
On the Computation of All Eigenvalues for the Eigenvalue
Complementarity Problem

Luı́s M. Fernandes∗ Joaquim J. Júdice† Hanif D. Sherali‡ Masao Fukushima§

November 9, 2012

Abstract

In this paper, a parametric algorithm is introduced for computing all eigenvalues for two
Eigenvalue Complementarity Problems discussed in the literature. The algorithm searches a fi-
nite number of nested intervals [�̄�, �̄�] in such a way that, in each iteration, either an eigenvalue is
computed in [�̄�, �̄�] or a certificate of nonexistence of an eigenvalue in [�̄�, �̄�] is provided. A hybrid
method that combines an enumerative method [5] and a semi-smooth algorithm [1] is discussed
for dealing with the Eigenvalue Complementarity Problem over an interval [�̄�, �̄�]. Computational
experience is presented to illustrate the efficacy and efficiency of the proposed techniques.

Keywords: Eigenvalue Problems, Complementarity Problems, Nonlinear Programming, Global
Optimization.

Mathematics Subject Classification: 90B60, 90C33, 90C30, 90C26

1 Introduction

The Eigenvalue Complementarity Problem (EiCP) [11, 15] involves finding a real number 𝜆 and a
vector 𝑥 ∈ ℝ

𝑛 such that

𝑤 = (𝜆𝐵 −𝐴)𝑥 (1)

𝑤 ≥ 0, 𝑥 ≥ 0 (2)

𝑥𝑇𝑤 = 0 (3)

𝑒𝑇𝑥 = 1, (4)

where 𝑒 ∈ ℝ
𝑛 is a vector of ones, 𝑤 ∈ ℝ

𝑛, 𝐴 ∈ ℝ
𝑛×𝑛 and 𝐵 ∈ ℝ

𝑛×𝑛 are given matrices, and 𝐵 is
positive definite (PD), i.e., 𝑥𝑇𝐵𝑥 > 0 for all 𝑥 ∕= 0. The real number 𝜆 is called a complementary
eigenvalue and the corresponding vector 𝑥 a complementary eigenvector. This problem finds many
interesting applications in different areas of science and engineering [11, 17, 20]. The EiCP always

∗Instituto Politécnico de Tomar and Instituto de Telecomunicações, Portugal (lmerca@co.it.pt).
†Instituto de Telecomunicações, Portugal (joaquim.judice@co.it.pt).
‡Grado Department of Industrial & Systems Engineering, Virginia Tech, Blacksburg, VA, USA (hanifs@vt.edu) (This

research is supported in part by the National Science Foundation, under Grant Number CMMI - 0969169).
§Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501,

Japan (fuku@i.kyoto-u.ac.jp) (The research of this author was supported in part by a Grant-in-Aid for Scientific Research
from Japan Society for the Promotion of Science).

1

2

has a solution since it is equivalent to the following Variational Inequality Problem VI(𝐹 , Δ) [7]: Find
a vector 𝑥 ∈ Δ such that

𝐹 (𝑥)𝑇 (𝑦 − 𝑥) ≥ 0, ∀𝑦 ∈ Δ,

where 𝐹 : ℝ𝑛∖{0} → ℝ
𝑛 is defined by

𝐹 (𝑥) =

(
𝑥𝑇𝐴𝑥

𝑥𝑇𝐵𝑥
𝐵 −𝐴

)
𝑥, (5)

and Δ is the unit simplex:

Δ = {𝑥 ∈ ℝ
𝑛 : 𝑒𝑇𝑥 = 1, 𝑥 ≥ 0}. (6)

The Quadratic Eigenvalue Complementarity Problem (QEiCP) is an interesting extension of the EiCP
that has recently been introduced in [16]. This problem has a number of important applications [16]
and consists of finding 𝜆 ∈ ℝ and 𝑥 ∈ ℝ

𝑛 such that

𝑤 = 𝜆2𝐴𝑥+ 𝜆𝐵𝑥+ 𝐶𝑥 (7)

𝑤 ≥ 0, 𝑥 ≥ 0 (8)

𝑥𝑇𝑤 = 0 (9)

𝑒𝑇𝑥 = 1. (10)

Contrary to the EiCP, the QEiCP may have no solution when the matrix 𝐴 of the leading term is PD.
Certain co-regular and co-hyperbolic properties were introduced in [16] as sufficient conditions for
the QEiCP to have a solution. As for the EiCP, the QEiCP is equivalent in this case to VI(𝐺, Δ),
where 𝐺 : ℝ𝑛 → ℝ

𝑛 is an appropriate mapping and Δ is the unit simplex (6) [16].
A number of algorithms have been proposed during the past several years for finding an eigenvalue

for the EiCP [1, 3, 6, 7, 8, 9, 12, 13, 17, 18]. Among these, a semi-smooth method [1] and an
enumerative method [7] have proven to be most effective. These two algorithms have been recently
extended to deal with the QEiCP when the co-regular and co-hyperbolic properties hold [5, 16].

In this paper, we address the problem of finding all the eigenvalues for the EiCP, and also for
the QEiCP, under the co-regular and co-hyperbolic properties. A parametric algorithm is developed
for this purpose that is able to find all the 𝜖−distinct eigenvalues. Note that, as formalized in the
sequel, 𝜆1 and 𝜆2 are said to be 𝜖−distinct if ∣𝜆1 − 𝜆2∣ > 2𝜖. This parametric algorithm relies on the
solution of a finite number of EiCPs or QEiCPs pertaining to 𝜆 belonging to certain specified intervals
[�̄�, �̄�]. In order to solve these EiCP or QEiCPs, a modified version of the enumerative method [7]
discussed in [5] is utilized. This procedure either finds an eigenvalue belonging to [̄𝑙, 𝑢] or shows that
no eigenvalue exists in this interval. A hybrid algorithm that combines the beneficial features of both
the enumerative method and of the semi-smooth method [1] is also introduced for dealing with the
EiCP or QEiCP over the defined intervals [̄𝑙, �̄�].

Computational experience using a variety of EiCPs and QEiCPs of dimension up to 𝑛 = 50
reveals that the parametric algorithm is efficient for computing all the 𝜖−distinct eigenvalues for the
EiCP and QEiCP. Furthermore, the hybrid method turns out to be effective for solving the EiCP or
QEiCP associated with the first interval generated by the parametric algorithm, but then the relatively
more simple version of the enumerative method is recommended to be used from then on.

The structure of the remainder of this paper is as follows. In Section 2, the problem of finding
all the eigenvalues for the EiCP or QEiCP is addressed together with the parametric algorithm. The
enumerative, semi-smooth and hybrid methods are discussed in Section 3. Computational experiments
with these algorithms and some concluding remarks are presented in the last section of the paper.

3

2 Finding all the eigenvalues for EiCP and QEiCP

In this section, we start by addressing the problem of computing all the eigenvalues for the EiCP, i.e.,
all the real numbers �̄� for which there exist vectors 𝑥 ∈ ℝ

𝑛 and 𝑤 ∈ ℝ
𝑛 satisfying the conditions (1)-

(4) with 𝜆 = �̄�. Traditional (or generalized) eigenvalues for the Unconstrained Eigenvalue Problem
(𝐵,𝐴) may help for this purpose, as the following result trivially holds:

Theorem 1. If �̄� is an eigenvalue for the EiCP, then there is a set 𝐼 ⊆ {1, . . . , 𝑛} such that �̄� is a
generalized eigenvalue of (𝐵𝐼𝐼 , 𝐴𝐼𝐼), i.e., it satisfies

�̄�𝐵𝐼𝐼𝑥𝐼 = 𝐴𝐼𝐼𝑥𝐼 (11)

for an appropriate vector 𝑥𝐼 ∈ ℝ
∣𝐼∣∖{0}, where 𝐵𝐼𝐼 , 𝐴𝐼𝐼 , and 𝑥𝐼 restrict the respective components

of 𝐵, 𝐴, and 𝑥 to the index set 𝐼 .

Based on this result, it is possible, at least in theory, to compute all the eigenvalues for the EiCP
by the following procedure:

All Principal Submatrices Algorithm

For each set 𝐼 ⊆ {1, . . . , 𝑛} do:

(i) Compute all the real eigenvalues of (𝐵𝐼𝐼 , 𝐴𝐼𝐼).

