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Joaquim Júdicea, Masao Fukushimab, Alfredo Iusemc, J. Mario Martinezd, Valentina Sessae∗

aInstituto Telecomunicações, Coimbra, Portugal. bFaculty of Science and Technology, Nanzan University,
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We introduce an Alternating Direction Method of Multipliers (ADMM) for finding a solution of the non-
symmetric Eigenvalue Complementarity Problem (EiCP). A simpler version of this method is proposed
for the symmetric EiCP, that is, for the computation of a Stationary Point (SP) of a Standard Frac-
tional Quadratic Program. The algorithm is also extended for the computation of an SP of a Standard
Quadratic Program (StQP). Convergence analyses of these three versions of ADMM are presented. The
main computational effort of ADMM is the solution of a Strictly Convex StQP, which can be efficiently
solved by a Block Principal Pivoting algorithm. Furthermore, this algorithm provides a stopping criterion
for ADMM that improves very much its efficacy to compute an accurate solution of the EiCP. Numer-
ical results indicate that ADMM is in general very efficient for solving symmetric EiCPs in terms of
the number of iterations and computational effort, but is less efficient for the solution of nonsymmetric
EiCPs. However, ADMM is able to provide a good initial point for a fast second-order method, such as
the so-called Semi-smooth Newton method. The resulting hybrid ADMM and SN algorithm seems to be
quite efficient in practice for the solution of nonsymmetric EiCPs.
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1. Introduction

The Eigenvalue Complementarity Problem (EiCP) consists of finding λ ∈ R and x ∈ Rn \ {0} such
that:

w = Ax− λBx (1a)

x ≥ 0, w ≥ 0 (1b)

x>w = 0, (1c)
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where A and B are given matrices of order n and B is positive definite (PD). The real number λ
is called a complementary eigenvalue and x is the complementary eigenvector associated to λ. We
denote by EiCP(A,B) an EiCP with matrices A and B. An EiCP is symmetric if both the matrices
in its definition are symmetric (B is SPD). Otherwise, EiCP is said to be nonsymmetric.

Since the problem is homogeneous in x, it is sufficient to add the constraint

e>x = 1, (1d)

with e being a vector of ones, for guaranteeing that x is a nonzero vector in a solution of EiCP.
Furthermore, it follows from the complementarity condition (1c) that λ is given by

λ(x) =
x>Ax

x>Bx
, (2)

in any solution (x, λ) of EiCP.
EiCP was introduced in [32] as an extension of the well-known Eigenvalue Problem [16] and

has deserved great attention during the past several years. The problem has found applications in
engineering [17, 28] and interest in the Spectral Theory of Graphs [14, 33]. Some generalizations
of EiCP have been introduced in recent years [2, 7, 9, 15, 19, 30, 37, 39–41] and many interesting
theoretical results have been presented in the past [6, 21, 29, 31, 32, 34–36]. Among them, it has been
shown that EiCP always has a solution, as it is equivalent to a Variational Inequality (VI) Problem
with a continuous function on the ordinary simplex [6]. Furthermore, the number of solutions of an
EiCP can be exponential on the dimension n of EiCP [36]. Note that for the traditional Eigenvalue
Problem this number is smaller than or equal to n [16].

A number of algorithms have been introduced for finding a solution of an EiCP. A Semi-smooth
Newton (SN) method [3] has found great interest for solving nonsymmetric and symmetric EiCPs
due to its fast convergence properties. However, global convergence is not guaranteed and the algo-
rithm may fail for many instances. Splitting algorithms have been recommended for nonsymmetric
and symmetric EiCPs with some interesting theoretical convergence properties [18]. As before, there
is no guarantee that these algorithms converge in all the cases and the algorithms may fail for some
instances. Descent algorithms for minimizing the so-called regularized gap function associated to
the VI formulation of EiCP [1, 6] and DC algorithms [23, 26] have also been proposed for computing
a solution of an EiCP. These algorithms face the same drawback, that is they may be unable to
terminate successfully for some instances. An enumerative method has been introduced in [21] and
is the unique algorithm that can always find a solution of EiCP in theory. The algorithm is efficient
to solve EiCPs of small dimension [13, 21]. However, the algorithm may require too much work or
may even be unable to compute a solution in a reasonable amount of CPU time for larger instances.
This enumerative method can be combined with an SN method to improve its efficiency and can
be extended to compute all the solutions of an EiCP of small dimension [13].

As discussed in [22, 31, 35], computing a solution of a symmetric EiCP is equivalent to finding
a Stationary Point (SP) of a Standard Fractional Quadratic Program (StFQP), that is, an SP of
a Fractional Quadratic function on the ordinary simplex. So, a local solver such as an active-set
method [27] or an interior-point algorithm [27, 38] can be used to efficiently solve the symmetric
EiCP. Despite being quite robust, these algorithms may be unable to solve large-scale symmetric
EiCPs. Projected Gradient algorithms have been proposed for such EiCPs and showed to be very
useful for some large and sparse instances particularly when the accuracy of the solution is not much
at stake [8, 22]. However, these algorithms may fail to terminate when accuracy of the solution is
on demand, particularly when at least one of the matrices of EiCP is ill-conditioned. As for the
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nonsymmetric EiCP, DC algorithms [23] and descent methods for minimizing the regularized gap
function [1] may also be useful for computing a solution of the symmetric EiCP for large-scale
instances. However, they share the same drawback of the projected-gradient methods.

In this paper, we introduce a new Alternating Direction Method of Multipliers (ADMM) for
solving the nonsymmetric EiCP. The algorithm is an extension of the well-known ADMM that has
been introduced for convex optimization [4, 11]. Specifically, by introducing an auxiliary variable
y, we reformulate the EiCP as an optimization problem with the objective function xTAx− xTBy
and the additional coupling constraints λx− y = 0 and Ax−By−w = 0, and then utilize the idea
of ADMM. In addition to the presence of parameter λ, problem has some features that distinguish
it from those problems which traditional ADMMs have been designed to solve. Particularly, the
objective function is neither convex nor separable, that is, the second term of the objective function
contains both variables x and y. Although there have been recent attempts to develop ADMMs
that can handle certain nonconvex problems, separability of the objective function has usually been
assumed in the existing ADMMs [5, 24].

The steps of ADMM are simpler when it is applied to the symmetric EiCP. Furthermore, an
extension of the algorithm for the computation of an SP of a Standard Quadratic Program (StQP)
is also introduced. In each iteration, primal feasibility and complementarity of the iterates (x, λ)
are maintained, i.e., (x, λ) sastifies (1b), (1d) and (1c) (or (2)). The algorithm terminates when
dual feasibility is satisfied, that is the vector w satisfies (1a) and (1b). In order to get such an
objective, the algorithm employs an additional vector y ∈ Rn that should satisfy λx = y in any
solution of the EiCP. As in the usual ADMM, an Augmented Lagrangian (AL) function is used to
monitor the progress of the algorithm. In each iteration, this function is minimized alternatively
for the original variables xi on the simplex and for the unrestricted additional variables yi. Finally,
the dual variables introduced in the AL function are updated by the well-known procedure used in
the so-called Augmented Lagrangian methods [27].

A partial convergence analysis of ADMM for solving the nonsymmetric EiCP is presented and
shows that if the sequences of some of the primal and dual iterates converge, then the limit point x̄
of the sequence of the primal iterates {xk} gives a solution (x̄, λ̄) of EiCP, where λ̄ = λ(x̄) is given
by (2). For the symmetric EiCP only the sequence {xk} has to converge for the same result to be
true. Since this sequence is bounded, then it has an accumulation point x̄ and we have been able to
show that such a point gives a solution (x̄, λ(x̄)) of the symmetric EiCP provided two reasonable
conditions hold. A similar convergence result is proven for the extension of ADMM for computing
an SP of an StQP.

The main work of each iteration of ADMM relies on the solution of a Strictly Convex Standard
Quadratic Program (SCStQP). A well-known Block Principal Pivoting (BPP) algorithm [20] is
used to solve these SCStQPs and showed to be quite efficient in practice. Furthermore, a stopping
criterion for ADMM is designed based on the BPP method that proves to be quite important to
reduce the number of iterations for ADMM to get a sufficiently accurate solution for the EiCP.
Despite the use of such an efficient subroutine, computational experiments reported in this paper
indicates that ADMM is usually slow to compute a solution of a nonsymmetric EiCP particularly
for large-scale instances. In our opinion, this is a consequence of the complexity of the Augmented
Lagrangian Function. This function is much simpler for the symmetric EiCP. This makes ADMM
simpler and more efficient for solving a symmetric EiCP.

The choice of the penalty parameter ρ has an important impact on the number of iterations of
ADMM to terminate. Our experiments indicate that the number of iterations of ADMM usually
reduce with a reduction of ρ. For many instances a value of ρ = 20 is enough for ADMM to work
well. However, we found some instances where a much bigger value of ρ is required for the algorithm
to terminate. On the other hand, there are instances where a quite small value of ρ, such as ρ = 0.1,
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improves dramatically the speed of ADMM to find an accurate solution. So, an efficient procedure
to find an appropriate value of the penalty parameter for each instance is an important issue for
future research.

A hybrid method has been introduced in [13] for solving the nonsymmetric EiCP. This method
combines a slow enumerative algorithm with a fast Semi-smooth Newton (SN) method. In this
paper, we propose to use the ADMM instead of the enumerative method in a similar hybrid scheme.
The use of the new stopping criterion mentioned before with a larger tolerance usually provides
a premature termination of ADMM with a good initial point for a fast SN method to work very
well. Two hybrid methods are introduced in this paper that exploit this idea with two different SN
algorithms. Computational experiments reported in this paper indicate that such hybrid approaches
should be used in practice for the solution of the nonsymmetric EiCP. As stated before, ADMM
has better convergence properties and seems to be much more efficient for solving the symmetric
EiCP. Hence, the SN method does not seem to be required in this case and we recommend ADMM
to be employed alone for the solution of the symmetric EiCP.

