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1 Introduction

The notion of (strict) copositivity of a matrix [11,26] is well known in the area of lin-
ear complementarity problems (LCP) in the context of existence results and results on
the successful termination of Lemke’s algorithm — a well known simplex-like vertex
following algorithm for LCPs [11,17,26]. An n× n matrix is called Rn

+-copositive
(or Rn

+-semidefinite or shortly copositive), if it generates a quadratic form which
takes no negative values on the nonnegative orthant Rn

+. A copositive matrix is called
strictly copositive if it generates a quadratic form which takes only positive values on
Rn
+ \{0}.

In the last decade there has been an increasing interest in this property of a ma-
trix, and in linear optimization problems over the cone of copositive matrices. For
recent surveys on copositive programming we refer to [2,5,10,15,19]. This interest
is primarily based on the fact that some hard problems as the Maximum Clique prob-
lem (see [4,13]) were shown to have a reformulation as a copositive program. Burer
showed in [9] that, under weak assumptions, every quadratic program with linear
constraints can be formulated as a copositive program, even if some of the variables
are binary. Hence efficient numerical copositivity tests are essential.

The problem of determining whether a matrix is not copositive is NP-complete
[27]. As discussed in [3] various authors have proposed such a test. However, there
are only a few implemented numerical algorithms which apply to general symmetric
matrices without any structural assumptions or dimensional restrictions and which are
not just recursive, i.e., do not rely on information taken from all principal submatrices.
There are some quite recent implementations which satisfy both criteria to full extent:
Bundfuss and Dür proposed in [7,8] the first algorithm, see also the modification
and improvements by Žilinskas and Dür [33], by Sponsel, Bundfuss and Dür [29]
and by Tanaka and Yoshise [30]. Later, Bomze and Eichfelder [3] presented another
algorithm.

Both approaches combine necessary and sufficient criteria for copositivity with a
branch-and-bound algorithm. The branching is done in a data driven way and consists
in a partitioning of the standard simplex into subsimplices. For each of the subsim-
plices it is tested whether a sufficient criterion for copositivity is satisfied or whether
a necessary condition is violated. The approaches use different necessary and suffi-
cient criteria but both approaches obtain better results in verifying that a matrix is
not copositive than in proving that a matrix is copositive. Moreover, the algorithms
are also in most cases more successful in showing copositivity for matrices which are
also strictly copositive. The first approach by Bundfuss and Dür is based on the eval-
uation of a set of inequalities on each subsimplex, while the second one by Bomze
and Eichfelder requires to solve convex quadratic and linear optimization problems.

We present in this paper a new numerical approach for testing whether a matrix is
copositive. This method does not rely on any assumptions on the matrix and does not
use information from submatrices. We give new necessary and sufficient conditions.
These are based on the relation between a (global) quadratic optimization problem
and a mathematical program with linear complementarity constraints (MPLCC). The
quadratic optimization problem is the minimization of the quadratic form of the ma-
trix over the standard simplex, which is equivalent to testing whether the matrix is
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copositive. We derive conditions by studying some linear complementarity problems
(LCP) which deliver feasible solutions for the MPLCC. These conditions require the
determination of solutions of LCPs. We use an enumerative algorithm [22], Lemke’s
algorithm [11, Chapter 4.4] and a mixed integer formulation (MIP) [21] for this pur-
pose.

Some of the new necessary conditions are easy and fast to verify as they require
for instance the application of Lemke’s algorithm only. Thus these conditions can also
be evaluated as an additional criterion in each iteration of copositivity tests different
from the ones mentioned above. Moreover, we use known preprocessing results and
combine them with a new preprocessing step based on solving linear problems (LP).

We test the derived procedures on some famous matrices from the literature as
well as on maximum-clique instances from the DIMACS challenge and generated
smaller instances from the maximum clique problem. These matrices are also used
as test instances for the above mentioned approaches. The considered matrices are up
to order 496×496. The numerical results show that the procedures are quite efficient
in showing that a matrix is not strictly copositive or even not copositive. A hybrid al-
gorithm which combines some of the procedures discussed in this paper is successful
for all instances. In particular, the algorithm is able to establish that the maximum
clique is a lower-bound for each of the instances. More numerical effort is needed
to verify that matrices are strictly copositive or copositive but not strictly copositive
(which is a well known drawback also for the above mentioned approaches).

Instead of applying algorithms which are especially designed for testing whether
a given matrix is copositive one could also directly apply a global optimization solver,
as for instance BARON, to the quadratic optimization problem mentioned above. In
this paper, for the first time, a numerical copositivity test is compared to a general
global optimization solver. For the predefined allowed time BARON fails at five of
the large instances while our proposed hybrid algorithm can solve all the instances.

