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Abstract

The solution of the Conic Quadratic Eigenvalue Complementarity Problem (CQEiCP) is

firstly investigated without assuming symmetry on the matrices defining the problem. A new

sufficient condition for existence of solutions of CQEiCP is presented, extending to arbitrary

pointed, closed and convex cones a condition known to hold when the cone is the nonnegative
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orthant. We also address the symmetric CQEiCP where all its defining matrices are symmetric.

We show that, assuming that two of its defining matrices are positive definite, this symmetric

CQEiCP reduces to the computation of a stationary point of an appropriate merit function on a

convex set. Furthermore, we discuss the use of the so called Spectral Projected Gradient (SPG)

algorithm for solving CQEiCP when the cone of interest is the second-order Cone (SOCQEiCP).

A new algorithm is designed for the computation of the projections required by the SPG method

to deal with SOCQEiCP. Numerical results are included to illustrate the efficiency of the SPG

method and the new projection technique in practice.

1 Introduction

Given matrices B,C ∈ Rn×n, the Eigenvalue Complementarity Problem (to be denoted EiCP(B,C),

see e.g. [29] and [30]), consists of finding (λ, x, w) ∈ R× Rn × Rn such that

w = λBx− Cx, (1.1)

w ≥ 0, x ≥ 0, (1.2)

xtw = 0, (1.3)

etx = 1, (1.4)

with e = (1, 1, . . . , 1)t ∈ Rn. The last normalization constraint has been introduced, without loss

of generality, in order to prevent the x component of a solution to vanish. The matrix B is usually

assumed to be positive definite (PD). The problem has many applications in engineering (see [1], [27]

and [30]), and can be seen as a generalization of the well-known Generalized Eigenvalue Problem,

denoted GEiP (see e.g. [18]). Indeed, GEiP consists of solving (1.1) with w = 0, and a solution

(λ, x) of GEiP is just an eigenvalue and eigenvector of the matrix B−1C in the usual sense, when

B is nonsingular. If a triplet (λ, x, w) solves EiCP, then the scalar λ is called a complementary

eigenvalue and x is a complementary eigenvector associated to λ for the pair (B,C). The condition

xtw = 0 and the nonnegative requirements on x and w imply that either xi = 0 or wi = 0 for

1 ≤ i ≤ n. These two variables are called complementary.

It is easy to prove that under strict copositivity of B, EiCP(B,C) always has a solution,

because it can be reformulated as the Variational Inequality Problem VIP(F̄ ,Ω) with feasible set
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Ω = {x ∈ Rn : etx = 1, x ≥ 0} and operator F̄ : Ω → Rn given by

F̄ (x) =
xtCx

xtBx
Bx− Cx, (1.5)

see [22]. Note that F̄ is continuous in Ω as a consequence of the strict copositivity of B, and that

Ω is convex and compact. It is well known that these two conditions ensure existence of solutions

of VIP(F̄ ,Ω), see [11]. In particular this result holds when B is PD (see [22]).

A number of techniques have been proposed for solving the EiCP and its extensions, see e.g.

[2], [6], [14], [15], [20], [21], [22], [23], [26], [28], [29], [32] and [33].

Recently an extension of the EiCP has been introduced in [31], where some applications are

highlighted. It has been named Quadratic Eigenvalue Complementarity Problem (QEiCP), and it

differs from EiCP through the existence of an additional quadratic term on λ. Its formal definition

follows.

Given A,B,C ∈ Rn×n, QEiCP(A,B,C) consists of finding (λ, x, w) ∈ R× Rn × Rn such that

w = λ2Ax+ λBx+ Cx, (1.6)

w ≥ 0, x ≥ 0, (1.7)

xtw = 0, (1.8)

etx = 1, (1.9)

where, as before, e = (1, 1, . . . , 1)t ∈ Rn. As in the case of the EiCP, the normalization constraint

(1.9) has been introduced, without loss of generality, for preventing the x component of a solution

of the problem from vanishing. Note that QEiCP(A,B,C) reduces to EiCP(B,−C) when A = 0.

The λ component of a solution of QEiCP(A,B,C) is called a quadratic complementary eigenvalue

for A,B,C, and the x component a quadratic complementary eigenvector for A,B,C associated to

λ.

The case of the symmetric QEiCP, i.e., when A,B and C are symmetric matrices and −C is the

identity matrix, has been analyzed in [13], where each instance of QEiCP with n × n matrices is

related to an instance of EiCP with 2n×2n matrices. A new approach for solving the nonsymmetric

QEiCP by a similar reduction has been recently studied in [7].
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In this paper, we study the Conic Quadratic Eigenvalue Complementarity Problem (CQEiCP).

This problem has been introduced in [31] as an interesting extension of QEiCP. It is defined as

follows.

Given A,B,C ∈ Rn×n, a closed, convex and pointed cone K ⊂ Rn and a vector a ∈ int(K∗),

CQEiCP(A,B,C) consists of finding (λ, x, w) ∈ R× Rn × Rn such that

w = λ2Ax+ λBx+ Cx, (1.10)

x ∈ K, w ∈ K∗, (1.11)

xtw = 0, (1.12)

atx = 1. (1.13)

As before, the normalization constraint (1.13) prevents x = 0 from being a solution of the

problem. When A = 0, i.e., when the first term in the right hand side of (1.10) is absent, CQEiCP

becomes the so called Conic Eigenvalue Complementarity Problem. This problem is denoted by

CEiCP(B,R) and is defined by the constraints (1.11), (1.12), (1.13) and

w = λBx−Rx,

which replaces (1.10). Hence CEiCP(B,R) = CQEiCP(0, B,−R). It is known (see [32]), that

CEiCP(B,R) has a solution whenever K is closed, convex and pointed and B is a PD ma-

trix. CQEiCP may lack solutions even when the leading matrix A is PD. Indeed, if we consider

CQEiCP(I, 0, I) with an arbitrary cone K, then premultiplying (1.10) by x and using (1.12), one

gets 0 = (λ2 + 1) ∥x∥2, which has no solution λ ∈ R and x ̸= 0. This difference between CEiCP

and CQEiCP in terms of existence of solutions mirrors the elementary fact that linear equations in

one real variable always have solutions, while quadratic equations may fail to have them.

Thus, the issue of conditions on (A,B,C) ensuring existence of solutions of CQEiCP(A,B,C)

is a relevant one. In [31], the concepts of co-regularity and co-hyperbolicity of (A,B,C) were

introduced, ensuring existence of solutions of CQEiCP(A,B,C). For the case of QEiCP (i.e., when

K = Rn
+), it has been shown in [7] that existence of solutions of QEiCP is also guaranteed when

the matrix A is strictly copositive and the matrix −C is not an S0 matrix. In order to establish

this result, QEiCP is transformed into a 2n-dimensional EiCP problem by using an auxiliary vector

y ∈ Rn such that y = λx.
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In this paper we propose a new transformation of CQEiCP into CEiCP (for a general closed,

convex and pointed cone K), that differs from the one introduced in [7] by the introduction of a

PD matrix E. Using this transformation, we will establish in Section 2 the existence of solutions

of CQEiCP under hypotheses different from those demanded in [31].