The structure of the paper is as follows. In Section 2, the new ADMM for the nonsymmetric
EiCP is introduced together the details of its implementation and its convergence analysis. The
extensions of this algorithm for the symmetric EiCP and for computing an SP of an StQP are
discussed in Sections 3 and 4. Two Semi-smooth Newton methods and hybrid algorithms combining
ADMM and SN methods are discussed in Section 5. Computational experience with the ADMM
and hybrid methods is reported in Section 6. Finally, some conclusions are presented in the last
section of the paper.

Notation: If x is a vector of dimension n, then x ≥ 0 means that xi ≥ 0 for all i = 1, ..., n.

2. An ADMM for the nonsymmetric EiCP

Consider the EiCP(A,B) (1). If A is not a PD matrix, it is always possible to make this matrix to
be PD by adding the matrix µB for some µ > 0. Note that (1a) can be written as

w = (A+ µB)x− (λ+ µ)Bx. (3)

Then the following property holds:

Property 1 EiCP(A,B) has a solution (x, λ) if and only if EiCP(A+µB,B) has a solution (x, λ+µ).

So, we can assume without loss of generality that A is a PD matrix in EiCP (1a)-(1d). Note
that by (2) λ > 0 in any solution of EiCP.

Consider the following parametric quadratic problem (QP):

QPλ : min fλ(x) = x>Ax− λx>Bx (4a)

s.t. Ax− λBx ≥ 0, (4b)

x ∈ S, (4c)

where

S = {x ∈ Rn : e>x = 1, x ≥ 0}. (5)
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We recall that x̄ is an SP of QPλ if

∇fλ(x̄)>(x− x̄) ≥ 0, ∀x ∈ P,

where P is the feasible convex set of QPλ. Then the following theorem holds:

Theorem 2.1 x∗ is an SP of QPλ∗ with λ∗ = λ(x∗) if and only if (x∗, λ∗) is a solution of EiCP.

Proof. If x∗ is an SP of QPλ∗ , then (x∗, λ∗) satisfies all the constraints of this QP and

(x∗)>Ax∗ − λ∗(x∗)>Bx∗ = 0.

So, (x∗, λ∗) is a solution of EiCP. On the other hand, if (x∗, λ∗) is a solution of EiCP then x∗ is a
global minimum for QP∗λ, as x∗ is a feasible solution satisfying

fλ∗(x∗) = 0 ≤ fλ∗(x),

for any feasible solution x of QPλ∗ . So, x∗ is an SP for QPλ∗ . �

In this section, we introduce an ADMM for finding a solution of the nonsymmetric EiCP. In order
to explain the steps of ADMM, we consider the following Nonlinear Programming Problem (NLP)
associated with EiCP:

min x>Ax− x>By (6a)

s.t. x ∈ S (6b)

y ∈ Rn (6c)

w ≥ 0 (6d)

λx− y = 0 (6e)

Ax−By − w = 0. (6f)

In this NLP, x is the primal variable, y and w are the auxiliary variables and λ is a parameter. In
the algorithm presented below, λ is updated at each iteration in such a way that (2) is satisfied,
thereby maintaining the complementarity condition in EiCP (1).

Let p ∈ Rn and q ∈ Rn be the vectors of dual variables associated to the constraints (6e) and
(6f). Consider the AL function:

Lρ(x, λ, y, w, p, q) = x>Ax− x>By + p>(λx− y) + q>(Ax−By − w)

+
ρ

2

(
‖λx− y‖2 + ‖Ax−By − w‖2

)
. (7)

In each iteration k of ADMM, let xk ∈ S, yk ∈ Rn, wk ≥ 0 be the vectors of the current primal
variables, and pk, qk be the vectors of the current dual variables of the AL function and λk = λ(xk)
be the value of the parameter λ, where λ(x) is given by (2). Then the vectors of the primal variables
are updated by alternating minimization of the AL function and the parameter λ is computed by
(2) with the updated vector xk+1, i.e., xk+1, λk+1, y

k+1 and wk+1 are computed by:

min
x∈S

Lρ(x, λk, y
k, wk, pk, qk)
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λk+1 = λ(xk+1)

min
y∈Rn

Lρ(x
k+1, λk+1, y, w

k, pk, qk)

min
w≥0

Lρ(x
k+1, λk+1, y

k+1, w, pk, qk)

respectively. Furthermore, the vectors of the dual variables are updated as in Augmented Lagrangian
Methods. Algorithm 1 presents the steps of the ADMM.

Algorithm 1 : ADMM for nonsymmetric EiCP

. Step 0: Initialization
1: Set k := 0 and choose x0, y0, w0, p0, q0 ∈ Rn, λ0 and ρ > 0.

. Step 1: Iterations
2: Compute xk+1 as the unique global minimum of the Strictly Convex Standard Quadratic Pro-

gram (SCStQP):

min
x∈S

(
λkp

k +A>qk −Byk − ρ(λky
k +A>(Byk + wk))

)>
x+

1

2
x>(A+A> + ρA>A+ ρλ2kI)x

(8)

3: Compute

λk+1 =
(xk+1)>Axk+1

(xk+1)>Bxk+1
(9)
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4: Compute yk+1 as the unique global minimum of

min
y∈Rn

−c>y +
1

2
y>Gy (10)

with

c = pk +B>qk +B>xk+1 + ρ
(
λk+1x

k+1 +B>(Axk+1 − wk)
)

(11)

and

G = ρ(I +B>B). (12)

5: Compute wk+1 as the unique global minimum of

min
w≥0

−
(
qk + ρ(Axk+1 −Byk+1)

)>
w +

1

2
w>(ρI)w (13)

6: Update dual variables:

pk+1 = pk + ρ(λk+1x
k+1 − yk+1) (14)

qk+1 = qk + ρ(Axk+1 −Byk+1 − wk+1). (15)

. Step 2: Stopping criteria
7: if (Criterion 1 OR Criterion 2) then
8: terminate with (xk+1, λk+1) being a solution of EiCP.
9: else

10: set k = k + 1 and go to Step 1.
11: end if

(I) Solution of SCStQP

SCStQP (8) can be efficiently solved by a Block Principal Pivoting (BPP) method described in
[20]. The KKT conditions for the unique global minimum of SCStQP (8) constitute the following
Mixed LCP:

v = h+Mz

zi ≥ 0, vi ≥ 0, i = 1, ..., n

vn+1 = 0, zn+1 ∈ R
z>v = 0,

(16)
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where zn+1 is the Lagrange multiplier associated to the equality constraint e>x = 1,

z =

[
x

zn+1

]
, M =

[
A+A> + ρA>A+ ρλ2kI −e

e> 0

]
and

h =

[
λkp

k +A>qk −Byk − ρ(λky
k +A>(Byk + wk))

−1

]
.

So, M is a square matrix of order (n + 1) and z and h are (n + 1)-vectors. Let N = {1, ..., n +
1}. The BPP algorithm is used to solve this Mixed LCP by employing in each iteration the so-
called Complementary Basic Solutions (CBS). In order to define a CBS, a partition {F, T} of N is
considered. The basic z- and v-variables are computed by:

MFF zF = −hF
vT = hT +MTF zF .

(17)

Furthermore, the nonbasic variables are given by:

zT = 0, vF = 0. (18)

By assuming that n+ 1 always belongs to F , then vn+1 is always a nonbasic variable, which
means that e>x = 1 for each CBS. Furthermore, there exists a CBS for each partition {F, T} of N ,
since MFF is always nonsingular, as a consequence of the matrix of the SCStQP being PD and e
to be a vector of ones.

Given a CBS, then there are two possible cases:

(i) zi ≥ 0 for all i ∈ F \ {n+ 1} and vT ≥ 0. Then this CBS is the unique solution of Mixed LCP
(16) and z = (zF , 0) is the unique global optimal solution of SCStQP (8).

(ii) There exists at least an i ∈ F \ {n+ 1} such that zi < 0 or a j ∈ T such that vj < 0. Then, a
new CBS is constructed with a new partition of N given by {F, T}, where F is updated by:

F = F \ {i ∈ {F \ {n+ 1}} : zi < 0} ∪ {i ∈ T : vi ≤ 0}
T = N \ F.

(19)

Note that vi ≤ 0 is used in the update (19) instead of the more natural vi < 0 by computational
reasons. In fact, in practice the algorithm usually requires a smaller number of iterations to compute
the unique solution of MLCP when the update (19) is employed. A new iteration of the BPP
algorithm takes place with the new CBS. In practice, a positive tolerance ε (usually equal to 10−6)
is employed and the stopping criterion (SC) and the update (UPD) (19) are replaced respectively
by:

SC: xi ≥ −ε, for all i ∈ F \ {n+ 1} and vj ≥ −ε, for all j ∈ T .

UPD: F = F \ {i ∈ {F \ {n+ 1}} : zi < −ε} ∪ {i ∈ T : vi ≤ ε}.

The algorithm does not possess finite convergence in theory. As explained in [20], it is possible
to combine this block principal pivoting version of BPP algorithm with a single principal pivoting
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version of BPP method that allows only one exchange of the set F in order to design a finitely
convergent BPP algorithm. The so-called Murty’s least-index pivoting method [25] can be used for
this purpose. Given a CBS, an index i ∈ N \ {n + 1} is called an infeasibility if i ∈ F and zi < 0
or i ∈ T and vi < 0. The number of infeasibilities of a CBS is the number of such indices. We use
this measure as a merit function that decides whether a block and fast update (19) or a single and
slow update of only one exchange in the set F chosen by Murty’s method is employed. However, in
practice, Murty’s method is never called and we skip the details of this finite convergence version
of BPP algorithm.