The remainder of this article is structured as follows: in Section 2 we give nec-
essary and sufficient conditions for copositivity based on a reformulation as a math-
ematical program with linear complementarity constraints (MPLCC). From that we
derive conditions based on the solutions of LCPs which we again characterize by so-
lutions of MIPs. We also give necessary conditions for copositivity based on LPs. In
Section 3 we present the algorithms which consist of two basic steps 0 and 1 (pre-
processing and applying Lemke’s method) and a step 2 for which we present three
different possible procedures. Numerical experiments with these techniques are re-
ported in Section 4. In the last section we give some conclusions and an outlook on
possible extensions of the proposed methods to be done in the future.

2 Sufficient and necessary conditions for copositivity

In this section, we first recall some basic definitions. Then we define a mathematical
program with linear complementarity constraints (MPLCC). We study its relation to
the task of testing whether a matrix is copositive. We derive necessary and sufficient
conditions for (strict) copositivity based on linear complementarity problems (LCPs)
and on a mixed integer formulation of one of these LCPs. Finally, we give some
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easy to verify necessary conditions for (strict) copositivity based on solving linear
problems (LPs).

2.1 Copositivity and Global Optimization

We recall the definition of (strict) copositivity:

Definition 1 A real n×n matrix M is called copositive if x>Mx ≥ 0 for all x ∈ Rn
+,

and strictly copositive if x>Mx > 0 for all x ∈ Rn
+ \{0}.

Any strictly copositive matrix is copositive. As a real n× n matrix M is (strictly)
copositive if and only if the symmetric matrix 1

2 (M+M>) is (strictly) copositive, we
restrict our examinations to symmetric matrices. Let S denote the real linear space
of real symmetric n× n matrices. The set of copositive symmetric n× n matrices
is a convex cone and the interior of the cone of copositive matrices is the set of
strictly copositive symmetric matrices (cf. [7,16]). We denote the cone of copositive
matrices by COP and its interior, the set of strictly copositive matrices, by intCOP .
The boundary of COP is denoted by bdCOP = COP \ intCOP .

The task of testing whether a given matrix is copositive is related to the task of
solving a quadratic program:

Lemma 1 Let M ∈ S and let x̄ be a (globally) minimal solution of the quadratic
optimization problem

QP: min f (x) := 1
2 x>Mx

s.t. e>x = 1
x≥ 0

(1)

where e ∈ Rn denotes the vector with all components equal to one. Then

(a) M ∈ COP if and only if f (x̄)≥ 0,
(b) M ∈ intCOP if and only if f (x̄)> 0.
(c) M 6∈ COP if and only if there exists a feasible x with f (x)< 0.
(d) M 6∈ intCOP if there exists a feasible x with f (x) = 0.

Note that QP (1) is solvable as the feasible set is nonempty, compact and the
objective function is continuous. As the feasible set is given by linear constraints,
any minimal solution of QP (1) satisfies the KKT-conditions, i.e. there exists λ ∈ R
and w ∈ Rn such that

Mx = λe+w
x ≥ 0, w≥ 0

x>w = 0, e>x = 1

We write x ∈ K if there exists some w ∈ Rn and some λ ∈ R such that (x,λ ,w)
satisfies the above conditions. For any x ∈ K it holds

f (x) =
1
2

x>Mx =
1
2
(λe>x+w>x) =

λ

2
.
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Therefore we have λ = x>Mx. Hence we can consider the following Mathematical
Program with Linear Complementarity Constraints:

MPLCC: min 1
2 λ

s.t. w = Mx−λe
x ≥ 0, w≥ 0

x>w = 0, e>x = 1
λ ∈ R

(2)

If x̄ is a minimal solution of QP (1), then there exists some λ̄ ∈ R and some w̄ ∈
Rn such that (x̄, λ̄ , w̄) is a feasible solution of MPLCC (2) with the same objective
function value. On the other hand, any feasible point (x̄, λ̄ , w̄) of MPLCC (2) gives
a feasible solution of QP (1) with the same objective function value. Hence both
problems are equivalent in the sense that they have the same objective function value
and a minimal solution of one problem directly gives a minimal solution of the other
problem. We conclude from Lemma 1:

Corollary 1 (a) M ∈ COP if and only if MPLCC (2) has a (globally) minimal solu-
tion (x̄, λ̄ , w̄) with λ̄ ≥ 0.

(b) M ∈ intCOP if and only if MPLCC (2) has a (globally) minimal solution (x̄, λ̄ , w̄)
with λ̄ > 0.

2.2 Conditions for copositivity based on LCPs

For solving the MPLCC (2) we study its feasible set which contains a linear comple-
mentarity problem (LCP). The general form of an LCP is given as follows:

LCP: Find x ∈ Rn and w ∈ Rn such that
w = q+Mx
x ≥ 0, w≥ 0

x>w = 0

(3)

where M ∈ S and q ∈ Rn are given. We also use the notation LCP(q,M) for repre-
senting a LCP with a given vector q and matrix M. We call a pair (x,w) ∈ Rn×Rn

feasible for LCP(q,M) if

w = q+Mx, x≥ 0 and w≥ 0.

We say that a pair (x,w) ∈Rn×Rn satisfies LCP(q,M) if it is feasible for LCP(q,M)
and if additionally x>w = 0 holds. In the latter case x is called a solution of the
LCP(q,M).

