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The Eigenvalue Complementarity Problem (EiCP) differs from the traditional eigenvalue problem in
that the primal and dual variables belong to a closed and convex cone K and its dual, respectively,
and satisfy a complementarity condition. In this paper we investigate the solution of the Second-
Order Cone EiCP (SOCEiCP) where K is the Lorentz cone. We first show that the SOCEiCP
reduces to a special Variational Inequality Problem on a compact set defined by K and a normal-
ization constraint. This guarantees that SOCEiCP has at least one solution, and a new enumerative
algorithm is introduced for finding a solution to this problem. The method is based on finding a
global minimum of an appropriate nonlinear programming formulation NLP of the SOCEiCP using
a special branching scheme along with a local nonlinear optimizer that computes stationary points
on subsets of the feasible region of NLP associated with the nodes generated by the algorithm. A
semi-smooth Newton’s method is combined with this enumerative algorithm to enhance its numer-
ical performance. Our computational experience illustrates the efficacy of the proposed techniques
in practice.

Keywords: Eigenvalue Problems, Complementarity Problems, Nonlinear Programming, Global
Optimization.
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1. Introduction

The Eigenvalue Complementarity Problem (EiCP) [25, 28] consists of finding a real
number � and a vector x ∈ ℝ

n∖{0} such that

w = (�B −A)x

xTw = 0, (1)

w ≥ 0, x ≥ 0,

where w ∈ ℝ
n, A,B ∈ ℝ

n×n, and B is positive definite (PD), i.e., xTBx > 0 for all x ∕= 0.
This problem has been introduced in [28] and finds many applications as described in
[1, 24, 25].
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A number of algorithms have been proposed for the solution of the EiCP [2, 7, 10,
11, 15–17, 19, 21, 24, 29, 34]. The EiCP can be viewed as a mixed nonlinear comple-
mentarity problem [9], where the complementary vectors x and w belong to the cone
K = ℝ

n
+ and its dual K∗ = ℝ

n
+, respectively. Recently an extension of the EiCP has

been introduced in [1] where K is the Lorentz cone. This so-called Second-Order Cone
Eigenvalue Complementarity Problem (SOCEiCP) can be stated as follows:
Find a real number � and a vector x ∈ ℝ

n∖{0} such that

w = (�B −A)x

xTw = 0, (2)

x ∈ K, w ∈ K∗,

where A,B ∈ ℝ
n×n, B is positive definite (PD), and K is the second-order or Lorentz

cone defined by

K = K1 ×K2 × ⋅ ⋅ ⋅ ×Kr, (3)

with

Ki = {x
i ∈ ℝ

ni : ∥x̄i∥ ≤ xi0} ⊆ ℝ
ni , i = 1, . . . , r, (4)

and where r ≥ 1,
∑r

i=1 ni = n, xi = (xi0, x̄
i) ∈ ℝ

ni , i = 1, . . . , r, and x =
(x1, x2, . . . , xr) ∈ ℝ

n. Here, ∥ . ∥ denotes the Euclidean norm and the dual cone K∗

of K is defined by

K∗ = {y ∈ ℝ
n : yTx ≥ 0,∀x ∈ K}. (5)

A number of semi-smooth Newton type algorithms have been discussed in [1] for
finding a solution to the SOCEiCP. However, none of these methods possess global
convergence and there is no guarantee that they converge to a solution of the SOCEiCP
even if a line-search procedure is employed [1]. Numerical results reported in [1] indicate
that these algorithms perform very well when they are successful.
In this paper, we investigate alternative approaches for finding a solution of the SOCE-

iCP. We start by showing the equivalence of the SOCEiCP to the following Variational
Inequality Problem:
VI(F, K̄): Find x ∈ K̄ such that

F (x)T (z − x) ≥ 0, ∀z ∈ K̄,

where K̄ = K ∩Δ, with

Δ =

{

x ∈ ℝ
n :

r
∑

i=1

xi0 = 1, xi0 ≥ 0, i = 1, . . . , r

}

, (6)

and where the function F : ℝn → ℝ
n is given by

F (x) =
xTAx

xTBx
Bx−Ax. (7)

Since B ∈ PD, this function is well-defined and continuous on K̄. Furthermore, as K̄ is
a nonempty compact set, this VI(F, K̄) has at least one solution [9] and thus so does
SOCEiCP.
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Due to the equivalence between SOCEiCP and VI(F, K̄), local and fast algorithms
for Variational Inequality Problems described in [9] can be used to solve the SOCEiCP.
However, the mapping F is not monotone [9] and there is no theoretical guarantee that
these algorithms converge to a solution of the SOCEiCP, even if line-search procedures
are employed. As shown later in this paper, if both the matrices A and B are symmetric,
the so-called Symmetric SOCEiCP is equivalent to finding a stationary point of the
following nonlinear program:

NLP1: Maximize f(x) =
xTAx

xTBx

x ∈ K̄

where K̄ = K ∩Δ and Δ is given by (6). In the asymmetric case (where at least one of
the matrices A or B is asymmetric) this reduction no longer holds, but we can formulate
another nonlinear programming problem for dealing with the SOCEiCP. As in [15], we
introduce an additional vector y = �x to construct the following nonlinear program,
where the latter relationship is accommodated within the objective function along with
the complementarity constraint:

NLP2: Minimize f(x,w, �, y) = ∥y − �x∥2 + (xTw)2 (8)

subject to w −By +Ax = 0 (9)

∥x̄i∥2 ≤ (xi0)
2, i = 1, . . . , r (10)

∥w̄i∥2 ≤ (wi
0)

2, i = 1, . . . , r (11)

r
∑

i=1

(ei)Txi − 1 = 0 (12)

r
∑

i=1

(ei)T yi − � = 0 (13)

xi0 ≥ 0, i = 1, . . . , r (14)

wi
0 ≥ 0, i = 1, . . . , r, (15)

where ei = (1, 0, . . . , 0)T ∈ ℝ
ni , wi = (wi

0, w̄
i) ∈ ℝ

ni , yi = (yi0, ȳ
i) ∈ ℝ

ni , i = 1, . . . , r,
and w = (w1, w2, . . . , wr) ∈ ℝ

n, y = (y1, y2, . . . , yr) ∈ ℝ
n. (Note that K∗ = K here, as

stated in Proposition 2.1 of Section 2 below.)
It is obvious that any global minimum of NLP2 with an objective function value equal

to zero provides a solution of the SOCEiCP. In this paper we first investigate when a
stationary point of NLP2 is a solution of SOCEiCP. We are able to prove that this occurs
if and only if the Lagrange multipliers associated with the equalities (12) and (13) are
equal to zero. This result is interesting as it shows that, contrary to the symmetric
case, a stationary point of NLP2 is not in general sufficient for finding a solution of
SOCEiCP. Furthermore, the sufficient condition is not too strong and this suggests the
use of an enumerative algorithm similar to [6] to find a solution of SOCEiCP. This
method exploits a binary tree that is constructed by bracketing the interval [0, 1] of
the primal variables xi, i = 1, . . . , n. Additionally, stationary points of an augmented
NLP2 are computed for each node in a systematic way until one is found having an
objective function value equal to zero. This augmented NLP2 is defined by using the well-
known Reformulation-Linearization Technique [30, 32] as explained later in this paper.
It is shown that this algorithm induces global convergence to a solution of SOCEiCP.
Numerical experiments with this enumerative method indicates that it performs well
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for most small- and medium-scale instances. However, for certain test problems, the
algorithm is only able to obtain a feasible solution in K̄ with a small positive objective
function value. Since semi-smooth Newton type algorithms for the SOCEiCP are local
and fast algorithms, we follow the recommendation in [11] of combining the enumerative
method with one of the semi-smooth Newton algorithms discussed in [1]. In this hybrid
algorithm, the enumerative method is used as a safeguard and the process moves to the
semi-smooth method when the current point x̄ is close to a global minimum. By starting
with this point x̄, the semi-smooth algorithm is, in general, able to find a solution
of the SOCEiCP. If the semi-smooth method fails, then the enumerative method is
continued with the point x̄ obtained as the initial point for the semi-smooth method.
The process is repeated until a solution of the SOCEiCP is obtained by either the semi-
smooth method or the enumerative method itself. Numerical experiments with this
hybrid approach clearly indicate its efficacy in significantly enhancing the stand-alone
enumerative method.
The remainder of this paper is organized as follows. The equivalence between the

SOCEiCP and a Variational Inequality Problem and its consequences are presented in
Section 2. The nonlinear programming formulation NLP2 is discussed in Section 3. The
enumerative method is described in Sections 4 and 5. A semi-smooth Newton’s method
and the hybrid algorithm are discussed in Section 6. Computational experience with the
proposed algorithms is reported in Section 7, and conclusions are presented in the last
section of the paper.

2. A Variational Inequality Formulation and Existence of a Solution

Consider again the SOCEiCP (2), where x ∈ K, w ∈ K∗, and K is given by (3)-(4).
Let VI(F, K̄) be the Variational Inequality Problem introduced in the previous section,
where F is defined by (7) and where K̄ = K∩Δ, with Δ given by (6). Then the following
results hold:

Proposition 2.1 [3] K∗ = K.

Proposition 2.2 [9] VI(F, K̄) has at least one solution.

Let

K̃i = {x
i ∈ ℝ

ni : ∥x̄i∥2 ≤ (xi0)
2}, i = 1, . . . , r

and

K̃ = (K̃1 × . . . × K̃r) ∩Δ. (16)

Hence,

K̄ = K̃. (17)

We next exhibit the reduction of SOCEiCP to VI(F, K̄):

Theorem 2.3 If x ∈ K̄ is a solution of VI(F, K̄) then
(

x, � = xTAx
xTBx

)

is a solution of

SOCEiCP.

Proof

(i) Consider first the case of xi0 ∕= 0 for all i = 1, . . . , r. It follows from (17) and the
definition of VI(F, K̄) that x is a solution of VI(F, K̄) if and only if z = x is a



April 2, 2015 Optimization Methods and Software paperOMS˙SOCEiCP

Optimization Methods and Software 5

minimizer of the following problem:

Minimize F (x)T z

subject to z ∈ K̃.