An important point for the good efficiency of BPP algorithm in practice is the choice of the initial
CBS. Our experiments suggest to use F = N for the first iteration of ADMM. For the remaining
iterations k > 1 of ADMM, the initial set F for BPP algorithm should be the set F corresponding
to the CBS that is the unique optimal solution of SCStQP (8) of the previous iteration k − 1. By
using these initialization choices and due to the update (19), n+1 always belongs to F , as required.

(II) Other Computational Issues

(i) λk+1 is computed as follows:

s = Axk+1

r = Bxk+1

λk+1 =
(xk+1)>s

(xk+1)>r
.

(ii) yk+1 is the unique optimal solution of the unrestricted strictly convex QP (10). Hence, yk+1

is the unique solution of the system of linear equations

Gy = c (20)

where c and G are given by (11) and (12), respectively. The matrix G is SPD and there
are very efficient direct and iterative algorithms for solving the linear system (20) for small
and large n [16]. Furthermore, B is the identity matrix in many applications of eigenvalue

problems. In this case, the matrix G of the system (20) is 2ρI and y is given by y =
1

2ρ
c.

(iii) wk+1 is computed as the unique optimal solution of the strictly convex QP (13). Hence, wk+1

is computed by the following closed formula:

wk+1 = max
{

0, Axk+1 −Byk+1 +
1

ρ
qk
}
, (21)

where max is taken componentwise. This formula is implemented as follows:

s = Axk+1

u = Byk+1.

For i = 1, ..., n, set

9
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wk+1
i = 0

γ = si − ui +
1

ρ
qki .

If γ ≥ ε, set wk+1
i = γ.

Note that s has been computed before in this k-th iteration.

(III) Convegence of ADMM for nonsymmetric EiCP

Theorem 2.2 If {(xk, wk, qk)} converges to (x∗, w∗, q∗) then (x∗, λ∗) with λ∗ = λ(x∗) is a solution
of EiCP.

Proof. Since the set S defined in (5) is compact and xk ∈ S for each k, then

x∗ ∈ S. (23)

Furthermore, the sequence {λk} converges to

λ∗ = λ(x∗) > 0, (24)

where λ(x∗) is given by (2).
Since yk+1 is a solution of the linear system (20), then yk+1 satisfies

ρ(λk+1x
k+1 − yk+1) + ρB>(Axk+1 −Byk+1 − wk) = −(B>xk+1 + pk +B>qk). (25)

By using (25) and the formulas (14) and (15), we have

pk+1 = pk − ρB>(Axk+1 −Byk+1 − wk)−B>xk+1 − pk −B>qk

= −B>(qk+1 − qk)− ρB>(wk+1 − wk)−B>xk+1 −B>qk.

So,

pk+1 = −B>(xk+1 + qk+1)− ρB>(wk+1 − wk). (26)

Since the sequences {xk}, {wk} and {qk} converge to x∗, w∗ and q∗, respectively, then by (26),
{pk} converges to −B>(x∗ + q∗). So, (14) implies that the sequence {yk} converges to

y∗ = λ∗x∗. (27)

Furthermore, by (21),

w∗ = max{0, Ax∗ −By∗ +
1

ρ
q∗} ≥ 0, (28)

and by (15),

Ax∗ −By∗ − w∗ = 0. (29)
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Then, by (27) and (28), we have

Ax∗ − λ∗Bx∗ ≥ 0. (30)

On the other hand, by (28) and (29)

w∗ = max
{

0, w∗ +
1

ρ
q∗
}
,

which can be rewritten as

min
{
w∗,−1

ρ
q∗
}

= 0.

This implies

q∗ ≤ 0. (31)

Next, we show that

(w∗)>q∗ = 0. (32)

Since q∗ ≤ 0 ≤ w∗, we only have to prove that w∗i > 0 implies q∗i = 0 for each i. But w∗i > 0 and
(28) imply

w∗i =
1

ρ
q∗i + (Ax∗ −By∗)i.

Then, by (29)

q∗i = −ρ(Ax∗ −By∗ − w∗)i = 0.

Hence, by (27), (29) and (32), we have

((A− λ∗B)x∗)>q∗ = 0. (33)

As xk+1 is the unique optimal solution of the SCStQP (8), then xk+1 satisfies:

((A+A>)xk+1 −Byk + λkp
k +A>qk + ρ(λk(λkx

k+1 − yk) +A>(Axk+1 −Byk − wk)))>(x− xk+1) ≥ 0,
(34)

for all x ∈ S. Since {xk}, {qk} and {pk} converge to x∗, q∗ and −B>(x∗ + q∗), respectively and
(27) and (28) hold, then by passing (34) to the limit, we have

((A+A>)x∗ − λ∗(B +B>)x∗ + (A− λ∗B)>q∗)>(x− x∗) ≥ 0, (35)

for all x ∈ S. By (23), (24), (30), (31), (33) and (35), x∗ is an SP of QPλ∗ with λ∗ = λ(x∗). So, by
Theorem 2.1, (x∗, λ∗) is a solution of EiCP. �
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Unfortunately, there is no guarantee that {(xk, wk, qk)} converges and the algorithm may
be unable to compute a solution of the nonsymmetric EiCP. Despite the sequence {xk} being
bounded, the remaining sequences {wk} and {qk} may be not bounded and an accumulation
point of the sequence {(xk, wk, qk)} may not exist. In fact, the lack of separability in the objective
function was the main obstacle to providing a complete convergence proof of the ADMM for
NLP (6), as it prevents us from exploiting proof techniques used in the literature of ADMM.
Finally, note that for the symmetric EiCP, we are able to prove in Section 3 that under two
conditions any accumulation point x∗ of the sequence {xk} gives a solution (x∗, λ∗), with λ∗ = λ(x∗).

(IV) Stopping Criteria for the nonsymmetric EiCP

Criterion 1:

Let F and T be the indices of basic and nonbasic variables associated to xk+1 and let λk+1 be
given by (9). Let

s = Axk+1

r = Bxk+1

σ = Axk+1 − λk+1Bx
k+1 = s− λk+1r.

Then (xk+1, λk+1) is a solution of EiCP if:

σi ≥ −ε, i ∈ T
−ε ≤ σi ≤ ε, i ∈ F

Note: The vectors r and s have been computed before in this iteration k.

This criterion gives a solution of EiCP provided ε is a small positive tolerance. Computational
experience to be reported later indicates that ε may be not too small for the algorithm to terminate
with an accurate solution of EiCP. Our experience also shows that Criterion 1 has a dramatic effect
on the efficiency of the algorithm. In fact, for many problems ADMM terminates fast (i.e., with
a small number of iterations), whereas it is unable to terminate or is too slow if only Criterion 2
is employed. So, this Criterion 1 is an important contribution for ADMM to be useful in practice.
Note that Criterion 1 is a consequence of the use of BPP algorithm to solve the required SCStQP
in each iteration of ADMM.

Computer experiments with several test problems to be reported in this paper and elsewhere
indicate that ADMM may be unable to compute a solution of the nonsymmetric EiCP for
some instances. However, we can stop ADMM prematurely by using a bigger tolerance. As
discussed in Section 5, this premature termination has an important effect on the efficiency of a hy-
brid algorithm for solving the nonsymmetric EiCP, which combines ADMM with a fast SN method.

12
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Criterion 2:

This criterion follows from Theorem 2.2 and takes the following form:

‖xk+1 − xk‖ ≤ ε AND ‖wk+1 − wk‖ ≤ ε AND ‖qk+1 − qk‖ ≤ ε.

(V) Initial Point

The preprocessing technique described in [18] may be adapted to EiCP (1). For a canonical vector
ei to be a solution of EiCP (1), λ should satisfy

aii − λbii = 0

as xi = 1 > 0 implies wi = 0. Hence,

λ =
aii
bii
.

Furthermore, for any j 6= i, we must have

wj = aji −
aii
bii
bji ≥ 0,

that is,

ajibii − aiibji ≥ 0.

So, ei is a solution of EiCP (1) if

νi = min{ajibii − aiibji : j = 1, ..., n} ≥ 0. (37)

So, the preprocessing technique looks for an i ∈ {1, ..., n} satisfying (37). If such an i exists, then
ei is a solution of EiCP and ADMM is not required. Otherwise, νi < 0 for all i and the initial point
for ADMM is the vector x0 = eτ , where

τ = argmax{νi : i = 1, ..., n}. (38)

Alternatively, x0 can be chosen as the barycenter 1
ne of the simplex (5). After computing x0, the

remaining components of the initial point are given by:

λ0 =
(x0)>Ax0

(x0)>Bx0
(39a)

y0 = λ0x
0 (39b)

w0 = Ax0 − λ0Bx0 (39c)

p0 = q0 = 0. (39d)

13
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By computing the auxiliary vectors defined before:

s = Ax0

r = Bx0,

then the computation of λ0 and w0 are as follows:

λ0 =
s>x0

r>x0

w0 = s− λ0r.

3. An ADMM for the symmetric EiCP

In this case A and B are both symmetric matrices and B is SPD. As before, we can assume that
A is also SPD. Consider the following parametric QP:

QPλ : min fλ(x) =
1

2
(x>Ax− λx>Bx)

s.t. x ∈ S, (40)

where S is the simplex defined by (5). The following result can be proved:

Theorem 3.1 x∗ is an SP of QPλ∗ (40) with λ∗ = λ(x∗) if and only if (x∗, λ∗) is a solution of
the symmetric EiCP.

Proof. Let x∗ be an SP of QPλ∗ with λ∗ = λ(x∗). Then x∗ satisfies the KKT conditions

Ax∗ − λ∗Bx∗ = w + θe (41a)

x∗ ≥ 0, w ≥ 0 (41b)

e>x∗ = 1 (41c)

(x∗)>w = 0, (41d)

where θ ∈ R and w ∈ Rn are the Lagrangian multipliers associated to the constraints e>x = 1 and
x ≥ 0, respectively. Hence, by (41a) and (41c) and the definition of λ∗, we have

0 = (x∗)>w + θ.