A point (x,λ ,w) ∈ Rn ×R×Rn is feasible for the MPLCC (2) if and only if
e>x = 1 and (x,w) satisfies LCP(−λe,M). Hence, a feasible solution of MPLCC
(2) can be found by first determining a solution x̄ 6= 0 of LCP(−λe,M) and then by
setting

x̃ :=
1

e>x̄
x̄ .

Therefore, it is enough to study the problem LCP(−λe,M) for λ = 0, a positive
and a negative λ to cover all cases of λ ∈ R due to the following result:
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Lemma 2 Let λ1 ∈ R and λ2 ∈ R be given. If λ1 ·λ2 > 0, then the following holds:
LCP(−λ1e,M) has a solution x̄ 6= 0 if and only if LCP(−λ2e,M) has a solution

λ2

λ1
x̄ 6= 0 .

Proof If LCP(−λ1e,M) has a solution x̄ 6= 0, then let J := {i ∈ {1, . . . ,n} | x̄i > 0}
and L := {1, . . . ,n}\ J. Due to complementarity we have

0 = −λ1eJ +MJJ x̄J , 0 ≤ −λ1eL +MLJ x̄J ,
x̄J > 0, x̄L = 0.

Multiplying by λ2/λ1 yields that λ2
λ1

x̄ is a solution of LCP(−λ2e,M). ut

Next we study LCP(−λe,M) for λ = 0 and λ = −1 and its solutions. With the
help of Corollary 1 we derive sufficient conditions for the (strict) copositivity of M
as well as for M not being (strictly) copositive. The existence of nonzero solutions of
LCP(−λe,M) for λ > 0 does not imply the strict copositivity of the matrix. It has to
be guaranteed that there are no nonzero solutions for λ ≤ 0.

Corollary 2 (a) If LCP(0,M) has a solution x̄ 6= 0, then M 6∈ intCOP .
(b) If LCP(e,M) has a solution x̄ 6= 0, then M 6∈ COP and thus also M 6∈ intCOP .
(c) If no nonzero solution of LCP(e,M) and of LCP(0,M) exists, then M ∈ intCOP

and thus M ∈ COP .
(d) If no nonzero solution of LCP(e,M) exists, then M ∈ COP .

Example 1 For the matrix

M =

(
1 −2
−2 1

)
the point x̄ = (1 1)> with w̄ = (0 0) is a nonzero solution of LCP(e,M) and hence
M 6∈ COP (and M 6∈ intCOP) by Corollary 2.

The solvability of the LCP for any q gives another necessary condition for strict
copositivity.

Lemma 3 [11, Theorem 3.8.5] If M ∈ intCOP , then for each q ∈ Rn the problem
LCP(q,M) has a solution.

A solution can be found by Lemke’s method, see for instance [11, Chapter 4.4], which
is a simplex-like vertex following algorithm that uses basic feasible solutions of a
system of the form

w = q+ξ d +Mx, x≥ 0, ξ ≥ 0, w≥ 0 (4)

where d is a positive vector (note that x>w = 0 in each iteration of the method). This
method is guaranteed to terminate in a finite number of iterations if all the basic fea-
sible solutions of the system (4) are nondegenerate. We suggest [11] for a discussion
of the steps, convergence and complexity of Lemke’s method. The procedure either
finds a solution of the LCP or it terminates in an unbounded ray. For some classes
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of matrices, including the strictly copositive matrices, this latter termination can not
occur and Lemke’s method always terminates with a solution of the LCP, cf. [11, The-
orem 4.4.9]. We derive the following necessary condition for a matrix to be strictly
copositive which we use in Step 1 of our algorithm:

Corollary 3 If Lemke’s method applied to LCP(q,M) for some q ∈ Rn terminates in
an unbounded ray, then M 6∈ intCOP .

If M is only a copositive matrix which is not strictly copositive, then LCP(q,M) does
not need to have a solution. For instance, this is the case for M the zero matrix and q
negative.

Example 2 For the matrix M of Example 1 Lemke’s method applied to LCP(−e,M)
(i.e. λ = 1 in LCP(−λe,M)) terminates in an unbounded ray. Hence, M 6∈ intCOP .

The drawback of the sufficient conditions for (strict) copositivity of Corollary 2
is that it has to be guaranteed that there is no nonzero solution of these LCPs. This is
much more difficult than computing a solution for these problems. This indicates why
in practice establishing (strict) copositivity of a matrix is more difficult than showing
that a matrix is not (strictly) copositive.

Finally, we study a different LCP which gives a certificate for M 6∈ intCOP and
M 6∈ COP . For that, let

p :=
(

0
−1

)
∈ Rn+1 and Q :=

(
M e
e> 0

)
∈ R(n+1)×(n+1) (5)

where 0 in the vector p is a n-vector and 0 in the matrix Q is the real number zero.
Then LCP(p,Q) is equivalent to finding a pair (x,µ) ∈ Rn+1 such that there exists
some (w,η) ∈ Rn+1 with (

w
η

)
=

(
0
−1

)
+

(
M e
e> 0

)(
x
µ

)
(

x
µ

)
≥ 0,

(
w
η

)
≥ 0(

x
µ

)>(w
η

)
= 0 .