(ii) For each real eigenvalue computed in Step (i), find a vector 𝑥𝐼 ∈ ℝ
∣𝐼∣ such that

∑
𝑗∈𝐼
𝑥𝑗 = 1 (12)

𝑥𝑗 ≥ 0, 𝑗 ∈ 𝐼 (13)∑
𝑗∈𝐼

(�̄�𝑏𝑖𝑗 − 𝑎𝑖𝑗)𝑥𝑗 ≥ 0, 𝑖 /∈ 𝐼. (14)

(iii) If such a vector 𝑥𝐼 exists, then add �̄� to the list of computed eigenvalues for the EiCP.

It is obvious that this procedure is finite but is not practical even for small values of 𝑛. For instance,
for 𝑛 = 5, it requires finding all the traditional eigenvalues for 25 − 1 = 31 Eigenvalue Problems,
and then solving a linear program for each of these real eigenvalues in order to verify whether the
conditions (12)-(14) hold. However, this type of procedure may be efficient for some special cases, as
the one presented below.

Theorem 2. If 𝐴 > 0 and 𝐵 = 𝐼 , then EiCP (1)-(4) has a unique eigenvalue.

Proof. Since 𝐴 > 0, then by [2], there is a 𝜆 > 0 and a vector 𝑥 satisfying 𝑥 > 0, 𝑒𝑇𝑥 = 1, and

𝐴𝑥 = 𝜆𝑥.

Thus, (𝜆, 𝑥) is a solution of EiCP. Since 𝜆 is a traditional eigenvalue, then it is also an eigenvalue of
𝐴𝑇 > 0, and there exists another vector 𝑦 such that 𝑦 > 0 and 𝑒𝑇 𝑦 = 1 such that

𝐴𝑇 𝑦 = 𝜆𝑦. (15)

4

Now, suppose that �̄� ∕= 𝜆 is another solution of EiCP (1)-(4). Since 𝐴 > 0, then it immediately
follows that �̄� must be a traditional eigenvalue of 𝐴, so that there exists a vector �̄� such that �̄� ≥ 0,
𝑒𝑇 �̄� = 1, and

𝐴�̄� = �̄��̄�. (16)

Hence, by (15) and (16), we have

𝑦𝑇𝐴�̄� = �̄�𝑦𝑇 �̄�

𝑦𝑇𝐴�̄� = �̄�𝑇 (𝐴𝑇 𝑦) = 𝜆𝑦𝑇 �̄�.

These equations imply that
(�̄�− 𝜆)𝑦𝑇 �̄� = 0.

Since 𝑦 > 0 and 0 ∕= �̄� ≥ 0, then �̄� = 𝜆, a contradiction.

Note that this condition is not necessary for 𝐵 = 𝐼 , as the EiCP with 𝐵 = 𝐼 and 𝐴 = 0 also has
a unique eigenvalue.

The previous discussion indicates that the problem of finding all the eigenvalues in general re-
quires a completely different approach. In [5], we derived a simple procedure for computing an
interval that contains all the eigenvalues for the EiCP. The main idea of the algorithm proposed in the
present paper for computing all the complementary eigenvalues is to progressively partition this inter-
val into subintervals that contain complementary eigenvalues in a systematic way. In order to explain
the algorithm, let [𝑙, 𝑢] be the interval that contains all the complementary eigenvalues. By applying
the enumerative method discussed in [5] over this interval, a complementary eigenvalue�̃� ∈ [𝑙, 𝑢] is
computed. In the next iteration, two intervals [𝑙,�̃� − 𝜖] and [�̃� + 𝜖, 𝑢] are constructed and the enu-
merative method is applied for 𝜆 belonging to each of these intervals. If [̄𝑙, �̄�] represents a currently
considered interval for which the enumerative method is applied, then two cases may occur:

(i) There is no complementary eigenvalue in [̄𝑙, �̄�], and so this interval is discarded from further
investigation.

(ii) A new complementary eigenvalue �̄� ∈ [�̄�, �̄�] is computed, and therefore two new subintervals
[�̄�, �̄�− 𝜖] and [�̄�+ 𝜖, �̄�] are added for further investigation.

Each EiCP associated with an interval [̄𝑙, 𝑢] may be solved by using the enumerative method dis-
cussed in [5], which is applied to the following linearly constrained nonlinear program in an expanded
(𝑥, 𝑦, 𝑤, 𝜆)-space:

NLP: Minimize ∥𝑦 − 𝜆𝑥∥22 + 𝑥𝑇𝑤 = 𝑓(𝑥, 𝑦, 𝑤, 𝜆)

subject to 𝑤 = 𝐵𝑦 −𝐴𝑥
𝑒𝑇𝑥 = 1

𝑒𝑇 𝑦 = 𝜆 (17)

𝑙𝑥𝑗 ≤ 𝑦𝑗 ≤ �̄�𝑥𝑗 ,∀𝑗
𝑤 ≥ 0, 𝑥 ≥ 0

𝑙 ≤ 𝜆 ≤ �̄�.
Note that �̄� (respectively, �̄�) is equal to 𝑙 (respectively, 𝑢) or �̄� + 𝜖 (respectively, �̄�− 𝜖), where �̄� is a
previously computed eigenvalue. The algorithm either terminates with a solution (within a prescribed

5

tolerance) or with a certificate that no solution exists (list of open nodes is empty). Note that a node 𝑘
corresponding to an interval [̄𝑙 , �̄�] should be fathomed if �̄�− �̄� < 𝜖 or if the corresponding NLP (17)
is infeasible.

The procedure is repeated until there exists no interval left to be investigated. The formal steps of
this algorithm are presented below.

Parametric algorithm for computing all complementary eigenvalues

Step 0 (Initialization) - Let 𝜖 be a positive tolerance, let �̄� = 𝑙 and �̄� = 𝑢 be computed by using

the procedures discussed in [5], where [𝑙 , 𝑢] captures all the

eigenvalues of the EiCP, and let 𝐿 = {1} be the set of open nodes.

Step 1 (Choice of node) - If 𝐿 = ∅ terminate. Otherwise select 𝑘 ∈ 𝐿 with the corresponding

interval [̄𝑙, �̄�], and let EiCP denote the associated problem.

Step 2 (Solve and Branch) - If �̄�− �̄� ≤ 𝜖 or NLP (17) is infeasible, then disregard [̄𝑙, �̄�];

replace 𝐿← 𝐿∖{𝑘} and return to Step 1. Otherwise, let (𝑥∗, 𝑦∗, 𝑤∗, 𝜆∗)
be a global minimum of NLP (17). If 𝑓(𝑥∗, 𝑦∗, 𝑤∗, 𝜆∗) > 𝜖, set

𝐿← 𝐿∖{𝑘} and return to Step 1. Otherwise, partition the interval [̄𝑙, 𝑢]

at node 𝑘 into [̄𝑙, 𝜆∗ − 𝜖] and [𝜆∗ + 𝜖, �̄�] to generate two nodes

(these respective nodes are not generated if 𝜆∗ < �̄� + 𝜖 or 𝜆∗ > �̄�− 𝜖).
Step 3 (Queue) - Set 𝐿← 𝐿∖{𝑘} ∪ { new nodes from Step 2 } and return to Step 1.

The following result establishes the finiteness of this algorithm.

Theorem 3. Upon termination of the parametric algorithm, any missing eigenvalue lies within 2𝜖 of
a detected eigenvalue.

Proof. By contradiction, suppose not. Then one of the following three cases must occur:

Case (i): There exists a missing eigenvalue 𝜆∗ for which 𝜆𝑖 < 𝜆∗ < 𝜆𝑖+1, where 𝜆𝑖 < 𝜆𝑖+1 are some
two adjacent detected eigenvalues, and where by hypothesis, we have

𝜆∗ − 𝜆𝑖 > 2𝜖 and 𝜆𝑖+1 − 𝜆∗ > 2𝜖. (18)

In this case, when 𝜆𝑖 was found, an interval was created to its right with a lower bound of 𝐿𝐵 =
𝜆𝑖 + 𝜖, and similarly, when 𝜆𝑖+1 was found, an interval was created to its left with an upper bound of
𝑈𝐵 = 𝜆𝑖+1 − 𝜖. Hence, in the open list of intervals, there existed an interval [𝐿𝐵,𝑈𝐵] that should
have been selected for scanning. But by (18), we have that 𝜆∗ ∈ [𝐿𝐵,𝑈𝐵], where (𝑈𝐵 − 𝐿𝐵) =
𝜆𝑖+1 − 𝜆𝑖 − 2𝜖 > (𝜆∗ + 2𝜖) + (2𝜖 − 𝜆∗)− 2𝜖 = 2𝜖, which is a contradiction to the adjacency of 𝜆𝑖
and 𝜆𝑖+1 since [𝐿𝐵,𝑈𝐵] should then have been scanned (since 𝑈𝐵−𝐿𝐵 > 𝜖) and some eigenvalue
should have been found within this interval (since, in particular, 𝜆∗ ∈ [𝐿𝐵,𝑈𝐵]).