Then (41d) implies θ = 0. So, (x∗, λ∗) is a solution of EiCP. Conversely, if (x∗, λ∗) is a solution of
EiCP, then x∗ satisfies the KKT conditions (41) with θ = 0. Then x∗ is an SP for QPλ∗ . �

By Theorem 2.1, a solution of the symmetric EiCP can be computed by applying ADMM to

an NLP obtained from (6) by replacing A and B by
1

2
A and

1

2
B, respectively, and removing the

constraint (6f) and the vector w. The AL function is

Lρ(x, λ, y, p) =
1

2
x>Ax− 1

2
x>By + p>(λx− y) +

ρ

2
‖λx− y‖2. (42)

14
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So, ADMM for the symmetric EiCP takes the following form:

Algorithm 2 : ADMM for symmetric EiCP

. Step 0: Initialization
1: Set k := 0 and choose x0, y0, p0 ∈ Rn, λ0 > 0 and ρ > 0.

. Step 1: Iterations
2: Compute xk+1 as the unique global minimum of the SCStQP:

min
x∈S

(
λkp

k − 1

2
Byk − ρλkyk

)>
x+

1

2
x>(A+ ρλ2kI)x (43)

3: Compute λk+1 =
(xk+1)>Axk+1

(xk+1)>Bxk+1
.

4: Compute yk+1 by

yk+1 = λk+1x
k+1 +

1

ρ
(pk +

1

2
Bxk+1). (44)

5: Update dual variables:

pk+1 = pk + ρ(λk+1x
k+1 − yk+1).

. Step 2: Stopping criteria
6: if (Criterion 1 OR Criterion 2) then
7: terminate with (xk+1, λk+1) being a solution of EiCP.
8: else
9: set k = k + 1 and go to Step 1.

10: end if

(I) Computational Issues

(i) The main effort of each iteration is the solution of an SCStQP (43), which is efficiently solved
by BPP algorithm.

(ii) Contrary to the nonsymmetric case, the linear system of equations (20) is not required.

(iii) Since B is symmetric, (26) can be simplified as

pk+1 = −1

2
Bxk+1. (45)

15
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So, instructions 4: and 5: should be implemented as follows:

r = Bxk+1

pk+1 = −1

2
r

yk+1 = λk+1x
k+1 +

1

ρ
(pk − pk+1).

(II) Convergence of ADMM for the symmetric EiCP

By using a proof similar to and much simpler than the proof of Theorem 2.2, it is possible to
show that if the sequence {xk} of iterates converges to x∗, then (x∗, λ(x∗)) is a solution of EiCP.
Since this sequence is bounded then it has an accumulation point. The next theorem shows that
such an accumulation point gives a solution of the symmetric EiCP under some conditions.

Theorem 3.2 Let x∗ be an accumulation point of {xk} and {xk}k∈K , with K ⊆ {0, 1, ...} be a
subsequence of {xk} converging to x∗. If the conditions

lim
k∈K
‖xk − xk+1‖ = 0 (46)

and

lim
k∈K
‖yk − yk+1‖ = 0 (47)

hold, then (x∗, λ∗) with λ∗ = λ(x∗) is a solution of the symmetric EiCP.

Proof. Note that x∗ exists as the sequence {xk} is bounded. Since

lim
k∈K

xk = x∗ (48)

then, by (46), we have

lim
k∈K

xk+1 = x∗. (49)

Furthermore, by (48) and (49)

lim
k∈K

λk = lim
k∈K

λk+1 =
x∗TAx∗

x∗TBx∗
= λ∗. (50)

By (45),

lim
k∈K

pk = lim
k∈K

pk+1 = −1

2
Bx∗.

16
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Now,

lim
k∈K

yk+1 = lim
k∈K

(λk+1x
k+1 +

1

ρ
(pk +

1

2
Bxk+1)) = λ∗x∗.

Hence, by condition (46),

lim
k∈K

yk = λ∗x∗ (51)

Finally, as xk+1 is an SP of the SCStQP (43), then

(λkp
k − 1

2
Byk − ρ(xk+1 − yk) +Axk+1)>(x− xk+1) ≥ 0 (52)

for all x ∈ S. By taking limits in (52) for k ∈ K, we have

(Ax∗ − λ∗Bx∗)>(x− x∗) ≥ 0

for all x ∈ S. Hence x∗ is an SP of QP∗λ (40) with λ∗ given by (50). So, by Theorem 3.1, (x∗, λ∗) is
a solution of the symmetric EiCP. �

It is important to add that the assumptions (46) and (47) are less demanding than the hypothesis
of the whole sequence {xk} to converge. Furthermore, computational experiments with symmetric
EiCPs from different sources reported in Section 6.2 and elsewhere indicate that ADMM usually
converges to a solution of the EiCP.

(III) Stopping Criteria

Criterion 1: Similar to the nonsymmetric case.

Criterion 2: ‖xk+1 − xk‖ ≤ ε.

4. Computing a Stationary Point of a Standard Quadratic Programming Problem

Consider a Standard Quadratic Program (StQP)

min c>x+
1

2
x>Qx

s.t. x ∈ S,
(53)

where Q is a given symmetric matrix of order n, c is a given n-vector and S is defined by (5). If Q
is an SPD matrix, then StQP is strictly convex (SCStQP) and has a unique global minimum. This
point is the unique SP of StQP and the unique solution of Mixed LCP (16) with

M =

[
Q −e
e> 0

]
and h =

[
c
−1

]
.

17
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So, this SCStQP can be efficiently solved by the BPP algorithm discussed in Section 2. Now,
consider the case where Q is not an SPD matrix. Then there exists an SPD matrix A (not unique)
such that

Q = A−B.

Note that, contrary to the decomposition used in DC algorithms, B does not need to be symmetric
positive semi-definite. However, B is a symmetric matrix, since Q and A are both symmetric. By
introducing the additional vector y ∈ Rn then StQP can be written as follows:

min c>x+
1

2
x>Ax− 1

2
x>By

s.t. x− y = 0

x ∈ S
y ∈ Rn,

(54)

where S is the ordinary simplex given by (5). It is now easy to extend ADMM for computing an
SP of StQP. The AL function takes the form:

Lρ(x, y, p) = c>x+
1

2
x>Ax− 1

2
x>By + p>(x− y) +

ρ

2
‖x− y‖2,

where p ∈ Rn is the dual vector associated to the constraint x − y = 0. Algorithm 3 is a simpler
version of Algorithm 2 and its steps are presented below:

Algorithm 3 : ADMM for StQP

. Step 0: Initialization
1: Set k = 0 and choose y0, p0 ∈ Rn (usually p0 = y0 = 0), ρ > 0.

. Step 1: Iterations
2: Compute xk+1 by solving the following QP

min
x∈S

(
c− 1

2
Byk + pk − ρyk

)>
x+

1

2
x>(A+ ρI)x. (55)

3: Compute yk+1 = xk+1 +
1

ρ

(
pk +

1

2
Bxk+1

)
.

4: Compute pk+1 = pk + ρ
(
xk+1 − yk+1

)
.

. Step 2: Stopping criteria
5: if (Criterion 1) OR (Criterion 2 then
6: terminate with xk+1 being a solution of StQP (53).
7: else
8: set k = k + 1 and go to Step 1.
9: end if

18
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(I) Convergence of ADMM for finding an SP of an StQP

Theorem 4.1 Let x∗ be an accumulation point of {xk} and {xk}k∈K , with K ⊆ {0, 1, ...} be a
subsequence of {xk} converging to x∗. If the conditions (46) and (47) hold, then x∗ is an SP of
StQP (53).

Proof. The proof is similar to the proof of Theorem 3.2. �

(II) Computational Issues

(i) Matrix B does not need to be stored. Furthermore, it is not used in the instructions of
Algorithm 3 as we use

Byk = Ayk −Qyk

Bxk+1 = Axk+1 −Qxk+1.

(ii) Instructions 3: and 4: should be implemented as follows:

r = Axk+1

τ = Qxk+1

pk+1 =
1

2
(τ − r)

yk+1 = xk+1 +
1

ρ
(pk − pk+1).

(56)

(iii) As before, BPP algorithm should be used to solve the SCStQP (55) in each iteration of
Algorithm 3.

(iv) In practice, the choice of the SPD matrix A plays an important role. This choice is not unique
and should be done by exploiting the structure and even the sparsity of the matrix Q of the
quadratic function. In this paper, we only report experiments on the use of ADMM for solving
the nonsymmetric and symmetric EiCP. The performance of ADMM for the computation of
an SP of an StQP in practice will be reported in a future paper.

(v) Algorithm 3 can be extended to solve Quadratic Programs with Bounds (BQP) and Continous
Knapsack Quadratic Problems (CKQP), as the BPP algorithm is very efficient to solve the
required strictly convex quadratic programs [20].

(III) Stopping Criteria

Criterion 1:

The KKT conditions for StQP take the form:

c+Qx = t+ µe

t ≥ 0, µ ∈ R
x>t = 0

x ∈ S,
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where S is the feasible set of StQP given by (5). So, in order to verify if xk+1 is an SP of StQP
(53), we consider the following LP:

min (xk+1)>t

s.t. t+ µe = c+Qxk+1

t ≥ 0, µ ∈ R.

An optimal solution (µ, z) for this LP is computed as follows:

(i) u = c+Qxk+1 = c+ τ , where τ is computed in 3: of Algorithm 3 (see (56)).
(ii)

µ = min{ui : i = 1, . . . , n}. (57)

(iii)

t = u− µe. (58)

Then t ≥ 0 and xk+1 is an SP of StQP (53) if t>xk+1 ≤ ε. So, this criterion should be implemented
as follows:

Let F and T be the sets of the indices of the basic and nonbasic variables associated to xk+1 and
let t be the vector given by (58), where µ is computed by (57). Since xk+1

T = 0, xk+1 is an SP of
StQP if

ti ≤ ε, for all i ∈ F.

Criterion 2: ‖xk+1 − xk‖ ≤ ε.