(6)

The following result holds:

Lemma 4 (a) LCP(p,Q) has a solution (x,µ) if and only if M 6∈ intCOP .
(b) LCP(p,Q) has a solution (x,µ) with µ > 0 if and only if M 6∈ COP .

Proof (a) If LCP(p,Q) has a solution, then either η = 0 and µ ≥ 0 or η > 0 and µ =
0. In the first case we immediately obtain that there is a feasible point (x,λ ,w) ∈
Rn×R×Rn for MPLCC (2) with λ = −µ ≤ 0 and hence, by Corollary 1, M 6∈
intCOP . In the second case, there exists some x ≥ 0 with x 6= 0 and 0 = x>w =
x>Mx which implies M 6∈ intCOP . On the other hand, if M 6∈ intCOP , then there
exists some feasible (x,λ ,w) ∈ Rn×R×Rn with λ ≤ 0 for MPLCC (2) which
by setting η = 0 and µ =−λ ≥ 0 gives a feasible solution for LCP(p,Q).
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(b) First let LCP(p,Q) have a solution with µ > 0 and thus η = 0. Then there is
a feasible point (x,λ ,w) ∈ Rn×R×Rn for MPLCC (2) with λ = −µ < 0 and
hence, by Corollary 1, M 6∈ COP . On the other hand, if M 6∈ COP , then there
exists some feasible (x,λ ,w) ∈ Rn×R×Rn with λ < 0 for MPLCC (2) which
by setting η = 0 and µ =−λ > 0 gives a feasible solution for LCP(p,Q). ut

Then we can state the following copositivity tests:

Corollary 4 (a) If LCP(p,Q) has a solution (x,µ) with µ = 0, then M 6∈ intCOP .
(b) If LCP(p,Q) has a solution (x,µ) with µ > 0, then M 6∈ COP and thus also

M 6∈ intCOP .
(c) If LCP(p,Q) has no solution, then M ∈ intCOP and thus M ∈ COP .
(d) If LCP(p,Q) has no solution (x,µ) with µ > 0, then M ∈ COP .

Example 3 For the matrix M of Example 1 LCP(p,Q) has a solution (x,µ) with x =
(1/2,1/2)> and µ = 1/2 > 0 and thus, by Corollary 4, M 6∈ COP .

In order to use Corollary 4(d) one needs to know all solutions of LCP(p,Q).
For obtaining the complete solution set we will apply the enumerative algorithm de-
scribed in [22]. We also exploit the following reformulation of LCP(p,Q) as a mixed
integer linear program (MIP) [21]:

Lemma 5 The mixed integer linear program

MIP1 : max α

s.t. 0≤ Qy+α p≤ z
0≤ y≤ e− z
z ∈ {0,1}n+1

0≤ α ≤ 1.

with p and Q as in (5) has a solution, and (x∗,µ∗) =
y∗

α∗
is a solution of LCP(p,Q),

if and only if MIP1 has a feasible solution (α∗,y∗,z∗) with α∗ > 0.

Proof This result follows from Proposition 2.5 in [21] by noting that p 6= 0 and that it
is enough that (α∗,y∗,z∗) is feasible (and not additionally optimal) in the proof given
there. ut

Note that this MIP is feasible and yn+1 corresponds to the µ variable of LCP(p,Q)

(with µ =
1

α∗
y∗n+1). Therefore, by Corollary 4, the following result holds.

Corollary 5 (a) If MIP1 has a feasible solution (α,y,z) with α > 0, then M 6∈ intCOP .
(b) If MIP1 has a feasible solution (α,y,z) with α > 0 and yn+1 > 0, then M 6∈ COP .
(c) MIP1 has a globally optimal value equal to zero if and only if M ∈ intCOP .
(d) If MIP1 has no feasible solution (α,y,z) with α > 0 and yn+1 > 0, then M ∈COP .

Note that for part (a), in case it holds α > 0 and yn+1 > 0, then (x∗,µ∗) with µ∗ =
1

α∗
y∗n+1 > 0 is a solution of LCP(p,Q), and by Corollary 4(b) we have M 6∈ intCOP .
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The case of α > 0 and yn+1 = 0 in the computed solution of MIP1 is the most difficult,
as we cannot conclude whether M is copositive or not from the solution of MIP1. In
this case, we may consider a MIP of the form:

MIP2 : max yn+1
s.t. 0≤ Qy+α p≤ z

0≤ y≤ e− z
z ∈ {0,1}n+1

0≤ α ≤ 1
α ≥ ε,

where ε is a fixed positive tolerance (usually ε = 10−4). Then, by Corollary 5, the
following result holds:

Corollary 6 Let ε > 0. If MIP2 has a feasible solution (α,y,z) with yn+1 > 0, then
M 6∈ COP .