In Section 3, we show that the solution of the symmetric CQEiCP (i.e., when the matrices A,B

and C are symmetric), assuming that both A and −C are PD matrices, reduces to the computation

of a stationary point of a special fractional quadratic function on a particular convex subset of the

cone K × K. This result extends the property, proved in [32], that the symmetric CEiCP(B,C)

with a positive definite matrix B can be solved by computing a stationary point of the so-called

Rayleigh quotient on the set defined by the cone K and a normalization constraint. Furthermore, it

also generalizes a similar result established in [13] for the symmetric QEiCP when A is PD matrix

and −C is the identity matrix.

In Section 4 we address the case in which the cone K is the second-order Cone, defined as

follows:

K = K1 ×K2 × . . .×Kr, (1.14)

where

Ki = {xi ∈ Rni :
∥∥x̄i∥∥ ≤ xi0} ⊂ Rni (1 ≤ i ≤ r), (1.15)

r∑
i=1

ni = n.

Then any x ∈ K takes the form

x = (x1, . . . , xr) ∈ Rn

where xi, i = 1 . . . r is given by

xi = (xi0, x̄
i)

with xi0 ∈ R and x̄i ∈ Rni−1. It is rather immediate that each Ki is pointed and self-dual, i.e., it

satisfies Ki = K∗
i . As a consequence, the second-order Cone K is pointed and satisfies K = K∗ (see

[3]).

Optimization problems whose feasible sets are second-order Cones are computationally tract-

able and appear in a large variety of applications, such as filter design, antenna array weight

design, truss design, robust estimation and friction in robot grasp (see [3, 5, 24]). Recognizing the
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importance of such models, the second-order Eigenvalue Complementarity Problem (SOCEiCP)

has been introduced in [1]. It is just the special case of CEiCP when K is the second-order Cone.

Similarly, the second-order Cone Quadratic Eigenvalue Complementarity Problem (SOCQEiCP) is

the particular case of CQEiCP when K is the second-order Cone. Algorithms for the nonsymmetric

SOCEiCP have been discussed in [1] and [12]. In this paper we study the solution of the symmetric

SOCEiCP and SOCQEiCP. As stated above, finding a solution of these problems reduces to the

computation of a stationary point of a fractional quadratic program. As in [20], we propose the

Spectral Projected Gradient (SPG) algorithm for computing such a stationary point. The efficiency

of the algorithm depends on the computation of projections on the feasible (convex) set of the

optimization problem. The normalization constraint

r∑
i=1

xi0 = 1 (1.16)

is introduced, so that these projections can be computed efficiently by a new algorithm proposed in

Section 4. Numerical results with the SPG algorithm, using this new technique for computing pro-

jections, are reported, showing the efficiency of this approach for solving the symmetric SOCEiCP

and SOCQEiCP.

The paper is organized as follows. The sufficient condition for existence of solutions of CQEiCP

is introduced in Section 2. The symmetric case is discussed in Section 3. The SPG algorithm for

SOCEiCP and SOCQEiCP is described in Section 4. Numerical results with this algorithm are

reported in Section 5 and some conclusions are presented in the last section of the paper.

2 Existence of solutions of CQEiCP

In this section we present a sufficient condition for the existence of solutions of CQEiCP(A,B,C).

We start by recalling some basic facts about cones. A set K ⊂ Rn is a cone when it is closed under

multiplication by nonnegative scalars. We are concerned here with convex cones. It is easy to

conclude that convex cones are precisely those subsets of Rn which are closed by linear combinations

with nonnegative scalars. In this paper we consider exclusively closed convex cones, i.e. those

convex cones which are closed in the standard topology in Rn (i.e. the topology induced by any

norm). We recall that a cone K is pointed if it does not contain lines, or equivalently, if there exists
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no nonzero x ∈ K such that −x ∈ K. We mention that any cone K can be written as K = K′ + L

where ”+” denotes the Minkowski sum, K′ is pointed and L is a linear subspace (L is the linearity

of K, namely L = {x ∈ K : −x ∈ K}, and K′ can be taken as K′ = K∩L⊥; see, e.g., [17]). Given a

cone K, its dual cone (or positive polar cone) K∗ is defined as K∗ = {x ∈ Rn : xty ≥ 0 ∀y ∈ K}. It
is elementary to check that K is pointed if and only if K∗ has nonempty interior.

Now, we recall the sufficient conditions introduced in [31].

Definition 2.1. Consider a cone K ⊂ Rn.

i) A matrix A ∈ Rn×n is K-regular if xtAx ̸= 0 for all nonzero x ∈ K.

ii) A triplet (A,B,C), with A,B,C ∈ Rn×n is K-hyperbolic if

(xtBx)2 ≥ 4(xtAx)(xtCx) (2.1)

for all nonzero x ∈ K.

Theorem 2.2. If K is a closed, convex and pointed cone, A is K-regular and (A,B,C) is K-

hyperbolic, then CQEiCP(A,B,C) has solutions.

Proof. See Theorem 3.3 in [31].

In this paper, we guarantee the existence of solutions of CQEiCP by a different approach based

on the relationship between an arbitrary n-dimensional CQEiCP and two specific instances of

CEiCP with matrices in R2n×2n.

Consider now CQEiCP(A,B,C) with A,B,C ∈ Rn×n, take any symmetric and positive definite

matrix E ∈ Rn×n, and define the matrices D,G,H ∈ R2n×2n as

D =

(
A 0

0 E

)
, (2.2)

G =

(
−B −C
E 0

)
, (2.3)

H =

(
B −C
E 0

)
. (2.4)
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Given the cone K ⊂ Rn, we define the cone K̃ ⊂ R2n as K̃ = K × K. Furthermore, for a given

a ∈ int(K∗), we define ã ∈ R2n as ã = (a, a). Note that ã belongs to int(K̃). Assuming that the cone

related to CQEiCP(A,B,C) is K, and the vector in int(K∗) appearing in (1.13) is a, we consider

CEiCP(D,G) and CEiCP(D,H) with cone K̃ and vector ã.

Next we prove a relation between the solutions of CQEiCP(A,B,C) and those of CEiCP(D,G)

and CEiCP(D,H). We emphasize that the following result holds without making any additional

hypotheses on A,B,C. We also mention that the proof of Proposition 2.3(b) is quite different from

the proof of its counterpart for the case of K = Rn
+, namely Proposition 1 in [7].

Proposition 2.3. a) Assume that (λ, x) solves CQEiCP(A,B,C) and consider D,G,H as in

(2.2)–(2.4).

i) If λ = 0 then (λ, z) = (0, z) solves both CEiCP(D,G) and CEiCP(D,H), where z ∈ R2n

is defined as z = (0, x).

ii) If λ > 0 then (λ, z) solves CEiCP(D,G), where z ∈ R2n is defined as z = (1+λ)−1(λx, x).

iii) If λ < 0 then the pair (−λ, z) solves CEiCP(D,H), where z ∈ R2n is defined as z =

(1− λ)−1(−λx, x).

b) Consider D,G,H as in (2.2)–(2.4).

i) If (λ, z) solves CEiCP(D,G) with z = (y, x) ∈ Rn × Rn and λ ̸= 0, then λ > 0 and

(λ, (1 + λ)x) solves CQEiCP(A,B,C)

ii) If (λ, z) solves CEiCP(D,H) with z = (y, x) ∈ Rn × Rn and λ ̸= 0, then λ > 0 and

(−λ, (1 + λ)x) solves CQEiCP(A,B,C).