Since the Linear Independence Constraint Qualification holds at x, we have that x
satisfies the following KKT conditions ([4], Theorem 4.2.13):

F (x) = C�+ E�+ e (18)

∥x̄i∥2 ≤ (xi0)
2, i = 1, . . . , r (19)

�i
(

∥x̄i∥2 − (xi0)
2
)

= 0, i = 1, . . . , r (20)

�i ≥ 0, i = 1, . . . , r (21)

xi0 ≥ 0, �i ≥ 0, i = 1, . . . , r (22)

xi0�i = 0, i = 1, . . . , r (23)

eTx = 1 (24)

where

C =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2x10 0 . . . 0
−2x̄1 01 . . . 01

0 2x20 . . . 0
02 −2x̄2 . . . 02

...
...

...
...

0 0 . . . 2xr0
0r 0r . . . −2x̄r

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ ℝ
n×r, E =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 . . . 0
01 01 . . . 01

0 1 . . . 0
02 02 . . . 02

...
...

...
...

0 0 . . . 1
0r 0r . . . 0r

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ ℝ
n×r,

e =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
01

1
02

...
1
0r

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ ℝ
n, � =

⎡

⎢

⎢

⎢

⎣

�1
�2
...
�r

⎤

⎥

⎥

⎥

⎦

∈ ℝ
r, � =

⎡

⎢

⎢

⎢

⎣

�1

�2
...
�r

⎤

⎥

⎥

⎥

⎦

∈ ℝ
r.

Note that 0i is a null vector of dimension ni, i = 1, . . . , r, 0 is the real number and
�i, �i,  are the Lagrange multipliers associated with the constraints ∥x̄i∥2 ≤ (xi0)

2,
xi0 ≥ 0, and eTx = 1, respectively. Multiplying (18) by xT and using (20), (23). and
(24), we get

xTF (x) = .

From (7),

xTF (x) =
xTAx

xTBx
xTBx− xTAx = 0.

Hence  = 0. Therefore, by letting � = xTAx
xTBx

and w = C�+E�, we obtain from (7),
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(18), and  = 0 that

w = �Bx−Ax.

Moreover, we have

wTx = 0

and from (18), (20), and w = F (x) that

∥w̄i∥ − wi
0 = 2�i∥x̄

i∥ − 2�ix
i
0 − �i = −�i ≤ 0, i = 1, . . . , r,

which means that w ∈ K = K∗. Hence (x, �) is a solution of SOCEiCP.

(ii) Consider now the case of xj0 = 0 for some j. Then xj = 0 and, by (24), r ≥ 2.
We assume, for simplicity, that there is exactly one such j and that j = 1, i.e.,
x = (x1, u) ∈ ℝ

n1 × ℝ
n−n1 with

x1 = 0, u = (x2, . . . , xr) and xi ∕= 0, i = 2, . . . , r.

(The case of more than one such j, but of course not all by virtue of (12), can be
handled similarly.) Now, recall that

w = F (x) =
xTAx

xTBx
Bx−Ax = �Bx−Ax

with

� =
xTAx

xTBx
.

Now, decompose A and B according to the decomposition of x, i.e.

A =

[

A11 A12

A21 A22

]

, B =

[

B11 B12

B21 B22

]

with A11, B11 ∈ ℝ
n1×n1 , A22, B22 ∈ ℝ

(n−n1)×(n−n1). Then we can write

w =

(

w1

v

)

= F (x) = F

(

0
u

)

=

[

�B12u−A12u
�B22u−A22u

]

=

[

F1(u)
F2(u)

]

and

� =
xTAx

xTBx
=
uTA22u

uTB22u
.

Since x = (0, u) is a solution of VI(F, K̄), we have

F (x)T (z − x) = (w1)T z1 + F2(u)
T (y − u) ≥ 0 (25)

for all z1 ∈ ℝ
n1 and y ∈ ℝ

n−n1 such that (z1, y) ∈ K̄. Then, putting z1 = 0 in (25)
shows that u is a solution of

VI(F2,
¯̄K) : F2(u)

T (y − u) ≥ 0, ∀ y ∈ ¯̄K,
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where

¯̄K = (K2 × . . .×Kr) ∩ Δ̄ ⊆ ℝ
n−n1

with

Δ̄ = {u ∈ ℝ
n−n1 :

r
∑

j=2

xj0 = 1, xi0 ≥ 0, i = 2, . . . , r}.

Moreover, it follows from Part (i) of the proof that
(

u, � = uTA22u
uTB22u

)

is a solution of

SOCEiCP2 : v = �B22u−A22u
∥x̄i∥ ≤ xi0, i = 2, . . . , r
∥w̄i∥ ≤ wi

0, i = 2, . . . , r
uT v = 0,

where u = (x2, . . . , xr), v = (w2, . . . , wr) ∈ ℝ
n−n1 .

Therefore, we can deduce that

(

x =

(

0
u

)

, � = uTA22u
uTB22u

)

is a solution of SOCEiCP,

provided

∥w̄1∥ ≤ w1
0 (26)

where

w1 =

(

w1
0

w̄1

)

= �B12u−A12u.

In the following, we will show that (26) holds true. First, note that

F (x)Tx =

(

w1

v

)T (

0
u

)

= vTu = 0.

Thus, since x = (0, u) is a solution of VI(F, K̄), it satisfies

F (x)T (y − x) = F (x)T y ≥ 0, ∀ y ∈ K̄. (27)

In view of the homogeneity of the last inequality, (27) is equivalent to

F (x)T y ≥ 0, ∀ y ∈ K. (28)

Noticing F (x) = (F1(x), F2(x)) = (w1, v) and putting y = (y1, 0) ∈ ℝ
n1 × ℝ

n−n1 , we
obtain from (28)

(w1)T y1 ≥ 0, ∀ y1 ∈ K1,

which implies w1 ∈ K∗
1 = K1, that is, (26) holds.

■

As a consequence of this theorem and Proposition 2.2, we can state the following
existence result for the SOCEiCP [29]:
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Theorem 2.4 SOCEiCP has at least one solution.

This theorem shows that the SOCEiCP can be solved by solving the Variational
Inequality Problem VI(F, K̄). However, the mapping F is not monotone and it is quite
difficult to solve this VI [9]. As in [7], we could design a projection algorithm to deal with
the SOCEiCP. However, there is no guarantee that such an algorithm would converge
to a solution of the SOCEiCP [7].
Consider now the symmetric SOCEiCP, that is, the case where A and B are both

symmetric matrices. We still assume B ∈ PD. Let f be the Rayleigh quotient function
defined by

f(x) =
xTAx

xTBx
.

Then for each x ∈ K̄, the gradient of f at x is given by

∇f(x) = −
2

xTBx

[

xTAx

xTBx
Bx−Ax

]

.

The following result is a consequence of Theorem 2.3:

Theorem 2.5 If x is a stationary point of

max{f(x) : x ∈ K̄},

then
(

x, � = xTAx
xTBx

)

is a solution of SOCEiCP.

The equality (17) and Theorem 2.5 show that the symmetric SOCEiCP can be solved
by computing a stationary point x̄ of the Rayleigh quotient function on the set K̃
defined by (16). This is a nonlinear program of the form:

NLP1: Maximize f(x) =
xTAx

xTBx

subject to ∥x̄i∥2 ≤ (xi0)
2, i = 1, . . . , r

r
∑

i=1

xi0 = 1

xi0 ≥ 0, i = 1, . . . , r.

Since the feasible set of NLP1 is a nonempty compact set, such a stationary point x̄
always exists. Furthermore, the corresponding eigenvalue is given by � = x̄TAx̄

x̄TBx̄
.

It is interesting to note that, due to (17), this NLP1 is a nonlinear program with
a constraint set defined by linear constraints and r nonlinear inequalities. There are
many efficient algorithms [4, 22] and codes (for instance, [13, 20, 33]) for computing a
stationary point for this program. So, the symmetric SOCEiCP can be solved efficiently.
As stated before, the asymmetric case is much more difficult to deal with. In the next
section we consider another NLP formulation that proves to be very helpful for resolving
this latter case.
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3. A Nonlinear Programming Formulation for the Asymmetric SOCEiCP

As in [15], we introduce r vectors yi ∈ ℝ
ni such that

yi = �xi, i = 1, . . . , r, (29)

in order to derive the following nonlinear programming formulation NLP2 of the SOCE-
iCP given by (8)-(15). It is important to add that (12) and (13) are equivalent to
∑r

i=1 x
i
0 = 1 and

∑r
i=1 y

i
0 = �, respectively. Note that, whereas the regions defined

by the individual constraints (10) and (11) are nonconvex, their intersection with (14)
represents a convex region due to (17). Hence, the feasible region of NLP2 is convex
(note that NLP1 also shares this property). Moreover, the functions associated with the
constraints (10) and (11) are differentiable everywhere. We remark here that a simi-
lar construct was used by Sherali and Al-Loughani [31] for the multi-facility Euclidean
location problem. The following result holds:

Proposition 3.1 SOCEiCP has a solution (x,w, �) if and only if (x,w, �, y) is a global
minimum of NLP2 with f(x,w, �, y) = 0.

Since any global minimum of NLP2 is a stationary point and a stationary point is
much easier to compute, it is important to investigate when a stationary point of NLP2

is a solution of the SOCEiCP. This is addressed by the next result.

Proposition 3.2 A stationary point (x∗, w∗, �∗, y∗) of NLP2 is a solution of SOCEiCP
if and only if  = � = 0, where  and � are the Lagrange multipliers associated with the
constraints (12) and (13), respectively.

Proof Let � ∈ ℝ
n, � ∈ ℝ

r, � ∈ ℝ
r,  ∈ ℝ, � ∈ ℝ, � ∈ ℝ

r, and � ∈ ℝ
r be the Lagrange

multipliers associated with the constraints (9), (10), (11), (12), (13), (14), and (15),
respectively. Denote

C =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2w1
0 0 . . . 0

−2w̄1 01 . . . 01

0 2w2
0 . . . 0

02 −2w̄2 . . . 02

...
... . . .

...
0 0 . . . 2wr

0

0r 0r . . . −2w̄r

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ ℝ
n×r, D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2x10 0 . . . 0
−2x̄1 01 . . . 01

0 2x20 . . . 0
02 −2x̄2 . . . 02

...
... . . .

...
0 0 . . . 2xr0
0r 0r . . . −2x̄r

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ ℝ
n×r,

E =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 . . . 0
01 01 . . . 01

0 1 . . . 0
02 02 . . . 02

...
... . . .