5. SN methods and a hybrid algorithm for EiCP

(I) Simple SN method

Consider EiCP as the following Mixed Nonlinear Complementarity Problem (Mixed NCP):

Ax− λBx− w = 0 (59a)

e>x− 1 = 0 (59b)

wi ≥ 0, xi ≥ 0, wixi = 0, i = 1, . . . , n, (59c)

λ ∈ R. (59d)

By considering the Fischer-Burmeister (FB) function ϕFB(a, b) = a+ b−
√
a2 + b2 with a, b ∈ R,

we can transform conditions (59c) into

Φ(x,w) =

ϕFB(x1, w1)
...

ϕFB(xn, wn)

 = 0.
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Then Mixed NCP (59) is equivalent to finding a zero of the following function:

Ψ(x,w, λ) =

Ax− λBx− we>x− 1
Φ(x,w)

 . (60)

Let (x̄, w̄, λ̄) be the current iterate. If

max{‖Ax̄− λ̄Bx̄− w̄‖, |e>x̄− 1|, ‖Φ(x̄, w̄)‖} < ε, (61)

then SN method terminates with (x̄, λ̄) being a solution of EiCP. Otherwise, a new direction is
computed by considering the following system

Jd = −ζ, (62)

where ζ = Ψ(x̄, w̄, λ̄), d = [dx, dw, dλ] and J is given by

J(x̄, w̄, λ̄) =

A− λ̄B −I −Bx̄
e> 0 0
V Z 0

 , (63)

where V and Z are diagonal matrices with the following diagonal elements:

(Vii, Zii) =


1− x̄i√

x̄2i + w̄2
i

, 1− w̄i√
x̄2i + w̄2

i

 if (x̄i, w̄i) 6= 0(
1− ξ̃i, 1− η̃i

)
if (x̄i, w̄i) = 0

∀i = 1, . . . , n, (64)

with ξ̃2i + η̃2i = 1. In practice, we use (ξ̃i, η̃i) = (0, 1) for all i = 1, . . . , n.
Now there are two cases:

(i) Matrix J is nonsingular and the search direction d is computed by solving the system (62).

(ii) Matrix J is singular and d is computed by finding the minimum norm solution of the following
LSQ:

min ‖Jd+ ζ‖2. (65)

or by the Levenberg-Marquardt (LM) formula

min

∥∥∥∥∥
[
J
βI

]
d+

[
ζ
0

] ∥∥∥∥∥
2

. (66)

where β is a real parameter and I is the identity matrix. Note that the LM formula (66)
reduces to (65) if β = 0. Typically, the parameter β is updated at every iteration in such a
way that it tends to zero as the algorithm converges to a solution.
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Then a new iterate is computed by:

x̃ = x̄+ dx, w̃ = w̄ + dw, and λ̃ = λ̄+ dλ, (67)

and a new iteration is performed with x̄ = x̃, λ̄ = λ̃ and w̄ = w̃.

The iterative algorithms based on (62) and (67) may also be referred to as Gauss-Newton
method and modified Gauss-Newton method, respectively. Notice that the Fischer-Burmeister
function has the property called semismoothness, which means that the function Ψ inherits the
same property. Local superlinear or quadratic convergence of the semismooth Gauss-Newton (or
modified Gauss-Newton) method can be established under suitable assumptions, including the
nonsingularity of the Generalized Jacobian at the solution [12, Theo. 7.5.11]. Although these
methods do not possess a global convergence property, we may expect that the hybridization with
ADMM works effectively, since the latter algorithm used in the first stage will provide a good
starting point for the (modified) Gauss-Newton method used in the second stage. Such a hybrid
algorithm will be discussed later in this section and its efficiency and efficacy in practice will be
reported in the next section.

(II) SN method with line search

Another form of trying to overcome the drawback of a singular Generalized Jacobian is to use
the natural merit function associated to system (60), together with a line search procedure. Define
the merit function associated to (60) as follows:

ψ(x,w, λ) =
1

2
‖Ψ(x,w, λ)‖2. (68)

Note that the above function is continuously differentiable, since the squared FB function is
continuously differentiable. A simple version of a globally convergent SN method may be described
as follows:

SN method with line search:

Step 0: Let ε1, ε2 > 0 be small enough, and β, δ, m, η, γ be constants such that 0 < β < 1, δ > 0,
m > 1, η > 0, 0 < γ < 1 (in practice, we use β = 0.5, δ ∈ (10−8, 10−6), m ∈ (2.0, 2.5),
η = 10−4, γ = 0.5). Choose a starting point (x0, w0, λ0) and set k := 0.

Step 1: If ψ(xk, wk, λk) < ε1, terminate with a solution of Mixed NCP (59). If ‖∇ψ(xk, wk, λk)‖ <
ε2, then terminate with an SP of the natural merit function (68) on R2n+1.

Step 2: If J(xk, wk, λk) given by (63) is singular, then go to Step 4. Otherwise, solve (62) to find
the Newton direction (dx, dw, dλ). If

ψ(xk + dx, w
k + dw, λk + dλ) ≤ βψ(xk, wk, λk), (69)

then set (xk+1, wk+1, λk+1) = (xk + dx, w
k + dw, λk + dλ), k := k + 1 and go to Step 1. If

(69) does not hold, then go to Step 3.
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Step 3: If the descent condition ∇xψ(xk, wk, λk)

∇wψ(xk, wk, λk)

∇λψ(xk, wk, λk)

>  dx
dw
dλ

 ≤ −δ
∥∥∥∥∥∥
 dx
dw
dλ

∥∥∥∥∥∥
m

is satisfied, then go to Step 5. Otherwise, go to Step 4.
Step 4: Set (dx, dw, dλ) = −(∇xψ(xk, wk, λk),∇wψ(xk, wk, λk),∇λψ(xk, wk, λk)) and go to Step 5.
Step 5: Let αk be the largest element in {1, γ, γ2, . . . } satisfying

ψ(xk + αkdx, w
k + αkdw, λk + αkdλ) ≤ ψ(xk, wk, λk) + ηαk∇ψ(xk, wk, λk)

>(dx, dw, dλ).

Set (xk+1, wk+1, λk+1) = (xk, wk, λk) + αk(dx, dw, dλ), k := k + 1 and go to Step 1.

Note that the components of the gradient ∇ψ(x,w, λ) at any point (x,w, λ) are given by

∇xψ(x,w, λ) = (A− λB)>(Ax− λBx− w) +∇xψFB(x,w) + (e>x− 1)e

∇wψ(x,w, λ) = −(Ax− λBx− w) +∇wψFB(x,w)

∇λψ(x,w, λ) = −(Bx)>(Ax− λBx− w),

where ∇xψFB(x,w) and ∇wψFB(x,w) represent the gradients of the squared Fischer-Burmeister

function, i.e., ψFB(x,w) =
1

2
Φ(x,w)>Φ(x,w). Specifically, ∇xψFB(x,w) and ∇wψFB(x,w) can be

computed as

∇xψFB(x,w) = ∇xΦ(x,w)Φ(x,w) = V Φ(x,w)

∇wψFB(x,w) = ∇wΦ(x,w)Φ(x,w) = ZΦ(x,w),

where V and Z are diagonal matrices whose diagonal elements are given by (64) with (x̄i, w̄i)
replaced by (xi, wi) for i = 1, . . . , n.

At each iteration of the algorithm, the Newton step is first checked. If it should not be accepted,
i.e., either the generalized Jacobian is singular or (69) fails to hold, then the steepest descent
direction is used to decrease the merit function ψ.

The algorithm stated above is an adaptation of the general globalized Newton-type method for
solving nonsmooth systems F (x) = 0, where F is nonsmooth and F 2 is continously differentiable.
The convergence properties of such an algorithm are well understood. Specifically, every accu-
mulation point of the sequence generated by the algorithm is a stationary point of the function
F 2 on R2n+1. So, the algorithm may converge to a point that is not a solution of the system
F (x) = 0. This is a drawback of the algorithm. On the positive side, under a suitable regularity
condition, a stationary point of the function F 2 on R2n is a solution of the system F (x) = 0 [12,
pp. 752-753]. Furthermore, if the starting point is already sufficiently close to the solution, the
Newton step is usually accepted, and the algorithm converges to the solution at least linearly,
normally superlinearly, without using steepest descent steps. Furthermore, ADMM can provide
such an initial point and we expect the SN method with such an initial point to be able to find a
solution of EiCP. This procedure will be discussed next and its efficiency and efficacy in practice
will be reported in the next section.
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(III) Hybrid Algorithm

In this procedure, ADMM is firstly applied until Criterion 1 is satisfied with a relatively large
tolerance (ε = 10−1). Then SN method (simple or with line search) is employed until the end with
initial point given by:

x = xk+1, λ = λk+1 and w = σ

where (xk+1, λk+1, σ) satisfies Criterion 1 of ADMM.

6. Computational experiments on the solution of nonsymmetric and symmetric
EiCPs

6.1 EiCP Test Problems

For Test Problems 1 and 2, we consider A as a nonsymmetric PD matrix of the form

A = C + µI, (70)

where C is a randomly generated matrix with elements uniformly distributed in the interval [−2, 10]
and µ > |min{0, θ}|, where θ is the smallest eigenvalue of C + C>. So, A is a nonsymmetric PD
matrix. B is taken as the identity matrix in Test Problems 1, whereas in Test Problems 2, B = P ,
where P is a symmetric strictly diagonally dominant matrix with positive diagonal elements of the
following form:

Pi,i = 10, i = 1, . . . , n, (71a)

Pi,j = −1, j = i+ 1, . . . , i+ 4, i = 1, . . . , n, (71b)

Pi,j = −1, j = i− 1, . . . , i− 4, i = 1, . . . , n. (71c)

Hence, P is an SPD matrix. Note that the solution of EiCPs of this form has been reported in
other computational studies of EiCP (see for instance [18]).