Proof. a) For item (i), note that if (0, x) solves CQEiCP(A,B,C) then it holds that Cx ∈
K∗, x ∈ K and xtCx = 0. It is easy to check that these three conditions imply that the pair

(0, (0, x)) solves both CEiCP(D,G) and CEiCP(D,H). We deal now with item (ii). Note

that checking that a pair (λ, z) with z = (u, v) ∈ Rn × Rn solves CEiCP(D,G) is equivalent

to verifying:

λAu+Bu+ Cv ∈ K∗, (2.5)

E(λv − u) ∈ K∗, (2.6)
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u ∈ K, v ∈ K, (2.7)

ut(λAu+Bu+ Cv) + vtE(λv − u) = 0, (2.8)

at(u+ v) = 1. (2.9)

On the other hand, since (λ, x) solves CQEiCP(A,B,C), we know that

λ2Ax+ λBx+ Cx ∈ K∗, (2.10)

x ∈ K, (2.11)

xt(λ2Ax+ λBx+ Cx) = 0, (2.12)

atx = 1. (2.13)

If we take u =
λ

1 + λ
x, v =

1

1 + λ
x, then we have λv − u = 0 and (2.6) holds trivially. The

condition (2.5) follows from (2.10), and (2.7) follows from (2.11) and positivity of λ. The

first term of the left hand side of (2.8) vanishes as a consequence of (2.12). Since λv = u

then the equality (2.8) holds. Now at(u + v) = (1 + λ)−1(λatx + atx) = atx = 1 by (2.13).

Hence, (2.9) holds. For item (iii), note that if (λ, x) solves CQEiCP(A,B,C) then (−λ, x)
solves CQEiCP(A,−B,C). In such a case, as −λ is positive, we can apply item (ii) to

CQEiCP(A,−B,C), replacing λ by −λ and B by −B. This gives the result, taking into

account the definitions of z and H.

b) Consider first item (i). We know that (2.5)–(2.9) hold with (u, v) = (y, x), and we need to

check that

(1 + λ)(λ2Ax+ λBx+ Cx) ∈ K∗, (2.14)

(1 + λ)x ∈ K, (2.15)

(1 + λ)2
[
xt(λ2Ax+ λBx+ Cx)

]
= 0, (2.16)

(1 + λ)atx = 1. (2.17)

If λ ≥ 0 then (2.15) follows immediately from (2.7). It is rather elementary to verify that if

y = λx, (2.18)
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then (2.14) follows from (2.5), (2.16) follows from (2.12), and (2.17) follows from (2.13).

Therefore (λ, (1 + λ)x) solves CQEiCP(A,B,C), provided λ ≥ 0.

We prove next that (2.18) holds. We claim first that x ̸= 0. Otherwise (2.6) gives −Ey ∈ K∗.

Since y ∈ K by (2.7), we get −ytEy ≥ 0, which implies y = 0, because E is positive

definite. Since x = 0, we have at(x + y) = 0, contradicting (2.9). Consider now (2.8).

Note that each term in the left hand side is nonnegative, because x, y belong to K, and

λAy + By + Cx,E(λx − y) belong to K∗, by (2.5)–(2.7). It follows that both terms vanish,

and in particular the second one. Hence 0 = xtE(λx− y), i.e.

λ =
xtEy

xtEx
, (2.19)

taking into account that x ̸= 0, and hence xtEx > 0. It follows from (2.19) that y ̸= 0, since

both x and λ are known to be nonzero. On the other hand, since E(λx− y) ∈ K∗, y ∈ K, we

have

ytEy ≤ λxtEy. (2.20)

Substituting (2.19) in (2.20), we obtain (ytEy)(xtEx) ≤ (ytEx)2. Define now ⟨·, ·⟩E , ∥·∥E as

⟨x, y⟩E = xtEy, ∥x∥E = (xtEx)1/2. By using the Cauchy-Schwartz inequality,

∥x∥E ∥y∥E ≤ |⟨x, y⟩E | ≤ ∥x∥E ∥y∥E . (2.21)

It follows from (2.21) that Cauchy-Schwartz inequality holds with equality. Therefore x and

y are collinear, i.e. there exists σ ∈ R such that y = σx. Replacing this equation in (2.19)

and using the fact that x ̸= 0, we conclude that λ = σ. Hence (2.18) holds.

Finally, positivity of λ follows also from (2.18). Since (x, y) ∈ K̃, we get that x ∈ K and

λx ∈ K, so that λ < 0 contradicts the pointedness of K.

For item (ii), we apply the same argument as in item (i) to CEiCP(D,H). Since G and H

differ just by the sign of B, we conclude that (λ, (1+λ)x) solves CQEiCP(A,−B,C). It now
follows from the definition of CQEiCP(A,B,C) that (−λ, (1 + λ)x) solves it.

We mention that a relationship between an n-dimensional instance of CQEiCP and 2n-dimen-

sional instances of CEiCP, similar to (2.2)-(2.4), but with the identity matrix substituting for E,
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has been considered in [7] for QEiCP. The consideration of a more general matrix E has some

interesting computational consequences. Assume for instance that A,B,C are symmetric and that

−C is positive definite. Then taking E = −C in (2.2)-(2.4) produces symmetric matrices D,G and

H. In such a case CEiCP(D,G) and CEiCP(D,H) are considerably easier to solve, as discussed in

the next section.

We comment also that our sufficient condition requires only item (b) of Proposition 2.3. How-

ever, item (a) has some interesting consequences, see Remarks 2.9 and 2.10 below.

Now we rephrase the result of Proposition 2.3 in terms of complementary eigenvalues.

Corollary 2.4. Consider CQEiCP(A,B,C) with A,B,C ∈ Rn×n and the matrices D,G,H ∈
R2n×2n as defined in (2.2)–(2.4). Then,

i) all quadratic complementary eigenvalues for (A,B,C) are complementary eigenvalues for

either (D,G), or (D,H), or both,

ii) all nonzero complementary eigenvalues for (D,G) are positive, and are quadratic complemen-

tary eigenvalues for (A,B,C),

iii) all nonzero complementary eigenvalues for (D,H) are positive, and their additive inverses are

quadratic complementary eigenvalues for (A,B,C).

Proof. Elementary from Proposition 2.3.

Corollary 2.4 signals a clear path for obtaining a sufficient condition for existence of solutions

of CQEiCP(A,B,C). We must first find a sufficient condition for solvability of CEiCP(D,G) or

CEiCP(D,H) (which in principle depends only on the matrix in the leading term in (1.1), namely

D in this case, and henceforth just on A, in terms of the data of the CQEiCP), and then impose

conditions ensuring that either 0 is a quadratic complementary eigenvalue for (A,B,C), or that 0

is not a complementary eigenvalue of (D,G), (D,H) (the second option depends only upon C and

not on A,B; this fact was mentioned in the proof of Proposition 2.3 and can be easily checked).

We present next some classes of matrices needed for our sufficient conditions.

Definition 2.5. Consider a cone K ⊂ Rn.

i) A matrix M ∈ Rn×n is said to be strictly K-copositive if xtMx > 0 for all 0 ̸= x ∈ K.

11



ii) The class R′
0(K) ⊂ Rn×n consists of those matrices M ∈ Rn×n such that xtMx = 0 for at

least a nonzero x ∈ K satisfying Mx ∈ K∗.

iii) The class S′
0(K) ⊂ Rn×n consists of those matrices M ∈ Rn×n such that there exists no

nonzero x ∈ K such that Mx ∈ K∗.

We comment that for K = Rn
+, the complements of classes R′

0(K), S′
0(K) are the well known

classes S0, R0 respectively (see e.g. [9]).