...
0 0 . . . 1
0r 0r . . . 0r

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ ℝ
n×r, e =

⎡

⎢

⎢

⎢

⎣

e1

e2

...
er

⎤

⎥

⎥

⎥

⎦

∈ ℝ
n,

where 0i is a null vector of dimension ni, i = 1, . . . , r and 0 is the zero real number. Then,
(x∗, w∗, �∗, y∗) along with (�, �, �, , �, �, �) satisfies the following KKT conditions [4]
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10 Lúıs M. Fernandes and Masao Fukushima and Joaquim J. Júdice and Hanif D. Sherali

for NLP2:

2(xTw)x = �+ C�+E� (30)

2(xTw)w − 2�(y − �x) = AT�+D� + E� + e (31)

2(y − �x) = −BT�+ �e (32)

−2xT (y − �x) = −� (33)

�i[∥x̄
i∥2 − (xi0)

2] = 0, i = 1, . . . , r (34)

�i[∥w̄
i∥2 − (wi

0)
2] = 0, i = 1, . . . , r (35)

�ix
i
0 = �iw

i
0 = 0, i = 1, . . . , r (36)

�i ≥ 0, �i ≥ 0 �i ≥ 0, �i ≥ 0 i = 1, . . . , r, (37)

where �i, �i, �i, �i are the ith components of vectors �, �, �, � ∈ ℝ
r, respectively.

Multiplying (30), (31), and (32) by wT , xT and yT respectively, and noting (12), (13),
and (36), we have

2(xTw)2 = wT�+ 2
r

∑

i=1

�i(−∥w̄
i∥2 + (wi

0)
2),

2(xTw)2 − 2�xT (y − �x) = �TAx+ 2

r
∑

i=1

�i(−∥x̄
i∥2 + (xi0)

2) + 

2yT (y − �x) = −�TBy + ��.

Adding these three equalities and using (9), (34), and (35), we get

4(xTw)2 + 2(y − �x)T (y − �x) =  + ��.

Hence (x∗, w∗, �∗, y∗) along with some (, �) satisfies

2(xTw)2 + 2f(x,w, �, y) =  + ��. (38)

Now:

(i) If  = � = 0, then

f(x∗, w∗, �∗, y∗) = 0 (39)

and (x∗, w∗, �∗) is a solution of SOCEiCP.
(ii) Conversely, suppose that (x∗, w∗, �∗) is a solution of SOCEiCP. Then it satisfies

(x∗)Tw∗ = 0 and w∗ = �∗Bx∗ − Ax∗. On the other hand, since (x∗, w∗, �∗, y∗) is
a stationary point of NLP2, it particularly satisfies w∗ = By∗ − Ax∗, which along
with w∗ = �∗Bx∗ − Ax∗ implies that By∗ = �∗Bx∗. Since B is positive definite, we
obtain y∗ = �∗x∗, which together with (x∗)Tw∗ = 0 yields f(x∗, w∗, �∗, y∗) = 0. Thus
we have � = 0 by (33), and so we get  = 0 by (38).

■

Remark 1 Since the constraints (9), (12), (13), (14), and (15) are linear, then the Linear
Independence Constraint Qualification holds at a stationary point (x,w, �, y) for NLP2

if and only if xi0 > 0 and wi
0 > 0 for all i = 1, . . . , r.
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Note that Proposition 3.2 addresses a given stationary point for NLP2. However, it
is important to note that the following result holds true without the need of verifying
any constraint qualification, noting Proposition 3.1 and that the gradient vanishes at
the resulting solution to NLP2.

Proposition 3.3 For any given solution (x∗, w∗, �∗) to SOCEiCP, there corresponds
a stationary point (x∗, w∗, �∗, y∗) of NLP2.

4. An Enumerative Algorithm for the SOCEiCP

The proposed enumerative method for solving SOCEiCP aims at finding a global mini-
mum for a reformulation of NLP2 to be derived below. We begin by imposing lower and
upper bounds on the variables as explained in the next section, i.e.,

c ≤ x ≤ d (40)

l ≤ � ≤ u (41)

L ≤ w ≤ U, (42)

where x = [xij], w = [wi
j ], c = [cij ], d = [dij ], L = [Li

j ], and U = [U i
j ], j = 0, . . . , ni − 1,

i = 1, . . . , r. These bounds will play a critical role in designing our algorithm and
assuring its convergence as discussed in Propositions 4.1-4.2 and Theorem 4.3 below.
The proposed algorithm explores a binary tree that is constructed by using a branch-

ing strategy that is similar to that discussed for the enumerative method designed for
the Inverse EiCP (IEiCP) [6]. In order to reduce the overall search in this process,
Reformulation-Linearization Technique (RLT)-based constraints are generated, as dis-
cussed below.
First, recall that the vectors yi, i = 1, . . . , r, are given by (29). Next, n additional

variables z are introduced as follows:

zij ≡ x
i
jw

i
j , j = 0, 1, . . . , ni − 1, i = 1, . . . , r. (43)

Following [32], we define (nonnegative) bound-factors based on (40)–(42) as (x − c),
(d − x), (� − l), (u− �), (w − L), and (U − w). Accordingly, we generate the so-called
bound-factor RLT constraints [32] by constructing the following product restrictions:

[l ≤ � ≤ u] ∗ [cij ≤ x
i
j ≤ d

i
j ], j = 0, 1, . . . , ni − 1, i = 1, . . . , r

[Li
j ≤ w

i
j ≤ U

i
j ] ∗ [c

i
j ≤ x

i
j ≤ d

i
j ], j = 0, 1, . . . , ni − 1, i = 1, . . . , r,

which are subsequently linearized using (29) and (43), respectively. In the notation used
above, the first set of constraints denotes nonnegatively restricted products of each of
the two bound-factors associated with the �–variable with each of the two bound-factors
associated with the xij–variable, for each j = 0, 1, . . . , ni − 1, i = 1, . . . , r, and likewise
for the second set of constraints. These are all linearized using (29) and (43), and yield
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the following 8n bound-factor restrictions:

yij ≥ −ud
i
j + �dij + uxij , j = 0, 1, . . . , ni − 1, i = 1, . . . , r (44)

yij ≥ −lc
i
j + �cij + lxij, j = 0, 1, . . . , ni − 1, i = 1, . . . , r (45)

yij ≤ −ld
i
j + �dij + lxij, j = 0, 1, . . . , ni − 1, i = 1, . . . , r (46)

yij ≤ −uc
i
j + �cij + uxij , j = 0, 1, . . . , ni − 1, i = 1, . . . , r (47)

zij ≥ −L
i
jc

i
j + wi

jc
i
j + Li

jx
i
j , j = 0, 1, . . . , ni − 1, i = 1, . . . , r (48)

zij ≥ −U
i
jd

i
j + wi

jd
i
j + U i

jx
i
j, j = 0, 1, . . . , ni − 1, i = 1, . . . , r (49)

zij ≤ −U
i
jc

i
j + wi

jc
i
j + U i

jx
i
j, j = 0, 1, . . . , ni − 1, i = 1, . . . , r (50)

zij ≤ −L
i
jd

i
j + wi

jd
i
j + Li

jx
i
j , j = 0, 1, . . . , ni − 1, i = 1, . . . , r. (51)

Furthermore, from (10), (11), and by the Cauchy-Schwarz inequality [4, 22], condition
xTw = 0 is equivalent to

(xi)Twi = 0, i = 1, . . . , r. (52)

Thus, noting (43), we remove the term (xTw)2 from the objective function and add r
linear constraints

ni−1
∑

j=0

zij = 0, i = 1, . . . , r. (53)

Alternatively, we can replace the r linear constraints in (53) by

r
∑

i=1

ni−1
∑

j=0

zij = 0. (54)

Despite the constraint (54) being weaker than (53), we use it in our computations
because we found it to be more effective due to the peculiarities of the solver.
We hence derive the following formulation that we shall exploit in designing the pro-

posed enumerative algorithm:

NLP3: Minimize f̃(x,w, �, y, z) = ∥y − �x∥2 + ∥z − x ∘ w∥2 (55)

subject to w −By +Ax = 0 (56)

∥x̄i∥2 ≤ (xi0)
2, i = 1, . . . , r (57)

∥w̄i∥2 ≤ (wi
0)

2, i = 1, . . . , r (58)

r
∑

i=1

xi0 − 1 = 0 (59)

r
∑

i=1

yi0 − � = 0 (60)

(44)− (51), (54) (61)

(40)− (42), (62)
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where x ∘ w ∈ ℝ
n is the Hadamard product of x and w defined as the vector with

components xijw
i
j , j = 0, 1, . . . , ni − 1, i = 1, . . . , r. Note that, as indicated above,

NLP3 is a convex-constrained program with a nonconvex objective function.
As for the NLP2, the following two results hold for the NLP3:

Proposition 4.1 SOCEiCP has a solution (x̃, w̃, �̃) if and only if (x̃, w̃, �̃, ỹ, z̃) is a
global minimum of NLP3 with f̃(x̃, w̃, �̃, ỹ, z̃) = 0.

Proposition 4.2 For any given solution (x∗, w∗, �∗) to SOCEiCP, there corresponds
a stationary point (x∗, w∗, �∗, y∗, z∗) of NLP3.

Next, we propose an enumerative algorithm that seeks a solution to SOCEiCP by
computing a global minimum for NLP3. This is done by exploring a binary tree that
is constructed by bracketing the intervals [cij , d

i
j ] associated with the variables xij, j =

0, 1, . . . , ni − 1, i = 1, . . . , r. At each node of this tree, a stationary point for NLP3

is computed. Then, either the corresponding objective function value is zero and, by
Proposition 4.1, a solution of SOCEiCP is attained, or two new nodes are generated as
described in the steps of the enumerative algorithm below, where the notation NLP3(k)
is used to represent the program (55)–(62) corresponding to node k.

Step 0 (Initialization) - Let � > 0 be a selected tolerance. Set k = 1, and find a

stationary point (x̃, w̃, �̃, ỹ, z̃) of NLP3(1). (Note that

NLP3(1) is feasible by Proposition 2.2, else, SOCEiCP

would have no solution. Also, the derivation of the initial

bounds on the variables used in formulating NLP3(1) will

be discussed subsequently in Section 5.) If f̃(x̃, w̃, �̃, ỹ, z̃) = 0,

then terminate with (x̃, w̃, �̃, ỹ, z̃) as a solution to SOCEiCP.

Otherwise, let L = {1} be the set of open nodes, set

UB(1) = f̃(x̃, w̃, �̃, ỹ, z̃), and let N = 1 be the number

of nodes generated.

Step 1 (Choice of node) - Select k ∈ L such that

UB(k) = min{UB(i) : i ∈ L},

and let c̃, d̃ be the vectors of lower and upper bounds for

the variables xij associated with this node k. Let (x̃, w̃, �̃, ỹ, z̃)

be the stationary point that was previously found at this node.