Test Problems 3 are symmetric EiCPs, whose solution has also been reported in other computa-
tional studies of EiCP (see for instance [18]). For these problems B is the identity matrix and A is
an SPD matrix from the Harwell-Boeing collection.

Test Problems 4 are instances of EiCPs discussed in the so-called Spectral Theory of Graphs [14].
So, B = I and A is the symmetric adjacency matrix of some of the larger graphs of the DIMACS
collection [10]. Since A is not an SPD matrix we use Property 1 and for each instance we solve
EiCP(A+ µB,B) instead of EiCP(A,B), where µ is a positive number so that A+ µB is an SPD
matrix. Furthermore, for each instance the complementary eigenvalue of EiCP(A,B) is equal to
λ− µ, where λ is the value computed by ADMM.

Finally, we generate Test Problems 5 and Test Problems 6 with

A = C + C> +D,

where C is defined as in Test Problems 1 and D is chosen so that A is an SPD matrix. Furthermore,
B = I +D in Test Problems 5 and B = P +D in Test Problems 6.
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Each problem is denoted by the name used in the collection and by the dimension n of the EiCP,
that is the order of each matrix A and B, which is included in brackets after the corresponding
notation. The instances of Test Problems 1, 2, 5 and 6 are indicated as RAND(n), and we considered
n = 50, 100, 250, 500, 750, and 1000. As the resulting EiCP Test Problems 3 – 6 are symmetric,
we use Algorithm 2 for computing a solution.

6.2 Numerical results

In the tables, we use the following notation:

• ρ: value of ρ used for the results presented in the table.

• It: number of iterations required by ADMM.

• λ: computed complementary eigenvalue.

• compl = x>w, where x and w are the vectors computed by ADMM.

• dualfeas = min{wi : i = 1, ..., n}, where wi are the components of the vector w.

• nitBPP: average number of iterations required by BPP algorithm.

• Crit: 1 or 2 depending on the criterion that is satisfied for the algorithm to terminate.

• cputime: computational time required by BPP algorithm.

We set the stopping tolerances as ε = 10−4 and ε = 10−6 for Criteria 1 and 2, respectively. The
maximum number of iterations allowed for this ADMM is nitmax = 6000. In case the algorithm
is not able to terminate within nitmax iterations, we run again the algorithm with tolerance 10−3

for Criterion 1. We write a * if it terminates satisfying Criterion 1 with this tolerance and **
in case the algorithm fails, that is, it attains nitmax iterations without satisfying one of the two
criteria. The initial point (x0, λ0, w

0, p0, q0) was computed as discussed in Section 2 with x0 being
the barycenter of the simplex (5) and the remaining components computed by (39). We have also
tried in our experiments to choose x0 = eτ , where τ is given by (38) but the barycenter seems to
be, in general, a better choice at least for these test problems.

Our experiments have shown that ρ does not need to be large for both the versions of ADMM to
work well. Furthermore, the number of iterations of ADMM to compute a solution of EiCP usually
decreases with a reduction of ρ. In general, ρ = 20 is a good choice for solving the test problems
presented in this paper. For some test problems, a larger value of ρ is required for ADMM to find
a solution to the EiCP (see results of Test Problems 5 and 6 in Tables 11 and 12, respectively).
Finally, it is interesting to see that for Test Problems 4 associated to adjacency matrices of graphs,
ADMM performs quite well using a very small value of the penalty parameter, ρ = 0.1 (see Table
10). So, the choice of ρ in practice is still an issue that deserves more attention in the future.

The numerical results concerning the performance of ADMM for solving nonsymmetric EiCP
Test Problems 1 and 2 are displayed in Tables 1 and 2. For all these test problems, BPP algorithm
is quite efficient as, in general, it requires very few iterations to terminate. This can be verified
by noticing the very small values of nitBPP in all the tables containing numerical results of the
performance of ADMM for solving nonsymmetric and symmetric EiCPs. Algorithm 1 was able
to solve all instances, but the larger of Test Problems 1. Furthermore, whenever successful, the
algorithm always terminates with Criterion 1 based on the BPP method and computes an accurate
solution of EiCP, as it is confirmed by the values in columns compl and dualfeas. ADMM is fast
(requires a small number of iterations) to compute a solution of Test Problems 2 and slow (requires
many iterations) for Test Problems 1. For the larger Test Problems 1, ADMM either terminates
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using a larger tolerance 10−3 in Criterion 1 (see instance with n = 500) or is unable to terminate
even with this tolerance (see the instances with n = 750 and n = 1000).

Problem It ρ λ compl dualfeas nitBPP nLSyst Crit cputime

RAND( 50) 1734 20 2.6784e+02 9.1458e-17 -3.2799e-06 1.0000 3468 1 3.3860e-01
RAND(100) 2431 20 4.9331e+02 1.1883e-16 -1.7007e-06 1.0000 4862 1 1.7983e+00
RAND(250) 4745 20 1.1593e+03 2.8257e-16 -5.7327e-07 1.0000 9490 1 1.6823e+01
RAND(500)* 5474 20 2.2109e+03 5.8443e-16 -2.4410e-06 1.0000 10948 1 1.1643e+02
RAND(750)** 6000
RAND(1000)** 6000

Table 1.: Performance of ADMM for nonsymmetric EiCP - Test Problems 1.

Problem It ρ λ compl dualfeas nitBPP nLsyst Crit cputime

RAND( 50) 30 20 1.1995e+02 -8.5706e-16 -4.7148e-05 1.0000 60 1 7.8285e-03
RAND(100) 23 20 2.3437e+02 -9.1604e-16 -7.8750e-05 1.0000 46 1 1.6802e-02
RAND(250) 22 20 5.6756e+02 -6.2125e-16 -4.8593e-05 1.0000 44 1 1.4335e-01
RAND(500) 32 20 1.0938e+03 -3.9340e-16 -3.3674e-05 1.0625 66 1 8.5641e-01
RAND(750) 23 20 1.6227e+03 5.3751e-16 -1.9455e-05 1.0870 48 1 1.2356e+00
RAND(1000) 23 20 2.1392e+03 -1.0842e-15 -3.3962e-05 1.0870 48 1 2.5072e+00

Table 2.: Performance of ADMM for nonsymmetric EiCP - Test Problems 2.

We also solved the same instances by using the hybrid algorithm discussed in Section 5, that is,
Algorithm 1 is used until Criterion 1 is satisfied with tolerance 10−1, and one of the SN methods
discussed in the same section is applied until the end. The initial point for these SN methods is
given by x0 = x, λ0 = λ and w = s − λr, where x and λ satisfy Criterion 1 with ε = 10−1, and
s and r are computed in instruction 2: and also in testing Criterion 1 of Algorithm 1. The results
obtained with the use of the hybrid method involving the simple SN method employing formula (65)
for the case of the singularity of the Generalized Jacobian and a tolerance ε = 10−6 are shown in
Tables 3 and 5, where we indicated by niterSN the number of iterations required by the SN method.
In Tables 4 and 6, we show the results obtained by the hybrid method involving the SN method
with line search. Note that the performance of the two versions of the hybrid method is similar, as
both the algorithms starting with the initial point given by Algorithm 1 terminate with the same
solution of EiCP in the same number of iterations for almost all the instances. Furthermore, the
simple SN method performs better than SN method with line search when their performances are
not the same. It is important to add that both the versions of SN algorithm require a quite small
number of iterations to compute a solution of EiCP. Moreover, for each one of the Test Problems 1
and 2, both the versions of SN method compute the same complementary eigenvalue. Finally, the
use of the hybrid version of this ADMM enables us to solve all the instances of Test Problems 1
and 2 successfully.
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Problem It ρ λ compl dualfeas nitBPP niterSN nLSyst cputime

RAND( 50) 313 20 2.6784e+02 -1.5288e-09 -6.1292e-08 1.0000 5 631 7.2736e-02
RAND(100) 509 20 4.9331e+02 -4.7342e-10 -3.7027e-08 1.0000 5 1023 4.0445e-01
RAND(250) 459 20 1.1593e+03 -1.3030e-10 -1.4521e-08 1.0000 5 923 1.5872e+00
RAND(500) 195 20 2.2065e+03 -9.8314e-11 -6.6620e-09 1.0000 5 395 4.0818e+00
RAND(750) 244 20 3.2514e+03 -2.3514e-11 -4.4542e-09 1.0000 5 493 1.0962e+01
RAND(1000) 598 20 4.2970e+03 -3.5416e-12 -3.2795e-09 1.0000 5 1201 4.8279e+01

Table 3.: Performance of the hybrid algorithm (ADMM and simple SN method) for nonsymmetric
EiCP - Test Problems 1.

Problem It ρ λ compl dualfeas nitBPP niterSN nLsyst cputime

RAND( 50) 313 20 2.6784e+02 -5.9576e-11 -2.2001e-09 1.0000 4 630 1.1530e-01
RAND(100) 509 20 4.9331e+02 -3.9166e-09 -3.0629e-07 1.0000 5 1023 3.9718e-01
RAND(250) 459 20 1.1593e+03 -3.3948e-11 -6.4833e-09 1.0000 7 925 1.4483e+00
RAND(500) 195 20 2.2065e+03 -4.8058e-10 -1.2969e-07 1.0000 7 397 3.8187e+00
RAND(750) 244 20 3.2514e+03 -1.6654e-09 -6.7455e-07 1.0000 6 494 1.1054e+01
RAND(1000) 598 20 4.2970e+03 -3.9204e-10 -3.6280e-07 1.0000 6 1202 5.0520e+01

Table 4.: Performance of the hybrid algorithm (ADMM and SN method with line search) for
nonsymmetric EiCP - Test Problems 1.

