(20) 43.998835 41 6.05905e−03 −6.72194e−09 −2.15176e−08
RAND(30) 68.965288 41 7.52118e−03 −1.84191e−08 −1.18727e−07
RAND(40) 99.820525 14 2.52377e−02 −3.80668e−09 −9.71869e−09
RAND(50) 129.700395 20 1.19147e−02 −5.77790e−10 −2.53174e−09
RAND(100) 268.709076 20 4.32256e−02 −3.09453e−10 −1.20887e−09
RAND(250) 686.576729 12 1.17462e−01 −3.14756e−15 −2.03466e−14
RAND(500) 1379.758459 17 1.02307e+00 −1.60295e−11 −2.30102e−10
RAND(750) 2071.347344 21 3.67975e+00 −3.94160e−11 −1.53085e−10
RAND(1000) 2763.086773 36 1.18872e+01 −3.61007e−10 −3.09248e−09

gradient (SPG) method [4]. An * is written in the table when the algorithm was not able to
terminate in a number of iterations smaller than the maximum limit allowed. The initial
point for both algorithms was chosen by the preprocessing technique that was also used
for the splitting methods. A comparison with the performance of the splitting algorithms
for solving the same test problems (see Tables 8 and 9) leads to the conclusion that the
Algorithms A1 and A2 seem to be more efficient than the SBAS algorithm, which is the
best of the two projected-gradient methods.

For the nonsymmetric EiCP, we report the experiments of solving Test Problems 4 and 5
by the semi-smooth Newton method [1] and the hybrid method [8]. For the semi-smooth
Newtonmethod, we set amaximumnumber of iteration as 100 and a stopping tolerance set
as 10−6. In Table 13, we report the value of the computed complementary eigenvalue, the
required number of iterations, and theCPU time in seconds. The columns titled ‘comp’ and
‘dualfeas’ have the usual definition. The initial point for this method is given by (x̄, λ̄, w̄),
where x̄ is computed by the preprocessing technique that was employed for the splitting
methods, λ̄ = (x̄tAx̄)/(x̄tBx̄) and w = (λ̄B − A)x̄. The method was able to successfully
solve all the instances of Test Problems 4 and 5. Since for these nonsymmetric Test Prob-
lems 4 and 5, the semi-smooth Newton method is successful with a special given initial
point, then hybrid algorithm first applies this last method and terminates with the solution
of EiCP computed by this algorithm. The numerical results reported in Table 13 indi-
cate that the splitting methods A1 and B1 are competitive (and even more efficient for
some instances) with the semi-smooth method in terms of iterations, CPU time and accu-
racy of the computed solution. We also solved large instances of Test Problems 5 by using
the hybrid algorithm starting with the semi-smooth Newton method. The corresponding
results in Table 14 show that the semi-smooth method used alone or within the hybrid
method fails to find a solution for two instances, which, instead, were successfully solved
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Table 14. Performance of the hybrid algorithm for solving large instances of Test Problems 5.

Problem λ Iter CPU comp dualfeas

RAND(5000) *
RAND(6000) 16557.773299 14 5.57236e+02 −2.33955e−11 −5.68051e−11
RAND(7000) 19312.184161 18 1.12480e+03 −2.60797e−12 −1.61638e−11
RAND(8000) 22066.676993 19 1.76105e+03 −4.31110e−11 −3.83147e−10
RAND(9000) 24819.123060 25 3.37230e+03 −2.43958e−12 −3.38710e−10
RAND(10000) *

by Algorithms A1 and B1. Moreover, the computational time for the successful instances
is much bigger than that required by the splitting methods proposed in this paper.

6. Conclusion

In this paper, we have studied splittingmethods for solving the Eigenvalue Complementar-
ity Problem EiCP(A,B). We proposed four variants of splitting methods, called A1, A2, B1
and B2, which are implemented depending on the properties of matricesA and B. Conver-
gence analysis for each one of the four versions of the splittingmethod is presented. Simple
choices for the splitting matrices are introduced that seem to work well in practice. Fur-
thermore, the most efficient variants of the splitting method are shown to be competitive
with the best state-of-the-art algorithms for the solution of symmetric and nonsymmetric
EiCPs. Sufficient conditions that guarantee global convergence for the splitting algorithms
should be investigated in the future. Furthermore, other choices for the splitting matri-
ces are expected to be done particularly for the solution or structured EiCPs that appear
in applications. Finally, it is interesting in the future to extend the splitting method to
deal with the so-calledQuadratic Eigenvalue Complementarity Problem (QEiCP) [12] and
eigenvalue complementarity problems EiCP and QEiCP on other convex cones [3].
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