(Note that L is nonempty by Proposition 2.2, else

SOCEiCP would have no solution.)

Step 2 (Branching rule) - Let

 = max

{

∣z̃i
j−x̃i

jw̃
i
j ∣

U i
j−Li

j

,
∣ỹi

j−�̃x̃i
j ∣

u−l
: j = 0, 1, . . . , ni − 1, i = 1, . . . , r

}

,(63)

and let the maximum in (63) be achieved by (i∗, j∗).

(i) If  ≤ �, then �̃ yields a complementary eigenvalue

(within the tolerance �) with x̃ being a corresponding

eigenvector; terminate.

(ii) Else, partition the interval [c̃i
∗

j∗ , d̃
i∗

j∗ ] at node k into

[c̃i
∗

j∗, x̂
i∗

j∗ ] and [x̂i
∗

j∗ , d̃
i∗

j∗ ] to generate two new nodes,
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N + 1 and N + 2, where x̂i
∗

j∗ is given by

x̂i
∗

j∗ =

{

x̃i
∗

j∗ if min{(x̃i
∗

j∗ − c̃
i∗

j∗), (d̃
i∗

j∗ − x̃
i∗

j∗)} ≥ 0.1(d̃i
∗

j∗ − c̃
i∗

j∗)

c̃i
∗

j∗
+d̃i∗

j∗

2 otherwise.
(64)

Step 3 (Solve, Update, and Queue) - For each of t = N + 1 and t = N + 2, find

a stationary point (x̃, w̃, �̃, ỹ, z̃) of Problem NLP3(t). If

NLP3(t) is feasible, set L← L ∪ {t} and UB(t) = f̃(x̃, w̃, �̃, ỹ, z̃).

Otherwise, set L← L∖{k} and return to Step 1.

The convergence result and its proof for the foregoing enumerative algorithm closely
follows that for the IEiCP as described in [6]. We detail this below for the sake of
completeness.

Theorem 4.3 The enumerative algorithm for NLP3 run with � = 0 either terminates
finitely with a solution to SOCEiCP, or else, an infinite branch-and-bound (B&B) tree
is generated such that along any infinite branch of this tree, any accumulation point of
the stationary points obtained for NLP3 solves SOCEiCP.

Proof The case of finite termination is obvious. Hence, suppose that an infinite B&B tree
is generated, and consider any infinite branch. Denote, for simplicity, � ≡ (x,w, �, y, z)
and let {�s}S , with s ∈ S, be a sequence of stationary points of NLP3 that correspond
to nodes on this infinite branch. Then, by taking a subsequence if necessary, we may
assume

{�s}S → �∗ and {[cs, ds]}S → [c∗, d∗],

where [cs, ds] denotes the vector of bounds on x at node s ∈ S of the B&B tree. We will
show that �∗ yields a solution to SOCEiCP.
Note that along the infinite branch under consideration, there exists some index-pair

(̂i, ĵ) such that we branch on the interval for xî
ĵ
infinitely often. Let this correspond to

nodes indexed by s ∈ S1 ⊆ S. By the partitioning rule (64), since the interval length for

xî
ĵ
decreases by a geometric ratio of at most 0.9 over s ∈ S1, we have in the limit that

c∗̂i
ĵ
= d∗̂i

ĵ
= x∗̂i

ĵ
= �∗, say. (65)

Furthermore, from (65) and the RLT bound-factor constraints (44)–(51), we have in
the limit that

y∗̂i
ĵ

= �∗�∗ = �∗x∗̂i
ĵ

(66)

and

z∗̂i
ĵ

= �∗w∗̂i
ĵ

= x∗̂i
ĵ
w∗̂i
ĵ
. (67)

Moreover, by the selection of the index-pair (̂i, ĵ) for s ∈ S1, via (63), we get in the limit
as s→∞, s ∈ S1, that

z∗ij = x∗ij w
∗i
j and y∗ij = �∗x∗ij , j = 0, 1, . . . , ni − 1, i = 1, . . . , r. (68)
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Consequently, the set of constraints (56) yield from (68) that, in the limit, w∗ −By∗ +
Ax∗ = 0, i.e.,

w∗ = �∗Bx∗ −Ax∗. (69)

Furthermore, by (54) and (68), we get

x∗Tw∗ = 0. (70)

Likewise, from (57), (58), (14), (15), and (68), we get

x∗ ∈ K and w∗ ∈ K. (71)

Thus, (69)–(71) imply that the (x∗, w∗, �∗)–part of �∗ represents a solution to SOCEiCP.
■

Remark 2 Note that by the proof of Theorem 4.3, only one set from each pair
{(44),(45)}, {(46),(47)} and {(48),(49)}, {(50),(51)} of the RLT bound-factor con-
straints is necessary to assure convergence of the proposed algorithm to a solution to
SOCEiCP. However, we retain both pairs of constraints from each set since they better
guide the algorithm to converge more efficiently, similar to our experience in [6].

5. Computation of lower and upper bounds for the variables

The enumerative algorithm described in the previous section requires lower and upper
bounds for the original variables of the nonlinear programming formulation of the SOCE-
iCP that have a major importance for the construction of the so-called RLT constraints.
In this section we introduce a few procedures for the computation of such bounds. Note
that these techniques should be used as a preprocessing for the enumerative algorithm.

5.1. Lower and upper bounds [c, d] for the x–variables

It is easy to see that any feasible vector x for the formulation NLP2 belongs to the set

Δ = {x ∈ ℝ
n :

r
∑

i=1

xi0 = 1, xi0 ≥ 0, −1 ≤ xij ≤ 1, j = 1, . . . , ni − 1, i = 1, . . . , r}. (72)

Accordingly, lower and upper bounds [cij , d
i
j ] for the variables xij are given as follows:

ci0 = 0, di0 = 1, i = 1, . . . , r (73)

cij = −1, d
i
j = 1, j = 1, . . . , ni − 1, i = 1, . . . , r. (74)

5.2. Upper bound u for the variable �

If (x,w, �) is a solution to SOCEiCP, then x ∕= 0 and 0 = xTw = �xTBx−xTAx. Since
B ∈ PD, then xTBx ∕= 0 and

� =
xTAx

xTBx
. (75)
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Therefore, an upper bound u for � can be found by letting

u ≥ max
x∈Δ

xTAx

xTBx
.

But for any x ∈ Δ,

xTAx ≤ ∣xTAx∣ ≤

n
∑

i=1

n
∑

j=1

∣aij ∣∣xi∣∣xj ∣ ≤

n
∑

i=1

n
∑

j=1

∣aij ∣ ≡ �, say. (76)

Then an upper bound u is given by

u = �/�, (77)

where

� ≡ min

{

1

2
xT (B +BT )x : x ∈ Δ

}

. (78)

Hence, computing the upper bound u essentially requires the solution of a strictly convex
quadratic program with simple constraints.

5.3. Lower bound l for the variable �

Consider the following linear program (LP):

LP: Minimize

r
∑

i=1

yi0

subject to w = By −Ax

x ∈ Δ

L ≤ w ≤ U,

where L and U are, respectively, some finite lower and upper bounds on the w−variables
(these are derived in Section 5.4 below based on the above upper bound u on �). Then
the following result holds true:

Proposition 5.1 Problem LP has an optimal solution.

Proof Since there is at least an x̄ ∈ Δ and a w̄ such that L ≤ w̄ ≤ U , and since B ∈
PD, we have that a feasible solution for LP is given by (x̄, w̄, ȳ), where ȳ is the unique
solution to the linear system By = w̄ + Ax̄. Now, suppose that there exists a nonzero
recession direction (dx, dy, dw) for the feasible region of LP. Due to the definition of Δ
and since L ≤ w ≤ U , we have dx = dw = 0. Hence, dy ∕= 0 satisfies Bdy = 0, which is a
contradiction since B ∈ PD. Thus the feasible region of LP is nonempty and bounded,
and hence LP has an optimal solution. ■

Therefore, noting that LP is based on a relaxation of the constraints of NLP2, and

that

r
∑

i=1

yi0 = �, we can take the optimal objective value of LP as a lower bound l for

�.
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5.4. Lower and Upper bounds [L,U ] for the w–variables

Note that wi
0 ≥ 0 ≡ Li

0, i = 1, . . . , r. On the other hand, using the equations

w = �Bx−Ax,

we have

wi
0 =

n
∑

j=1

(�btij − atij)xj , i = 1, . . . , r,

where t1 = 1 and ti = 1 +
∑i−1

k=1 nk, i = 2, . . . , r. Note that ti is the index for the rows
of the matrices A and B that correspond to the variable wi

0, i = 1, . . . , r. Since x ∈ Δ
and � ≤ u, where u > 0 by (76)–(78), then

U i
0 ≡

n
∑

j=1

u∣btij∣+ ∣atij∣, i = 1, . . . , r,

yield valid upper bounds for the variables wi
0, i = 1, . . . , r.

Since

∥w̄i∥ ≤ wi
0, i = 1, . . . , r,

then

Li
j ≡ −U

i
0 ≤ w

i
j ≤ U

i
0 ≡ U

i
j , j = 1, . . . , ni − 1, i = 1, . . . , r,

yield valid lower and upper bounds for the remaining variables wi
j with j ∕= 0.

6. A hybrid algorithm for the SOCEiCP

6.1. A semi-smooth algorithm

In this section, we start by discussing a semi-smooth algorithm introduced in [1] for the
SOCEiCP based on the so-called natural residual function. We decided to choose this
function due to its simplicity and generality. Consider again the SOCEiCP (2), where x
and w belong to the cone K given by (3)-(4). As noted in (52), the following equivalence
holds:

x ∈ K, w ∈ K, xTw = 0 ⇐⇒ xi ∈ Ki, w
i ∈ Ki, (x

i)Twi = 0, i = 1, . . . , r.(79)

According to [1], SOCEiCP can be reformulated as the following system of equations

Φ(z) = Φ(x,w, �) :=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

'1(x1, w1)
...

'r(xr, wr)
�Bx−Ax− w
∑r

i=1(e
i)Txi − 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= 0. (80)
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where 'i : ℝni × ℝ
ni → ℝ

ni satisfies

'i(xi, wi) = 0 ⇐⇒ xi ∈ Ki, w
i ∈ Ki, (x

i)Twi = 0 (81)

for each i = 1, . . . , r.
The steps of the semi-smooth algorithm for the solution of the system (80) are as

follows:

Semi-Smooth Algorithm

Step 0 (Initialization) - Let z̄ = (x̄, w̄, �̄) be an initial point such that x̄ ∈ Δ, and

let �1 and �2 be selected positive tolerances.

