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Abstract In this paper, we discuss the solution of linear and quadratic eigenvalue complementarity prob-
lems (EiCPs) using an enumerative algorithm of the type introduced by Júdice et al. [1]. Procedures for
computing the interval that contains all the eigenvalues of the linear EiCP are first presented. A nonlinear
programming (NLP) model for the quadratic EiCP is formulated next, and a necessary and sufficient condi-
tion for a stationary point of the NLP to be a solution of the quadratic EiCP is established. An extension of
the enumerative algorithm for the quadratic EiCP is also developed, which solves this problem by comput-
ing a global minimum for the NLP formulation. Some computational experience is presented to highlight
the efficiency and efficacy of the proposed enumerative algorithm for solving linear and quadratic EiCPs.
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1 Introduction

The Eigenvalue Complementarity Problem (EiCP) [2,3] consists of finding a real number 𝜆 and a vector
𝑥 ∈ ℝ

𝑛∖{0} such that

𝑤 = (𝜆𝐵 −𝐴)𝑥 (1)

𝑤 ≥ 0, 𝑥 ≥ 0 (2)

𝑥𝑇𝑤 = 0, (3)

where 𝑤 ∈ ℝ
𝑛, 𝐴,𝐵 ∈ ℝ

𝑛×𝑛, and 𝐵 is positive definite (PD), i.e., 𝑥𝑇𝐵𝑥 > 0 for all 𝑥 ∕= 0. This
problem arises in applications within different areas of science and engineering [2,4,5]. Since the problem
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is homogeneous, the constraint

𝑒𝑇𝑥 = 1 (4)

can be added without loss of generality, where 𝑒 ∈ ℝ
𝑛 is a vector of ones.

The EiCP is equivalent to the following variational inequality (VI) problem [1]: Find a vector 𝑥 ∈ 𝛥
such that

𝐹 (𝑥)𝑇 (𝑦 − 𝑥) ≥ 0, ∀𝑦 ∈ 𝛥, (5)

where 𝐹 : ℝ𝑛∖{0} → ℝ
𝑛 is defined by

𝐹 (𝑥) =

(
𝑥𝑇𝐴𝑥

𝑥𝑇𝐵𝑥
𝐵 −𝐴

)
𝑥, (6)

and the set 𝛥 is the unit simplex in ℝ
𝑛, i.e.,

𝛥 = {𝑥 ∈ ℝ
𝑛 : 𝑒𝑇𝑥 = 1, 𝑥 ≥ 0}. (7)

As the VI on the simplex has a solution, the same is true for the EiCP. Therefore the EiCP always has a
solution when 𝐵 is PD, which can be computed by finding a solution �̄� to the VI and then setting �̄� = �̄�𝑇𝐴�̄�

�̄�𝑇𝐵�̄� .
As described in [6], the VI can be reformulated as an optimization problem involving the minimization of a
regularized gap-function. A hybrid algorithm has been proposed in [7] for solving the EiCP by computing
a stationary point of this last function. The algorithm incorporates projection techniques and the so-called
modified Josephy-Newton method and seems to work well in general, but may fail to find a solution for the
EiCP in some instances. Another projection method that deals with the original formulation of the EiCP
has been introduced in [8]. The EiCP can also be formulated as a nonsmooth system of nonlinear equations
based on the so-called NCP-functions, and then solved by a semi-smooth Newton’s method, as discussed
in [9]. This approach seems to be more robust than the projection method, but both fail to find a solution
to the EiCP in some instances. DCA algorithms have also been proposed to deal with the EiCP [10] with
similar conclusions. Finally, the EiCP can be posed as a Nonlinear Complementarity Problem (NCP) [2]
and then solved by a path-following algorithm [6], such as PATH [11], or by an interior-point method [12],
such as LOQO [13]. Again, these methods are not always able to find a solution to the EiCP. It is also
important to add that if 𝐴 and 𝐵 are symmetric, then the EiCP is much easier to solve, as it reduces to
finding a stationary point of an appropriate merit function on the simplex [14–17].

Recognizing the inability of nonlinear optimization algorithms to solve the EiCP in all cases, an enu-
merative method was introduced in [18], and subsequently improved in [1]. This method computes a so-
lution to the EiCP by searching for a global minimum of the following nonlinear programming (NLP)
formulation of the EiCP [18,1]:

Minimize ∥𝑦 − 𝜆𝑥∥22 + 𝑥𝑇𝑤 (8)

subject to 𝑤 = 𝐵𝑦 −𝐴𝑥 (9)

𝑒𝑇𝑥 = 1 (10)

𝑒𝑇 𝑦 = 𝜆 (11)

𝑤 ≥ 0, 𝑥 ≥ 0 (12)

𝑙 ≤ 𝜆 ≤ 𝑢, (13)

where 𝑙 and 𝑢 are end-points of an interval containing at least one eigenvalue. The algorithm uses two
branching strategies, the first based on the dichotomy of the complementary variables (𝑥 𝑖 = 0 or 𝑤𝑖 = 0)
and the other consisting of bracketing the interval [𝑙, 𝑢]. However, no pratical indication was provided on
how to compute the values of 𝑙 and 𝑢. This is the first motivation of the present paper.

A Quadratic Eigenvalue Complementarity Problem (QEiCP) was recently introduced in [19], motivated
by applications mentioned in [19]. This problem consists of finding 𝜆 ∈ ℝ and 𝑥 ∈ ℝ

𝑛∖{0} such that

𝑤 = 𝜆2𝐴𝑥 + 𝜆𝐵𝑥 + 𝐶𝑥 (14)

𝑤 ≥ 0, 𝑥 ≥ 0 (15)

𝑥𝑇𝑤 = 0 (16)

𝑒𝑇𝑥 = 1, (17)
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where 𝑤 ∈ ℝ
𝑛 and 𝐴,𝐵,𝐶 ∈ ℝ

𝑛×𝑛. In contrast with the linear EiCP, the problem may have no solution
even when the matrix 𝐴 of the leading term is PD. By recognizing this fact, the concepts of co-regularity and
co-hiperbolicity were described in [19], where it was shown that the QEiCP can be reduced to a VI on the
simplex when both the aforementioned properties are satisfied and therefore has a solution. In this paper, we
discuss an extension of the enumerative method [1] for the solution of the QEiCP when these two properties
hold. As before, the algorithm aims to find a global minimum of an appropriate nonlinear programming
formulation of the QEiCP. Procedures for computing 𝑙 and 𝑢 are first discussed. The algorithm is based on
the branching strategies mentioned above for the EiCP and is always able to find a solution to the QEiCP.
Numerical results reported in this paper reveal that the algorithm works well in practice, similar to the
EiCP, and appears to be more efficient than the well-known and robust global optimization code BARON
[20] for the solution of the same instances.

The structure of the remainder of this paper is as follows. In Section 2, a brief review of the enumer-
ative method for the EiCP is presented. The new procedures for computing the end-points of the interval
[𝑙, 𝑢] containing all the eigenvalues are discussed in Section 3. The Quadratic Eigenvalue Complementarity
Problem and its nonlinear programming formulation are introduced in Section 4. Implementation aspects
for the computation of the end-points of the interval [𝑙, 𝑢] and the enumerative method for the QEiCP
are discussed in Sections 5 and 6, respectively. Computational experiments concerned with solving EiCPs
and QEiCPs using the enumerative algorithm are reported in Section 7, and some concluding remarks are
provided in the final section of this paper.

2 An enumerative algorithm for the EiCP

By eliminating the 𝑤−variables from the definition of the NLP (8)-(12), (and tentatively dropping the
imposed bounds on 𝜆), we derive the following equivalent nonlinear program:

P1: Minimize 𝑓(𝑥, 𝑦, 𝜆) = (𝑦 − 𝜆𝑥)𝑇 (𝑦 − 𝜆𝑥) + 𝑥𝑇 (𝐵𝑦 −𝐴𝑥)

subject to 𝐵𝑦 −𝐴𝑥 ≥ 0

𝑒𝑇𝑥 = 1

𝑒𝑇 𝑦 = 𝜆

𝑥 ≥ 0.

Then the following result holds:

Theorem 1 [18] The EiCP has a solution (�̄�, �̄�) if and only if Problem P1 has a global minimum (�̄�, 𝑦, �̄�)
with zero optimal value.

Finding a stationary point of this NLP is a much easier task and it is therefore important to investigate
whether such a point is a solution to the EiCP. The following theorem provides a necessary and sufficient
condition for such a result to hold.

Theorem 2 A stationary point (�̄�, 𝑦, �̄�) of Problem P1 is a solution to the EiCP if and only if 𝛼1 = 0 and
𝛼2 = 0, where 𝛼1 and 𝛼2 are the Lagrange multipliers associated with the linear equalities 𝑒𝑇𝑥 = 1 and
𝑒𝑇 𝑦 − 𝜆 = 0, respectively.

The proof of this Theorem is similar to that of Theorem 3.2 of [1], and shows that the stated conditions
on the Lagrange multipliers at a stationary point are equivalent to having a zero objective value at such a
solution for Problem P1. Theorem 2 is more general than the latter result in [1] since 𝜆 is not assumed to
be positive, and reduces to it under such a hypothesis.