Problem It ρ λ compl dualfeas nitBPP niterSN nLsyst cputime

RAND( 50) 19 20 1.1995e+02 -3.8004e-09 -3.6454e-08 1.0000 5 43 9.4728e-03
RAND(100) 16 20 2.3437e+02 -3.7087e-10 -1.1475e-08 1.0000 5 37 2.5187e-02
RAND(250) 18 20 5.6756e+02 -5.6973e-11 -5.4711e-09 1.0000 4 40 1.4660e-01
RAND(500) 24 20 1.0938e+03 -1.3353e-11 -6.3715e-09 1.0833 5 55 9.4552e-01
RAND(750) 16 20 1.6227e+03 -3.8841e-10 -4.1850e-09 1.1250 5 39 1.7517e+00
RAND(1000) 17 20 2.1392e+03 -9.2747e-11 -3.1189e-09 1.1176 5 41 3.8099e+00

Table 5.: Performance of the hybrid algorithm (ADMM and simple SN method) for nonsymmetric
EiCP - Test Problems 2.

Problem It ρ λ compl dualfeas nitBPP niterSN nLsyst cputime

RAND( 50) 19 20 1.1995e+02 -5.5153e-11 -1.2674e-09 1.0000 6 44 1.2819e-02
RAND(100) 16 20 2.3437e+02 -9.6312e-11 -3.8991e-09 1.0000 5 37 2.4578e-02
RAND(250) 18 20 5.6756e+02 -5.6973e-11 -5.4711e-09 1.0000 4 40 1.2264e-01
RAND(500) 24 20 1.0938e+03 -3.5900e-12 -1.6765e-09 1.0833 7 57 1.1556e+00
RAND(750) 16 20 1.6227e+03 -2.8663e-10 -3.3034e-09 1.1250 7 41 2.3558e+00
RAND(1000) 17 20 2.1392e+03 -3.4965e-11 -2.6801e-09 1.1176 7 43 4.8234e+00

Table 6.: Performance of the hybrid algorithm (ADMM and SN method with line search) for
nonsymmetric EiCP - Test Problems 2.

Since each iteration of BPP algorithm requires the solution of exactly one linear system, a linear
system of the form (20) has to be solved in each iteration of Algorithm 1 and at most a linear
system is required for the SN methods in each iteration, then the total number of linear systems
to be solved by the hybrid method is:

nLsyst = It× (nitBPP + 1) + niterSN. (72)
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On the other hand, for the simple ADMM this number is:

nLsyst = It× (nitBPP + 1). (73)

These values are included in all the tables and clearly indicate the better performance of the hybrid
method over the simple ADMM for solving the nonsymmetric EiCP. Note that for the symmetric
EiCP, ADMM does not require the system (20) to be solved in this iteration. So, +1 is removed
from the formula (72).

In order to have a better idea of the efficiency of ADMM, we also solve the same test problems
by using the best of the splitting algorithms discussed in [18]. Note that EiCP (1) is equivalent to

w = (−λ)Bx− (−A)x (74a)

x ≥ 0, w ≥ 0 (74b)

x>w = 0. (74c)

This is the formulation of EiCP that was used for the splitting algorithms described in [18]. Since A
is PD then −A is ND and Algorithm A1 in [18] is the best splitting method to be used. Furthermore,
according to (74), if (λ, x) is the complementary pair computed by the splitting algorithm A1, then
(−λ, x) is a solution of EiCP (1).

For the nonsymmetric EiCPs, we report the performance of the splitting algorithm A1 in Tables
7 and 8. The initial point was chosen as the barycenter of the simplex (5) and λ0 as in (39a).
Algorithm A1 was not able to solve the larger three instances of both Test Problems 1 and 2 within
the allowed number of iterations, which has been set equal to 6000. Furthermore, when successful,
splitting algorithm A1 usually requires more iterations, linear systems and CPU time than the
hybrid methods.

Problem It λ compl dualfeas nitBPP nLSyst cputime

RAND( 50) 210 6.1097e+01 3.3029e-15 -1.5530e-05 2.0952 440 1.3530e-02
RAND(100) 722 9.6815e+01 5.0415e-17 -2.0556e-05 2.1039 1519 6.6086e-02
RAND(250) 3238 1.5660e+02 -5.6984e-16 -1.2882e-04 2.1288 6893 4.9123e-01
RAND(500)** 6000
RAND(750)** 6000
RAND(1000)** 6000

Table 7.: Performance of the splitting Algorithm A1 for nonsymmetric EiCP - Test Problems 1.

Problem It λ compl dualfeas nitBPP nLSyst cputime

RAND( 50) 272 6.4135e+00 1.6754e-15 -2.7045e-05 2.0625 561 1.4692e-02
RAND(100) 1061 9.4452e+00 1.0355e-15 -2.1442e-05 2.1244 2254 9.6551e-02
RAND(250) 1269 1.5834e+01 9.6361e-16 -1.3892e-04 2.1174 2687 2.3668e-01
RAND(500)** 6000
RAND(750)** 6000
RAND(1000)** 6000

Table 8.: Performance of the splitting Algorithm A1 for nonsymmetric EiCP - Test Problems 2.

As a final conclusion of this study on these Test Problems 1 and 2 and other experiments with
similar nonsymmetric EiCP test problems, we claim that ADMM performs well for solving small
dimensional nonsymmetric EiCPs but seems to be slow in general particularly for larger dimensional
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problems. Despite this drawback, ADMM seems to be more efficient than the best splitting method
discussed in [18] for the solution of the nonsymmetric EiCP. The good performance of ADMM is
strongly related to the use of BPP algorithm that is employed as its main subroutine. A stopping
criterion based on this BPP algorithm, that is Criterion 1, improves very much the speed of ADMM
towards a solution of EiCP. Furthermore, the use of this criterion with a larger tolerance provides
a good initial point for a fast local convergent algorithm such as a semi-smooth Newton method.
Two versions of the SN method have been tested and seem to be quite efficient for solving the
nonsymmetric EiCP when such an initial point is used.

Next, we report the performance of ADMM for the solution of the symmetric EiCP Test Problems
3 – 6. Algorithm 2 is quite efficient to solve all the symmetric EiCP Test Problems 3 and 4 when
an appropriate value of ρ is chosen. In our opinion, the first reason for the better performance of
Algorithm 2 over Algorithm 1 is the Lagrangian function (42) which is much simpler and contains
a much smaller number of dual variables than the Lagrangian function (7) used by Algorithm 1. As
for Algorithm 1, BPP algorithm for solving the required SCStQPs and Criterion 1 based on this
algorithm are the two relevant reasons for the efficiency and efficacy of Algorithm 2. Algorithm 2
found some difficulties for solving larger instances of Test Problems 5 and 6. As mentioned before,
Algorithm 2 needed to use a large value of ρ in order to terminate. Furthermore, for some of the
larger instances the algorithm was forced to terminate with Criterion 2 and obtained a less accurate
solution.

Problem It ρ λ compl dualfeas nitBPP nLsyst Crit cputime

BCSSTK02( 66) 4 20 7.6063e+00 -6.3527e-22 -3.1244e-05 3.2500 13 1 9.2219e-03
BCSSTK04(132) 4 20 1.6954e+02 -2.6470e-23 -1.3028e-05 1.7500 7 1 2.2428e-02
BCSSTK05(153) 1 20 9.6424e+02 4.3013e-22 -4.5617e-06 2.0000 2 1 5.3069e-03
BCSSTK10(1086) 1 20 1.1064e+05 2.1043e-21 -1.8066e-05 1.0000 1 1 1.1771e-01
BCSSTK27(1224) 1 20 1.2345e+04 -8.4703e-22 -1.9964e-05 1.0000 1 1 1.3975e-01
s1rmq4m1(5489) 1 20 2.5729e+01 -9.3058e-25 -1.8185e-07 1.0000 1 1 5.9845e+00
s1rmt3m1(5489) 1 20 1.7386e+01 -1.0340e-24 -8.4734e-08 1.0000 1 1 5.5897e+00
s2rmq4m1(5489) 1 20 1.8304e+00 -1.4476e-24 -1.1396e-07 1.0000 1 1 5.4893e+00

Table 9.: Performance of ADMM for symmetric EiCP - Test Problems 3.

Problem It ρ λ compl dualfeas nitBPP nLsyst Crit cputime

Brock200-1(200) 9 0.1 0.0000e+00 0.0000e+00 0.0000e+00 2.4444 22 1 1.3617e-02
Brock200-2(200) 9 0.1 0.0000e+00 0.0000e+00 0.0000e+00 2.4444 22 1 1.4064e-02
Brock200-3(200) 10 0.1 0.0000e+00 0.0000e+00 0.0000e+00 2.5000 25 1 1.5660e-02
Brock200-4(200) 10 0.1 0.0000e+00 0.0000e+00 0.0000e+00 2.5000 25 1 2.4830e-02
c-fat200-1(200) 8 0.1 4.0000e+00 1.1102e-17 -5.0626e-14 1.8750 15 1 8.2208e-03
c-fat200-2(200) 6 0.1 1.0000e+01 -6.6518e-18 -9.8359e-15 1.5000 9 1 7.4465e-03
c-fat200-5(200) 9 0.1 2.7000e+01 -1.6356e-17 -6.2500e-13 1.4444 13 1 7.6768e-03
Hamming6-2( 64) 1 0.1 5.7000e+01 4.1200e-17 -4.9960e-16 1.0000 1 1 3.3304e-04
Hamming6-4( 64) 1 0.1 2.2000e+01 1.8431e-18 -3.4694e-17 1.0000 1 1 4.2667e-04
Hamming8-2(256) 1 0.1 2.4700e+02 -1.7889e-17 -2.1372e-15 1.0000 1 1 1.6719e-03
Hamming8-4(256) 1 0.1 1.6300e+02 1.4366e-18 -1.2143e-16 1.0000 1 1 2.1578e-03
Johnson8-2-4( 28) 2 0.1 0.0000e+00 0.0000e+00 0.0000e+00 1.5000 3 1 4.2351e-04
Johnson8-4-4( 70) 1 0.1 5.3000e+01 6.3441e-18 -1.2490e-16 1.0000 1 1 3.1407e-04
Johnson16-2-4(120) 1 0.1 9.1000e+01 5.8981e-18 -2.6368e-16 1.0000 1 1 5.5862e-04
Johnson32-2-4(496) 1 0.1 4.3500e+02 -3.8612e-18 -7.7022e-16 1.0000 1 1 1.0770e-02
Keller4(171) 6 0.1 0.0000e+00 0.0000e+00 0.0000e+00 1.8333 11 1 6.6781e-03
Mann-a9( 45) 8 0.1 8.0000e+00 -6.1679e-18 -2.6701e-14 1.1250 9 1 1.0481e-03
Mann-a27(378) 41 0.1 2.6000e+01 1.7476e-17 -6.1212e-13 1.0244 42 1 3.0620e-01