Step 1 (Newton direction) - Compute the search direction d = (dx, dw, d�) by

J(x̄, w̄, �̄)

⎡

⎣

dx
dw
d�

⎤

⎦ = −Φ(x̄, w̄, �̄), (82)

where J(x̄, w̄, �̄) is the Clarke generalized Jacobian

of Φ at z̄ [8]. If the matrix J(z̄) is singular, stop with

an unsuccessful termination.

Step 2 (Update) - Find a new point z̃ = (x̃, w̃, �̃) by

x̃ = x̄+ dx, w̃ = w̄ + dw, �̃ = �̄+ d�

and let x̄ = x̃, w̄ = w̃, and �̄ = �̃. If

∥w̄ − �̄Bx̄+Ax̄∥ < �1 and ∥Φ(x̄, w̄, �̄)∥ < �2

holds, then stop with a solution (x̄, w̄, �̄) of SOCEiCP.

Otherwise, go to Step 1.

It follows from the description of the steps of the algorithm that all the iterates x̄
satisfy the normalization constraint (12). Furthermore, the main work per iteration is
the computation of the generalized Jacobian J = J(x̄, w̄, �̄) and the solution of a linear
system of equations (82) with J . This matrix should be nonsingular and there is no
guarantee that this property holds in each iteration. As discussed later, this is one
of the drawbacks of this algorithm. On the positive side, it is possible to have explicit
simple formulas for the generalized Jacobian when the so-called natural residual function
is used. Next we discuss these formulas.
Consider the natural residual function 'i

NR associated with the second-order cone Ki,
which is defined as in [1] by

'i
NR(x

i, wi) := xi − PKi
(xi − wi),

where PKi
(si) is the projection of a vector si = (si0, s̄

i) ∈ ℝ×ℝni−1 onto the second-order
cone Ki for each i = 1, . . . , r, i.e.,

PKi
(si) = arg min

xi∈Ki

∥xi − si∥.

As shown in [12], each one of the residual functions 'i
NR, i = 1, . . . , r, satisfies (81).
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Furthermore, the generalized Jacobian of Φ at z = (x,w, �) is given by

J =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

In1
− V 1 0 0

0
. . . 0

0 0 Inr
− V r

V 1 0 0

0
. . . 0

0 0 V r

0

�B −A −In Bx
(e1)T . . . (er)T 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (83)

where Ini
denotes the identity matrix of order ni and the matrices V i are computed as

described below.
Next, we discuss explicit formulas for the matrices V i, i = 1, . . . , r. Since all these

matrices have similar forms, we only consider the case of r = 1, i.e.,

K = {(x0, x̄) ∈ ℝ×ℝ
n−1 : ∥x̄∥ ≤ x0}.

Clearly, the mapping PK is Lipschitz continuous and hence has a subdifferential every-
where. Moreover, it can be shown [14] that the projection mapping PK has a property
called semi-smoothness which is useful in establishing superlinear convergence of a gen-
eralized Newton method [9, 26]. Explicit formulas of the B-subdifferential ∂BPK and the
Clarke subdifferential ∂PK are, for example, available in [14, 18, 23]. In the following,
we list representations of the B-subdifferential ∂BPK(y), which depend on the point
y = (y0, ȳ) under consideration. Let �i, i = 1, 2, denote the spectral values of y [14, 18].
Note that PK is in fact continuously differentiable at y in cases (a)-(c).
(a) If 0 < �1 ≤ �2, i.e., y0 > ∥ȳ∥, then

∂BPK(y) = {In} .

(b) If �1 ≤ �2 < 0, i.e., y0 < −∥ȳ∥, then

∂BPK(y) = {0} .

(c) If �1 < 0 < �2, i.e., −∥ȳ∥ < y0 < ∥ȳ∥, then

∂BPK(y) =

{

1

2

(

1 v̄T

v̄ H

)}

,

where v̄ = ȳ
∥ȳ∥ and H =

(

1 + y0

∥ȳ∥

)

In−1 −
y0

∥ȳ∥ v̄v̄
T .

(d) If �1 = 0 < �2, i.e., y0 = ∥ȳ∥ ∕= 0, then

∂BPK(y) =

{

In,
1

2

(

1 v̄T

v̄ H

)}

,

where v̄ = ȳ
∥ȳ∥ and H = 2In−1 − v̄v̄

T . In practice, we choose In from ∂BPK(y).

(e) If �1 < 0 = �2, i.e., y0 = −∥ȳ∥ ∕= 0, then

∂BPK(y) =

{

0,
1

2

(

1 v̄T

v̄ H

)}

,

where v̄ = ȳ
∥ȳ∥ and H = v̄v̄T . In practice, we choose 0 from ∂BPK(y).
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(f) If �1 = �2 = 0, i.e., y0 = ∥ȳ∥ = 0, then

∂BPK(y) = {In, 0} ∪

⎧

⎨

⎩

1

2

(

1 v̄T

v̄ H

)

∣

∣

∣

∣

∣

∣

v̄ ∈ ℝ
n−1 such that ∥v̄∥ = 1,

H = (1 + �)In−1 − �v̄v̄
T

with � ∈ ℝ such that ∣�∣ ≤ 1

⎫

⎬

⎭

.

In practice, we choose 0 from ∂BPK(y) in this last case.
Consider now the system of nonsmooth equations with r = 1:

Φ(z) :=

⎛

⎝

'NR(x,w)
�Bx−Ax− w

eTx− 1

⎞

⎠ = 0,

where z = (x,w, �) and 'NR(x,w) = x − PK(x − w). Then a generalized Jacobian of
the function Φ with respect to the variable z is given by

J =

⎡

⎣

In − V V 0
�B −A −In Bx
eT 0 0

⎤

⎦ ,

where V is a generalized Jacobian of PK at y = x− w, as given by one of the matrices
∂BPK(y) specified above.
As discussed in [1], there is no guarantee that the semi-smooth algorithm will con-

verge to a solution of the SOCEiCP. Actually, the algorithm may fail to attain a solution
due to lack of convergence or because the generalized Jacobian is singular at a partic-
ular iteration. On the positive side, whenever the algorithm converges, then it usually
provides an accurate solution in a relatively small number of iterations. An attractive
characteristic of this semi-smooth method is its ability to start with any point. As in
[11], we propose a hybrid algorithm that combines the good features of the enumerative
and semi-smooth algorithms. The simple enumerative algorithm is applied first. If the
value of the merit function of the nonlinear formulation is relatively small at a current
point (x̄, w̄, �̄, ȳ, z̄), the procedure switches to the semi-smooth method with the initial
point (x̄, w̄, �̄). Then, either this latter algorithm terminates successfully with a solution
of the SOCEiCP or it fails, in which case we revert to the enumerative algorithm by
continuing with the previously aborted stage in the algorithmic process. As in [11], the
switch from the enumerative method to the semi-smooth method is done by using a
relaxed set of tolerances in the stopping criterion of the first algorithm. The steps of the
proposed hybrid algorithm are presented below.

Hybrid Algorithm for finding a complementary eigenvalue.

Step 0 - Let �̄ a positive tolerance for switching from the enumerative algorithm

to the semi-smooth method, and let nmaxit be the maximum number

of iterations permitted to be performed by the semi-smooth method.

Step 1 - Apply Step 1 of the enumerative method with a positive tolerance � < �̄.

Let (x̄, ȳ, w̄, �̄) be the stationary point associated with the node k, and

compute  as in Step 2 of the enumerative method.

(i) If  < �, stop with a solution of the SOCEiCP.

(ii) If  < �̄, go to Step 2.

(iii) Generate two new nodes as discussed in the enumerative

method. Repeat Step 1.
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Step 2 - Apply the semi-smooth method. If the algorithm terminates with a solution

(x∗, w∗, �∗) of SOCEiCP, stop. Otherwise the semi-smooth method terminates

without success (singular generalized Jacobian or number of iterations reaches

nmaxit); go to Step 1 (iii) with node k and the solution (x̄, ȳ, w̄, �̄) given at

the beginning of this step.

7. Computational Experience

In this section, we report some computational experience with the algorithms discussed
in the previous sections. All the tests have been performed on a Pentium IV (Intel) with
Hyperthreading, 3.0 GHz CPU, 2GB RAM computer, using the operating system Linux.
The algorithms were implemented in the General Algebraic Modeling System (GAMS)
language (Rev 118 Linux/Intel) [5]. Four sets of test problems were constructed for the
SOCEiCP. First, matrices E and F were randomly generated with elements uniformly
distributed in the intervals [0, 1] and [−1, 1], respectively. In the first set of test problems
A = E and B = F +D, where D is a diagonal matrix with positive diagonal elements
such that B is an asymmetric strictly row diagonally dominant and PD matrix. These
problems are denoted by RNB(k,m, n), where k and m are the end-points of the chosen
interval for generating the matrix elements, and n represents the order of the matrices.
The second set of test problems, denoted by RNI(k,m, n), differs from the first set in
the matrix B, which was set equal to the identity. In the third set of test problems,
the matrices A and B are given by ETE, and F TF , respectively, (B is symmetric
PD). These problems are denoted by RSB(k,m, n), and where k, m, and n have the
same meaning of the previous sets of test problems. In the last set of test problems, we
consider the matrix B as the identity matrix and A = F TF . These problems are denoted
by RSI(k,m, n). For all test problems, we consider dimensions: n = 5, 10, 20, 30, 40, and
50.
The numerical results of the experiments on the solution of all these test problems

are reported in Tables 1 to 5. In these tables, we use the following notation:

∙ Val - value of the objective function;

∙ �− value of the eigenvalue computed by the algorithms (−− when the algorithms are
not able to compute an eigenvalue);

∙ Nnod - total number of nodes generated;

∙ c - integer number such that xTw = �.10c for some � ∈ (0.1, 1], where (x̄, �̄, w̄) is the
best approximate global minimum computed by the algorithm;

∙ Fe - integer number such that ∥w̄ − �̄Bx̄ − Ax̄∥∞ = �.10Fe for some � ∈ (0.1, 1],
where (x̄, �̄, w̄) is the best approximate global minimum computed by the algorithm;

∙ Ntime - number of times that the Semi-Smooth Algorithm is called;
∙ Iter - total number of iterations for the Semi-Smooth Algorithm (with the number of

iterations in each call displayed separately in the summation);

∙ ∗− enumerative algorithm was not able to compute an eigenvalue within 300 nodes
(in Table 3).