As one can see from Corollary 5 it is easier to show that a matrix M 6∈ intCOP
than M 6∈ COP . There is a further possibility for establishing that M 6∈ COP by
making use of a related matrix that is not strictly copositive:

Lemma 6 Let M, H ∈S and H ∈ intCOP . Then M ∈ COP if and only if M+β H ∈
intCOP for all β > 0.

Proof The implication⇒ is obvious from the definitions of a copositive and a strictly
copositive matrix. Now, if M 6∈ COP , then there exists a point 0 6= x̄ ≥ 0 such that
x̄>Mx̄ < 0. Since H ∈ intCOP it holds that

β =− x̄>Mx̄
x̄>Hx̄

is positive and satisfies
x̄>(M+βH)x̄ = 0.

Hence M+βH 6∈ intCOP . ut

2.3 Conditions for copositivity based on LPs

In this section, we present additional conditions which are based on the feasibility of
LPs. Therefore, we need the following class of matrices:

Definition 2 A real n×n matrix M is said to be a S0 matrix (M ∈ S0) if there exists
a point 0 6= x≥ 0 such that Mx≥ 0.

Thus for a matrix M ∈ S it holds

−M ∈ S0 ⇔ ∃x≥ 0, x 6= 0 : Mx≤ 0.

As a consequence we have that −M ∈ S0 implies M 6∈ intCOP and that −M ∈ S0
holds if and only if the system

Mx≤ 0, x≥ 0, e>x = 1

has a solution. Hence we can state the following result:
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Lemma 7 Let c ∈ Rn
+. If

LP1 : inf{c>x |Mx≤ 0, x≥ 0, e>x = 1}

is feasible, then M 6∈ intCOP .

The problem LP1 is bounded from below as c ∈ Rn
+. Thus it has a minimal solu-

tion if and only if it is feasible.
For our next result we use the implication

M 6∈ S0⇒M 6∈ COP

given in [11]. Note that M 6∈ S0 if and only if the system

Mx≥ 0, x≥ 0, e>x = 1

has no solution. Therefore the following result holds:

Lemma 8 Let c ∈ Rn
+. If

LP2 : inf{c>x |Mx≥ 0, x≥ 0, e>x = 1}

has no feasible solution, then M 6∈ COP and thus also M 6∈ intCOP .

Lemmas 7 and 8 give easy to verify sufficient conditions for a matrix not to be
(strictly) copositive.

Example 4 For the matrix M of Example 1 the system

Mx≤ 0, x≥ 0, e>x = 1

has the solution (1/2,1/2). Thus, by Lemma 7, M 6∈ intCOP .
The system

Mx≥ 0
x≥ 0

e>x = 1
⇔


x1 ≥ 2x2

x2 ≥ 2x1

x1 + x2 = 1
xi ≥ 0, i = 1,2

has no feasible solution. By Lemma 8 we have M 6∈ COP .

3 Algorithm

Below we collect the results of the previous sections and give an algorithm for testing
whether a given matrix is (strictly) copositive. In the algorithm we also combine some
preprocessing steps based on the conditions given in Section 2.3 with well known
results from the literature.
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3.1 Preprocessing

In addition to the results of Lemma 7 and 8 we will make use of the following pre-
processing steps which are based on the collection in [3], see also [31].

Lemma 9 Let M = [mi j] ∈ S and choose an arbitrary i ∈ {1, . . . ,n}.
(a) If mii < 0, then M 6∈ COP .
(b) if mii = 0, then M 6∈ intCOP .
(c) if mii = 0 > mi j for some j ∈ {1, . . . ,n}, then M 6∈ COP .

The preprocessing steps used later in our main algorithm are summarized in Al-
gorithm 1. We used c = e in the LPs.

Algorithm 1 Preprocessing
Input: matrix M ∈ S

(Part (1):)
if mii < 0 for any i ∈ {1, . . . ,n} then

M 6∈ COP and stop.
end if
if mii = 0 for any i ∈ {1, . . . ,n} then

M 6∈ intCOP .
end if
if mii = 0 > mi j for any i 6= j, i, j ∈ {1, . . . ,n} then

M 6∈ COP and stop.
end if
Let c = e.
(Part (2):)
if LP1 has a feasible solution then

M 6∈ intCOP .
end if
(Part (3):)
if LP2 has no feasible solution then

M 6∈ COP and stop.
end if

Output: M 6∈C or M 6∈ intCOP or preprocessing not conclusive.

3.2 Outline of the algorithm to test (strict) copositivity

Algorithm 2 gives the structure of our main algorithm. In Step 1 we make use of
Corollary 3. For Step 2 we propose three different procedures in this section. Note
that it depends on the choice of the procedure in Step 2 whether Algorithm 2 is
guaranteed to find M 6∈ COP , M ∈ COP or M ∈ intCOP .