Table 10.: Performance of ADMM for symmetric EiCP - Test Problems 4.
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Problem It ρ λ compl dualfeas nitBPP nLsyst Crit cputime

RAND( 50) 29 70 6.5471e-01 9.0501e-16 -4.6945e-05 1.2759 37 1 7.0511e-03
RAND(100) 47 70 6.6332e-01 -5.3778e-16 -2.8752e-05 1.2128 57 1 1.8022e-02
RAND(250) 27 500 6.5120e-01 -2.5971e-16 -9.2148e-05 1.5926 43 1 4.1763e-02
RAND(500) 30 500 6.7911e-01 5.4191e-16 -1.2419e-05 1.5667 47 1 2.6907e-01
RAND(750) 46 500 6.8664e-01 3.8920e-16 -4.0101e-04 1.2826 59 2 7.3972e-01
RAND(1000) 93 500 6.9763e-01 1.3856e-16 -4.4307e-04 1.3011 121 2 2.4211e+00

Table 11.: Performance of ADMM for symmetric EiCP - Test Problems 5.

Problem It ρ λ compl dualfeas nitBPP nLsyst Crit cputime

RAND( 50) 28 70 5.9760e-01 6.8571e-17 -8.5743e-05 1.2500 35 1 7.4880e-03
RAND(100) 64 70 6.2879e-01 3.4937e-16 -4.4386e-05 1.1875 76 1 2.4715e-02
RAND(250) 27 500 6.3822e-01 -9.1566e-18 -8.0979e-05 1.5185 41 1 4.1466e-02
RAND(500) 32 500 6.7176e-01 -1.4312e-16 -1.1228e-04 1.5000 48 2 2.7938e-01
RAND(750) 46 500 6.8151e-01 -1.5786e-16 -5.4690e-04 1.3696 63 2 7.0903e-01
RAND(1000) 99 500 6.9363e-01 1.1627e-16 -3.0355e-04 1.3131 130 2 2.4574e+00

Table 12.: Performance of ADMM for symmetric EiCP - Test Problems 6.

Our experiments with symmetric EiCPs showed that a hybrid method does not seem to be
required and lead to our recommendation to use solely this ADMM.

Test Problems 3 were solved by the splitting method A1 in [18]. A report of the performance
of this splitting method in that paper clearly indicates that ADMM always requires much less
iterations for solving these test problems. By this reason we decided not to solve the remaining
test problems by the splitting method and we used another approach for comparison with ADMM.
Indeed, it is known [22, 35] that if S is the ordinary simplex given by (5), then a solution (x̄, λ̄) of
the symmetric EiCP can be computed by finding an SP x̄ of the following StFQP

min λ(x) =
x>Ax

x>Bx
(75a)

s.t. x ∈ S, (75b)

and set λ̄ = λ(x̄). So, the complementary eigenvector is the computed SP x̄ of StFQP (75) and the
complementary eigenvalue is the value of the objective function of this program at the computed SP.
Hence, an efficient local optimization solver such as IPOPT [38] can be used to solve the symmetric
EiCP by computing a stationary point of the program (75). In order to have a better idea of the
efficiency of ADMM, we solve all the Test Problems 3 - 6 by IPOPT. The corresponding numerical
results are showed in Tables 13, 14, 15, and 16, respectively. For Test Problems 3, Algorithm 2 and
IPOPT compute different complementary eigenvalues and eigenvectors. It is important to add that
the complementary eigenvalues computed by IPOPT are always smaller than the ones found by
Algorithm 2. This is not surprising, as IPOPT is usually able to compute SPs whose objective function
values are close to the global minimum value of StFQP. Furthermore, Algorithm 2 computes the
same complementary eigenvalues for all Test Problems 4 but two and for all Test Problems 5 and
6. On the other hand, the number of required systems nLsyst for Algorithm 2 is usually smaller
than the corresponding number of systems It that IPOPT requires for Test Problems 3 and 4 and
bigger for Test Problems 5 and 6. Finally, CPU time is always smaller for Algorithm 2, as the
computational effort of each iteration is usually much smaller for this method.
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Problem It λ cputime
BCSSTK02( 66) 71 6.1532e+00 1.9420e+00
BCSSTK04(132) 29 6.6215e+00 4.0700e-01
BCSSTK05(153) 17 5.5037e+02 4.1300e-01
BCSSTK10(1086) 25 8.5414e+01 4.0200e+00
BCSSTK27(1224) 111 1.9685e+02 2.7830e+01
s1rmq4m1(5489) 31 3.8507e-01 2.2869e+02
s1rmt3m1(5489) 32 3.8507e-01 2.8127e+02
s2rmq4m1(5489) 26 3.9358e-04 2.1173e+02

Table 13.: Performance of IPOPT for symmetric EiCP - Test Problems 3.

Problem It λ cputime
Brock200-1(200) 152 0.0000e+00 2.8500e+01
Brock200-2(200) 172 2.0778e-09 1.4450e+00
Brock200-3(200) 125 0.0000e+00 1.1850e+00
Brock200-4(200) 148 0.0000e+00 1.9020e+00
c-fat200-1(200) 261 3.5005e-10 1.7080e+00
c-fat200-2(200) 190 0.0000e+00 1.3810e+00
c-fat200-5(200) 221 0.0000e+00 1.5590e+00
Hamming6-2( 64) 4 5.7000e+01 1.9400e-01
Hamming6-4( 64) 4 2.2000e+01 1.4900e-01
Hamming8-2(256) 5 2.4700e+02 4.2400e-01
Hamming8-4(256) 5 1.6300e+02 4.2200e-01
Johnson8-2-4( 28) 12 0.0000e+00 9.8000e-02
Johnson8-4-4( 70) 4 5.3000e+01 1.0300e-01
Johnson16-2-4(120) 5 9.1000e+01 1.2500e-01
Johnson32-2-4(496) 5 4.3500e+02 5.1200e-01
Keller4(171) 49 0.0000e+00 3.9600e-01
Mann-a9( 45) 21 8.0000e+00 1.1900e-01
Mann-a27(378) 17 2.6000e+01 6.5700e-01

Table 14.: Performance of IPOPT for symmetric EiCP - Test Problems 4.

Problem It λ cputime
RAND( 50) 27 6.5471e-01 1.7400e-01
RAND(100) 26 6.6332e-01 1.9900e-01
RAND(250) 12 6.5120e-01 3.8800e-01
RAND(500) 24 6.7911e-01 1.6650e+00
RAND(750) 14 6.8664e-01 2.8020e+00
RAND(1000) 14 6.9763e-01 4.9470e+00

Table 15.: Performance of IPOPT for symmetric EiCP - Test Problems 5.

Problem It λ cputime
RAND( 50) 26 5.9760e-01 1.5500e-01
RAND(100) 27 6.2879e-01 1.9200e-01
RAND(250) 12 6.3822e-01 3.5700e-01
RAND(500) 25 6.7176e-01 1.7610e+00
RAND(750) 17 6.8151e-01 3.3310e+00
RAND(1000) 14 6.9363e-01 4.8110e+00

Table 16.: Performance of IPOPT for symmetric EiCP - Test Problems 6.

As a final conclusion, ADMM seems to be quite efficient for the solution of the symmetric EiCP
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if an appropriate value of the penalty parameter is chosen. As for the nonsymmetric EiCPs, the use
of BPP algorithm for solving the required SCStQPs in each iteration of ADMM and Criterion 1
based on this last method are the two main ingredients for the efficiency of ADMM for dealing with
symmetric EiCPs. Furthermore, the penalty parameter ρ should be chosen small and even quite
small for some instances, but there are some instances where ADMM requires a larger penalty
parameter to terminate.

7. Conclusions

In this paper, we introduce an Alternating Direction Method of Multipliers (ADMM) for finding a
solution of the nonsymmetric Eigenvalue Complementarity Problem (EiCP). A partial convergence
analysis of the algorithm is presented and shows that the limit point of the sequence of iterates is a
solution of the nonsymmetric EiCP provided the sequence converges. A simpler form of ADMM for
finding a solution of the symmetric EiCP is also discussed. It is shown that for this case an accumu-
lation point x∗ the sequence of iterates {xk} gives a solution (x∗, λ(x∗)) of the symmmetric EiCP
with λ(x) given by (2), provided two conditions are satisfied. Moreover, an extension of ADMM
for computing a Stationary Point (SP) of a Standard Quadratic Program (StQP) is introduced
together with a similar convergence result.

A Block Principal Pivoting (BPP) and a Stopping Criterion based on this algorithm are the
two most important ingredients for the good performance of ADMM to solve small and large
dimensional EiCPs. Computational experiments reported in this paper indicate that ADMM can
be slow and may face difficulties for terminating for solving some nonsymmetric EiCPs. However,
the hybridization with a Semi-smooth Newton (SN) method seems to work well in practice. On the
other hand, ADMM seems to solve efficiently the symmetric EiCP.

Computational experiments also indicate that the penalty parameter has an important effect on
the performance of ADMM. An automatic procedure for choosing this penalty parameter is an
important issue for future research. Finally, the use of ADMM for computing efficiently an SP of
an StQP in practice should also be investigated.
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