It follows from Theorem 2 that a stationary point for Problem P1 might not in general solve the EiCP.
By recognizing this fact, an enumerative method was introduced in [1] to guarantee finding such a solution
by computing stationary points of the objective function of Problem P1 in a systematic way until a solution
to the EiCP is detected via a stationary point having an objective function value of zero. For this purpose,
a compact interval [𝑙, 𝑢] for the variable 𝜆, which contains at least one eigenvalue, was imposed in order
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to facilitate the search process and to establish the global convergence of the algorithm to a solution of the
EiCP. In the next section we discuss some novel techniques for computing 𝑙 and 𝑢. Note that Theorem 2
also holds when �̄� ∈ (𝑙, 𝑢), which can be assumed without loss of generality, given the foregoing bound
computations.

Assuming that [𝑙, 𝑢] has been computed, and incorporated within Problem P1, the aforementioned enu-
merative algorithm explores a binary tree that is constructed under two branching strategies, namely, based
on a pair of positive complementary variables at the current stationary point of the Problem P1 and by
partitioning the interval [𝑙, 𝑢]. Therefore, each node 𝑘 of the enumeration tree is associated with an interval
[�̄�, 𝑢] ⊆ [𝑙, 𝑢] along with two sets 𝐼 and 𝐽 that respectively, record those 𝑤− and 𝑥−variables that are
presently fixed to zero. Since 𝑦𝑖 = 𝜆𝑥𝑖, 𝑖 = 1, . . . , 𝑛, in any solution to the EiCP, the following constraints
are thus associated with node 𝑘 of the tree:

�̄�𝑥𝑖 ≤ 𝑦𝑖 ≤ �̄�𝑥𝑖, ∀𝑖 ∈ 𝐽

𝑦𝑖 = 𝑥𝑖 = 0, ∀𝑖 ∈ 𝐽

𝑤𝑖 = 0, ∀𝑖 ∈ 𝐼,

where 𝑙 ≤ �̄� < �̄� ≤ 𝑢, 𝐽 ⊆ {1, . . . , 𝑛}, 𝐽 = {1, . . . , 𝑛}∖𝐽 , and 𝐽 ∩ 𝐼 = ∅. Furthermore, consider the sets

𝐾 = 𝐼 ∪ 𝐽, 𝐼 = {1, . . . , 𝑛}∖𝐼, and �̄� = {1, . . . , 𝑛}∖𝐾.

Then the subproblem at node 𝑘 is given as follows, where any set-subscript on a variable restricts the
variable indices to the corresponding set:

P1(𝑘): Minimize 𝑓(𝑥, 𝑦, 𝑤, 𝜆) = (𝑦𝐽 − 𝜆𝑥𝐽 )
𝑇 (𝑦𝐽 − 𝜆𝑥𝐽 ) + 𝑥𝑇

�̄�𝑤�̄�

subject to 𝑤 = 𝐵𝑦 −𝐴𝑥

𝑒𝑇𝑥𝐽 = 1

𝑒𝑇 𝑦𝐽 = 𝜆

�̄� ≤ 𝜆 ≤ 𝑢

�̄�𝑥𝑗 ≤ 𝑦𝑗 ≤ �̄�𝑥𝑗 , ∀𝑗 ∈ 𝐽

𝑤𝐼 ≥ 0, 𝑥𝐽 ≥ 0

𝑦𝑗 = 𝑥𝑗 = 0, ∀𝑗 ∈ 𝐽

𝑤𝑖 = 0, ∀𝑖 ∈ 𝐼.

At this node 𝑘, the algorithm searches for a stationary point to the corresponding program P1(𝑘). If
the objective function value at this stationary point is zero, then a solution to the EiCP is at hand and the
algorithm terminates. Otherwise, two new nodes are created and the process is repeated. The algorithm
also includes heuristic rules for choosing an open node from some associated list and for deciding which
of the two branching strategies should be used at the selected node 𝑘 whenever a stationary point having a
positive objective function value is found for P1(𝑘). The formal steps of the algorithm are presented below,
where the cases of EiCP not having a solution would not arise under our stated assumptions.

Enumerative algorithm

Step 0 (Initialization) - Let 𝜖1, and 𝜖2 be selected tolerances, where 0 < 𝜖1 < 𝜖2 (we can take 𝜖1 = 𝜖2

and 𝜖2 = 𝜖 for some 0 < 𝜖 < 1, for example). Set 𝑘 = 1, 𝐼 = ∅, 𝐽 = ∅, and

find a stationary point (�̄�, 𝑦, �̄�, �̄�) of P1(1). If P1(1) is infeasible, then EiCP

has no solution; terminate. Otherwise, let 𝐿 = {1} be the set of open nodes,

set 𝑈𝐵(1) = 𝑓(�̄�, 𝑦, �̄�, �̄�), and let 𝑁 = 1 be the number of nodes generated.

Step 1 (Choice of node) - If 𝐿 = ∅ terminate; EiCP has no solution. Otherwise, select 𝑘 ∈ 𝐿 such that

𝑈𝐵(𝑘) = min{𝑈𝐵(𝑖) : 𝑖 ∈ 𝐿},
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and let (�̄�, 𝑦, �̄�, �̄�) be the stationary point that was previously found at this node.

Step 2 (Branching rule) - Let

𝜃1 = max{�̄�𝑖�̄�𝑖 : 𝑖 ∈ �̄�} = �̄�𝑟�̄�𝑟, and

𝜃2 = max{∣𝑦𝑖 − �̄�𝑥𝑖∣ : 𝑖 ∈ 𝐽} .

(i) If 𝜃1 ≤ 𝜖1 and 𝜃2 ≤ 𝜖2 then �̄� yields a complementary eigenvalue (within

the tolerance 𝜖2) with �̄� being a corresponding eigenvector; terminate.

(ii) If 𝜃1 > 𝜃2, branch on the complementary variables (𝑤𝑟 , 𝑥𝑟) associated

with 𝜃1 and generate two new nodes, 𝑁 + 1 and 𝑁 + 2.

(iii) If 𝜃1 ≤ 𝜃2, then partition the interval [ �̄�, �̄�] at node 𝑘 into [�̄�, �̃�]

and [�̃�, �̄�] to generate two new nodes, 𝑁 + 1 and 𝑁 + 2, where

�̃� =

{
�̄� if min{(�̄�− 𝑙), (�̄�− �̄�)} ≥ 0.1(�̄�− �̄�)

�̄�+�̄�
2 otherwise.

Step 3 (Solve, Update, and Queue) - For each of 𝑡 = 𝑁 + 1 and 𝑡 = 𝑁 + 2, find a stationary point

(�̃�, 𝑦, �̃�, �̃�) of Problem P1(𝑡). If P1(𝑡) is feasible, set 𝐿 = 𝐿 ∪ {𝑡} and

𝑈𝐵(𝑡) = 𝑓(�̃�, 𝑦, �̃�, �̃�). Set 𝐿 = 𝐿∖{𝑘} and return to Step 1.

The convergence of this enumerative method follows from Theorem 4.1 of [1]. Note that the algorithm
finds a global minimum of Problem P1. If the interval [𝑙, 𝑢] contains at least one eigenvalue as assumed,
then the objective function value at the global minimum is zero and provides a solution to the EiCP. Hence,
the objective function value is positive at the end of the algorithm if and only if the EiCP has no eigenvalue
in the interval [𝑙, 𝑢].

3 Finding lower and upper bounds for the eigenvalues

3.1 Finding an upper bound

We start by discussing two procedures for computing an upper bound 𝑢 for the variable 𝜆. In the first
technique, we consider the EiCP with 𝐵 taken as the identity matrix. The following theorem derives a
formula for computing a value for 𝑢.

Theorem 3 Every eigenvalue 𝜆 for the EiCP satisfies

∣𝜆∣ ≤ min{∥𝐴∥1, ∥𝐴∥∞},

where ∥𝐴∥1 = max
1≤𝑗≤𝑛

𝑛∑
𝑖=1

∣𝑎𝑖𝑗 ∣ and ∥𝐴∥∞ = max
1≤𝑖≤𝑛

𝑛∑
𝑗=1

∣𝑎𝑖𝑗 ∣.

Proof If 𝜆 is an eigenvalue for EiCP, then 𝜆 is an eigenvalue for a principal submatrix 𝐴 𝐼𝐼 of 𝐴, where
𝐼 ⊆ {1, . . . , 𝑛}. Let 𝜌(𝐴) denote the spectral radius of the matrix 𝐴, i. e.,

𝜌(𝐴) = max ∣𝜆𝑖∣ ,
where 𝜆𝑖 are the real eigenvalues of 𝐴. Then [21]

𝜌(𝐴) ≤ min{∥𝐴∥1, ∥𝐴∥∞} ,
where ∥𝐴∥1 and ∥𝐴∥∞ represent the 𝑙1 and 𝑙∞ norms of 𝐴 [21], respectively. Now, if 𝜆𝑖 denotes the
eigenvalues of 𝐴𝐼𝐼 , then

𝜌(𝐴𝐼𝐼) = max ∣𝜆𝑖∣ ≤ min{∥𝐴𝐼𝐼∥1, ∥𝐴𝐼𝐼∥∞} ≤ min{∥𝐴∥1, ∥𝐴∥∞} .
□
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So, an upper bound 𝑢 can be computed as follows

𝑢 = min{∥𝐴∥1, ∥𝐴∥∞}.