Case (ii): There exists a missing eigenvalue 𝜆∗ for which 𝑙 ≤ 𝜆∗ < 𝜆1, where 𝜆1 is the smallest
detected eigenvalue, and where by hypothesis, we have

𝜆1 − 𝜆∗ > 2𝜖. (19)

6

In this case, when the eigenvalue 𝜆1 was found, we created an interval to its left of the form [𝑙, 𝜆1− 𝜖],
where by (19), we have

𝜆∗ ∈ [𝑙, 𝜆1 − 𝜖], and (𝜆1 − 𝜖)− 𝑙 > (𝜆∗ + 2𝜖− 𝜖)− 𝑙 ≥ 𝜖.

This contradicts that 𝜆1 is the smallest detected eigenvalue since the interval [𝑙, 𝜆1 − 𝜖] should have
been scanned by the algorithm because its length exceeds 𝜖, and some eigenvalue within this interval
should have been found because, in particular, 𝜆∗ belongs to this interval.

Case (iii): There exists a missing eigenvalue 𝜆∗ for which 𝜆𝑝 < 𝜆∗ ≤ 𝑢, where 𝜆𝑝 is the largest
detected eigenvalue, and where by hypothesis, we have 𝜆∗ − 𝜆𝑝 > 2𝜖. This case leads to a similar
contradiction as for Case (ii) that 𝜆𝑝 is the largest eigenvalue found by the algorithm.

In [5], an enumerative method was developed for finding a global minimum of the NLP (17).
Furthermore the number of NLPs (17) to be solved is finite. Hence, the parametric algorithm is able,
in theory, to compute all the 𝜖−distinct eigenvalues for the EiCP. Note that, in light of Theorem 3,
we consider two eigenvalues 𝜆1 and 𝜆2 to be 𝜖−distinct if and only if ∣𝜆1 − 𝜆2∣ > 2𝜖, where 𝜖 is the
tolerance used in the parametric algorithm. The method can also be used for finding all the eigenvalues
of the following Quadratic Eigenvalue Complementarity Problem (QEiCP) discussed in [16]:

𝑤 = 𝜆2𝐴𝑥+ 𝜆𝐵𝑥+ 𝐶𝑥

𝑤 ≥ 0, 𝑥 ≥ 0 (20)

𝑒𝑇𝑥 = 1

𝑥𝑇𝑤 = 0,

under the co-regular and co-hyperbolic conditions stated in [16]. A nonlinear program similar to NLP
(17) needs to be processed at each iteration of the parametric algorithm, by using a direct extension of
the enumerative method discussed in [5].

A drawback of the parametric algorithm is that some eigenvalues may be lost if they are too close
to be considered as 𝜖−distinct. A possible way to avoid this phenomenon is not to use the tolerance 𝜖
in the parametric algorithm and to consider the following barrier problem instead of NLP (17):

PNLP: Minimize ∥𝑦 − 𝜆𝑥∥22 + 𝑥𝑇𝑤 − 𝜌 log[(𝜆− �̄�)(�̄�− 𝜆)]
subject to 𝑤 = 𝐵𝑦 −𝐴𝑥

𝑒𝑇𝑥 = 1

𝑒𝑇 𝑦 = 𝜆 (21)

𝑙 ≤ 𝜆 ≤ �̄�
𝑤 ≥ 0, 𝑥 ≥ 0,

along with a similar penalty problem for the QEiCP. In Section 4, we investigate whether this type of
program can help the parametric method find all the eigenvalues for the EiCP and QEiCP.

3 A hybrid algorithm for computing an eigenvalue in a given interval

In this section, we discuss approaches for solving the EiCP for 𝜆 belonging to a particular interval
[�̄�, 𝑢] or to show that no complementary eigenvalue exists in this interval. As stated before, this can be
accomplished by finding a global minimum to NLP (17). An enumerative method was introduced in

7

[7] and subsequently improved and extended for QEiCP in [5]. This algorithm explores a binary tree
that is constructed using two branching strategies, namely, based on a pair of positive complementary
variables at the current stationary point of the Problem NLP (17) and by partitioning the interval [̄𝑙, �̄�].
Therefore, each node 𝑘 of the resulting enumeration tree is associated with an interval [̃𝑙, �̃�] ⊆ [�̄�, 𝑢]
along with two sets 𝐼 and 𝐽 that respectively record those 𝑤− and 𝑥−variables that are presently fixed
to zero. Since 𝑦𝑖 = 𝜆𝑥𝑖, 𝑖 = 1, . . . , 𝑛, in any solution to the EiCP, the following constraints are thus
associated with node 𝑘 of this tree:

�̄�𝑥𝑖 ≤ 𝑦𝑖 ≤ �̄�𝑥𝑖, ∀𝑖 ∈ 𝐽
𝑦𝑖 = 𝑥𝑖 = 0, ∀𝑖 ∈ 𝐽
𝑤𝑖 = 0, ∀𝑖 ∈ 𝐼,

where 𝑙 ≤ �̄� < �̄� ≤ 𝑢, 𝐽 ⊆ {1, . . . , 𝑛}, 𝐽 = {1, . . . , 𝑛}∖𝐽 , and 𝐽 ∩ 𝐼 = ∅. Furthermore, consider the
sets

𝐾 = 𝐼 ∪ 𝐽, 𝐼 = {1, . . . , 𝑛}∖𝐼, and �̄� = {1, . . . , 𝑛}∖𝐾.
Then the subproblem at node 𝑘 is given as follows, where any set-subscript on a variable restricts the
variable indices to the corresponding set:

NLP(𝑘): Minimize 𝑓(𝑥, 𝑦, 𝑤, 𝜆) = (𝑦𝐽 − 𝜆𝑥𝐽)𝑇 (𝑦𝐽 − 𝜆𝑥𝐽) + 𝑥𝑇�̄�𝑤�̄�

subject to 𝑤 = 𝐵𝑦 −𝐴𝑥
𝑒𝑇𝑥𝐽 = 1

𝑒𝑇 𝑦𝐽 = 𝜆

�̄� ≤ 𝜆 ≤ �̄�
�̄�𝑥𝑗 ≤ 𝑦𝑗 ≤ �̄�𝑥𝑗 , ∀𝑗 ∈ 𝐽
𝑤𝐼 ≥ 0, 𝑥𝐽 ≥ 0

𝑦𝑗 = 𝑥𝑗 = 0, ∀𝑗 ∈ 𝐽
𝑤𝑖 = 0, ∀𝑖 ∈ 𝐼.

At this node 𝑘, the algorithm searches for a stationary point to the corresponding program NLP(𝑘).
If the objective function value at this stationary point is zero, then a solution to the EiCP is at hand
and the algorithm terminates. Otherwise, two new nodes are created and the process is repeated. The
algorithm includes heuristic rules for choosing an open node from some associated list and for decid-
ing which of the two branching strategies should be used at the selected node 𝑘 whenever a stationary
point having a positive objective function value is found for NLP(𝑘). The algorithm also gives a cer-
tificate of nonexistence of a complementary eigenvalue in the interval [̄𝑙, �̄�] when it terminates with an
empty list of nodes without having found a stationary point of NLP with an objective function value
smaller than a positive tolerance. The formal steps of the algorithm are presented below.

Enumerative algorithm for finding a complementary eigenvalue in [�̄�, �̄�].