3.3 Procedures for Step 2

As discussed in Section 2.2, we can solve LCP(p,Q) to derive proofs for the matrix
to be in COP , in intCOP or not copositive. We may apply an enumerative algorithm,
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Algorithm 2 Test on (strict) copositivity
Input: Matrix M ∈ S

STEP 0: Apply Algorithm 1 (Preprocessing).
if STEP 0 was not conclusive then

STEP 1: Use Lemke’s method with different initial complementary basic solutions to solve
LCP(−e,M).
if Lemke’s method terminates in an unbounded ray then

M 6∈ intCOP .
end if
STEP 2: Apply Procedures 1-3 to be discussed in Section 3.3.

end if
Output: M 6∈C or M ∈C or M ∈ intCOP (or not conclusive depending on the choice in Step 2).

Lemke’s method and the mixed integer linear formulation for solving this LCP. Each
of the following three procedures are discussed next and can be used in Step 2 of
Algorithm 2.

Procedure 1: Solve LCP(p,Q) by an enumerative algorithm and apply Corollary 4.

An efficient enumerative method for the Linear Complementarity Problem (LCP) has
been proposed by Júdice, Faustino and Ribeiro [22]. This method finds a solution
of the LCP by exploring a binary tree generated by the dichotomy xi = 0 or wi = 0
associated with the complementary condition, see Fig. 1.



 

 


  

 


  

 

Fig. 1 Branching procedure of the enumerative method.

In each node of the tree, the algorithm finds a stationary point of a nonconvex
quadratic program of the form

min f (x,w,µ,η) = x>w+µ η

s.t. w = Mx+µe
η = e>x−1
xi = 0, i ∈ I
w j = 0, j ∈ J
x, w, µ, η ≥ 0,

(7)

where I and J are the index sets defined by the fixed variables, i.e. I := {i∈{1, . . . ,n} :
xi = 0 fixed} (and also additionally µ = 0 may be fixed) and J := {i ∈ {1, . . . ,n} :
wi = 0 fixed} (and also additionally η = 0 may be fixed), respectively, in the path of
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the tree from this node to the root. Furthermore the algorithm contains some heuristic
rules for choosing the node and the pair of complementary variables for branching.
For details on the algorithm we refer to [22].

It is important to note that it is much easier to compute a solution for an LCP
(when it exists) than showing that an LCP has no solution. So, as expected it is much
easier to show that a matrix is not copositive than proving that it has this property.
However, the algorithm can at least in theory test copositivity of any given matrix.

Procedure 2: Solve LCP(p,Q) with Lemke’s algorithm and n+1 initial complemen-
tary basic solutions and apply Corollary 4.

Lemke’s method is a pivotal algorithm that aims at solving LCP(p,Q) by using basic
feasible solutions (BFS) of the following general LCP (GLCP)

v = p+ξ d +Qu
u≥ 0, v≥ 0, ξ ≥ 0
u>v = 0

(8)

where in our setting v = [w η ]>, u = [x µ]> and d ∈Rn+1 is a positive vector (usually
d = e). Moreover, p and Q are given by (5). Given a basic solution with basic variables
vi = wi, i ∈ {1, . . . ,n} and vn+1 = η and nonbasic variables xi = 0, i ∈ {1, . . . ,n} and
µ = 0 an initial BFS of GLCP (8) is obtained as follows:

ū = 0, ξ̄ =− pr

dr
, v = p+ ξ̄ d, (9)

where:
− pr

dr
:= max{− pi

di
: i = 1, . . . ,n+1}> 0. (10)

All the variables ui and the variable vr are nonbasic and the remaining variables are
basic. Hence there exists exactly one complementary pair (vr,ur) of nonbasic vari-
ables. In the next iteration the algorithm chooses ur (complementary to the previous
leaving variable) as the entering variable which interchanges with a leaving basic
variable (found by the common minimum quotient rule) [11]. If such a leaving vari-
able does not exist, the algorithm stops in an unbounded ray. Otherwise, a new BFS
of GLCP (8) is obtained and either ξ = 0 and a solution of the LCP is at hand or the
procedure is repeated.

Lemke’s method can start with any basic feasible solution of GLCP (8). A pos-
sible choice is to consider the vector x equal to one of the canonical basis vectors
ei instead of the null vector in the initial basic solution of GLCP (8). Therefore the
basic variables of this initial basic solution are the variable xi, the variable µ and the
variables w j, j ∈ {1, . . . ,n}\{i} of LCP(p,Q). In this way we can construct (n+ 1)
initial basic solutions (including the trivial one with x = 0) for initializing Lemke’s
method. Note that for computing initial BFS of GLCP (8) from each one of these
basic solutions, the vector d should be given by d = Be, where B is the associated
basis matrix.

An obvious drawback of this approach is that the process may not be conclusive.
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Procedure 3: Solve MIP1 and MIP2 and apply Corollaries 5 and 6.

In procedure 3 we aim again at solving the problem LCP(p,Q) but this time by using
its reformulation as a MIP. We start by trying to find a feasible solution with α > 0
of MIP1 to be able to apply Corollary 5. If MIP1 has a feasible solution with α > 0
and yn+1 = 0, then we want to find a feasible solution of MIP2 to be able to apply
Corollary 6. If the globally optimal value of MIP1 is equal to zero, then M ∈ COP
(and even M ∈ intCOP). This discussion confirms that it is much easier to show
that a matrix is not copositive (or not strictly copositive) than establishing that it is
copositive.