A drawback of this approach is the need for 𝐵 to be the identity matrix. The next result provides a second
procedure for computing 𝑢 in the general case.

Theorem 4 Let 𝑐𝑖 = max{𝑎𝑖𝑗, 𝑗 = 1, . . . , 𝑛}, 𝑑𝑖 = max{𝑐𝑖, 0} for all 𝑖 = 1, . . . , 𝑛, and 𝑑 ∈ ℝ
𝑛 be a

vector with components 𝑑𝑖. Then we can take

𝑢 =
𝑑𝑇 �̄�

�̄�𝑇𝐵�̄�
,

where �̄� is a stationary point of max{ 𝑑𝑇 𝑥
𝑥𝑇𝐵𝑥 : 𝑥 ∈ 𝛥}.

Proof If 𝜆 is a solution of EiCP, then [1]

∃𝑥 ∈ 𝛥 : 𝜆 =
𝑥𝑇𝐴𝑥

𝑥𝑇𝐵𝑥
.

But

𝑥𝑇𝐴𝑥 =

𝑛∑
𝑖=1

𝑥𝑖(𝐴𝑥)𝑖 ≤
𝑛∑

𝑖=1

𝑐𝑖𝑥𝑖

where

𝑐𝑖 ≡ max
𝑥∈𝛥

𝑛∑
𝑗=1

𝑎𝑖𝑗𝑥𝑗 = max{𝑎𝑖𝑗 , 𝑗 = 1, . . . , 𝑛} , 𝑖 = 1, . . . , 𝑛. (18)

Now, consider the function

𝑔(𝑥) =
𝑑𝑇𝑥

𝑥𝑇𝐵𝑥
,

where

𝑑𝑖 = max{𝑐𝑖, 0} , 𝑖 = 1, . . . , 𝑛.

Since the function in the numerator is nonnegative and concave over 𝛥 and the denominator function is
strictly convex, then 𝑔 is explicitly quasi-concave on 𝛥 [22] and any stationary point of

max
𝑥∈𝛥

𝑔(𝑥)

is a global maximum of 𝑔 at 𝛥. Moreover, by the linearity and compactness of 𝛥, such a stationary point
exists. Since 𝜆 ≤ max

𝑥∈𝛥
𝑔(𝑥), this completes the proof. □

3.2 Finding a lower bound

It follows from Theorem 3 that a lower bound 𝑙 can be computed by

𝑙 = −min{∥𝐴∥1, ∥𝐴∥∞}.

As before, this procedure requires 𝐵 to be the identity matrix. Next, we introduce a new procedure for
computing 𝑙 in the general case. Let 𝑢 be an upper bound for the variable 𝜆 that has been computed as
explained in Subsection 3.1. Furthermore, let

�̄� = max{0, 𝑢}. (19)
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Since 𝑦 = 𝜆𝑥 in any solution to the EiCP, and 0 ≤ 𝑥𝑖 ≤ 1 for all 𝑖 = 1, . . . , 𝑛, then 𝑦 ≤ �̄�𝑒. Now,
consider the following linear program (LP):

Minimize 𝜆

subject to 𝑤 = 𝐵𝑦 −𝐴𝑥

𝑒𝑇𝑥 = 1

𝑒𝑇 𝑦 = 𝜆

𝑤 ≥ 0, 𝑥 ≥ 0

𝑦 ≤ �̄�𝑒,

which is equivalent to

P2: Minimize 𝑒𝑇 𝑦 (20)

subject to 𝐵𝑦 −𝐴𝑥 ≥ 0 (21)

𝑒𝑇𝑥 = 1 (22)

𝑥 ≥ 0 (23)

𝑦 ≤ �̄�𝑒. (24)

An optimal solution to Problem P2, if it exists, provides the required lower bound 𝑙. The next result
shows that such a value indeed exists.

Theorem 5 Problem P2 has an optimal solution.

Proof Since EiCP always has a solution under our assumptions, then Problem P2 is feasible. So, it remains

to show that Problem P2 has no nonzero recession direction 𝑑 =

[
𝑑𝑥
𝑑𝑦

]
, where 𝑑𝑥 and 𝑑𝑦 are the compo-

nents of 𝑑 corresponding to the 𝑥− and 𝑦−variables, respectively [23]. From (21)-(24), any such recession
direction must satisfy 𝑑𝑥 = 0, 𝐵𝑑𝑦 ≥ 0, and 𝑑𝑦 ≤ 0, which implies that 𝑑𝑇

𝑦 𝐵𝑑𝑦 ≤ 0, or that 𝑑𝑦 = 0 since
𝐵 is a PD matrix. Hence, P2 has no recession direction. □

Remark 1 We could also design procedures for finding lower and upper bounds 𝑙 and 𝑢 based on the
computation of generalized eigenvalues (as 𝐵 may not be the identity matrix). In our experience, the bounds
proposed above are easily computed and are reasonably tight enough to yield an effective algorithmic
performance, and so the additional computational effort of such alternative approaches might not benefit the
overall efficiency of the algorithm. Nevertheless, it is of interest to study the relative tightness of the bounds
derived using such methods (including those based on classical eigenvalues of symmetrized versions of the
matrices 𝐴 and 𝐵), and to compare their effect on the overall algorithmic procedure. We propose this
investigation for future research.

4 The quadratic eigenvalue complementarity problem (QEiCP)

The QEiCP, which was introduced in [19], consists of finding a real number 𝜆 and a vector 𝑥 ∈ ℝ
𝑛∖{0}

such that

𝑤 = 𝜆2𝐴𝑥 + 𝜆𝐵𝑥 + 𝐶𝑥 (25)

𝑤 ≥ 0, 𝑥 ≥ 0 (26)

𝑥𝑇𝑤 = 0, (27)

where 𝐴,𝐵,𝐶 ∈ ℝ
𝑛×𝑛 are given matrices. As for the EiCP, we can add the constraint 𝑒𝑇𝑥 = 1 without loss

of generality. Compared with the EiCP, there exists an additional term involving 𝜆 2 in QEiCP. Contrary to
the EiCP, the QEiCP may have no solution even when the matrix 𝐴 of the leading term is PD. For instance,
if 𝐵 = 0, and 𝐴 and 𝐶 are PD, there is no 0 ∕= 𝑥 ≥ 0 such that 𝑥𝑇𝑤 = 0. On the other hand, consider the
triplet 𝛤 of matrices (𝐴,𝐵,𝐶) satisfying the so-called co-regular and co-hyperbolic conditions [19]:
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(i) 𝑥𝑇𝐴𝑥 ∕= 0 for all 0 ∕= 𝑥 ≥ 0 .
(ii) (𝑥𝑇𝐵𝑥)2 ≥ 4(𝑥𝑇𝐴𝑥)(𝑥𝑇 𝐶𝑥) for all 0 ∕= 𝑥 ≥ 0 .

For instance, if 𝐴 is PD and −𝐶 is copositive (i.e., 𝑥𝑇𝐶𝑥 ≤ 0 for all 𝑥 ≥ 0), then (𝐴,𝐵,𝐶) ∈ 𝛤 .
Since 𝑥𝑇𝑤 = 𝜆2(𝑥𝑇𝐴𝑥) + 𝜆(𝑥𝑇 𝐵𝑥) + 𝑥𝑇𝐶𝑥 = 0 for any solution to QEiCP, then we can write

𝜆 = 𝜆(𝑥) ≡ −𝑥𝑇𝐵𝑥±√
(𝑥𝑇𝐵𝑥)2 − 4(𝑥𝑇𝐴𝑥)(𝑥𝑇 𝐶𝑥)

2𝑥𝑇𝐴𝑥
. (28)

As shown in [19], QEiCP reduces to a VI on the simplex, whence the QEiCP has a solution whenever
(𝐴,𝐵,𝐶) ∈ 𝛤 . In Section 6, we describe an extension of the enumerative method discussed in Section
2 for the solution of QEiCP when (𝐴,𝐵,𝐶) ∈ 𝛤 . We further assume that 𝐴 is PD. Since there are two
terms respectively involving 𝜆 and 𝜆2, it is natural to introduce two new corresponding vectors 𝑦 = 𝜆𝑥
and 𝑧 = 𝜆𝑦 = 𝜆2𝑥. As before, we assume that 𝜆 belongs to a compact interval [𝑙, 𝑢] containing all the
solutions of the QEiCP, since, as shown in the next section, we can compute finite end-points of such an
interval. Because 𝑒𝑇𝑥 = 1, 𝑥 ≥ 0, and 𝑧 = 𝜆2𝑥, then 𝑧 ≥ 0 and 𝑒𝑇 𝑧 ≤ 𝑝, where 𝑝 ≡ max𝜆∈[𝑙,𝑢] 𝜆

2. So it
is natural to introduce the following NLP formulation of the QEiCP:

P3: Minimize 𝑓(𝑥, 𝑦, 𝑤, 𝑧, 𝜆) = (𝑦 − 𝜆𝑥)𝑇 (𝑦 − 𝜆𝑥) + (𝑧 − 𝜆𝑦)𝑇 (𝑧 − 𝜆𝑦) + 𝑥𝑇𝑤

subject to 𝑤 = 𝐴𝑧 + 𝐵𝑦 + 𝐶𝑥

𝑒𝑇𝑥 = 1 (29)

𝑒𝑇 𝑦 = 𝜆

𝑒𝑇 𝑧 ≤ 𝑝

𝑤 ≥ 0, 𝑥 ≥ 0, 𝑧 ≥ 0 .