Step 0 (Initialization) - Let 𝜖1 and 𝜖2 be selected tolerances, where 0 < 𝜖1 < 𝜖2 (we can take 𝜖1 = 𝜖2

and 𝜖2 = 𝜖 for some 0 < 𝜖 < 1, for example). Set 𝑘 = 1, [̃𝑙, �̃�] = [�̄�, �̄�],

𝐼 = ∅, 𝐽 = ∅, and find a stationary point (�̄�, 𝑦, �̄�,�̄�) of NLP(1). If NLP(1)

is infeasible, then EiCP has no solution in [̄𝑙, �̄�]; terminate. Otherwise,

8

let 𝐿 = {1} be the set of open nodes, set 𝑈𝐵(1) = 𝑓(�̄�, 𝑦, �̄�,�̄�), and

let 𝑁 = 1 be the number of nodes generated.

Step 1 (Choice of node) - If 𝐿 = ∅ terminate; EiCP has no solution in [̄𝑙, �̄�]. Otherwise,

select 𝑘 ∈ 𝐿 such that

𝑈𝐵(𝑘) = min{𝑈𝐵(𝑖) : 𝑖 ∈ 𝐿},
and let (�̄�, 𝑦, �̄�, �̄�) be the stationary point that was previously

found at this node.

Step 2 (Branching rule) - Let

𝜃1 = max{�̄�𝑖�̄�𝑖 : 𝑖 ∈ �̄�} = �̄�𝑟�̄�𝑟, and

𝜃2 = max{∣𝑦𝑖 − �̄��̄�𝑖∣ : 𝑖 ∈ 𝐽} .

(i) If 𝜃1 ≤ 𝜖1 and 𝜃2 ≤ 𝜖2, then �̄� yields a complementary eigenvalue (within

the tolerance 𝜖2) with �̄� being a corresponding eigenvector; terminate.

(ii) If 𝜃1 > 𝜃2, branch on the complementary variables (𝑤𝑟, 𝑥𝑟) associated

with 𝜃1 and generate two new nodes, 𝑁 + 1 and 𝑁 + 2, which respectively

restrict 𝑤𝑟 = 0 and 𝑥𝑟 = 0.

(iii) If 𝜃1 ≤ 𝜃2, then partition the interval [̃𝑙, 𝑢] at node 𝑘 into [̃𝑙, �̃�]

and [�̃�, �̄�] to generate two new nodes, 𝑁 + 1 and 𝑁 + 2, where

�̃� =

{
�̄� if min{(�̄�− �̄�), (�̄�− �̄�)} ≥ 0.1(�̄� − �̄�)
�̄�+�̄�
2 otherwise.

Step 3 (Solve, Update, and Queue) - For each of 𝑡 = 𝑁 + 1 and 𝑡 = 𝑁 + 2 such that �̃�− �̃� > 𝜖,
find a stationary point (�̃�, 𝑦, �̃�, �̃�) of Problem NLP(𝑡). If NLP(𝑡) is

feasible, set 𝐿 = 𝐿 ∪ {𝑡} and 𝑈𝐵(𝑡) = 𝑓(�̃�, 𝑦, �̃�, �̃�). Set 𝐿 = 𝐿∖{𝑘}
and return to Step 1.

Reference [5] establishes the convergence of this algorithm and discusses its extension to the
QEiCP.

Another interesting approach for computing a complementary eigenvalue for the EiCP is the semi-
smooth algorithm [1], which is decribed as follows: Let the function 𝜑 : ℝ2 → ℝ be defined by

𝜑(𝑎, 𝑏) = 𝑎+ 𝑏−
√
𝑎2 + 𝑏2.

This function is called the Fischer-Burmeister function and satisfies the following relations [4]:

𝑥𝑇𝑤 = 0, 𝑥 ≥ 0, 𝑤 ≥ 0 ⇔ 𝑥𝑖𝑤𝑖 = 0, 𝑥𝑖 ≥ 0, 𝑤𝑖 ≥ 0, ∀𝑖 = 1, . . . , 𝑛

⇔ 𝜑(𝑥𝑖, 𝑤𝑖) = 0, ∀𝑖 = 1, . . . , 𝑛.

Define the functions Φ : ℝ2𝑛 → ℝ
𝑛 and Ψ : ℝ2𝑛+1 → ℝ

2𝑛+1 by

Φ(𝑥,𝑤) =

⎛
⎜⎝
𝜑(𝑥1, 𝑤1)

...
𝜑(𝑥𝑛, 𝑤𝑛)

⎞
⎟⎠

9

and

Ψ(𝑥,𝑤, 𝜆) =

⎛
⎝ Φ(𝑥,𝑤)

(𝜆𝐵 −𝐴)𝑥− 𝑤
𝑒𝑇𝑥− 1

⎞
⎠ .

Then it is not difficult to see that the EiCP is equivalent to the system of equations

Ψ(𝑥,𝑤, 𝜆) = 0. (22)

It should be noticed that the function 𝜑 is not differentiable at the origin, and so the system of equations
(22) is nonsmooth. However it is well known [4] that the function Ψ enjoys a desirable property
called semi-smoothness, which plays an important role in establishing superlinear convergence of the
generalized (semi-smooth) Newton algorithm for solving nonsmooth equations. In order to explain
the algorithm, let 𝑧 = (�̄�, �̄�, �̄�) be a current point satisfying 𝑒𝑇 �̄� = 1. For simplicity of notation, let

𝑦 = [𝑦𝑖] ∈ ℝ
𝑛 be the vector with components 𝑦𝑖 =

√
�̄�2𝑖 + �̄�

2
𝑖 . Since 𝑒𝑇 �̄� = 1, then 𝑧 = (�̄�, 𝑤, �̄�) is

regarded as a solution of EiCP if and only if

∥�̄� − �̄�𝐵�̄�+𝐴�̄�∥ < 𝜖1, ∥𝑦 − (�̄�+ �̄�)∥ < 𝜖2 (23)

for sufficiently small 𝜖1, 𝜖2 > 0. If (23) does not hold, then we update the current point by applying
a Newton iteration. Specifically, the semi-smooth Newton direction 𝑑 = (𝑑𝑥, 𝑑𝑤, 𝑑𝜆) is obtained as a
solution of the linear system

𝐺(𝑧)

⎡
⎣ 𝑑𝑥
𝑑𝑤
𝑑𝜆

⎤
⎦ =

⎡
⎣ 𝑦 − (�̄�+ �̄�)
�̄� − �̄�𝐵�̄�+𝐴�̄�

0

⎤
⎦ , (24)

where 𝐺(𝑧) is the Clarke generalized Jacobian of Ψ at 𝑧, which can be computed as

𝐺(𝑧) =

⎡
⎣ 𝐸 𝐹 0
�̄�𝐵 −𝐴 −𝐼𝑛 𝐵�̄�
𝑒𝑇 0 0

⎤
⎦ ∈ ℝ

(2𝑛+1)×(2𝑛+1). (25)

Here 𝐼𝑛 is the identity matrix of order 𝑛, and 𝐸 ∈ ℝ
𝑛×𝑛 and 𝐹 ∈ ℝ

𝑛×𝑛 are diagonal matrices with
diagonal elements

(𝐸𝑖𝑖, 𝐹𝑖𝑖) =

⎧⎨
⎩

(
1− �̄�𝑖

𝑦𝑖
, 1− �̄�𝑖

𝑦𝑖

)
if (�̄�𝑖, �̄�𝑖) ∕= (0, 0)

(1− 𝜉𝑖, 1− 𝜂𝑖) if (�̄�𝑖, �̄�𝑖) = (0, 0),
∀𝑖 = 1, . . . , 𝑛, (26)

where (𝜉𝑖, 𝜂𝑖) satisfies 𝜉2𝑖 + 𝜂
2
𝑖 = 1. If 𝐺(𝑧) is nonsingular, then the direction (𝑑𝑥, 𝑑𝑤, 𝑑𝜆) is uniquely

determined from (24) and a new point 𝑧 = (�̃�, �̃�,�̃�) is obtained by

�̃� = �̄�+ 𝑑𝑥, �̃� = �̄� + 𝑑𝑤, �̃� = �̄�+ 𝑑𝜆, (27)

which satisfies 𝑒𝑇 �̃� = 1. A next iteration can now be performed with the new point 𝑧. The steps of
the semi-smooth algorithm can be stated as follows:

10

Semi-Smooth Newton Algorithm

Step 0 (Initialization) - Let (�̄�, �̄�, �̄�) be an initial point such that 𝑒𝑇 �̄� = 1, and let 𝜖1 and 𝜖2
be selected positive tolerances.