4 Numerical results

We test the basic steps (Step 0 and 1) of our algorithm as well as all three procedures
on several test instances from the literature — like the famous Horn matrix. We also
consider generated Max-clique instances and instances from the DIMACS collection
[14] with matrices up to order 496× 496. We compare the results with those from
the literature on copositivity tests by Bundfuss and Dür [8], Žilinskas and Dür [33],
and Bomze and Eichfelder [3]. Moreover, as testing copositivity is equivalent to de-
termining a globally optimal solution of the quadratic optimization problem (1), see
Lemma 1, we apply the global optimization solver BARON (with default parameters
settings) and compare with our results.

All experiments have been performed on a Pentium IV (Intel) with 3.0 GHz and 2
GBytes of RAM memory, using the operating system Linux. The algorithm was im-
plemented in the General Algebraic Modeling System (GAMS) language (Rev 118
Linux/Intel) [6] and the solvers CPLEX [12] (version 9.1), MINOS [25] (version
5.51) and BARON [28] (version 22.7.2) were used to solve the MIP and the non-
linear optimization problems, and the LP was solved with CPLEX. Lemke’s method
has been implemented in MATLAB [24] environment (version 7.11, R2010b). The
running times which we present in these sections are always given in CPU seconds
(a value of zero for CPU means that the CPU time is less than one second). The
maximum CPU time allowed for all procedures is 7200 seconds.

4.1 Test matrices

The following non-copositive matrices M1 6∈ COP and M2 6∈ COP are taken from
Bomze and Eichfelder [3] and Kaplan [23], respectively:

M1 =


1 −0.72 −0.59 1

−0.72 1 −0.6 −0.46
−0.59 −0.6 1 −0.6

1 −0.46 −0.6 1

 , M2 =


1 −0.72 −0.59 −0.6

−0.72 1 0.21 −0.46
−0.59 0.21 1 −0.6
−0.6 −0.46 −0.6 1

 .
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The matrix M3 ∈ intCOP is from Kaplan [23] and M4 ∈ intCOP is a principal sub-
matrix of a matrix from Kaplan [23, Ex. 1]:

M3 =


1 0.9 −0.54 0.21

0.9 1 −0.03 0.78
−0.54 −0.03 1 0.52

0.21 0.78 0.52 1

 , M4 =

 1 0.9 −0.54
0.9 1 −0.03

−0.54 −0.03 1

 .

The matrix M5 ∈ bdCOP is from Väliaho [32] and the famous Horn matrix M6 is
also an example with M6 ∈ bdCOP [18]:

M5 =


1 −1 1 2 −3
−1 2 −3 −3 4

1 −3 5 6 −4
2 −3 6 5 −8
−3 4 −4 −8 16

 , M6 =


1 −1 1 1 −1
−1 1 −1 1 1

1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1


The Hoffman-Pereira matrix M7 ∈ bdCOP [20] is another example of this type:

M7 =



1 −1 1 0 0 1 −1
−1 1 −1 1 0 0 1

1 −1 1 −1 1 0 0
0 1 −1 1 −1 1 0
0 0 1 −1 1 −1 1
1 0 0 1 −1 1 −1
−1 1 0 0 1 −1 1


.

Thus M1, M2 6∈ COP , M3,M4 ∈ intCOP and M5,M6,M7 ∈ bdCOP .

4.2 Maximum clique instances

Next to the above test matrices we also used test instances derived from the maximum
clique problem (based on a reformulation as a linear optimization problem over the
cone of copositive matrices) from the DIMACS collection [14], cf. [3,8,33], and
generated instances (cf. [33]). For a simple, i.e. loopless and undirected, graph G =
(V,E) with node set V = {1, . . . ,n} and edge set E, a clique C is a subset of V such
that every pair of nodes in C is connected by an edge in E. A clique C is said to be a
maximum clique if it is a clique of maximum cardinality and its size ω(G) is called
the (maximum) clique number. Finding the clique number can be reformulated as a
copositive optimization problem

ω(G) = min{λ ∈ N | λ (En−AG)−En is copositive} (11)

with En the n×n all-ones matrix and AG = [ai j]i, j the adjacency matrix of the graph
G, i.e. ai j = 1 if {i, j} ∈ E, and ai j = 0 else, i, j ∈ {1, . . . ,n}. According to [29, Prop.
3.2] it holds

λ (En−AG)−En

∈ intCOP if λ > ω(G)
∈ bdCOP if λ = ω(G)
6∈ COP if λ < ω(G).

Thus if λ (En − AG)− En 6∈ COP , we can conclude that ω(G) ≥ λ + 1. In Table
1 we list the characteristics of the graphs from the DIMACS [14] collection and
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the generated graphs (cf. [33]). The number n of nodes gives the order n× n of the
examined matrices. The small instances (with n ∈ [14,22]) as well as eight large
instances of Table 1 were also tested in [3]. In all test problems we used λ = ω(G)−
1.