The following result holds trivially:

Theorem 6 QEiCP has a solution (�̄�, �̄�) if and only if Problem P3 has a global minimum (�̄�, 𝑦, �̄�, 𝑧, �̄�)
with zero optimal value.

As for the EiCP, it is natural to ask whether a stationary point of this NLP solves the QEiCP. The
following result answers this question:

Theorem 7 A stationary point (�̄�, 𝑦, �̄�, 𝑧, �̄�) of Problem P3 is a solution to the QEiCP if and only if
𝛼2�̄� = 0 and 𝛼1 + 𝛼3𝑝 = 0, where 𝛼𝑖, 𝑖 = 1, 2, 3, are the Lagrange multipliers associated with the linear
equalities 𝑒𝑇𝑥 = 1, 𝑒𝑇 𝑦 − 𝜆 = 0, and 𝑒𝑇 𝑧 ≤ 𝑝, respectively.

Proof Let (𝑥, 𝑦, 𝑤, 𝑧, 𝜆) be a stationary point of Problem P3. We can eliminate the 𝑤 𝑖−variables from P3
to get the following equivalent program:

Minimize 𝑓(𝑥, 𝑦, 𝑧, 𝜆) = (𝑦 − 𝜆𝑥)𝑇 (𝑦 − 𝜆𝑥) + (𝑧 − 𝜆𝑦)𝑇 (𝑧 − 𝜆𝑦) + 𝑥𝑇 (𝐴𝑧 + 𝐵𝑦 + 𝐶𝑥)

subject to 𝐴𝑧 + 𝐵𝑦 + 𝐶𝑥 ≥ 0 (𝑣 ≥ 0)

𝑒𝑇𝑥− 1 = 0 (𝛼1)

𝑒𝑇 𝑦 − 𝜆 = 0 (𝛼2) (30)

𝑝− 𝑒𝑇 𝑧 ≥ 0 (𝛼3 ≥ 0)

𝑥 ≥ 0 (𝛽 ≥ 0)

𝑧 ≥ 0 (𝜂 ≥ 0),

where the corresponding dual multipliers are specified within brackets alongside each of the constraints.
Note that the Lagrange multipliers associated with the constraints 𝑒𝑇𝑥 = 1, 𝑒𝑇 𝑦 = 𝜆 and 𝑒𝑇 𝑧 ≤ 𝑝 are the
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same as those associated with these corresponding constraints in P3. The stationary point of this problem
satisfies the following KKT conditions, in addition to the constraints (30):

∇𝑥𝑓(𝑥, 𝑦, 𝑧, 𝜆)− 𝐶𝑇 𝑣 − 𝛼1𝑒 − 𝛽 = 0

∇𝑦𝑓(𝑥, 𝑦, 𝑧, 𝜆)−𝐵𝑇 𝑣 − 𝛼2𝑒 = 0

∇𝑧𝑓(𝑥, 𝑦, 𝑧, 𝜆)−𝐴𝑇 𝑣 + 𝛼3𝑒− 𝜂 = 0

∇𝜆𝑓(𝑥, 𝑦, 𝑧, 𝜆) + 𝛼2 = 0

𝑣𝑇 (𝐴𝑧 + 𝐵𝑦 + 𝐶𝑥) = 0 (31)

𝛼3(𝑝− 𝑒𝑇 𝑧) = 0

𝛽𝑇𝑥 = 0

𝜂𝑇 𝑧 = 0

𝑣 ≥ 0, 𝛽 ≥ 0, 𝜂 ≥ 0, 𝛼3 ≥ 0,

where

∇𝑥𝑓(𝑥, 𝑦, 𝑧, 𝜆) = −2𝜆(𝑦 − 𝜆𝑥) + 𝐴𝑧 + 𝐵𝑦 + 𝐶𝑥 + 𝐶𝑇𝑥

∇𝑦𝑓(𝑥, 𝑦, 𝑧, 𝜆) = 2(𝑦 − 𝜆𝑥) − 2𝜆(𝑧 − 𝜆𝑦) + 𝐵𝑇𝑥

∇𝑧𝑓(𝑥, 𝑦, 𝑧, 𝜆) = 2(𝑧 − 𝜆𝑦) + 𝐴𝑇𝑥

∇𝜆𝑓(𝑥, 𝑦, 𝑧, 𝜆) = −2𝑥𝑇 (𝑦 − 𝜆𝑥) − 2𝑦𝑇 (𝑧 − 𝜆𝑦).

Hence, the following equalities hold:

−2𝜆(𝑦 − 𝜆𝑥) + 𝐴𝑧 + 𝐵𝑦 + 𝐶𝑥 + 𝐶𝑇𝑥− 𝐶𝑇 𝑣 − 𝛼1𝑒− 𝛽 = 0

2(𝑦 − 𝜆𝑥) − 2𝜆(𝑧 − 𝜆𝑦) + 𝐵𝑇𝑥−𝐵𝑇 𝑣 − 𝛼2𝑒 = 0

2(𝑧 − 𝜆𝑦) + 𝐴𝑇𝑥−𝐴𝑇 𝑣 + 𝛼3𝑒 − 𝜂 = 0

−2𝑥𝑇 (𝑦 − 𝜆𝑥) − 2𝑦𝑇 (𝑧 − 𝜆𝑦) + 𝛼2 = 0.

Multiplying both sides of these equalities by 𝑥𝑇 , 𝑦𝑇 , 𝑧𝑇 , and 𝜆, respectively, we obtain

−2𝜆𝑥𝑇 (𝑦 − 𝜆𝑥) + 𝑥𝑇𝐴𝑧 + 𝑥𝑇𝐵𝑦 + 𝑥𝑇𝐶𝑥 + 𝑥𝑇𝐶𝑇𝑥− 𝑥𝑇𝐶𝑇 𝑣 − 𝛼1𝑥
𝑇 𝑒 = 0 (32)

2𝑦𝑇 (𝑦 − 𝜆𝑥) − 2𝜆𝑦𝑇 (𝑧 − 𝜆𝑦) + 𝑦𝑇𝐵𝑇𝑥− 𝑦𝑇𝐵𝑇 𝑣 − 𝛼2𝑦
𝑇 𝑒 = 0 (33)

2𝑧𝑇 (𝑧 − 𝜆𝑦) + 𝑧𝑇𝐴𝑇𝑥− 𝑧𝑇𝐴𝑇 𝑣 − 𝛼3𝑧
𝑇 𝑒 = 0 (34)

−2𝜆𝑥𝑇 (𝑦 − 𝜆𝑥) − 2𝜆𝑦𝑇 (𝑧 − 𝜆𝑦) + 𝛼2𝜆 = 0. (35)

Now, adding the equalities (32), (33), and (34), we have

2(𝑦 − 𝜆𝑥)𝑇 (𝑦 − 𝜆𝑥) + 2(𝑧 − 𝜆𝑦)𝑇 (𝑧 − 𝜆𝑦) + 2𝑥𝑇 (𝐴𝑧 + 𝐵𝑦 + 𝐶𝑥) − 𝑣𝑇 (𝐴𝑧 + 𝐵𝑦 + 𝐶𝑥)−
−𝛼1𝑥

𝑇 𝑒− 𝛼2𝑦
𝑇 𝑒− 𝛼3𝑧

𝑇 𝑒 = 0.

Since 𝑒𝑇𝑥 = 1, 𝑒𝑇 𝑦 = 𝜆, and 𝛼3𝑒
𝑇 𝑧 = 𝛼3𝑝, we get

2(𝑦 − 𝜆𝑥)𝑇 (𝑦 − 𝜆𝑥) + 2(𝑧 − 𝜆𝑦)𝑇 (𝑧 − 𝜆𝑦) + 2𝑥𝑇 (𝐴𝑧 + 𝐵𝑦 + 𝐶𝑥) − 𝑣𝑇 (𝐴𝑧 + 𝐵𝑦 + 𝐶𝑥)−
−𝛼1 − 𝛼2𝜆− 𝛼3𝑝 = 0.