Proposition 2.6. i) If M ∈ Rn×n is strictly K-copositive then CEiCP(M,C) has solutions for

any C ∈ Rn×n.

ii) If C ∈ R′
0(K) then 0 is a quadratic complementary eigenvalue for (A,B,C) for any A,B ∈

Rn×n.

iii) If C ∈ S′
0(K) then 0 is not a complementary eigenvalue for either (D,G) or (D,H) with

D,G,H as in (2.2)–(2.4).

Proof. Item (i) has been proved in [32], as mentioned in the introduction. Item (ii) is immediate

from the definitions of CQEiCP and R′
0(K). For item (iii), assume that 0 is a complementary

eigenvalue for (D,G), with associated complementary eigenvector 0 ̸= z = (y, x) ∈ Rn × Rn. It

follows immediately that By + Cx ∈ K∗, −Ey ∈ K∗, x ∈ K, y ∈ K. Hence, −ytEy ≥ 0, so that

y = 0 because E is positive definite, and therefore Cx ∈ K∗. As z ̸= 0, it follows that x ̸= 0, and

we have a contradiction with the assumption that C ∈ S′
0(K). The same argument can be used for

the case of (D,H).

Now, all the pieces are in place for stating and proving our existence result for CQEiCP.

Theorem 2.7. Consider CQEiCP(A,B,C).

i) C ∈ R′
0(K) if and only if 0 is a quadratic complementary eigenvalue for QEiCP(A,B,C).

ii) If C ∈ S′
0(K) and A is strictly K-copositive, then there exist at least one positive and one

negative quadratic complementary eigenvalue for (A,B,C).
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Proof. Item (i) is a consequence of Proposition 2.6 (ii). For proving item (ii), we first note that

strictly K-copositivity of A implies strictly K-copositivity of D. Hence both CEiCP(D,G) and

CEiCP(D,H) have complementary eigenvalues by Proposition 2.6(i), which are nonzero by Propo-

sition 2.6 (iii). Hence, they are positive by items (ii) and (iii) of Corollary 2.4. Therefore there

exist at least one positive and one negative quadratic complementary eigenvalue for (A,B,C).

In the remainder of this section, we discuss the existence result given in Theorem 2.7. We start

with a corollary, stating that the roles of A and C in item (ii) of Theorem 2.7 can be reversed.

Corollary 2.8. Consider CQEiCP(A,B,C) and assume that A ∈ S′
0(K) and C is strictly K-

copositive. Then there exist at least one positive and one negative quadratic complementary eigen-

value for (A,B,C).

Proof. Apply Theorem 2.7(ii) to CQEiCP(C,B,A) and conclude that it has a solution (λ, x) with

λ > 0, so that

w = λ2Cx+ λBx+Ax ∈ K∗, x ∈ K, wtx = 0. (2.22)

Let µ = λ−1. Divide the first inequality in (2.22) by λ2, and get from (2.22) w̄ = µ2Ax+µBx+Cx ∈
K∗, x ∈ K, w̄tx = 0, so that (µ, x) solves CQEiCP(A,B,C) and µ > 0. Proceeding in the same

fashion with CQEiCP(C,−B,A), get a solution (λ̄, x̄) of this problem with λ̄ > 0, take µ̄ = λ̄−1 and

conclude that (µ̄, x̄) solves CQEiCP(A,−B,C). Hence −µ̄ is a negative quadratic complementary

eigenvalue for (A,B,C).

We continue with two remarks related to the result in Theorem 2.7.

Remark 2.9. When we move from CQEiCP(A,B,C) to CEiCP(D,G), we can settle the issue of

existence of solutions for the former except for one “undeterminated” case: when we only know

that 0 is a complementary eigenvalue for (D,G). If EiCP(D,G) has no solutions then the same

happens to CQEiCP(A,B,C) by Corollary 2.4(i); if CEiCP(D,G) has a solution (λ, x) with λ ̸= 0

then λ is a quadratic complementary eigenvalue for (A,B,C) by Corollary 2.4(ii), but the fact

that 0 is a complementary eigenvalue for (D,G) entails no conclusion at all about the existence of

solutions of CQEiCP(A,B,C). The same considerations hold for CEiCP(D,H).
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Remark 2.10. As another consequence of Corollary 2.4, if a method for finding all complemen-

tary eigenvalues for an arbitrary instance of CEiCP is available, applying it to CEiCP(D,G) and

CEiCP(D,H) provides all quadratic complementary eigenvalues of CQEiCP(A,B,C). In fact,

all complementary eigenvalues of these two CEiCP’s are quadratic complementary eigenvalues for

CQEiCP(A,B,C) (with the possible exception of 0, which can be checked separately) by virtue of

Corollary 2.4 (ii)–(iii), and no quadratic complementary eigenvalue can be missed, as a consequence

of Corollary 2.4(i).

Finally, we close the section with the comparison between the two sets of sufficient conditions

for existence of solutions of CQEiCP(A,B,C) given in Theorems 2.2 and 2.7.

For the comparison between the assumptions of Theorem 2.2 and Theorem 2.7, we say that a

triplet (A,B,C) satisfies (P) when either C ∈ S′
0(K) and A is strictly K-copositive, or C ∈ R′

0(K),

and that it satisfies (P’) when A is K-regular and (A,B,C) is K-hyperbolic.

We mention that if both A and −C are strictly K-copositive, then (P’) holds, because in such a

case one has xtAx ≥ 0, xtCx ≤ 0 for all x ∈ K, so that the right hand side in (2.1) is nonpositive,

making this inequality valid.

On the other hand, it is easy to exhibit instances in which (P) holds but (P’) does not. Indeed,

consider any pointed cone K which is not a halfline (i.e., it contains at least two linearly independent

vectors, say c, d), take a ∈ int(K∗), find a vector b ∈ Rn such that btc < 0, btd > 0, and define

C ∈ Rn×n as C = bat. We claim that if A is positive definite then the triplet (A, 0, C) satisfies (P)

but not (P’). Observe that (2.1) fails with x = d, since

(dtBd)2 − 4(dtAd)(dtCd) = −4(dtAd)(atd)(btd) < 0.

On the other hand, (A, 0, C) satisfies (P). Since A is positive definite, it is K-copositive for all

K. For showing that C ∈ S′
0(K), take any nonzero x ∈ K. Hence Cx = (atx)b. If Cx ∈ K∗,

then 0 ≤ (Cx)tc = (atx)(btc) < 0, as atx > 0 and btc < 0 by construction. Hence Cx /∈ K∗ and

C /∈ S′
0(K).

There are also many instances of CQEiCP for which (P’) holds but not (P). Take for instance

an arbitrary K, A = C = I and B = 2I. Validity of (P’) for any K is immediate, but (P) fails,

because I /∈ R′
0(K) ∪ S′

0(K) for any K. Hence, (P) and (P’) are independent of each other for a

generic cone K.
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Observe also that (P) depends only upon the matrices A and C, while (P’) also involves the

matrix B.

3 Symmetric CEiCP and CQEiCP

It has been proved in [32] that if B is K-regular (as in Definition 2.1), then the set of solutions of

CEiCP(B,C) coincides with the set of solutions of VIP(F̄ ,∆), with F̄ as in (1.5) and ∆ = {x ∈
K : atx = 1}. Now, it is well known that if S ⊂ Rn is a closed and convex set and h : S → R is

differentiable on an open set containing S, then a point x̄ ∈ S satisfies the first order optimality

condition for the problem of minimizing h(x) subject to x ∈ S if and only if

∇h(x̄)t(x− x̄) ≥ 0 ∀x ∈ S, (3.1)

which is the same as saying that x̄ solves VIP(∇h, S). Note that the condition (3.1) means that

no direction starting at x̄ and pointing to a point in S is a descent direction for h.