Step 1 (Newton direction) - Compute the search direction by (24). If the matrix 𝐺(𝑧) given

by (24) is singular, stop with an unsuccessful termination.

Step 2 (Update) - Find a new point 𝑧 = (�̃�, �̃�, �̃�) by (27), and let �̄� = �̃�, �̄� = �̃�, and �̄� = �̃�.

If (23) holds, then stop with a solution (�̄�,�̄�) of EiCP. Otherwise, go to Step 1.

The above algorithm can be easily extended to deal with the QEiCP. In fact, only the expression
of the Clarke Generalized Jacobian at 𝑧 is different and takes the form

𝐺(𝑧) =

⎡
⎣ 𝐸 𝐹 0
�̄�2𝐴+ �̄�𝐵 + 𝐶 −𝐼𝑛 2�̄�𝐴�̄�+𝐵�̄�

𝑒𝑇 0 0

⎤
⎦ ∈ ℝ

(2𝑛+1)×(2𝑛+1),

where as before, 𝐼𝑛 is the identity matrix of order 𝑛, and 𝐸 and 𝐹 are the diagonal matrices whose
diagonal elements are given by (26).

The semi-smooth algorithm has some benefits as well as drawbacks over the enumerative method.
On the positive side, the semi-smooth method is in general fast in obtaining a solution for the EiCP
or QEiCP whenever it is successful. Furthermore, each iteration of the algorithm does not require
much effort and is simple to implement. However, on the negative side, the algorithm may terminate
unsuccessfully with the singularity of the Generalized Jacobian or, even worse, may not be able to
converge at all. The choice of the initial point is also very important for the algorithm to succeed in
finding a complementary eigenvalue. Another drawback of the semi-smooth method is its inability
to compute an eigenvalue in a particular interval [�̄�, 𝑢], as required by the parametric algorithm. In
fact, this interval is not considered in the definition of the algorithm. It is possible to design special
line-search techniques in the spirit of [4, 10] that guarantee a stationary point of an appropriate merit
function in this interval. However, there is no guarantee that such a stationary point would provide
a solution to the EiCP or to the QEiCP when it exists. Another negative feature of the semi-smooth
method is its inability to provide a certificate of nonexistence of a complementary eigenvalue in a
particular interval.

Recognizing all these drawbacks, but also benefits, of the semi-smooth algorithm, and since the
enumerative method is able in theory to solve the EiCP or QEiCP in a particular interval [̄𝑙, �̄�] but
might be slow in achieving a complementary eigenvalue, we propose a hybrid method that tries to
exploit the beneficial features of these two algorithms. Such a hybrid approach starts with the enu-
merative method. When the current (�̄�, 𝑦, 𝑤,�̄�) is sufficiently close to a possible solution, i.e., when
the value of the objective function of NLP (17) is sufficiently small, then the algorithm switches over
to using the semi-smooth algorithm with the initial point (�̄�, �̄�,�̄�). Then, either the algorithm finds a
complementary eigenvalue within a maximum number of iterations, or it returns unsuccessfully back
to the enumerative algorithm to continue with the previous point (�̄�, 𝑦, �̄�,�̄�). The switching decision
is made using some additional tolerances 𝜖𝑖 > 𝜖𝑖, 𝑖 = 1, 2, within the enumerative method. The
formal steps of this hybrid method are presented below.

11

Hybrid Algorithm for finding a complementary eigenvalue in [̄𝑙, 𝑢].

Step 0 - Let 𝜖1 and 𝜖2 be two positive tolerances for switching from the enumerative algorithm

to the semi-smooth method, and let 𝑛𝑚𝑎𝑥𝑖𝑡 be the maximum number of iterations

permitted to be performed by the semi-smooth method.

Step 1 - Apply Step 1 of the enumerative method with positive tolerances 𝜖1 and 𝜖2
(𝜖1 < 𝜖1 and 𝜖2 < 𝜖2). Let (�̄�, 𝑦, �̄�, �̄�) be the stationary point associated with the node 𝑘,

and compute 𝜃1 and 𝜃2 as in Step 2 of the enumerative method.

(i) If 𝜃𝑖 < 𝜖𝑖, 𝑖 = 1, 2, stop with a solution of the EiCP.

(ii) If 𝜃𝑖 < 𝜖𝑖, 𝑖 = 1, 2, go to Step 2.

(iii) Generate two new nodes as discussed in the enumerative method.

Step 2 - Apply the semi-smooth method. If the algorithm terminates with a solution (𝑥∗, 𝑤∗, 𝜆∗)
such that 𝜆∗ ∈ [�̄�, �̄�], stop. Otherwise the semi-smooth method terminates without success

(singular generalized Jacobian, or number of iterations equal to 𝑛𝑚𝑎𝑥𝑖𝑡, or 𝜆∗ /∈ [�̄�, �̄�]);

go to Step 1 (iii) with node 𝑘 and the solution (�̄�, 𝑦, �̄�,�̄�) given at the beginning of this step.

It is easy to see that this hybrid method retains the same convergence properties as the enumerative
method, i.e., it either finds a solution of the EiCP or QEiCP in the interval [̄𝑙, �̄�] or shows that there is
no complementary 𝜖−distinct eigenvalue in this interval.

4 Computational Experiments

In this section, we report some computational experience with the parametric algorithm presented in
the previous sections for the EiCP and QEiCP. Five sets of test problems were constructed for the
EiCP, where 𝐵 was always taken as the identity matrix. In the first set of test problems, the matrices
A were taken from [1] and are given by

𝐴 = −
⎡
⎣ 8 −1 4

3 4 1/2
2 −1/2 6

⎤
⎦ and 𝐴 = −

⎡
⎢⎢⎣

100 106 −18 −81
92 158 −24 −101
2 44 37 −7

21 38 0 2

⎤
⎥⎥⎦ .

These are denoted by SeegerAdly(𝑛), where 𝑛 is the order of the matrices (𝑛 = 3 and 4, respectively).
For the second set of test problems [19], the matrix 𝐴 is given by

𝐴 = −

⎡
⎢⎢⎢⎢⎢⎣

𝑠2 𝑠3 𝑠4 𝑠5 . . .
−𝑠3 𝑠4 𝑠5 𝑠6 . . .
−𝑠4 𝑠5 𝑠6 𝑠7 . . .
−𝑠5 𝑠6 𝑠7 𝑠8 . . .

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎦
.

12

These test problems are denoted by SeegerVicente(𝑛), where 𝑛 is the order of the matrices, and where
we used 𝑠 =

√
6. In the third set of test problems [12], the matrix 𝐴 is given by

𝐴 = −

⎡
⎢⎢⎢⎢⎢⎣

𝑠2 𝑠3 𝑠4 𝑠5 . . .
𝑠3 𝑠4 𝑠5 𝑠6 . . .
𝑠4 𝑠5 𝑠6 𝑠7 . . .
𝑠5 𝑠6 𝑠7 𝑠8 . . .
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦
.

These test problems are denoted by SeegerPCosta(𝑛), where 𝑛 is the order of the matrices, and where
we used 𝑠 = 2. In the fourth set of test problems, the matrix 𝐴 was randomly generated with elements
uniformly distributed in the intervals [0, 1], [−1,−1], and [−10, 10]. These problems are denoted by
RAND(𝑘,𝑚, 𝑛), where 𝑘 and 𝑚 are the end-points of the chosen interval for generating the matrix
elements, and 𝑛 represents the order of the matrices 𝐴 and 𝐵 (we considered 𝑛 = 5, 10, 20, 30, 40,
and 50). In the last set of test problems, the matrix𝐴 is a block diagonal matrix and the elements of the
diagonal blocks were randomly generated, uniformly distributed in the interval [0, 1]. These blocks
have different dimensions and the problems are denoted by Block(𝑘,𝑚, 𝑠, 𝑛), where 𝑘 and 𝑚 are the
end-points of the chosen interval for generating the matrix elements, 𝑠 and 𝑛 represent the number of
blocks and the order of the matrices 𝐴 and 𝐵, respectively (we considered 𝑛 = 5, 10, 20, 30, 40, and
50). Since each diagonal block is a positive matrix, then by Theorem 2, the number of complementary
eigenvalues is exactly equal to the number 𝑠 of these diagonal blocks.