Finally, due to (31), we obtain

2(𝑦 − 𝜆𝑥)𝑇 (𝑦 − 𝜆𝑥) + 2(𝑧 − 𝜆𝑦)𝑇 (𝑧 − 𝜆𝑦) + 2𝑥𝑇 (𝐴𝑧 + 𝐵𝑦 + 𝐶𝑥) =

= 𝛼1 + 𝛼2𝜆 + 𝛼3𝑝. (36)
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If 𝛼2𝜆 = 0 and 𝛼1 + 𝛼3𝑝 = 0, then the objective function value is zero, which means that the stationary
point is a solution of the QEiCP. Conversely, suppose that the stationary point (𝑥, 𝑦, 𝑤, 𝑧, 𝜆) of Problem P3
is a solution to the QEiCP. Then 𝑓(𝑥, 𝑦, 𝑤, 𝑧, 𝜆) = 0 by Theorem 6. Therefore, Equation (35) implies that

𝛼2𝜆 = 2𝜆𝑥𝑇 (𝑦 − 𝜆𝑥) + 2𝜆𝑦𝑇 (𝑧 − 𝜆𝑦) = 0.

Furthermore, 𝛼1 + 𝛼3𝑝 = 0 by Equation (36). □

Theorem 7 shows that a stationary point of Problem P3 may not in general solve the QEiCP. An exten-
sion of the enumerative method discussed in Section 2 can therefore be used to compute a solution to the
QEiCP by finding a global minimum of P3. As before, the algorithm requires a compact interval [𝑙, 𝑢] con-
taining all the solutions 𝜆 of the QEiCP. In the next two sections, we describe procedures for computing the
finite end-points of such an interval and design an extension of the enumerative method for solving QEiCP.
Note that, similar to Theorem 2, the result of Theorem 7 also holds with 𝜆 restricted to the interval [𝑙, 𝑢],
where, without loss of generality, we can assume that the eigenvalue for any solution to QEiCP belongs to
the open interval (𝑙, 𝑢).

5 Finding lower and upper bounds for the eigenvalues of QEiCP

Consider 𝜆(𝑥) as given by (28), where, as assumed above, (𝐴,𝐵,𝐶) ∈ 𝛤 and 𝐴 is PD. Then we have that

𝑥𝑇 (−𝐵)𝑥
2𝑥𝑇𝐴𝑥 −

√(
𝑥𝑇 (−𝐵)𝑥
2𝑥𝑇𝐴𝑥

)2

+ 𝑥𝑇 (−𝐶)𝑥
𝑥𝑇𝐴𝑥 ≤ 𝜆(𝑥) ≤ 𝑥𝑇 (−𝐵)𝑥

2𝑥𝑇𝐴𝑥 +

√(
𝑥𝑇 (−𝐵)𝑥
2𝑥𝑇𝐴𝑥

)2

+ 𝑥𝑇 (−𝐶)𝑥
𝑥𝑇𝐴𝑥 . (37)

Now, following the proof of Theorem 4, let 𝑑1, 𝑑2, and 𝑑3 be nonnegative vectors such that

−𝑑𝑇2 𝑥 ≤ 1

2
𝑥𝑇 (−𝐵)𝑥 ≤ 𝑑𝑇1 𝑥 and 𝑥𝑇 (−𝐶)𝑥 ≤ 𝑑𝑇3 𝑥 , ∀𝑥 ∈ 𝛥.

Accordingly, we get

−𝑢2 ≤ 𝑥𝑇 (−𝐵)𝑥

2𝑥𝑇𝐴𝑥
≤ 𝑢1 and

𝑥𝑇 (−𝐶)𝑥

𝑥𝑇𝐴𝑥
≤ 𝑢3 , ∀𝑥 ∈ 𝛥, (38)

where 𝑢𝑖 ≡ max
𝑥∈𝛥
{𝑑𝑇𝑖 𝑥/𝑥𝑇𝐴𝑥}, ∀𝑖 = 1, 2, 3. Note that the function 𝑑𝑇

𝑖 𝑥/𝑥𝑇𝐴𝑥 is explicitly quasi-concave

on 𝛥, ∀𝑖 = 1, 2, 3, and any stationary point of each one of these three functions on 𝛥 gives the required
value 𝑢𝑖, ∀𝑖 = 1, 2, 3. Hence, we obtain from (37) that

−𝑢2 −
√
max{𝑢2

1, 𝑢
2
2}+ 𝑢3 ≤ 𝜆(𝑥) ≤ 𝑢1 +

√
max{𝑢2

1, 𝑢
2
2}+ 𝑢3 , ∀𝑥 ∈ 𝛥.

Consequently, we can take

𝑙 = −𝑢2 −
√
max{𝑢2

1, 𝑢
2
2}+ 𝑢3 and 𝑢 = 𝑢1 +

√
max{𝑢2

1, 𝑢
2
2}+ 𝑢3. (39)

Note that if 𝐵 or −𝐵 is copositive, then we can respectively take 𝑢1 ≡ 0 or 𝑢2 ≡ 0 by (38), and likewise,
if 𝐶 is copositive then we can take 𝑢3 ≡ 0.

We can also extend Theorem 5 for possibly computing a better lower bound when 𝐵 𝑇 is an S-matrix
[24], that is, there exists a vector 0 ∕= 𝑣 ≥ 0 such that 𝐵𝑇 𝑣 > 0. To do this, let 𝑝 = max

𝜆∈[𝑙,𝑢]
𝜆2 as before,

where 𝑙 and 𝑢 have been computed by (39), let �̄� ≡ max{0, 𝑢}, and consider the following linear program:
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P4: Minimize 𝑒𝑇 𝑦

subject to 𝐴𝑧 + 𝐵𝑦 + 𝐶𝑥 ≥ 0

𝑒𝑇𝑥 = 1

𝑒𝑇 𝑧 ≤ 𝑝

𝑦 ≤ �̄�𝑒

𝑧 ≥ 0, 𝑥 ≥ 0.

Theorem 8 If 𝐵𝑇 is an S matrix then Problem P4 has an optimal solution.

Proof Since (𝐴,𝐵,𝐶) ∈ 𝛤 , then Problem P4 is feasible. Furthermore, similar to the proof of Theorem
5, if 𝑑𝑇 ≡ (𝑑𝑇𝑥 , 𝑑𝑇𝑦 , 𝑑𝑇𝑧 ) is a recession direction, then 𝑑𝑥 = 0, 𝑑𝑧 = 0, and 𝑑𝑦 satisfies 𝐵𝑑𝑦 ≥ 0 and
𝑑𝑦 ≤ 0. But since 𝐵𝑇 is an S matrix, there exists 0 ∕= 𝑣 ≥ 0 such that 𝐵𝑇 𝑣 > 0. Thus (𝐵𝑑𝑦)

𝑇 ≥ 0 and
𝑑𝑇𝑦 𝐵𝑇 𝑣 ≥ 0, which, together with 𝐵𝑇 𝑣 > 0 and 𝑑𝑦 ≤ 0, yields 𝑑𝑦 = 0. Thus Problem P4 is bounded. □

Let �̄� be the optimal value of P4. Then we can replace 𝑙← max{𝑙, �̄�}.

6 An enumerative algorithm for the QEiCP

As for the EiCP, the proposed enumerative method aims to find a global minimum for Problem P3 with the
additional constraint 𝑙 ≤ 𝜆 ≤ 𝑢. The algorithm explores a binary tree that is constructed by using the same
branching strategies as discussed for the EiCP version. In order to reduce the overall search in this process,
a number of constraints are added to the Problem P3 as described next. Since 𝑦 = 𝜆𝑥 in any solution of the
QEiCP, then

𝑙𝑥𝑖 ≤ 𝜆𝑥𝑖 = 𝑦𝑖

𝑢𝑥𝑖 ≥ 𝜆𝑥𝑖 = 𝑦𝑖

for each 𝑖 = 1, . . . , 𝑛. Likewise, as 𝑧 = 𝜆𝑦 = 𝜆2𝑥 in any such solution, we have

𝑟𝑥𝑖 ≤ 𝜆2𝑥𝑖 = 𝑧𝑖

𝑠𝑥𝑖 ≥ 𝜆2𝑥𝑖 = 𝑧𝑖

for each 𝑖 = 1, . . . , 𝑛, where 𝑟 = min
𝜆∈[𝑙,𝑢]

𝜆2 and 𝑠 = max
𝜆∈[𝑙,𝑢]

𝜆2.

We can also include the RLT bound-factor constraints [25] [𝑙𝑥 𝑗 ≤ 𝑦𝑗 ≤ 𝑢𝑥𝑗 ] ∗ [𝑙 ≤ 𝜆 ≤ 𝑢], ∀𝑗 =
1, . . . , 𝑛, which are linearized under the substitutions 𝜆𝑥𝑗 = 𝑦𝑗 , and 𝜆𝑦𝑗 = 𝑧𝑗 , ∀𝑗 = 1, . . . , 𝑛, to yield the
following:

(i) [𝑙𝑥𝑗 ≤ 𝑦𝑗 ≤ 𝑢𝑥𝑗] ∗ [(𝜆− 𝑙) ≥ 0]⇒ 𝑙𝑥𝑗(𝜆− 𝑙) ≤ 𝑦𝑗(𝜆− 𝑙) ≤ 𝑢𝑥𝑗(𝜆− 𝑙)

⇒ 𝑙𝑦𝑗 − 𝑙2𝑥𝑗 ≤ 𝑧𝑗 − 𝑙𝑦𝑗 ≤ 𝑢𝑦𝑗 − 𝑙𝑢𝑥𝑗 , ∀𝑗 = 1, . . . , 𝑛
(ii) [𝑙𝑥𝑗 ≤ 𝑦𝑗 ≤ 𝑢𝑥𝑗] ∗ [(𝑢− 𝜆) ≥ 0]⇒ 𝑙𝑥𝑗(𝑢− 𝜆) ≤ 𝑦𝑗(𝑢− 𝜆) ≤ 𝑢𝑥𝑗(𝑢− 𝜆)

⇒ 𝑙𝑢𝑥𝑗 − 𝑙𝑦𝑗 ≤ 𝑢𝑦𝑗 − 𝑧𝑗 ≤ 𝑢2𝑥𝑗 − 𝑢𝑦𝑗 , ∀𝑗 = 1, . . . , 𝑛.