Hence, if there exists a function h such that the solutions of VIP(F̄ ,∆) coincide with those of

VIP(∇h,∆), then the solutions of CEiCP(B,C) are precisely the stationary points for the problem

of minimizing h on ∆. This is the case when CEiCP(B,C) is symmetric, meaning that both B and

C are symmetric matrices. Indeed, assume that B is K-regular and consider h : K → R defined as

h(x) = −x
tCx

xtBx
. (3.2)

We mention that the quotient in (3.2) is called the Rayleigh quotient for B,C. Note that K-

regularity of B implies that h is well defined (and indeed differentiable) in an open set containing

∆, and that its gradient is given by

∇h(x) = 2

xtBx

[
xtCx

xtBx
Bx− Cx

]
=

2

xtBx
F̄ (x). (3.3)

Now, note that if B is K-regular then either B is K-copositive or −B is K-copositive. If B is

K-copositive, then it follows from (3.3) that ∇h(x̄)t(x− x̄) ≥ 0 if and only if F̄ (x̄)t(x− x̄) ≥ 0, so

that the solution sets of VIP(F̄ ,∆) and VIP(∇h,∆) coincide. If −B is K-copositive, then we take

h̄ = −h, and we conclude in the same way that the solution sets of VIP(F̄ ,∆) and VIP(∇h̄,∆)

coincide. Hence if B is K-regular the solutions of CEiCP(B,C) are the stationary points for the
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problem of minimizing or maximizing h, given by (3.2), on K (where we minimize when B is

K-copositive and maximize when −B is K-copositive). We remark that, from a computational

viewpoint, computing a stationary point of an optimization problem is in general much easier than

finding a solution of a variational inequality problem. We also mention that in the case of K = Rn
+,

the equivalence between solving EiCP and finding a stationary point of the Rayleigh quotient was

established in [29].

This analysis also holds for CQEiCP(A,B,C) when A,B and C are symmetric and A,−C
are positive definite. Indeed, we have seen in Section 2 that QEiCP(A,B,C) reduces to solving

CEiCP(D,G) and CEiCP(D,H) with, D,G,H as in (2.2)–(2.4). If we take E = −C, then sym-

metry of A,B and C implies symmetry of D,G and H, and so CQEiCP(A,B,C) can be solved by

finding the stationary points related to the Rayleigh quotients for D,G and D,H. Since C ∈ S′
0(K)

because −C is PD (see [9]), and A is PD, CQEiCP has solutions, as a consequence of Theorem 2.7.

Note that this reduction of CQEiCP to a stationary point also holds if A is strictly K-copositive

and −C is PD.

4 Numerical solution of the symmetric CEiCP and CQEiCP with

a second-order cone

In Section 3 we showed that if B and C are symmetric matrices and B is positive definite, then

any stationary point x̃ ̸= 0 of the function h defined by (3.2) on a convex self-dual cone K solves

the symmetric CEiCP, and that this approach is also useful for CQEiCP when A,B and C are

symmetric and −C is positive definite.

In this section we consider first CEiCP when K is the Second-Order cone defined by (1.14)

and (1.15) (SOCEiCP). We start by introducing the normalization constraint (1.16) that prevents

x = 0 from being a feasible solution of the corresponding nonlinear program to be solved. Then we

consider the maximization of the Rayleigh Quotient function on the set defined by the constraints
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(1.14), (1.15) and (1.16), that is, the problem:

NLP: Minimize h(x) = −x
tCx

xtBx
subject to x ∈ K,

r∑
i=1

xi0 = 1.

(4.1)

In the following, we will denote, as in Section 3, the feasible set of NLP (4.1) by ∆ ={
x ∈ K :

r∑
i=1

xi0 = 1

}
. Hence, any stationary point x̄ of the NLP (4.1) is a complementary eigen-

vector of SOCEiCP and −h(x̄) is the associated complementary eigenvalue.

Now consider SOCQEICP, where A,B and C are symmetric matrices and A,−C are PD. Due

to the equivalence between CQEiCP(A,B,C) and CEiCP(D,G) with E = −C, a positive quadratic

complementary eigenvalue for SOCQEiCP can be computed by finding the objective function value

at a stationary point of the following NLP:

Minimize
ytBy + 2xtCy

ytAy − xtCx
(4.2)

s.t. x ∈ K, y ∈ K,
r∑

i=1

(xi0 + yi0) = 1.

A negative quadratic complementary eigenvalue can also be computed as a stationary point of

NLP (4.2), with the matrix −B replacing B in the objective function.

Since the NLP (4.2) can be written in the form of the NLP (4.1), with 2n and 2r instead of n

and r respectively, we restrict our attention to the NLP (4.1).

Next, we discuss the use of the so-called Spectral Projected-Gradient (SPG) algorithm for

computing a stationary point x̃ of NLP (4.1). As stated before, h(x̃) and x̃ are a complementary

eigenvalue and a complementary eigenvector respectively for the symmetric Second-Order cone

(SOCEiCP). The SPG algorithm is a feasible descent method, which means that in each iteration

k the current point xk is feasible, i.e., xk ∈ ∆, and is updated by using a descent direction for the

function h and a positive stepsize.

At iteration k, the projected gradient search direction dk is given by

dk = P∆(xk − ηk∇h(xk))− xk, (4.3)
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where ηk > 0, ∇h(xk) represents the gradient of h at xk, and P∆(y) denotes the projection of y

on ∆. If uk = xk − xk−1 and vk = ∇h(xk) − ∇h(xk−1) satisfy utkvk > 0, the so called Spectral

parameter

ηk =
utkuk
utkvk

(4.4)

should be used. If utkvk ≤ 0, then ηk should be a positive real number chosen according to [20].

Now, either dk = 0 and xk is a stationary point of h at xk or xk is updated by xk+1 = xk + δkdk,

where the stepsize δk ∈ (0, 1] is computed by the exact line-search technique discussed in [20]. As

discussed in [4], the algorithm converges to a stationary point of h under reasonable hypotheses.

Alternatively [10, 19], ηk can be computed by

ηk =
utkvk
vtkvk

. (4.5)

The steps of the SPG algorithm are described below.

Spectral Projection Algorithm (SPG)

Step 0. Let ϵ > 0 be a tolerance, choose x0 ∈ ∆ and let k := 0.

Step 1. Compute dk according to (4.3).

If ∥dk∥ < ϵ, terminate. The current vector xk is a stationary point of h on ∆. Otherwise,

compute the stepsize δk ∈ (0, 1] by an exact line-search.

Step 2. Update

xk+1 := xk + δkdk

and return to Step 1 with k := k + 1.

Next, we focus our attention to the choice of the initial point and the computation of the

gradient, search direction and the stepsize.

(1) Initial Point

The initial point x0 = (x1, . . . , xr) ∈ Rn with xi = (xi0, x̄
i) ∈ R× Rni−1, i = 1, . . . , r, has the

following components:

xi0 =
1

r
, x̄i =

1

r
es,

where es is a vector of the canonical basis and s = min{i, ni − 1}.
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(2) Computation of the gradient ∇h(x)
The gradient of the (negative) Rayleigh Quotient function h at x is given by (3.3).