∙ ∗− BARON was not able to compute an eigenvalue within, 1,000 seconds (in Table
4).

In the first set of experiments, we investigate whether a stationary point of NLP2

gives a solution of the SOCEiCP. To do this, we alternatively used two well-known
efficient codes MINOS [20] and IPOPT [33] to compute a stationary point for all the
NLP2 instances generated as discussed before. The numerical results of these experi-
ments are displayed in Tables 1 and 2 and confirm our expectation that these codes
are in some cases able to compute a solution for the SOCEiCP, but not in general. The
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code IPOPT performed better than MINOS for this purpose. Furthermore, both codes
efficiently computed stationary points with small objective function values. This is a
very important feature in the design of the enumerative method (henceforth, we use
IPOPT for computing stationary points in this method).

Table 1. Performance of MINOS for computing a stationary point of NLP2.
r = 1 r = 2 r = 3

Problem Val � Val � Val �

RNI(0, 1, 5) 0.000 −0.119 0.000 −0.097
RNI(0, 1, 10) 0.000 0.823 0.000 0.255 0.001 −−

RNI(0, 1, 20) 0.196 −− 0.078 −− 0.054 −−

RNI(0, 1, 30) 0.000 1.010 0.000 1.058 0.020 −−

RNI(0, 1, 40) 0.000 0.961 0.111 −− 0.046 −−

RNI(0, 1, 50) 0.000 1.665 0.052 −− 0.072 −−

RNI(−1, 1, 5) 0.000 0.895 0.000 0.895
RNI(−1, 1, 10) 0.000 0.944 0.002 −− 0.000 0.777
RNI(−1, 1, 20) 0.000 1.392 0.109 −− 0.001 −−

RNI(−1, 1, 30) 0.000 2.489 1.310 −− 0.031 −−

RNI(−1, 1, 40) 0.000 1.820 0.010 −− 0.018 −−

RNI(−1, 1, 50) 0.000 3.336 0.015 −− 0.110 −−

RSI(0, 1, 5) 0.000 0.604 0.000 0.075
RSI(0, 1, 10) 0.134 −− 0.000 0.823 0.001 −−

RSI(0, 1, 20) 0.133 −− 0.001 −− 0.033 −−

RSI(0, 1, 30) 0.075 −− 0.005 −− 0.015 −−

RSI(0, 1, 40) 0.257 −− 0.024 −− 0.052 −−

RSI(0, 1, 50) 0.288 −− 0.282 −− 0.355 −−

RSI(−1, 1, 5) 0.000 2.878 0.000 2.729
RSI(−1, 1, 10) 0.616 −− 0.098 −− 0.001 −−

RSI(−1, 1, 20) 0.002 −− 0.010 −− 0.036 −−

RSI(−1, 1, 30) 1.652 −− 0.285 −− 0.078 −−

RSI(−1, 1, 40) 3.865 −− 5.570 −− 0.919 −−

RSI(−1, 1, 50) 35.643 −− 4.925 −− 14.788 −−

RNB(0, 1, 5) 0.001 −− 0.000 −0.037
RNB(0, 1, 10) 0.001 −− 0.000 0.046 0.001 −−

RNB(0, 1, 20) 0.003 −− 0.001 −− 0.001 −−

RNB(0, 1, 30) 0.000 0.078 0.001 −− 0.001 −−

RNB(0, 1, 40) 0.001 −− 0.001 −− 0.001 −−

RNB(0, 1, 50) 0.000 0.068 0.001 −− 0.001 −−

RNB(−1, 1, 5) 0.000 0.338 0.000 0.354
RNB(−1, 1, 10) 0.000 0.144 0.001 −− 0.001 −−

RNB(−1, 1, 20) 0.005 −− 0.002 −− 0.002 −−

RNB(−1, 1, 30) 0.001 −− 0.006 −− 0.001 −−

RNB(−1, 1, 40) 0.000 0.094 0.001 −− 0.001 −−

RNB(−1, 1, 50) 0.003 −− 0.001 −− 0.002 −−

RSB(0, 1, 5) 0.001 −− 0.000 0.012
RSB(0, 1, 10) 0.000 0.082 0.001 −− 0.000 0.397
RSB(0, 1, 20) 0.000 0.038 0.000 0.003 0.000 0.021
RSB(0, 1, 30) 0.000 0.002 0.000 0.001 0.002 −−

RSB(0, 1, 40) 0.000 0.003 0.000 0.004 0.000 0.004
RSB(0, 1, 50) 0.000 0.002 0.000 0.002 0.000 0.002
RSB(−1, 1, 5) 0.001 −− 0.000 0.205
RSB(−1, 1, 10) 0.001 −− 0.001 −− 0.000 0.035
RSB(−1, 1, 20) 0.000 0.004 0.001 −− 0.000 0.010
RSB(−1, 1, 30) 0.000 0.005 0.000 0.004 0.000 0.004
RSB(−1, 1, 40) 0.000 0.009 0.000 0.012 0.000 0.010
RSB(−1, 1, 50) 0.001 −− 0.000 0.007 0.000 0.041

The numerical results of the enumerative method implemented using IPOPT for com-
puting the required stationary points are reported in Table 3. We have used the tolerance
� = 10−5 for the stopping criterion of the algorithm. The numerical results reported in
Table 3 clearly indicate that the enumerative algorithm is able to efficiently compute a
solution of SOCEiCP or at least an approximate global minimum of NLP2 with a small
objective function value (very close to zero). In fact, the algorithm usually enumerates
a very small number of nodes, and often terminates at the root node itself.
Table 4 examines the performance of BARON [27] for solving NLP2 corresponding to

all the SOCEiCP test problems. The code implements a ”branch-and-reduce” algorithm
and aims at finding a solution of SOCEiCP by computing a global minimum of NLP2.
However, many of the globally optimal solutions reported by BARON are not true
solutions of SOCEiCP, because the values of Fe are relatively large. In contrast, the
enumerative method does not declare such (approximate) global minima as solutions of
SOCEiCP. In fact, when the enumerative algorithm is only able to find an approximate
global optimizer that is not declared as a solution of SOCEiCP, the values of Fe are
similar to those delivered by the global minima given by BARON (see the results marked
with * in Table 3 and compare the corresponding values of Fe with those obtained by
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Table 2. Performance of IPOPT for computing a stationary point of NLP2.
r = 1 r = 2 r = 3

Problem Val � Val � Val �

RNI(0, 1, 5) 0.000 −0.119 0.000 −0.040
RNI(0, 1, 10) 0.001 −− 0.000 0.252 0.001 −−

RNI(0, 1, 20) 0.000 0.507 0.001 −− 0.011 −−

RNI(0, 1, 30) 0.000 1.015 0.000 1.065 0.003 −−

RNI(0, 1, 40) 0.000 0.961 0.001 −− 0.000 1.100
RNI(0, 1, 50) 0.000 1.665 0.000 1.386 0.000 1.096

RNI(−1, 1, 5) 0.268 −− 0.016 −−

RNI(−1, 1, 10) 0.000 0.944 0.000 0.583 0.000 0.809
RNI(−1, 1, 20) 0.470 −− 0.004 −− 0.001 −−

RNI(−1, 1, 30) 0.000 2.490 1.310 −− 0.031 −−

RNI(−1, 1, 40) 0.000 1.821 0.010 −− 0.000 2.694
RNI(−1, 1, 50) 2.419 −− 0.000 2.279 0.074 −−

RSI(0, 1, 5) 0.001 −− 0.000 0.160
RSI(0, 1, 10) 0.134 −− 0.000 0.823 0.000 0.623
RSI(0, 1, 20) 0.191 −− 0.001 −− 0.033 −−

RSI(0, 1, 30) 0.075 −− 0.003 −− 0.007 −−

RSI(0, 1, 40) 0.257 −− 0.024 −− 0.043 −−

RSI(0, 1, 50) 0.288 −− 0.489 −− 0.409 −−

RSI(−1, 1, 5) 0.160 −− 0.000 2.728
RSI(−1, 1, 10) 0.616 −− 0.096 −− 0.000 1.258
RSI(−1, 1, 20) 0.507 −− 0.448 −− 0.003 −−

RSI(−1, 1, 30) 1.652 −− 0.285 −− 0.058 −−

RSI(−1, 1, 40) 3.865 −− 4.660 −− 0.293 −−

RSI(−1, 1, 50) 18.902 −− 3.461 −− 0.495 −−

RNB(0, 1, 5) 0.001 −− 0.000 −0.015
RNB(0, 1, 10) 0.000 0.278 0.000 0.046 0.001 −−

RNB(0, 1, 20) 0.002 −− 0.001 −− 0.000 0.096
RNB(0, 1, 30) 0.000 0.078 0.000 0.079 0.001 −−

RNB(0, 1, 40) 0.001 −− 0.001 −− 0.001 −−

RNB(0, 1, 50) 0.000 0.068 0.000 0.057 0.001 −−

RNB(−1, 1, 5) 0.022 −− 0.002 −−

RNB(−1, 1, 10) 0.000 0.144 0.000 0.172 0.001 −−

RNB(−1, 1, 20) 0.005 −− 0.001 −− 0.002 −−

RNB(−1, 1, 30) 0.001 −− 0.006 −− 0.001 −−

RNB(−1, 1, 40) 0.000 0.094 0.001 −− 0.000 0.124
RNB(−1, 1, 50) 0.000 0.136 0.000 0.072 0.001 −−

RSB(0, 1, 5) 0.000 0.075 0.000 0.012
RSB(0, 1, 10) 0.000 0.089 0.000 0.060 0.000 0.010
RSB(0, 1, 20) 0.000 0.006 0.000 0.032 0.000 0.035
RSB(0, 1, 30) 0.000 0.002 0.000 0.001 0.000 0.002
RSB(0, 1, 40) 0.000 0.003 0.000 0.004 0.000 0.004
RSB(0, 1, 50) 0.000 0.001 0.000 0.002 0.000 0.002
RSB(−1, 1, 5) 0.000 0.206 0.000 0.314
RSB(−1, 1, 10) 0.001 −− 0.000 0.031 0.000 0.035
RSB(−1, 1, 20) 0.000 0.004 0.000 0.006 0.000 0.009
RSB(−1, 1, 30) 0.000 0.005 0.000 0.004 0.001 −−