Another valid constraint is 𝑒𝑇 𝑧 = 𝜆2, which implies the inequality 𝑒𝑇 𝑧 ≤ 𝑠 and follows from the definition
of the 𝑧− and 𝑦− variables. Since it is useful to keep all the constraints linear, we introduce the variable
𝛾 defined by 𝛾 = 𝜆2 and include RLT bound-factor constraints [(𝜆 − 𝑙)2]𝐿 ≥ 0, [(𝑢 − 𝜆)2]𝐿 ≥ 0, and
[(𝑢 − 𝜆)(𝜆 − 𝑙)]𝐿 ≥ 0, where [.]𝐿 denotes the linearization of [.] under the foregoing substitution process,
to derive the following constraints:
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(i) 𝑒𝑇 𝑧 = 𝛾
(ii) [(𝜆− 𝑙)2]𝐿 ≥ 0⇒ 𝛾 − 2𝑙𝜆+ 𝑙2 ≥ 0

(iii) [(𝑢− 𝜆)2]𝐿 ≥ 0⇒ 𝛾 − 2𝑢𝜆+ 𝑢2 ≥ 0
(iv) [(𝑢− 𝜆)(𝜆 − 𝑙)]𝐿 ≥ 0⇒ (𝑢 + 𝑙)𝜆− 𝛾 − 𝑢𝑙 ≥ 0.

By adding these (8𝑛+4) constraints, we obtain the following augmented nonlinear program associated
with the QEiCP:

P5: Minimize 𝑓(𝑥, 𝑦, 𝑤, 𝑧, 𝜆) = (𝑦 − 𝜆𝑥)𝑇 (𝑦 − 𝜆𝑥) + (𝑧 − 𝜆𝑦)𝑇 (𝑧 − 𝜆𝑦) + 𝑥𝑇𝑤

subject to 𝑤 = 𝐴𝑧 + 𝐵𝑦 + 𝐶𝑥

𝑒𝑇𝑥 = 1

𝑒𝑇 𝑦 = 𝜆

𝑒𝑇 𝑧 = 𝛾

𝛾 − 2𝑙𝜆+ 𝑙2 ≥ 0

𝛾 − 2𝑢𝜆+ 𝑢2 ≥ 0

(𝑢 + 𝑙)𝜆− 𝛾 − 𝑢𝑙 ≥ 0

𝑙 ≤ 𝜆 ≤ 𝑢

𝑙𝑥𝑗 ≤ 𝑦𝑗 ≤ 𝑢𝑥𝑗 , ∀𝑗 = 1, . . . , 𝑛

𝑟𝑥𝑗 ≤ 𝑧𝑗 ≤ 𝑠𝑥𝑗 , ∀𝑗 = 1, . . . , 𝑛

𝑙𝑦𝑗 − 𝑙2𝑥𝑗 ≤ 𝑧𝑗 − 𝑙𝑦𝑗 ≤ 𝑢𝑦𝑗 − 𝑙𝑢𝑥𝑗 , ∀𝑗 = 1, . . . , 𝑛

𝑙𝑢𝑥𝑗 − 𝑙𝑦𝑗 ≤ 𝑢𝑦𝑗 − 𝑧𝑗 ≤ 𝑢2𝑥𝑗 − 𝑢𝑦𝑗 , ∀𝑗 = 1, . . . , 𝑛

𝑤 ≥ 0, 𝑥 ≥ 0, 𝑧 ≥ 0, 𝛾 ≥ 0,

where we explicitly retain 𝑧 ≥ 0 and 𝛾 ≥ 0 above for clarity and convenience in implementation, although
these restrictions are implied by the other constraints in Problem P5. The enumerative method searches for a
global minimum to Problem P5. As before, two types of branching strategies are used, namely, partitioning
on a complementary pair of variables and by partitioning the interval [𝑙, 𝑢] for the variable 𝜆. For any
given node 𝑘, the restrictions imposed on the branches in the path from this node to the root define the
corresponding node subproblem. Let us assume that these constraints are effectively given by

�̄� ≤ 𝜆 ≤ �̄�

𝑧𝑖 = 𝑦𝑖 = 𝑥𝑖 = 0, ∀𝑖 ∈ 𝐽

𝑤𝑖 = 0, ∀𝑖 ∈ 𝐼,

where 𝑙 ≤ �̄� < 𝑢 ≤ 𝑢, 𝐽 ⊆ {1, . . . , 𝑛}, 𝐼 ⊆ {1, . . . , 𝑛}, and 𝐽 ∩ 𝐼 = ∅. Note that corresponding to these
bounds on 𝜆, we define as before 𝑟 = min

𝜆∈[�̄�,�̄�]
𝜆2 < 𝑠 = max

𝜆∈[�̄�,�̄�]
𝜆2. Furthermore, consider the sets

𝐾 = 𝐼 ∪ 𝐽, 𝐼 = {1, . . . , 𝑛}∖𝐼, 𝐽 = {1, . . . , 𝑛}∖𝐽, and �̄� = {1, . . . , 𝑛}∖𝐾.
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Then the subproblem at node 𝑘 is given as follows:

P5(𝑘) Minimize 𝑓(𝑥, 𝑦, 𝑤, 𝑧, 𝜆) = (𝑦𝐽 − 𝜆𝑥𝐽 )
𝑇 (𝑦𝐽 − 𝜆𝑥𝐽 ) + (𝑧𝐽 − 𝜆𝑦𝐽 )

𝑇 (𝑧𝐽 − 𝜆𝑦𝐽) + 𝑥𝑇
�̄�𝑤�̄�

subject to 𝑤 = 𝐴𝑧 + 𝐵𝑦 + 𝐶𝑥

𝑒𝑇𝑥𝐽 = 1

𝑒𝑇 𝑦𝐽 = 𝜆

𝑒𝑇 𝑧𝐽 = 𝛾

𝛾 − 2�̄�𝜆 + �̄�2 ≥ 0

𝛾 − 2�̄�𝜆 + �̄�2 ≥ 0

(�̄� + 𝑙)𝜆− 𝛾 − �̄�𝑙 ≥ 0

�̄� ≤ 𝜆 ≤ �̄�

�̄�𝑥𝑗 ≤ 𝑦𝑗 ≤ �̄�𝑥𝑗 , ∀𝑗 ∈ 𝐽

𝑟𝑥𝑗 ≤ 𝑧𝑗 ≤ 𝑠𝑥𝑗 , ∀𝑗 ∈ 𝐽

�̄�𝑦𝑗 − 𝑙2𝑥𝑗 ≤ 𝑧𝑗 − 𝑙𝑦𝑗 ≤ �̄�𝑦𝑗 − �̄�𝑢𝑥𝑗 , ∀𝑗 ∈ 𝐽

�̄�𝑢𝑥𝑗 − �̄�𝑦𝑗 ≤ �̄�𝑦𝑗 − 𝑧𝑗 ≤ �̄�2𝑥𝑗 − 𝑢𝑦𝑗 , ∀𝑗 ∈ 𝐽

𝑤𝐼 ≥ 0, 𝑥𝐽 ≥ 0, 𝑧𝐽 ≥ 0, 𝛾 ≥ 0

𝑧𝑗 = 𝑦𝑗 = 𝑥𝑗 = 0, ∀𝑗 ∈ 𝐽

𝑤𝑖 = 0 , ∀𝑖 ∈ 𝐼.

At this node 𝑘 of the tree, the algorithm searches for a stationary point to the corresponding program
P5(𝑘). If the objective function value at this stationary point is zero, then a solution to the QEiCP is at
hand and the algorithm terminates. Otherwise, two new nodes are created from node 𝑘 and the process
is repeated. The algorithm also includes heuristic rules for choosing an open node from an associated list
and for deciding which of the two branching strategies should be used at the selected node 𝑘 whenever a
stationary point having a positive objective function value has been found for Problem P5(𝑘). The formal
steps of the algorithm are identical to those of the procedure presented for EiCP in Section 2, except that
the vector (𝑥, 𝑦, 𝑤, 𝜆) is now replaced by (𝑥, 𝑦, 𝑤, 𝑧, 𝜆), the node subproblem P1(𝑘) is replaced by P5(𝑘),
and the computation 𝜃2 at Step 2 is given by

𝜃2 = max{∣𝑦𝑖 − �̄�𝑥𝑖∣, ∣𝑧𝑖 − �̄�𝑦𝑖∣ : 𝑖 ∈ 𝐽}.