Two sets of test problems were considered for the QEiCP. The first test problem, denoted by Adl-
ySeegerQ(3), has been taken from [1]. For all the remaining test problems, the matrix 𝐴 was set
equal to the identity matrix. Furthermore, the matrices 𝐵 and −𝐶 were randomly generated with
their elements uniformly distributed in the interval [0, 1] or [0, 10], and these problems are denoted
by RAND(𝑘,𝑚, 𝑛), where 𝑘 and 𝑚 are the end-points of the chosen interval for generating the ma-
trix elements, and 𝑛 represents the order of the matrices. In our experiments, the tolerances for the
enumerative and hybrid methods were selected as 𝜖1 = 10−6, 𝜖2 = 10−4, and 𝜖1 = 𝜖2 = 10−1 (for
different values of 𝜖 as specified below). Furthermore, we adopt the following notation:

• 𝑛 ≡ dimension of the EiCP or QEiCP, i.e., orders of their matrices.

• NEiv ≡ number of eigenvalues (“𝑡?” means that we actually do not know the exact number of
complementary eigenvalues, but its number seems to be 𝑡; note that this uncertainty is due to
the fact that we are only assured of finding a set of 𝜖−distinct eigenvalues).

• CEiv ≡ number of computed eigenvalues by the parametric algorithm.

• NP ≡ number of EiCPs or QEiCPs solved in nested sub-intervals of [𝑙, 𝑢] generated in the
course of finding all the eigenvalues.

• 𝑙, 𝑢 ≡ end-points of the interval containing all the complementary eigenvalues.

• Nodes ≡ total number of nodes generated.

• 𝜖 ≡ value of the tolerance used in the parametric algorithm.

Table 1 reports the numerical results obtained for our first experiment using the parametric al-
gorithm with two different values of the tolerance 𝜖. The simple version of the enumerative method
(without the hybridization with the semi-smooth algorithm) has been used to process all the EiCPs in

13

Table 1: Performance of the parametric algorithm for solving EiCPs.

𝜖 = 10−4 𝜖 = 10−3

Problem 𝑛 𝑙 𝑢 NEiv CEiv Nodes NP CEiv Nodes NP
SeegerAdly(3) 3 −13.000 1.718 9 21 3059 34 9 2750 19
SeegerAdly(4) 4 −346.000 224.157 23 66 9436 100 27 12228 51
RAND(0,1,5) 5 1.724 3.475 1 1 15 3 1 15 3
RAND(0,1,10) 10 2.779 5.906 1 1 25 3 1 25 3
RAND(0,1,20) 20 6.601 11.756 1 1 45 3 1 45 3
RAND(0,1,30) 30 12.751 18.389 1 1 65 3 1 65 3
RAND(0,1,40) 40 16.360 23.839 1 1 167 3 1 85 3
RAND(0,1,50) 50 18.418 29.756 1 1 207 3 1 105 3
RAND(-1,1,5) 5 −0.884 3.504 1? 1 25 3 1 25 3
RAND(-1,1,10) 10 −2.914 5.399 4? 9 2281 16 4 2077 9
RAND(-1,1,20) 20 −3.684 12.661 5? 39 8577 52 5 6039 11
RAND(-10,10,5) 5 −19.796 27.930 3? 5 205 9 3 177 7
RAND(-10,10,10) 10 −47.389 67.795 1? 2 825 4 1 780 3
RAND(-10,10,20) 20 −33.749 121.968 1? 4 1768 7 1 1511 3
SeegerVicente(3) 3 −340.182 59.0234 9 29 2808 47 9 2520 19
SeegerVicente(4) 4 −2129.271 165.8136 21 41 6885 71 21 4806 41
SeegerVicente(5) 5 −12991.629 441.8821 45 64 11762 100 39 9505 76
SeegerPCosta(3) 3 −112.000 0.0000 7 7 81 15 7 81 15
SeegerPCosta(4) 4 −480.000 0.0000 15 15 677 31 15 222 31
SeegerPCosta(5) 5 −1984.000 0.0000 31 31 2497 63 31 576 63

the intervals [̄𝑙, �̄�] generated by the parametric algorithm. These results lead to the following conclu-
sions:

• For 𝜖 = 10−4 the algorithm repeats the computation of some eigenvalues for a few test prob-
lems. This repetition only occurred in one test problem when 𝜖 = 10−3;

• 𝜖 = 10−3 seems to be the best choice for these test problems;

• The algorithm may be unable to compute some eigenvalues when they are quite close (non-
𝜖−distinct) due to the updating rule for the intervals. For instance, for Problem SeegerVi-
cente(5), the algorithm with 𝜖 = 10−3 computes the eigenvalues 𝜆𝑖 = 12.007767 and 𝜆𝑖+1 =
12.009029, yielding an interval

[𝜆𝑖 + 𝜖, 𝜆𝑖+1 − 𝜖] = [12.008029, 12.008767] = [�̄�, �̄�].

Since �̄� − �̄� < 𝜖 = 10−3, the algorithm does not investigate this interval and the correct eigen-
values 12.007920, 12.0079522, and 12.008988 are lost. Note that, according to our definition
of 𝜖−distinct solutions, these eigenvalues are considered to be non-𝜖−distinct from one of the
computed eigenvalues 𝜆𝑖 or 𝜆𝑖+1. Furthermore, all the missing eigenvalues do indeed satisfy
Theorem 3.

As a final conclusion of this experiment, the parametric algorithm seems to be efficient for finding
all the distinct eigenvalues under a tolerance 𝜖. This tolerance is necessary to avoid the repetition
of eigenvalues, but its choice is the main drawback of the algorithm. In fact, if 𝜖 is too small, the
algorithm tends to repeat the computation of eigenvalues. If 𝜖 is relatively large, then some close-by
eigenvalues may be lost. It appears that 𝜖 = 10−3 offers a suitable compromise, and is used in our
further experiments below with the parametric algorithm.

14

Table 2: Performance of the parametric algorithm for solving EiCPs and QEiCPs.

𝜖 = 10−3

Problem 𝑛 𝑙 𝑢 NEiv CEiv Nodes NP
Block(0,1,2,5) 5 1.186 3.105 2 2 35 5
Block(0,1,4,10) 10 0.490 3.709 4 4 406 9
Block(0,1,8,20) 20 0.276 4.573 8 8 4225 16
Block(0,1,12,30) 30 0.500 5.667 12 12 10021 24
Block(0,1,16,40) 40 0.072 7.705 16 16 14889 32
Block(0,1,20,50) 50 0.114 6.639 20 20 20278 41

SeegerAdlyQ(3) 3 −10.875 5.469 12 12 179 25

RAND(0,1,5) 5 −4.944 2.669 4? 4 75 9
RAND(0,1,10) 10 −9.345 4.903 2? 2 415 5
RAND(0,1,20) 20 −19.596 10.042 2? 2 1645 5
RAND(0,1,30) 30 −29.585 15.037 4? 4 6079 9
RAND(0,1,40) 40 −39.555 20.022 2? 2 3100 5

RAND(0,10,5) 5 −42.789 21.607 2? 2 57 5
RAND(0,10,10) 10 −95.230 47.858 4? 4 424 9

Table 2 reports the performance of the parametric algorithm for computing all the eigenvalues for
EiCPs having the defined block diagonal matrices and for the corresponding QEiCPs while using the
tolerance 𝜖 = 10−3.

These results confirm the conclusions stated before regarding the efficacy of the parametric method.
The algorithm was indeed able to find all the complementary eigenvalues for all the test problems
having known eigenvalues. The enumerative method is, in general, efficient in finding an eigenvalue
within a particular interval [̄𝑙, �̄�] whenever it exists, but finds it more difficult to provide a certificate
of nonexistence of a complementary eigenvalue otherwise. In order to reduce the total computational
effort required by the parametric method, we have used a maximum number of nodes to be visited
by the enumerative method when applied to an interval [̄𝑙, �̄�]. This number was chosen to be equal
to 1500 but could be smaller. In all our experiments, this number was only achieved for a few Block
test problems. Furthermore, when such a number of 1500 nodes was attained for a particular interval
[�̄�, �̄�], then no complementary eigenvalue existed in this interval, which is confirmed by the fact that
the parametric method was indeed able to find all the complementary eigenvalues.