(3) Computation of the Projected-Gradient Direction d

The projected gradient search direction at each iteration is given by (4.3). It is well-known,

e.g., [16, Prop. 3.3], that the projection of an arbitrary vector onto the second-order cone K
can be obtained in an explicit form. However, due to the presence of the normalization con-

straint (1.16), it is by no means obvious how the projection onto the set ∆ can be computed.

Nevertheless, it is possible to design a special purpose efficient algorithm for the computation

of the projection that exploits the particular structure of the feasible set ∆.

Now we describe in detail the proposed algorithm for computing the projection. Let a point

u = (u1, . . . , ur) ∈ Rn with ui = (ui0, ū
i) ∈ R × Rni−1 , i = 1, . . . , r, be given. Then the

projection of u onto the set ∆ is the unique solution of the convex optimization problem:

Minimize
x∈Rn

1

2

r∑
i=1

∥xi − ui∥2

subject to ∥x̄i∥ − xi0 ≤ 0, i = 1, . . . , r,
r∑

i=1

xi0 = 1.

(4.6)

For finding the optimal solution of problem (4.6), first fix xi0 ≥ 0, i = 1, . . . , r arbitrarily, and

consider the following optimization problem for each i:

Minimize
x̄i∈Rni−1

1

2
∥xi − ui∥2

subject to ∥x̄i∥ − xi0 ≤ 0.

Noticing that ∥xi − ui∥2 = (xi0 − ui0)
2 + ∥x̄i − ūi∥2, it is not difficult to see that the optimal

solution x̄i of this problem is given by

x̄i =


ūi if xi0 ≥ ∥ūi∥
xi0
∥ūi∥

ūi if xi0 < ∥ūi∥,
(4.7)
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and the optimal value is given by

ϕi(x
i
0|ui) :=


1

2
(xi0 − ui0)

2 if xi0 ≥ ∥ūi∥
1

2
(xi0 − ui0)

2 +
1

2
(xi0 − ∥ūi∥)2 if xi0 < ∥ūi∥.

Thus the optimal solution of problem (4.6) is obtained by solving the following convex opti-

mization problem with variables xi0 ∈ R, i = 1, . . . , r:

Minimize
r∑

i=1

ϕi(x
i
0|ui)

subject to

r∑
i=1

xi0 = 1,

xi0 ≥ 0, i = 1, . . . , r.

(4.8)

In the sequel, for the sake of a simpler notation, we denote ϕi(x
i
0) for ϕi(x

i
0|ui), i = 1, . . . , r.

Note that the functions ϕi are strongly convex and continuously differentiable. More specifi-

cally, the first derivatives of ϕi are given by

ϕ′i(x
i
0) =

{
xi0 − ui0 if xi0 ≥ ∥ūi∥
2xi0 − (ui0 + ∥ūi∥) if xi0 < ∥ūi∥.

(4.9)

Observe that ϕ′i is an increasing, piecewise linear and concave function for all i. More specif-

ically, each ϕ′i has two linear pieces and a single kink, where the right directional derivative

is 1 and the left one is 2, which means lim
t→−∞

ϕ′i(t) = −∞ and lim
t→∞

ϕ′i(t) = ∞.

Since problem (4.8) is convex, the following KKT conditions are necessary and sufficient for

optimality:

ϕ′i(x
i
0)− v − wi = 0, i = 1, . . . , r, (4.10)

r∑
i=1

xi0 = 1, (4.11)

xi0 ≥ 0, wi ≥ 0, xi0wi = 0, i = 1, . . . , r, (4.12)

where v ∈ R and wi ∈ R, i = 1, . . . , r, are Lagrange multipliers.

From (4.10) and (4.12), we have

wi = ϕ′i(x
i
0)− v ≥ 0, i = 1, . . . , r,
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which implies

xi0 ≥ (ϕ′i)
−1(v), i = 1, . . . , r, (4.13)

where (ϕ′i)
−1 is the inverse function of ϕ′i, which is well-defined by the above-mentioned

property of ϕ′i. In fact, the function (ϕ′i)
−1 has the following explicit representation for each

i, cf. (4.9):

(ϕ′i)
−1(v) =

 v + ui0 if v ≥ −(ui0 − ∥ūi∥)
1

2
(v + ui0 + ∥ūi∥) if v < −(ui0 − ∥ūi∥).

Moreover, from (4.13) and the complementarity condition (4.12), we obtain

xi0 = max(0, (ϕ′i)
−1(v)), i = 1, . . . , r, (4.14)

which together with (4.11) yields the following univariate equation with variable v ∈ R:

r∑
i=1

max(0, (ϕ′i)
−1(v)) = 1. (4.15)

Once the solution v of equation (4.15) is found, the solution xi0, i = 1, . . . , r, of problem

(4.8) is obtained from (4.14), which along with (4.7) then yields the desired solution (xi0, x̄
i),

i = 1, . . . , r, of problem (4.6).

Now let us show that the solution of equation (4.15) can be computed efficiently. To this end,

it will be convenient to define the functions ψi : R → R, i = 1, . . . , r, by

ψi(v) = max(0, (ϕ′i)
−1(v))

and scalars αi, βi, i = 1, . . . , r, by

αi := −(ui0 + ∥ūi∥), (4.16)

βi := −(ui0 − ∥ūi∥).

The numbers −αi and −βi are nothing but the spectral values of vector ui with respect to

the second-order cone Ki, see, e.g., [16]. Note that αi ≤ βi for all i; moreover, αi = βi if and

only if ūi = 0. Then the functions ψi can be represented explicitly as follows:
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• If αi < βi, then

ψi(v) =


v + ui0 if v ≥ βi
1

2
(v + ui0 + ∥ūi∥) if αi ≤ v < βi

0 if v < αi.

• If αi = βi, then

ψi(v) =

{
v + ui0 if v ≥ αi

0 if v < αi.

In any case, the functions ψi are piecewise linear and convex. The subgradients of these

functions are given as follows:

• If αi < βi, then

∂ψi(v) =



{1} if v > βi[
1

2
, 1

]
if v = βi{

1

2

}
if αi < v < βi[

0,
1

2

]
if v = αi

{0} if v < αi.

• If αi = βi, then

∂ψi(v) =


{1} if v > αi

[0, 1] if v = αi

{0} if v < αi.

Now let us define the function φ : R → R by

φ(v) =
r∑

i=1

ψi(v)− 1.

Then the equation (4.15) can be rewritten as

φ(v) = 0. (4.17)

It is not difficult to see that φ(v) = −1 for all v ≤ α, where

α := min
1≤i≤r

αi
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with αi given by (4.16). Moreover, any ξ ∈ ∂φ(v) is positive whenever v > α, and hence φ is

strictly increasing on (α,∞), and lim
v→∞

φ(v) = ∞. Consequently, equation (4.17) has a unique

solution v∗ ∈ (α,∞). Once v∗ is computed, the optimal solution of problem (4.8) is obtained

from (4.14) with v = v∗. Moreover, the optimal solution of problem (4.6), i.e., the projection

of u onto K, is recovered from (4.7) with xi0 so obtained.

A number of algorithms are available for solving the univariate equation (4.17). Below we

present a (generalized) Newton method.

Newton’s method for solving equation (4.17).

Step 0 Find an initial solution v0 such that φ(v0) > 0. Let k := 0.

Step 1 If φ(vk) = 0, then terminate. Otherwise, go to Step 2.