The convergence of the algorithm is also guaranteed following the same argument used in Theorem 4.1
of [1]. To ensure finiteness, whenever �̄� − 𝑙 ≤ 𝜖 at any node for some tolerance 𝜖 > 0, we replace the
corresponding lower and upper bounds on 𝜆 by the common value �̄�+�̄�

2 at this node.

7 Computational Experience

In this section, we report some computational experience with the enumerative algorithm discussed in
Sections 2 and 6 in order to illustrate its efficiency in computing eigenvalues for EiCP and QEiCP. All
the tests have been performed on a Pentium IV (Intel) with Hyperthreading, 3.0 GHz CPU, 2GB RAM
computer, using the operating system Linux. The algorithm was implemented in the General Algebraic
Modeling System (GAMS) language (Rev 118 Linux/Intel) [26] and the NLP solver MINOS (Version 9.1)
[27] was used to solve the subproblems at each node of the enumerative tree.

For the EiCP, we considered three sets of test problems, where 𝐵 was taken as the identity matrix. In
the first set of test problems, the matrices A were taken from [9] and are given by

𝐴 = −
⎡
⎣8 −1 4
3 4 1/2
2 −1/2 6

⎤
⎦ and 𝐴 = −

⎡
⎢⎢⎣
100 106 −18 −81
92 158 −24 −101
2 44 37 −7
21 38 0 2

⎤
⎥⎥⎦ .
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These are denoted by AdlySeeger(𝑛), where 𝑛 is the order of the matrices (𝑛 = 3 and 4, respectively). For
the second set of test problems [28], the matrix 𝐴 is given by

𝐴 = −

⎡
⎢⎢⎢⎢⎢⎣

𝑠2 𝑠3 𝑠4 𝑠5 . . .
−𝑠3 𝑠4 𝑠5 𝑠6 . . .
−𝑠4 𝑠5 𝑠6 𝑠7 . . .
−𝑠5 𝑠6 𝑠7 𝑠8 . . .

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎦

.

These test problems are denoted by Seeger(𝑛), where 𝑛 is the order of the matrices 𝐴 and 𝐵, and where we
used 𝑠 = 3/2. In the remaining set of test problems, the matrix 𝐴 was randomly generated with elements
uniformly distributed in the intervals [0, 1], [−1,−1], [−10, 10], and [−100, 100]. These problems are de-
noted by RAND(𝑘,𝑚, 𝑛), where 𝑘 and 𝑚 are the end-points of the chosen interval for generating the matrix
elements, and 𝑛 represents the order of the matrices 𝐴 and 𝐵 (we considered 𝑛 = 5, 10, 20, 30, 40, 50, and
100).

Table 1 displays the results obtained for solving the foregoing three sets of EiCP test problems via the
enumerative algorithm. Our experience with these and similar test problems has indicated that the value
of the tolerance 𝜖 used to terminate the algorithm should not be the same for 𝜃 1 and 𝜃2 (see Step 2 of the
algorithm) but instead two different tolerances 𝜖1 and 𝜖2 should be used for these quantities 𝜃𝑖, 𝑖 = 1, 2,
with 𝜖1 being smaller than 𝜖2. In Table 1 we report the results with 𝜖1 = 10−5 and 𝜖2 = 10−4. Our
experience has shown that 𝜖1 could be smaller than 10−5 (the algorithm works well in general even with
𝜖1 = 10−8) but 𝜖2 should be chosen to be at least 10−4. For instance, for problem Seeger(20), 𝜖2 has
been set equal to 10−3 for the algorithm to terminate with a solution, because an indication of no solution
occurred when 𝜖2 = 10−4 (this is impossible as the EiCP always has a solution 𝜆 ∈ [𝑙, 𝑢]).

The lower bound 𝑙 is given by the optimal value of the program P2 (20)-(24). On the other hand, the
upper bound 𝑢 is computed by 𝑢 = min{𝑢1, 𝑢2}, where 𝑢1 and 𝑢2 are the values given by Theorem 3
and Theorem 4, respectively. The notation 𝜆 stands for the eigenvalue computed by the algorithm. Finally,
CPU, ITpivot, and Nodes are the total CPU time in seconds, the number of pivotal operations required, and
the number of nodes enumerated by the algorithm, respectively (node = 0 means that no branching was
performed).

The numerical results clearly indicate that the enumerative algorithm is efficient for solving all the
linear EiCPs. The method enumerated only a few nodes to terminate and in many cases no branching
was required. Another interesting conclusion from our experiments is that, in general, a complementary
solution (𝑥𝑖𝑤𝑖 = 0 for all 𝑖 = 1, . . . , 𝑛) was typically found at the root node itself, and all the subsequent
branchings were concerned with bracketing the interval for 𝜆 until 𝑦 ≈ 𝜆𝑥 and a solution (𝜆, 𝑥) was
at hand. Furthermore, a local robust method such as the semi-smooth Newton’s algorithm discussed in
[9] could be incorporated in a hybrid method that uses the enumerative method first and switches to the
Newton’s method when 𝜃1 is quite small (complementary solution is at hand) and 𝜃2 is still larger than the
desired tolerance. In such a hybrid procedure, the enumerative method should be considered as a safeguard.
The analysis and implementation of such a hybrid method is recommended for future research.

In order to better assess the performance of the enumerative algorithm, we also solved all the test
problems using the well-known and robust code BARON [11]. As for the enumerative method, BARON
solves the EiCP by determining a global minimum of Problem P1(1) in Section 2 with 𝐾 = 𝐽 = 𝐼 = ∅.
The results of the performance of BARON (with default parameters settings) are displayed in Table 2. In
this table, we use the notation ∗ to indicate when BARON was not able to find a solution to the EiCP.
The reported numerical results indicate that BARON can solve many instances without branching, but it
requires more effort than the enumerative algorithm whenever branching is required, which underscores
the relative efficiency and efficacy of the proposed enumerative algorithm for solving the linear EiCP.

Table 3 reports the computational experience for solving QEiCPs using the enumerative algorithm. The
first test problem, denoted by AdlySeegerQ(3), has been taken from [9]. In all the remaining test problems,
the matrix 𝐴 was set equal to the identity matrix. Furthermore the matrices 𝐵 and −𝐶 were randomly
generated with their elements uniformly distributed in the intervals [0, 1], [0, 10], and [0, 100]. As for the
EiCP, these test problems are denoted by RAND(𝑘,𝑚, 𝑛), where 𝑘 and 𝑚 are the end-points of the chosen
interval for generating the elements of the matrices 𝐵 and−𝐶, and 𝑛 represents the order of the matrices 𝐴,
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Table 1 Performance of the enumerative algorithm for solving linear EiCPs.

Problem 𝑙 𝑢 𝜆 CPU ITpivot Nodes
AdlySeeger(3) −13.000 1.718 −4.134 0.00 19 0
AdlySeeger(4) −346.000 224.157 −29.134 0.00 36 0
Seeger(5) −150.214 30.461 −5.063 0.00 26 0
Seeger(10) −9802.776 309.799 −4.503 0.00 62 0
Seeger(20) −3.31620𝐸 + 7 22442.108 −4.500 0.00 98 0
Seeger(30) −1.1030𝐸 + 11 1488244.077 −4.500 0.00 5 0
Seeger(40) −3.6679𝐸 + 14 9.524743𝐸 + 7 −4.500 0.00 6 0
Seeger(50) −1.2197𝐸 + 18 5.971405𝐸 + 9 0.000 0.00 1 0
RAND(0,1,5) 1.724 3.475 2.781 0.00 15 0
RAND(0,1,10) 2.779 5.906 4.816 0.00 35 0
RAND(0,1,20) 6.601 11.756 9.850 0.00 66 0
RAND(0,1,30) 12.751 18.389 15.270 0.00 94 0
RAND(0,1,40) 16.360 23.839 20.241 0.00 131 0
RAND(0,1,50) 18.418 29.756 25.077 0.01 166 0
RAND(0,1,100) 42.678 55.350 49.755 0.05 381 0
RAND(-1,1,5) −0.884 3.504 1.123 0.00 24 0
RAND(-1,1,10) −2.914 5.399 −0.018 0.00 41 0
RAND(-1,1,20) −3.684 12.661 0.842 0.00 105 0
RAND(-1,1,30) −8.048 17.528 2.346 0.02 1235 9
RAND(-1,1,40) −6.240 22.948 2.861 0.07 3107 17
RAND(-1,1,50) −8.005 29.120 3.131 0.16 3239 9
RAND(-1,1,100) −13.533 56.866 4.010 0.84 5500 6
RAND(-10,10,5) −19.796 27.930 −9.922 0.00 29 2
RAND(-10,10,10) −47.389 67.795 17.272 0.00 113 0
RAND(-10,10,20) −33.749 121.968 21.191 0.03 554 6
RAND(-10,10,30) −70.618 179.965 25.332 0.03 1562 6
RAND(-10,10,40) −62.677 232.994 19.595 0.09 3130 11
RAND(-10,10,50) −98.166 288.328 20.457 0.16 3160 6
RAND(-10,10,100) −180.103 564.336 39.242 3.53 23928 16
RAND(-100,100,5) −19.553 327.351 135.146 0.00 23 0
RAND(-100,100,10) −309.067 611.982 −40.854 0.00 88 0
RAND(-100,100,20) −485.177 1192.792 80.072 0.02 378 0
RAND(-100,100,30) −919.108 1657.759 180.221 0.05 1812 5
RAND(-100,100,40) −853.383 2275.320 234.283 0.11 2293 3
RAND(-100,100,50) −1345.659 2905.844 176.117 0.31 4650 4
RAND(-100,100,100) −1182.080 5743.010 526.975 1.23 7246 2

𝐵 and 𝐶. These choices of 𝐴, 𝐵, and 𝐶 imply that (𝐴,𝐵,𝐶) belongs to the class 𝛤 , that is, the QEiCP is
co-regular and co-hyperbolic and always has a solution. As before, the tolerances for termination were set
to 𝜖1 = 10−5 and 𝜖2 = 10−4. The lower and upper bounds for the interval [𝑙, 𝑢] were computed according
to the procedures described in Section 5. Note that 𝐴 is PD and 𝐵 𝑇 is an S-matrix. Furthermore 𝑢1 = 0
since 𝐵 is a copositive matrix. Finally 𝜆, CPU, ITpivot, and Nodes have the same interpretation as before.