Table 3 presents the numerical results for the parametric algorithm when we solve the barrier
penalty problem PNLP (21) instead of NLP (17) at each iteration. These PNLPs were solved by
BARON [14] (with default options). We set 𝜌 = 10−4 < 𝜖, since we wish lim

𝜌→0
𝜌 log(𝜖) = 0. We

considered a global minimum of PNLP to be an eigenvalue for EiCP if and only if

min{�̄�− �̄�, �̄�− �̄�} ≥ 10−4, and 𝜃1 ≤ 10−6, and 𝜃2 ≤ 10−4,

where 𝜃1 and 𝜃2 are the tolerances used in the stopping criterion of the enumerative method.
Problem PNLP (21) can also be solved by the enumerative algorithm and its convergence would

follow exactly as in [5], where the stationary point problem for each node includes the convex barrier
function term in the objective function with the original (̄𝑙, �̄�)−values, while the algorithm branches
on (𝑥𝑗 = 0) ∨ (𝑤𝑗 = 0) as well as on the 𝜆−interval within the constraints.

15

Table 3: Performance of the parametric algorithm with the barrier problem and 𝜌 = 10−4.

enumerative BARON
Problem 𝑛 NEiv CEiv Nodes NP CEiv NP
SeegerAdly(3) 3 9 3 39 7 8 17
SeegerAdly(4) 4 23 1 4 3 17 35

RAND(0,1,5) 5 1 4 70 9 1 3
RAND(0,1,10) 10 1 3 201 7 1 3
RAND(0,1,20) 20 1 1 631 3 1 3
RAND(0,1,30) 30 1 2 7 5 1 3
RAND(0,1,40) 40 1 1 89 3 1 3
RAND(0,1,50) 50 1 1 755 3 1 3

RAND(-1,1,5) 5 1? 1 4 3 1 3
RAND(-1,1,10) 10 4? 1 4 3 2 5
RAND(-1,1,20) 20 3? 2 794 5 1 3

RAND(-10,10,5) 5 3? 2 116 5 3 7
RAND(-10,10,10) 10 1? 1 7 3 1 3
RAND(-10,10,20) 20 1? 1 197 3 1 3

SeegerVicente(3) 3 9 2 10 5 8 17
SeegerVicente(4) 4 21 3 19 7 16 33
SeegerVicente(5) 5 45 5 64 11 33 67

SeegerPCosta(3) 3 7 2 7 5 7 15
SeegerPCosta(4) 4 15 1 4 3 15 31
SeegerPCosta(5) 5 31 3 21 7 31 63

When the only existing eigenvalue in [̄𝑙, �̄�] is close to one of the end-points of this interval, the
algorithm might take a long time to find this eigenvalue because of the barrier term. So, we further
modified the algorithm as follows: Let [̃𝑙, �̃�] be the current node’s bounding interval. If �̄� < �̃� < �̃� <
�̄�, then we find a stationary point without the barrier term. Else, suppose that 𝑙 = �̄� or �̃� = �̄�. If
�̃�− 𝑙 < 𝜖, we check whether we have an 𝜖−tolerance EiCP solution at hand, and we fathom the node.
Otherwise, we solve the stationary point problem with the barrier term. Despite this modification,
the numerical results displayed in Table 3 show that the parametric method based on PNLP is unable
to compute all the eigenvalues, and more (though not all) eigenvalues were computed when BARON
was used instead.

As a final conclusion of these experiments (and also as observed with many runs not reported
in this table), we recommend using the proposed parametric method with the 𝜖−tolerance given by
10−3 for finding all the eigenvalues for the EiCP and QEiCP. The algorithm is, in general, efficient for
finding 𝜖−distinct eigenvalues.

The second objective of our computational experiments was to investigate whether the hybrid
method introduced in Section 3 offers an improvement over the simple version of the enumerative
method for solving the EiCP or QEiCP in an interval generated by the parametric algorithm. In
order to answer this question, we report some preliminary computational experience with this hybrid
method for the test problems described in [5] for which the enumerative method was unable to find
a solution of the EiCP at the root node. In our experiments, we used 𝜖1 = 10−1 and 𝜖2 = 10−1 and

16

𝑛𝑚𝑎𝑥𝑖𝑡 = 100. Table 4 presents the numerical results obtained. The following tolerances have been
used:

• Tolerances for enumerative method: 𝜖1 = 10−6 and 𝜖2 = 10−4.

• Tolerances for Semi-Smooth Newton Algorithm: 𝜖1 = 10−6 and 𝜖2 = 10−6.

Furthermore, we adopt the following notation:

• 𝑛 ≡ dimension for the EiCP.

• Eigenvalue ≡ eigenvalue computed by the algorithm.

• ITpivot ≡ total number of pivotal operations.

• Nodes ≡ total number of nodes generated.

• NTime ≡ number of times that the Semi-Smooth Newton Algorithm is called.

• Iterations ≡ number of iterations for the Semi-Smooth Newton Algorithm.

• ∗ ≡ the Semi-Smooth Newton Algorithm could not satisfy the Stopping Criterium (23) within
100 iterations.

Table 4: Performance of the enumerative algorithm vs. the hybrid algorithm for solving EiCPs.

Enumerative algorithm Hybrid Algorithm 𝜃1, 𝜃2 ≤ 10−1

Problem 𝑛 Eigenvalue ITpivot Nodes Eigenvalue ITpivot Nodes NTime Iterations
SeegerAdly(3) 3 −4.134 19 0 −4.134 19 0 0 0
SeegerAdly(4) 4 −29.134 36 0 −29.134 36 0 0 0
SeegerVicente(3) 3 −24.000 14 0 −24.000 14 0 0 0
SeegerVicente(4) 4 −18.000 20 0 −18.000 20 0 0 0
SeegerVicente(5) 5 −12.010 27 0 −12.010 27 0 0 0
SeegerPCosta(3) 3 −4.000 5 0 −4.000 5 0 0 0
SeegerPCosta(4) 4 −4.000 5 0 −4.000 5 0 0 0
SeegerPCosta(5) 5 −4.000 2 0 −4.000 2 0 0 0
SeegerPCosta(10) 10 −4.000 11 0 −4.000 11 0 0 0
SeegerPCosta(20) 20 −4.000 11 0 −4.000 11 0 0 0
RAND(0,1,5) 5 2.781 15 0 2.781 15 0 0 0
RAND(0,1,10) 10 4.816 35 0 4.816 35 0 0 0
RAND(0,1,20) 20 9.850 66 0 9.850 66 0 0 0
RAND(0,1,30) 30 15.270 94 0 15.270 94 0 0 0
RAND(0,1,40) 40 20.241 131 0 20.241 131 0 0 0
RAND(0,1,50) 50 25.0772 166 0 25.0772 166 0 0 0
RAND(0,1,100) 100 49.755 381 0 49.755 381 0 0 0
RAND(-1,1,5) 5 1.123 24 0 1.123 24 0 0 0
RAND(-1,1,10) 10 −0.018 41 0 −0.018 41 0 0 0
RAND(-1,1,20) 20 0.842 105 0 0.842 105 0 0 0
RAND(-1,1,30) 30 2.346 1235 9 2.346 262 0 1 22
RAND(-1,1,40) 40 2.861 3107 17 2.865 392 0 1 16
RAND(-1,1,50) 50 3.131 3239 9 3.130 780 0 1 60
RAND(-1,1,100) 100 4.010 5500 6 3.948 1449 0 1 78
RAND(-10,10,5) 5 −9.922 29 2 −9.922 29 2 0 0
RAND(-10,10,10) 10 17.272 113 0 17.272 113 0 0 0
RAND(-10,10,20) 20 21.191 554 6 21.191 277 3 1 65
RAND(-10,10,30) 30 25.332 1562 6 25.332 600 0 1 69
RAND(-10,10,40) 40 19.595 3130 11 29.906 475 0 1 56
RAND(-10,10,50) 50 20.457 3160 6 20.457 3160 6 4 4 × 100∗
RAND(-100,100,5) 5 135.146 23 0 135.146 23 0 0 0
RAND(-100,100,10) 10 −40.854 88 0 −40.854 88 0 0 0
RAND(-100,100,20) 20 80.072 378 0 80.072 378 0 0 0
RAND(-100,100,30) 30 180.221 1812 5 180.221 715 2 2 100∗ + 89
RAND(-100,100,40) 40 234.283 2293 3 234.283 2293 3 0 0
RAND(-100,100,50) 50 176.117 4650 4 176.117 4650 4 1 100∗
RAND(-100,100,100) 100 526.975 7246 2 526.975 7246 2 0 0

The following observations can be made from the results in Table 4:

17

(i) For eight test problems, the semi-smooth algorithm was called once and successfully found
a solution to the EiCP. In these examples, the hybrid method required fewer nodes and less
number of pivotal operations than the enumerative method.