Step 2 Choose a subgradient ξk ∈ ∂φ(vk) = ∂ψ1(vk) + · · ·+ ∂ψr(vk), and compute vk+1 by

vk+1 = vk −
φ(vk)

ξk
. (4.18)

Let k := k + 1 and go to Step 1.

Notice that ξk > 0 for any k, since vk > α. Hence the iteration (4.18) is well-defined.

Moreover, since the function φ is monotonically increasing, piecewise linear (with a finite

number of pieces) and convex, it can easily be shown that the method is finitely convergent

to the unique solution v∗. For completeness, we prove this fact.

Proposition 4.1. Newton’s method for solving equation (4.15) finds its unique solution v∗

in a finite number of iterations.

Proof. First observe that

φ(vk+1) ≥ φ(vk) + ξk(vk+1 − vk) = 0, k = 0, 1, 2, . . . ,

where the inequality and the equality hold from ξk ∈ ∂φ(vk) and (4.18), respectively. This

means vk ≥ v∗ > α for all k. Moreover, since ξk > 0, (4.18) implies vk+1 < vk whenever

φ(vk) > 0. Consequently, as long as vk > v∗, {vk} is a strictly decreasing sequence bounded

below by v∗.
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By the afore-mentioned properties of φ, there exist a finite number of points v∗ ≡ s0 <

s1 < · · · < sp ≡ v0 such that φ is linear with positive slope on each interval [si, si+1],

i = 0, 1, . . . , p − 1. If vk ∈ [v∗, s1) for some k, we immediate have vk+1 = v∗ from (4.18),

and the iteration terminates with the solution v∗. Now, suppose that the sequence {vk}
is infinite and vk ≥ s1 for all k. Then we have φ(vk) ≥ φ(s1) > 0 and, by convexity,

ξk ≥ φ(s1)− φ(v∗)

s1 − v∗
> 0 for all k. This along with (4.18) implies that the positive sequence

{vk−vk+1} is bounded away from zero, which contradicts the assumption that {vk} is bounded
below by s1. Hence we must have vk ∈ [v∗, s1) for some k, and then vk+1 = v∗. This completes

the proof.

Remark 4.2. (i) We need to find an initial solution v0 such that φ(v0) > 0. From a practical

viewpoint, a small initial value v0 is preferred, as long as it satisfies φ(v0) > 0. Since

φ(α) = −1 and φ is monotonically increasing for v > α, we may set v0 := α + ℓ̂δ for

some δ > 0, where ℓ̂ is the smallest positive integer ℓ such that φ(α+ ℓδ) > 0.

(ii) In Step 1 we use the stopping criterion |φ(vk)| < ε, with ε a small positive tolerance (in

practice ε =
√
ϵ̄, where ϵ̄ is the machine precision).

(4) Computation of the stepsize δ

The value of the stepsize is obtained with an exact line-search, i.e., it is the solution of the

univariate optimization problem

Minimize g(δ)

subject to 0 ≤ δ ≤ 1,

where g : R → R is defined by g(δ) = h(x+ δd), for given vectors x and d. According to [20],

any solution δ of g′(δ) = 0 associated with the Rayleigh quotient function is a root of the

following equation of degree two:

a1 + δa2 + δ2a3 = 0, (4.19)

where

a1 = (dtCx)(xtBx)− (dtBx)(xtCx),

a2 = (dtCd)(xtBx)− (dtBd)(xtCx),

24



a3 = (dtCd)(xtBd)− (dtBd)(xtCd).

Let s1 and s2 be the solutions of equation (4.19). Noticing that φ′(0) < 0 and 0 ≤ δ ≤ 1, we

can determine the stepsize as

δ =



1 if a3 = 0 or s1, s2 /∈ [0, 1]

si if si ∈ [0, 1], sj /∈ [0, 1]

si if s1, s2 ∈ [0, 1] and φ(si) ≤ φ(sj), φ(si) ≤ φ(1)

1 if s1, s2 ∈ [0, 1] and φ(1) ≤ φ(si) (i = 1, 2).

5 Computational experience

In this section we report some computational experience with the SPG algorithm discussed in the

previous section for the solution of symmetric SOCEiCPs and SOCQEiCPs. The experiments have

been performed on a Pentium IV (Intel) with 3.0 GHz and 2 GBytes of RAM memory, using the

operating system Linux. The algorithm was coded in FORTRAN 90 and compiled with the GNU

compiler, version 4.8.2. The algorithm was also implemented in the General Algebraic Modeling

System (GAMS) language (Rev 227 x86 64/Linux) [8] and the solver MINOS [25] (Version 5.51) was

used to solve the problem (4.1), where the constraints
∥∥x̄i∥∥ ≤ xi0 were replaced by

∥∥x̄i∥∥2 ≤ (xi0)
2.

Running times presented in this section are always given in CPU seconds.

In our set of test problems, the matrix B of the SOCEiCP problem is the identity matrix and

C ∈ Rn×n is a symmetric matrix (C = (E + Et)/2), where E is randomly generated such that

each element is uniformly distributed in the interval [−1, 1]. For the SOCQEiCP instances, A is

the identity matrix, B = (E + Et)/2 is symmetric and C = −(In + EEt) (with In the identity

matrix) is also symmetric such that −C ∈ PD. Furthermore, for the SPG algorithm the value of

the stopping tolerance ϵ has been set to 1.0E-06 and the values of ηmin and ηmax have been fixed

to 1.0E-05 and 1.0E+05, respectively.

Tables 1 and 2 report the results obtained with the SPG algorithm to solve SOCEiCPs and

SOCQEiCPs respectively, considering 3 and 5 Lorentz cones (i.e., r = 3 and r = 5). In these

experiments the spectral parameter ηk was computed by the formula (4.4). We also tested the

parameter ηk given by the alternative formula (4.5) but the numerical results with this choice for

ηk were in general worse than those obtained when formula (4.4) was used. In the following tables
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It is the total number of iterations, λ is the complementary eigenvalue computed, and T is the total

CPU time in seconds required to solve each problem. We also solve all the test problems by the

well-known code MINOS. The performance of this last method is also illustrated in Tables 1 and

2. The notations (1) and (2) stands for instances where the solver MINOS was not able to find a

solution (solver found the problem unbounded or badly scaled or the solver was not able to terminate

within the 3600 CPU seconds allowed, respectively). We denote by (3) the instance for which the

SPG algorithm was not able to find a stationary point within the maximum of 10000 iterations

allowed. It is important to notice that for this particular instance the algorithm stopped after

2.26E+02 CPU seconds of execution with ∥d∥ = 2.48E-05 at the last visited point. Furthermore,

the algorithm required 1371 iterations to terminate with a stopping tolerance ϵ = 1.0E-04.