RSB(−1, 1, 40) 0.000 0.009 0.000 0.012 0.000 0.010
RSB(−1, 1, 50) 0.001 −− 0.000 0.007 0.000 0.048

BARON). Furthermore, as for the enumerative method, there are some instances where
BARON terminates without declaring that the best computed feasible solution is a
global minimizer of NLP2. In one instance BARON was not even able to find a feasible
solution for NLP2 (see problem RSB(0, 1, 50) with r = 3). Finally, as discussed below,
the enumerative method can be beneficially combined with a semi-smooth method as
proposed in the hybrid algorithm discussed in Section 6.
To summarize the numerical study thus far, the enumerative method is in general very

efficient in either finding a solution of the SOCEiCP (i.e., computing a global minimum
of NLP2) or at least determining an approximate global minimum of NLP2 with a very
small objective function value. In fact, this is what motivated us to investigate the
hybrid method discussed in Section 6. The numerical results for the hybrid algorithm
(with �1 = 10−4, �2 = 10−4, �̄ = 10−1, and nmaxit = 100) are reported in Table 5
and clearly show the efficacy of this approach. In fact, the hybrid algorithm was able
to solve all the instances with a reasonable small amount of effort. In many cases the
algorithm terminated at the root node itself where the enumerative method found a
stationary point with a small objective function value and switched to the semi-smooth
method, which was then able to find a solution to the SOCEiCP. In other instances, the
semi-smooth method was called more than once (see the columns for Ntime and Iter).
However, the number of calls yet is small and the hybrid method was able to solve all the
SOCEiCP instances by either terminating with the semi-smooth method, or resorting
to the enumerative method itself.
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Table 3. Performance of the enumerative algorithm for solving SOCEiCP.
r = 1 r = 2 r = 3

Problem Nnod � c Fe Nnod � c Fe Nnod � c Fe

RNI(0, 1, 5) * −− −3 −4 1 2.711 −5 −9
RNI(0, 1, 10) 1 3.849 −6 −12 1 4.146 −5 −10 1 4.675 −5 −11
RNI(0, 1, 20) 1 7.169 −5 −10 1 1.868 −5 −12 1 8.672 −5 −11
RNI(0, 1, 30) 1 4.955 −5 −11 1 3.773 −5 −11 1 12.084 −5 −10
RNI(0, 1, 40) 2 13.160 −4 −7 1 14.343 −5 −12 1 15.262 −5 −12
RNI(0, 1, 50) 1 1.665 −5 −10 1 17.637 −5 −11 1 18.344 −4 −10

RNI(−1, 1, 5) * −− −6 −3 1 0.895 −5 −10
RNI(−1, 1, 10) 1 0.944 −6 −10 1 0.942 −5 −10 1 1.078 −5 −7
RNI(−1, 1, 20) 1 1.393 −5 −10 5 1.581 −5 −8 16 1.310 −5 −10
RNI(−1, 1, 30) 1 2.490 −5 −9 2 3.236 −5 −9 1 2.071 −5 −9
RNI(−1, 1, 40) 4 1.832 −5 −9 * −− −1 −4 1 2.695 −5 −10
RNI(−1, 1, 50) 1 3.336 −5 −11 1 2.293 −5 −10 1 2.420 −5 −10

RSI(0, 1, 5) 2 6.864 −4 −10 1 8.276 −5 −11
RSI(0, 1, 10) 2 5.160 −4 −11 1 3.426 −5 −12 1 24.287 −5 −11
RSI(0, 1, 20) 1 28.458 −5 −13 53 3.297 −5 −10 1 18.943 −5 −11
RSI(0, 1, 30) 9 5.791 −5 −10 * −− −2 −3 1 189.966 −5 −12
RSI(0, 1, 40) 2 142.720 −4 −12 6 119.672 −5 −12 2 107.298 −4 −12
RSI(0, 1, 50) 3 10.921 −5 −11 * −− −2 −5 * −− −1 −4
RSI(−1, 1, 5) 1 4.727 −5 −11 1 3.538 −5 −10
RSI(−1, 1, 10) 1 7.881 −6 −12 1 7.371 −5 −11 1 7.080 −5 −8
RSI(−1, 1, 20) * −− −2 −4 6 14.188 −5 −11 1 18.619 −5 −12
RSI(−1, 1, 30) * −− −2 −5 1 26.044 −5 −12 1 37.967 −5 −11
RSI(−1, 1, 40) * −− 0 −2 * −− −6 −2 * −− −2 −5
RSI(−1, 1, 50) 1 52.483 −4 −10 * −− −2 −6 5 45.497 −4 −8

RNB(0, 1, 5) * −− −2 −3 1 0.494 −5 −10
RNB(0, 1, 10) 1 0.196 −5 −10 1 0.046 −5 −8 1 0.537 −5 −9
RNB(0, 1, 20) * −− −2 −2 9 0.061 −5 −9 * −− −2 −3
RNB(0, 1, 30) 1 0.079 −5 −7 1 0.079 −5 −7 * −− −4 −5
RNB(0, 1, 40) 1 0.050 −5 −6 9 0.205 −5 −7 1 0.053 −5 −9
RNB(0, 1, 50) 1 0.068 −5 −6 1 0.056 −4 −6 1 0.044 −5 −9
RNB(−1, 1, 5) 1 0.338 −6 −10 1 0.354 −5 −8
RNB(−1, 1, 10) 1 0.144 −6 −10 1 0.171 −5 −8 * −− −3 −3
RNB(−1, 1, 20) 1 0.137 −5 −8 17 0.137 −5 −9 1 0.134 −5 −7
RNB(−1, 1, 30) 31 0.147 −5 −10 1 0.215 −5 −9 * −− −2 −2
RNB(−1, 1, 40) 1 0.094 −5 −7 2 0.129 −5 −6 1 0.124 −5 −7
RNB(−1, 1, 50) 1 0.136 −5 −6 3 0.094 −5 −7 3 0.105 −5 −8

RSB(0, 1, 5) * −− −3 −2 2 0.006 −5 −8
RSB(0, 1, 10) 1 0.082 −5 −9 5 0.052 −5 −6 1 0.015 −5 −5
RSB(0, 1, 20) * −− −4 −2 11 0.109 −5 −7 7 0.050 −5 −6
RSB(0, 1, 30) * −− −6 −1 1 0.282 −5 −7 21 0.028 −5 −5
RSB(0, 1, 40) * −− −4 −1 * −− −4 −1 * −− −4 −1
RSB(0, 1, 50) 1 0.233 −5 −8 100 0.160 −5 −7 * −− −5 −1
RSB(−1, 1, 5) 1 0.205 −6 −8 1 0.205 −5 −9
RSB(−1, 1, 10) * −− −6 −1 * −− −3 −2 1 0.035 −5 −7
RSB(−1, 1, 20) * −− −6 −2 * −− −4 −3 * −− −4 −1
RSB(−1, 1, 30) * −− −4 −1 * −− −4 −1 2 0.178 −4 −7
RSB(−1, 1, 40) * −− −6 −1 * −− −4 −2 * −− −3 −1
RSB(−1, 1, 50) * −− −4 0 * −− −4 −1 44 0.077 −5 −4

8. Conclusions

In this paper we have investigated the Second-Order Cone Eigenvalue Complementarity
Problem (SOCEiCP). We showed that the SOCEiCP reduces to a Variational Inequal-
ity Problem on a compact and convex set. This reduction guarantees a solution to
the SOCEiCP. Furthermore, the symmetric SOCEiCP can be solved by computing a
stationary point on a convex set defined by linear and nonlinear constraints. For the
asymmetric case, a nonlinear programming (NLP) formulation for the SOCEiCP was
introduced. We demonstrated that a stationary point for this NLP often provides a
solution to the SOCEiCP, but not always. We therefore proposed an enumerative algo-
rithm for solving the asymmetric SOCEiCP, which aims at finding a global minimum for
the NLP formulation. The method was proven to globally converge to a solution of the
SOCEiCP, and was shown to perform well in practice. However, for some instances, the
enumerative algorithm was only able to find an approximate global minimum of NLP.
A hybrid algorithm was thus conceived that combines the enumerative method with
a semi-smooth Newton’s method, which thereby significantly enhanced the enumera-
tive method. The reported numerical results exhibit that the hybrid algorithm indeed
performs very well in practice, and is robust and efficient in comparison with using
the commercial software BARON to solve the NLP formulation. The solution of other
Eigenvalue Complementarity Problems arising in different applications is an interesting
topic for future research.
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Table 4. Performance of BARON for solving SOCEiCP.
r = 1 r = 2 r = 3

Problem Nnod � c Fe Nnod � c Fe Nnod � c Fe

RNI(0, 1, 5) 1 2.388 −6 −7 0 −0.044 −6 −7
RNI(0, 1, 10) 0 1.359 −6 −7 0 0.253 −5 −6 10 0.116 −6 −7
RNI(0, 1, 20) 0 0.508 −5 −7 505 7.783 −6 −8 1 0.998 −3 −5
RNI(0, 1, 30) 0 1.012 −5 −7 0 1.061 −6 −8 28 12.084 −7 −9
RNI(0, 1, 40) 1 0.961 −6 −8 28 14.343 −6 −7 0 1.103 −5 −7
RNI(0, 1, 50) 10 1.664 −5 −7 * −− −1 −2 * −− −2 −2

RNI(−1, 1, 5) 0 0.895 −6 −7 0 0.895 −10 −9
RNI(−1, 1, 10) 10 0.945 −6 −7 0 0.587 −5 −6 37 1.070 −5 −6
RNI(−1, 1, 20) 0 1.391 −5 −7 82 1.570 −5 −7 370 1.310 −5 −8
RNI(−1, 1, 30) 0 2.489 −6 −7 10 3.233 −6 −8 * −− −2 −2
RNI(−1, 1, 40) 0 1.819 −6 −7 * −− −2 −2 0 2.691 −6 −8
RNI(−1, 1, 50) 0 3.336 −6 −8 17 2.295 −4 −7 * −− −1 −2