The numerical results displayed in Table 3 indicate that the enumerative algorithm was able to solve all
the QEiCPs very efficiently (within 3 CPU seconds). In general, the algorithm required a small number of
nodes to terminate and a complementary solution was in many cases found at the root node. For further im-
provements, we advocate the development of a similar hybrid method for solving the QEiCP as discussed
above for the EiCP. As before, we also implemented BARON for solving the QEiCP by finding a global
minimum of the nonlinear program P5 defined in Section 6. The numerical results for this experiment are
displayed in Table 4 and indicate that BARON again required significantly greater effort than the enumer-
ative algorithm, particulary when it was unable to solve the problem at the root node itself, and moreover,
it failed to terminate with a solution to the QEiCP for one test problem (this is denoted by ∗).

8 Conclusions

In this paper, we have studied linear (EiCP) and quadratic (QEiCP) eigenvalue problems. Some properties
concerned with the existence of a solution and with solutions to certain judiciously formulated nonlinear
programming (NLP) problems were presented. An enumerative algorithm was proposed, which finds a
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Table 2 Performance of BARON for solving linear EiCPs.

Problem 𝑙 𝑢 𝜆 CPU Nodes
AdlySeeger(3) −13.000 1.718 −4.134 0.00 0
AdlySeeger(4) −346.000 224.157 −32.864 0.00 0
Seeger(5) −150.214 30.461 −5.063 0.00 0
Seeger(10) −9802.776 309.799 −4.536 0.00 0
Seeger(20) −3.31620𝐸 + 7 22442.108 −1.99032𝐸 + 7 11.01 9
Seeger(30) −1.1030𝐸 + 11 1488244.077 ∗ ∗ ∗
Seeger(40) −3.6679𝐸 + 14 9.524743𝐸 + 7 ∗ ∗ ∗
Seeger(50) −1.2197𝐸 + 18 5.971405𝐸 + 9 ∗ ∗ ∗
RAND(0,1,5) 1.724 3.475 2.781 0.01 0
RAND(0,1,10) 2.779 5.906 4.816 0.00 0
RAND(0,1,20) 6.601 11.756 9.850 0.01 0
RAND(0,1,30) 12.751 18.389 15.270 0.03 0
RAND(0,1,40) 16.360 23.839 20.241 0.06 0
RAND(0,1,50) 18.418 29.756 25.077 0.11 0
RAND(0,1,100) 42.678 55.350 49.755 0.79 0
RAND(-1,1,5) −0.884 3.504 1.123 0.00 0
RAND(-1,1,10) −2.914 5.399 0.203 0.00 0
RAND(-1,1,20) −3.684 12.661 0.826 0.01 0
RAND(-1,1,30) −8.048 17.528 2.346 288.64 307
RAND(-1,1,40) −6.240 22.948 2.861 323.09 100
RAND(-1,1,50) −8.005 29.120 2.031 164.94 145
RAND(-1,1,100) −13.533 56.866 3.785 1.58 0
RAND(-10,10,5) −19.796 27.930 8.226 0.00 0
RAND(-10,10,10) −47.389 67.795 17.272 0.00 0
RAND(-10,10,20) −33.749 121.968 21.191 21.45 46
RAND(-10,10,30) −70.618 179.965 25.332 215.43 136
RAND(-10,10,40) −62.677 232.994 19.178 80.36 28
RAND(-10,10,50) −98.166 288.328 20.457 143.89 19
RAND(-10,10,100) −180.103 564.336 ∗ ∗ ∗
RAND(-100,100,5) −19.553 327.351 135.146 0.00 0
RAND(-100,100,10) −309.067 611.982 −44.055 0.78 10
RAND(-100,100,20) −485.177 1192.792 80.072 0.32 1
RAND(-100,100,30) −919.108 1657.759 180.221 0.96 1
RAND(-100,100,40) −853.383 2275.320 234.283 7.93 1
RAND(-100,100,50) −1345.659 2905.844 165.593 15.74 1
RAND(-100,100,100) −1182.080 5743.010 ∗ ∗ ∗

Table 3 Performance of the enumerative algorithm for solving QEiCPs.

Problem 𝑙 𝑢 𝜆 CPU ITpivot Nodes
AdlySeegerQ(3) −10.875 5.469 0.266 0.00 10 0
RAND(0,1,5) −4.944 2.669 0.708 0.00 32 0
RAND(0,1,10) −9.345 4.903 −5.575 0.00 261 4
RAND(0,1,20) −19.596 10.042 1.114 0.01 229 0
RAND(0,1,30) −29.585 15.037 1.055 0.07 959 3
RAND(0,1,40) −39.555 20.022 −21.182 0.19 2078 4
RAND(0,1,50) −49.273 24.886 1.127 0.43 3997 8
RAND(0,10,5) −42.789 21.607 −21.760 0.00 138 4
RAND(0,10,10) −95.230 47.858 0.968 0.01 211 3
RAND(0,10,20) −188.383 94.447 1.193 0.02 484 2
RAND(0,10,30) −289.527 145.014 −149.446 0.13 2900 8
RAND(0,10,40) −389.041 194.772 −197.925 0.23 3136 6
RAND(0,10,50) −489.202 244.850 −252.888 0.65 7605 10
RAND(0,100,5) −439.463 219.978 1.112 0.00 46 0
RAND(0,100,10) −930.600 465.548 0.887 0.00 99 0
RAND(0,100,20) −1863.996 932.255 1.953 0.40 5620 38
RAND(0,100,30) −2906.336 1453.417 −1494.046 0.11 2164 4
RAND(0,100,40) −3893.380 1946.940 1.077 2.26 49894 62
RAND(0,100,50) −4896.833 2448.667 −2488.298 0.62 5186 4
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Table 4 Performance of BARON for solving QEiCPs.

Problem 𝑙 𝑢 𝜆 CPU Nodes
SeegerAdlyQ(3) −10.875 5.469 0.000 0.00 0
RAND(0,1,5) −4.944 2.669 0.842 0.00 0
RAND(0,1,10) −9.345 4.903 −5.575 0.01 0
RAND(0,1,20) −19.596 10.042 −10.783 0.98 1
RAND(0,1,30) −29.585 15.037 −16.177 3.55 1
RAND(0,1,40) −39.555 20.022 −21.182 8.56 1
RAND(0,1,50) −49.273 24.886 −26.020 18.82 1
RAND(0,10,5) −42.789 21.607 −21.760 0.33 6
RAND(0,10,10) −95.230 47.858 −56.093 1.85 6
RAND(0,10,20) −188.383 94.447 −96.187 16.46 7
RAND(0,10,30) −289.527 145.014 −149.446 55.77 8
RAND(0,10,40) −389.041 194.772 −197.925 144.50 10
RAND(0,10,50) −489.202 244.850 ∗ ∗ ∗
RAND(0,100,5) −439.463 219.978 1.112 0.02 1
RAND(0,100,10) −930.600 465.548 −510.000 1.91 10
RAND(0,100,20) −1863.996 932.255 −952.937 20.63 8
RAND(0,100,30) −2906.336 1453.417 −1494.046 64.01 8
RAND(0,100,40) −3893.380 1946.940 1.565 1647.56 91
RAND(0,100,50) −4896.833 2448.667 −2488.298 376.09 8

solution to these problems by computing a global minimum of the formulated NLP. Computational results
were presented to demonstrate the efficiency and efficacy of the enumerative algorithm for solving linear
and quadratic EiCPs. The proposed algorithm was always able to find a solution for our set of test problems
by enumerating only a few nodes, and was seen to be significantly more efficient than the well-known
commercial software BARON for the same set of instances. The possible incorporation of a local search
method, such as a semi-smooth Newton method [9,19], in the final stages of the enumerative method could
improve its efficiency and is worthy of further investigation. Alternative techniques for computing bounds
on the eigenvalues as stated in Remark 1 are also worth exploring. The use of the enumerative method in a
parametric algorithm for finding all the eigenvalues is another interesting topic of our ongoing research.
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