Table 1: Performance of the algorithms to solve symmetric SOCEiCPs .
SPG Minos

r n n1 n2 n3 It λ T It λ T

3

10 5 3 2 33 2.0491E+00 2.00E-04 56 2.3141E+00 1.40E-02

20 10 5 5 40 2.8138E+00 5.00E-04 190 2.5457E+00 2.40E-02

30 15 8 7 55 2.7716E+00 1.10E-03 119 2.7716E+00 2.60E-02

40 20 10 10 97 2.7837E+00 1.90E-03 283 2.7695E+00 6.10E-02

50 25 13 12 57 4.3995E+00 2.70E-03 141 4.3995E+00 5.50E-02

60 30 15 15 77 4.6203E+00 4.00E-03 192 4.6203E+00 8.40E-02

70 35 18 17 61 5.0735E+00 5.00E-03 207 5.0735E+00 1.20E-01

80 40 20 20 90 5.2576E+00 7.20E-03 195 5.2576E+00 1.46E-01

90 45 23 22 82 5.5120E+00 8.80E-03 266 5.5120E+00 2.27E-01

100 50 25 25 220 5.9158E+00 1.72E-02 371 5.8207E+00 3.41E-01

200 100 50 50 347 8.7372E+00 8.88E-02 390 8.7372E+00 1.38E+00

300 150 75 75 1598 1.0444E+01 7.06E-01 882 9.1407E+00 5.98E+00

400 200 100 100 201 1.2547E+01 2.54E-01 674 1.2547E+01 8.92E+00

500 250 125 125 145 1.3274E+01 3.40E-01 755 1.3274E+01 1.59E+01

1000 500 250 250 168 1.9215E+01 1.73E+00 1416 1.9215E+01 1.23E+02

ni, i = 1, . . . , 5

5

10 2 31 2.0433E+00 2.00E-04 6.20E+01 1.9823E+00 1.50E-02

20 4 35 3.2463E+00 5.00E-04 1.04E+02 3.0575E+00 1.80E-02

30 6 77 2.5276E+00 1.10E-03 3.54E+02 2.3607E+00 4.70E-02

40 8 144 3.2950E+00 2.40E-03 4.09E+02 3.1474E+00 7.70E-02

50 10 137 3.7164E+00 3.60E-03 6.49E+02 3.2991E+00 1.53E-01

60 12 377 4.3943E+00 9.30E-03 2.56E+02 4.0818E+00 1.03E-01

70 14 74 4.3176E+00 5.30E-03 7.48E+02 4.1019E+00 2.99E-01

80 16 148 5.1492E+00 9.10E-03 3.94E+02 4.0405E+00 2.39E-01

90 18 78 5.6044E+00 8.70E-03 1.28E+03 5.3459E+00 8.58E-01

100 20 147 5.6063E+00 1.54E-02 8.17E+02 4.7623E+00 6.11E-01

200 40 698 7.7786E+00 1.49E-01 (1)

300 60 689 9.5695E+00 3.40E-01 6.31E+02 8.7583E+00 4.48E+00

400 80 137 1.1500E+01 2.08E-01 (1)

500 100 1473 1.2762E+01 1.83E+00 1.25E+03 1.1064E+01 2.35E+01

1000 200 493 1.8729E+01 3.66E+00 1.67E+03 1.7119E+01 1.46E+02

The results shown in these tables demonstrate the efficiency and efficacy of the SPG algorithm
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Table 2: Performance of the algorithms to solve SOCQEiCPs.
SPG Minos

r n n1 n2 n3 It λ T It λ T

3

10 5 3 2 84 3.0263E+00 1.00E-03 1.89E+02 3.0263E+00 1.56E-02

20 10 5 5 114 4.3714E+00 5.00E-03 2.99E+02 3.8208E+00 3.00E-02

30 15 8 7 172 6.6440E+00 1.10E-02 3.10E+02 6.6440E+00 5.00E-02

40 20 10 10 1050 6.9840E+00 4.60E-02 1.86E+03 6.6058E+00 6.20E-01

50 25 13 12 391 8.2448E+00 3.40E-02 2.98E+03 8.2448E+00 1.55E+00

60 30 15 15 810 8.0960E+00 7.80E-02 1.05E+03 7.6763E+00 7.10E-01

70 35 18 17 486 9.9073E+00 7.70E-02 1.08E+03 9.1118E+00 1.01E+00

80 40 20 20 1784 9.3005E+00 2.76E-01 5.64E+03 7.3178E+00 7.30E+00

90 45 23 22 690 1.1881E+01 1.61E-01 1.56E+04 1.1881E+01 2.85E+01

100 50 25 25 1320 1.1437E+01 3.31E-01 (1)

200 100 50 50 1231 1.7206E+01 1.18E+00 (1)

300 150 75 75 2582 2.0557E+01 5.22E+00 2.42E+03 1.2650E+01 4.29E+01

400 200 100 100 2249 2.3533E+01 9.06E+00 (1)

500 250 125 125 3802 2.6027E+01 2.33E+01 (1)

1000 500 250 250 6562 3.6311E+01 1.58E+02 (2)

ni, i = 1, . . . , 5

5

10 2 78 2.7549E+00 1.00E-03 2.33E+03 4.2921E-01 1.26E-01

20 4 218 4.2182E+00 6.00E-03 5.28E+02 4.2182E+00 8.60E-02

30 6 165 6.1334E+00 1.00E-02 5.64E+03 4.7885E+00 1.23E+00

40 8 739 6.7211E+00 3.50E-02 2.72E+03 6.2289E+00 1.04E+00

50 10 565 7.6913E+00 4.20E-02 2.25E+03 6.9284E+00 1.25E+00

60 12 1020 8.7394E+00 9.40E-02 8.63E+03 7.6240E+00 6.84E+00

70 14 724 9.4442E+00 1.01E-01 8.24E+03 8.2050E+00 8.77E+00

80 16 1260 1.0528E+01 2.04E-01 (1)

90 18 1221 1.0754E+01 2.59E-01 (1)

100 20 1147 1.0954E+01 2.93E-01 (1)

200 40 1273 1.6549E+01 1.20E+00 (1)

300 60 2464 2.1000E+01 4.89E+00 (1)

400 80 2922 2.4658E+01 1.15E+01 (1)

500 100 3603 2.6073E+01 2.22E+01 (1)

1000 200 (3) (1)

for solving the symmetric SOCEiCP and the SOCQEiCP. The projection technique described in the

previous section has performed very well for all the instances. The performance of this projection

technique and of the SPG algorithm does not seem to be influenced by an increase of the number

r of the Lorenz cones Ki.

In order to have a better idea of the efficiency of the SPG algorithm, we compared its perfor-

mance with the solver MINOS. The SPG algorithm was able to solve all but one of the test problems

with fewer iterations and less CPU time. We can conclude that the solver MINOS has difficulties

to find a solution of SOCQEiCPs, particularly when the dimension increases. Furthermore, the

SPG algorithm is usually very efficient to solve all the SOCEiCP and SOCQEiCP test problems

and it performs in general better than MINOS. In fact, the number of iterations and CPU time are

smaller for the SPG algorithm and the gap between the times tends to increase with the dimension
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of the problems.

6 Conclusions

In this paper, we discuss the existence of a solution to the Conic Quadratic Eigenvalue Com-

plementarity Problem (CQEiCP), where the vectors x and w of complementary variables belong

to an arbitrary pointed, closed and convex cone K and its dual K∗. A sufficient condition for the

existence of a solution for CQEiCP is introduced.

It is shown that, assuming that two of its defining matrices are PD, the symmetric CQEiCP

reduces to the computation of a stationary point x̃ ̸= 0 of an appropriate merit function on a convex

set. The numerical solution of the symmetric CEiCP and CQEiCP when K is the so called Second-

Order Cone (SOCEiCP and SOCQEiCP respectively) by the Spectral Projected-Gradient (SPG)

algorithm is also investigated. A new technique for computing projections required by the SPG

method is introduced. The SPG method and the projection technique seem to perform very well in

practice for solving the symmetric SOCEiCP and SOCQEiCP. The solution of the nonsymmetric

SOCQEiCP is certainly one of our main research interests in the near future.
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