(ii) For two problems, the switching criterion 𝜃1 ≤ 𝜖1 and 𝜃2 ≤ 𝜖2 was never satisfied and the
semi-smooth method was not used.

(iii) For two problems, the semi-smooth method was called more than once. In one of these cases,
the semi-smooth method always terminated unsuccessfully, while attaining the maximum num-
ber of iterations.

(iv) The 𝜖−distinct eigenvalues computed by the enumerative and hybrid methods are, in general,
the same, but in two examples, the algorithms found two different eigenvalues.

It is important to restate that line-search techniques may be employed within the semi-smooth
algorithm that force the algorithm to converge to a stationary point of an appropriate merit function
[4, 10]. Stationary points of these functions are only guaranteed to be solutions for the EiCP under
monotonicity or similar conditions [4]. We have not investigated incorporating such line-search tech-
niques because the EiCP is a non-monotone complementarity problem, where, in any case, the simple
enumerative algorithm acts as a safeguard for the hybrid method.

Finally, Table 5 presents numerical results of experiments that compare the performance of the
enumerative method and the hybrid algorithm for solving the QEiCP test problems discussed in [5].
The conclusions of these experiments are similar to the ones presented for the EiCP.

We have also tested using the hybrid method within the parametric algorithm for finding all the
eigenvalues. Our experiments revealed that the semi-smooth method tends to converge to the same
previously identified complementary eigenvalue. If this eigenvalue does not belong to a particular
interval, the hybrid algorithm is attracted toward one of the end-points of this interval that is not
an eigenvalue. Consequently, we recommend using the hybrid algorithm only for finding the initial
complementary eigenvalue, and then adopting the proposed enumerative method for further iterations.

Table 5: Performance of the enumerative algorithm vs. the hybrid algorithm for solving QEiCPs.

Enumerative algorithm Hybrid Algorithm 𝜃1, 𝜃2 ≤ 10−1

Problem 𝑛 Eigenvalue ITpivot Nodes Eigenvalue ITpivot Nodes NTime Iterations
SeegerAdlyQ(3) 3 0.266 10 0 0.266 10 0 0 0
RAND(0,1,5) 5 0.708 32 0 0.708 32 0 0 0
RAND(0,1,10) 10 −5.575 261 4 0.811 76 0 1 37
RAND(0,1,20) 20 1.114 229 0 1.114 229 0 0 0
RAND(0,1,30) 30 1.055 959 3 1.055 581 0 1 9
RAND(0,1,40) 40 −21.182 2078 4 1.055 935 0 1 30
RAND(0,1,50) 50 1.127 3997 8 −26.020 1001 0 1 26
RAND(0,10,5) 5 −21.760 138 4 −21.760 138 4 0 0
RAND(0,10,10) 10 0.968 211 3 0.968 211 3 0 0
RAND(0,10,20) 20 1.193 484 2 1.193 484 2 1 100∗
RAND(0,10,30) 30 −149.446 2900 8 −149.446 933 2 2 100∗ + 40
RAND(0,10,40) 40 −197.925 3136 6 −197.925 3136 6 4 4 × 100∗
RAND(0,10,50) 50 −252.888 7605 10 −252.888 1816 2 2 100∗ + 78
RAND(0,100,5) 5 1.112 46 0 1.112 46 0 0 0
RAND(0,100,10) 10 0.887 99 0 0.887 99 0 0 0
RAND(0,100,20) 20 1.953 5620 38 1.953 5620 38 3 3 × 100∗
RAND(0,100,30) 30 −1494.046 2164 4 −1494.046 1359 3 3 2 × 100∗ + 53
RAND(0,100,40) 40 1.077 49894 62 −2032.782 34582 44 23 22 × 100∗ + 58
RAND(0,100,50) 50 −2488.298 5186 4 −2488.298 2258 2 2 100∗ + 71

18

References

[1] S. ADLY AND A. SEEGER, A nonsmooth algorithm for cone-constrained eigenvalue problems,
Computational Optimization and Applications, 49 (2011), pp. 299–318.

[2] A. BERMAN AND R. J. PLEMMONS, Nonnegative Matrices in the Mathematical Sciences,
SIAM, 1994.

[3] C. BRÁS, M. FUKUSHIMA, J. JÚDICE, AND S. ROSA, Variational inequality formulation of
the asymmetric eigenvalue complementarity problem and its solution by means of gap functions,
Pacific Journal of Optimization, 8 (2012), pp. 197–215.

[4] F. FACCHINEI AND J. PANG, Finite-Dimensional Variational Inequalities and Complementarity
Problems, Springer, New York, 2003.

[5] L. M. FERNANDES, J. J. JÚDICE, H. D. SHERALI, AND M. A. FORJAZ, On an enumerative
algorithm for solving eigenvalue complementarity problems.

[6] J. JÚDICE, H. SHERALI, AND I. RIBEIRO, The eigenvalue complementarity problem, Compu-
tational Optimization and Applications, 37 (2007), pp. 139–156.

[7] J. JÚDICE, H. SHERALI, I. RIBEIRO, AND S. ROSA, On the asymmetric eigenvalue comple-
mentarity problem, Optimization Methods and Software, 24 (2009), pp. 549–586.

[8] H. LE THI, M. MOEINI, T. PHAM DINH, AND J. J ÚDICE, A DC programming approach for
solving the symmetric eigenvalue complementarity problem, Computational Optimization and
Applications, 51 (2012), pp. 1097–1117.

[9] Y. S. NIU, T. PHAM, H. A. LE THI, AND J. J ÚDICE, Efficient DC programming approaches
for the asymmetric eigenvalue complementarity problem, to appear in Optimization Methods and
Software.

[10] J. NOCEDAL AND S. J. WRIGHT, Numerical Optimization, 2nd edition, Springer, New York,
2006.

[11] A. PINTO DA COSTA, J. MARTINS, I. FIGUEIREDO, AND J. J ÚDICE, The directional instabil-
ity problem in systems with frictional contacts, Computer Methods in Applied Mechanics and
Engineering, 193 (2004), pp. 357–384.

[12] A. PINTO DA COSTA AND A. SEEGER, Cone-constrained eigenvalue problems: theory and al-
gorithms, Computational Optimization and Applications, 45 (2010), pp. 25–57.

[13] M. QUEIROZ, J. JÚDICE, AND C. HUMES, The symmetric eigenvalue complementarity prob-
lem, Mathematics of Computation, 73 (2003), pp. 1849–1863.

[14] N. SAHINIDIS AND M. TAWARMALANI, BARON 7.2.5: Global Optimization of Mixed-Integer
Nonlinear Programs, User’s Manual, 2005.

[15] A. SEEGER, Eigenvalue analysis of equilibrium processes defined by linear complementarity
conditions, Linear Algebra and its Applications, 292 (1999), pp. 1–14.

[16] , Quadratic eigenvalue problems under conic constraints, SIAM Journal on Matrix Analy-
sis and Applications, 32 (2011), pp. 700–721.

19

[17] A. SEEGER AND M. TORKI, On eigenvalues induced by a cone constraint, Linear Algebra and
its Applications, 372 (2003), pp. 181 – 206.

[18] , Local minima of quadratic forms on convex cones, Journal of Global Optimization, 44
(2009), pp. 1–28.

[19] A. SEEGER AND J. VICENTE-PÉREZ, On cardinality of Pareto spectra, The Electronic Journal
of Linear Algebra, 22 (2011), pp. 758–766.

[20] Y. ZHOU AND M. S. GOWDA, On the finiteness of the cone spectrum of certain linear trans-
formations on Euclidean Jordan algebras, Linear Algebra and its Applications, 431 (2009),
pp. 772–782.