RSI(0, 1, 5) 0 2.437 −6 −7 1 0.152 −7 −8
RSI(0, 1, 10) 0 5.160 −7 −7 0 0.823 −5 −6 1 24.287 −6 −8
RSI(0, 1, 20) 496 75.604 −6 −8 * −− −2 −2 154 4.069 −6 −8
RSI(0, 1, 30) 307 5.870 −5 −7 226 183.581 −6 −9 * −− −2 −2
RSI(0, 1, 40) * −− −1 −2 * −− −2 −3 * −− −1 −2
RSI(0, 1, 50) * −− −6 −1 * −− −1 −1 * −− −5 −1
RSI(−1, 1, 5) 0 2.878 −5 −8 0 2.728 −6 −7
RSI(−1, 1, 10) 271 7.881 −6 −8 * −− −2 −3 0 1.302 −6 −6
RSI(−1, 1, 20) 442 17.747 −6 −8 199 12.679 −5 −7 28 18.619 −5 −9
RSI(−1, 1, 30) * −− −2 −4 * −− −1 −1 * −− −1 −2
RSI(−1, 1, 40) * −− −6 −1 33 32.344 −4 −6 * −− −6 −1
RSI(−1, 1, 50) * −− −6 0 * −− −6 −1 * −− −5 0

RNB(0, 1, 5) 28 0.453 −6 −7 0 −0.009 −6 −5
RNB(0, 1, 10) 0 0.278 −5 −6 0 0.206 −6 −5 0 0.023 −5 −5
RNB(0, 1, 20) 0 0.057 −5 −5 * −− −3 −2 * −− −3 −2
RNB(0, 1, 30) 19 0.078 −5 −5 68 0.079 −5 −5 * −− −3 −1
RNB(0, 1, 40) * −− −3 −1 * −− −3 −1 * −− −3 −1
RNB(0, 1, 50) 10 0.068 −5 −4 * −− −3 −1 * −− −3 −1
RNB(−1, 1, 5) 0 0.338 −7 −6 0 0.354 −8 −7
RNB(−1, 1, 10) 1 0.144 −6 −6 703 0.169 −6 −6 118 0.191 −6 −6
RNB(−1, 1, 20) 1 0.137 −5 −6 622 0.136 −5 −6 172 0.134 −6 −5
RNB(−1, 1, 30) 1 0.147 −5 −4 0 0.215 −5 −5 * −− −3 −1
RNB(−1, 1, 40) 20 0.094 −5 −5 * −− −3 −1 * −− −3 −1
RNB(−1, 1, 50) 11 0.136 −5 −4 * −− −3 −1 * −− −3 −1

RSB(0, 1, 5) 0 0.075 −6 −6 10 0.012 −6 −5
RSB(0, 1, 10) 28 0.082 −7 −4 1 0.052 −7 −5 1 0.015 −7 −4
RSB(0, 1, 20) 287 0.006 −5 −1 109 0.002 −6 −1 1 0.010 −4 −1
RSB(0, 1, 30) 63 0.002 −6 −1 82 0.001 −7 −2 1 0.003 −5 −1
RSB(0, 1, 40) 1 0.003 −8 −1 1 0.004 −6 −1 9 0.004 −6 −1
RSB(0, 1, 50) 1 0.003 −6 −1 1 0.002 −6 −1 * −− ∞ ∞

RSB(−1, 1, 5) 1 0.206 −7 −7 0 0.205 −6 −6
RSB(−1, 1, 10) 1 0.183 −5 −4 3493 0.261 −5 −5 1 0.033 −8 −6
RSB(−1, 1, 20) 1627 0.022 −4 −1 1011 0.022 −4 −1 1 0.010 −4 −1
RSB(−1, 1, 30) 82 0.005 −6 −1 1 0.005 −5 −1 1 0.003 −6 −1
RSB(−1, 1, 40) 1 0.009 −5 −1 23 0.012 −6 0 1 0.010 −6 −1
RSB(−1, 1, 50) * −− −6 0 1 0.007 −6 −1 1 0.018 −6 0
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Table 5. Performance of the hybrid algorithm for solving SOCEiCP.
r = 1 r = 2 r = 3

Problem Nnod � Ntime Iter Nnod � Ntime Iter Nnod � Ntime Iter

RNI(0, 1, 5) 3 2.388 3 2 × 100 + 98 1 2.711 0 0
RNI(0, 1, 10) 1 3.849 0 0 1 4.146 0 0 1 4.675 0 0
RNI(0, 1, 20) 1 7.169 0 0 1 1.868 0 0 1 8.672 0 0
RNI(0, 1, 30) 1 4.955 0 0 1 3.773 0 0 1 12.084 0 0
RNI(0, 1, 40) 1 13.160 1 1 1 14.343 0 0 1 15.262 0 0
RNI(0, 1, 50) 1 1.665 0 0 1 17.637 0 0 1 18.344 0 0

RNI(−1, 1, 5) 1 0.895 1 4 1 0.895 0 0
RNI(−1, 1, 10) 1 0.944 0 0 1 0.942 0 0 1 1.078 0 0
RNI(−1, 1, 20) 1 1.393 0 0 1 1.578 1 16 15 1.310 15 14 × 100 + 16
RNI(−1, 1, 30) 1 2.490 0 0 1 3.233 1 2 1 2.071 0 0
RNI(−1, 1, 40) 1 1.821 1 4 1 2.609 1 19 1 2.695 0 0
RNI(−1, 1, 50) 1 3.336 0 0 1 2.293 0 0 1 2.420 0 0

RSI(0, 1, 5) 1 6.864 1 1 1 8.276 0 0
RSI(0, 1, 10) 1 5.160 1 1 1 3.426 0 0 1 24.287 0 0
RSI(0, 1, 20) 1 28.458 0 0 3 3.297 3 2 × 100 + 14 1 18.943 0 0
RSI(0, 1, 30) 1 5.791 1 30 1 6.906 1 91 1 189.966 0 0
RSI(0, 1, 40) 2 142.720 1 100 1 9.797 1 82 1 313.323 1 96
RSI(0, 1, 50) 3 10.921 2 2 × 100 1 11.710 1 33 1 12.342 1 49
RSI(−1, 1, 5) 1 4.727 0 0 1 3.538 0 0
RSI(−1, 1, 10) 1 7.881 0 0 1 7.371 0 0 1 7.080 0 0
RSI(−1, 1, 20) 9 17.747 9 8 × 100 + 94 1 10.499 1 29 1 18.619 0 0
RSI(−1, 1, 30) 6 34.079 6 5 × 100 + 42 1 26.044 0 0 1 37.967 0 0
RSI(−1, 1, 40) 26 35.461 24 23 × 100 + 17 21 34.596 4 3 × 100 + 19 14 34.678 14 13 × 100 + 54
RSI(−1, 1, 50) 1 52.483 0 0 11 45.841 7 6 × 100 + 10 5 45.497 0 0

RNB(0, 1, 5) 8 0.453 8 7 × 100 + 87 1 0.494 0 0
RNB(0, 1, 10) 1 0.196 0 0 1 0.046 0 0 1 0.537 0 0
RNB(0, 1, 20) 1 0.057 1 16 1 0.147 1 6 4 0.487 4 3 × 100 + 81
RNB(0, 1, 30) 1 0.079 0 0 1 0.079 0 0 1 0.058 1 35
RNB(0, 1, 40) 1 0.050 0 0 1 0.037 1 13 1 0.053 0 0
RNB(0, 1, 50) 1 0.068 0 0 1 0.056 0 0 1 0.044 0 0
RNB(−1, 1, 5) 1 0.338 0 0 1 0.354 0 0
RNB(−1, 1, 10) 1 0.144 0 0 1 0.171 0 0 10 0.191 10 9 × 100 + 23
RNB(−1, 1, 20) 1 0.137 0 0 2 0.137 2 100 + 47 1 0.134 0 0
RNB(−1, 1, 30) 2 0.147 2 100 + 37 1 0.215 0 0 1 0.136 1 6
RNB(−1, 1, 40) 1 0.094 0 0 1 0.129 1 17 1 0.124 0 0
RNB(−1, 1, 50) 1 0.136 0 0 1 0.094 1 21 1 0.105 1 6

RSB(0, 1, 5) 1 0.075 1 8 1 0.007 1 6
RSB(0, 1, 10) 1 0.082 0 0 1 0.096 1 10 1 0.015 0 0
RSB(0, 1, 20) 1 0.046 1 12 3 0.039 3 2 × 100 + 41 6 0.050 6 5 × 100 + 3
RSB(0, 1, 30) 2 0.035 2 100 + 14 1 0.282 0 0 1 0.028 1 68
RSB(0, 1, 40) 1 0.026 1 15 10 0.024 10 9 × 100 + 65 2 0.025 2 100 + 17
RSB(0, 1, 50) 1 0.233 0 0 1 0.240 1 8 2 0.020 2 100 + 58
RSB(−1, 1, 5) 1 0.205 0 0 1 0.205 0 0
RSB(−1, 1, 10) 1 0.219 1 14 2 0.261 2 100 + 76 1 0.035 0 0
RSB(−1, 1, 20) 9 0.024 8 8 × 100 3 0.080 3 2 × 100 + 92 2 0.203 2 100 + 66
RSB(−1, 1, 30) 2 0.129 2 100 + 42 10 0.118 10 9 × 100 + 39 2 0.178 1 100
RSB(−1, 1, 40) 1 0.910 1 45 15 0.091 15 14 × 100 + 73 3 0.077 3 2 × 100 + 28
RSB(−1, 1, 50) 2 0.080 2 100 + 62 7 0.074 7 6 × 100 + 63 6 0.077 6 5 × 100 + 41
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systems with frictional contacts, Computer Methods in Applied Mechanics and Engineering 193
(2004), pp. 357–384.

[26] L. Qi and J. Sun, A nonsmooth version of Newton’s method, Mathematical Programming 58 (1993),
pp. 353–367.

[27] N. Sahinidis and M. Tawarmalani, Baron 7.2.5: Global optimization of mixed-integer nonlinear



April 2, 2015 Optimization Methods and Software paperOMS˙SOCEiCP

28 REFERENCES

programs, User’s Manual 2005.
[28] A. Seeger, Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions,

Linear Algebra and its Applications 292 (1999), pp. 1–14.
[29] A. Seeger and M. Torki, On eigenvalues induced by a cone constraint, Linear Algebra and its

Applications 372 (2003), pp. 181 – 206.
[30] H.D. Sherali and W. Adams, A Reformulation-Linearization Technique for Solving Discrete and

Continuous Nonconvex Problems, Kluwer Academic Publishers, Dordrecht 1999.
[31] H.D. Sherali and I. Al-loughani, Equivalent primal and dual differentiable reformulations of the

Euclidean multifacility location problem, IIE Transactions 30 (1998), pp. 1065–1074.
[32] H.D. Sherali and C. Tuncbilek, A global optimization algorithm for polynomial programming prob-

lems using a reformulation-linearization technique, Journal of Global Optimization 2 (1992), pp.
101–112.
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