Table 1 Generated small instances [33] and large instances from DIMACS collection [14].

MATRIX N |E| ω(G)
c-fat14-1 14 52 6
Brock14 14 51 5
Brock16 16 59 5
Brock18 18 78 5
Brock20 20 95 5
Morgen14 14 50 5
Morgen16 16 59 5
Morgen18 18 60 5
Morgen20 20 67 5
Morgen22 22 68 5
Johnson6-2-4 15 45 3
Johnson6-4-4 15 45 3
Johnson7-2-4 21 105 3
Jagota14 14 31 6
Jagota16 16 57 8
Jagota18 18 84 10
sanchis14 14 50 5
sanchis16 16 50 5
sanchis18 18 50 5
sanchis20 20 50 5
sanchis22 22 50 5

MATRIX N |E| ω(G)
Brock200-1 200 14834 21
Brock200-2 200 9876 12
Brock200-3 200 12048 15
Brock200-4 200 13089 17
c-fat200-1 200 1534 12
c-fat200-2 200 3235 24
c-fat200-5 200 8473 58
Hamming6-2 64 1824 32
Hamming6-4 64 704 4
Hamming8-2 256 31616 128
Hamming8-4 256 20864 16
Johnson8-2-4 28 210 4
Johnson8-4-4 70 1855 14
Johnson16-2-4 120 5460 8
Johnson32-2-4 496 107880 16
Keller4 171 9435 11
Mann-a9 45 918 16
Mann-a27 378 70551 126

4.3 Numerical Experiments: Steps 0 and 1

In Tables 2, 3 and 4 we report the performance of Steps 0 and 1 of the algorithm
where IT and TIME denote respectively, the number of LP iterations and the time of
execution required by Lemke’s algorithm.
We have run all steps of the algorithm even in cases where one of the previous steps
was conclusive. The numbers (1), (2) and (3) in Step 0 refer to the Parts as marked in
Algorithm 1.

Furthermore in Step 1, for instances where Lemke’s method was inconclusive
for the initial trivial basis (xi = 0, for all i = 1, . . . ,n), i.e., Lemke’s method found
a solution, we applied the method with different initial basic solutions as described
in Procedure 2 for Step 2. The process is repeated until the method terminates in an
unbounded ray (Case: UNB. RAY) or finds a solution of the LCP in each one of the
(n+1) applications of the method (Case: SOL.).

The numerical results indicate that the preprocessing phase does not help much
for these instances. Actually there are only two cases were the preprocessing was
effective. Contrary to this, the use of Lemke’s method in Step 1 seems quite promising
for establishing that a matrix is not strictly copositive. Furthermore, in many cases
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Table 2 Performance of the algorithm for the matrices of Section 4.1 (Steps 0 and 1).

STEP 0 STEP 1
MATRIX (1) (2) (3) TRIVIAL BASIS OTHER BASIS UNB. RAY SOL.

M 6∈ COP M 6∈ intCOP M 6∈ COP IT TIME IT TIME M 6∈ intCOP
M1 - X X 3 0 X
M2 - X X 4 0 X
M3 - - - 2 0 8 0 X
M4 - - - 2 0 5 0 X
M5 - - - 3 0 X
M6 - - - 2 0 X
M7 - - - 2 0 X

Table 3 Performance of the algorithm for small matrices λ (En−AG)−En, with λ = ω(G)− 1 (Steps 0
and 1).

STEP 0 STEP 1
MATRIX (1) (2) (3) TRIVIAL BASIS OTHER BASIS UNB. RAY SOL.

M 6∈ COP M 6∈ intCOP M 6∈ COP IT TIME IT TIME M 6∈ intCOP
c-fat14-1 - - - 6 0 X
Brock14 - - - 4 0 X
Brock16 - - - 3 0 9 0 X
Brock18 - - - 4 0 X
Brock20 - - - 4 0 X
Morgen14 - - - 5 0 X
Morgen16 - - - 4 0 X
Morgen18 - - - 2 0 15 0 X
Morgen20 - - - 4 0 X
Morgen22 - - - 4 0 X
Johnson6-2-4 - - - 3 0 X
Johnson6-4-4 - - - 3 0 X
Johnson7-2-4 - - - 3 0 X
Jagota14 - - - 4 0 11 0 X
Jagota16 - - - 5 0 15 0 X
Jagota18 - - - 6 0 19 0 X
sanchis14 - - - 5 0 X
sanchis16 - - - 2 0 26 0 X
sanchis18 - - - 5 0 X
sanchis20 - - - 5 0 X
sanchis22 - - - 3 0 4 0 X

it was enough to apply Lemke’s algorithm only once with the trivial basic feasible
solution of GLCP (8). The computational effort of Lemke’s algorithm in this last
case is quite small. So, as a final conclusion of this first study, Steps 0 and 1 should
be included in a more elaborated algorithm to verify whether a given matrix is strictly
copositive or copositive or not copositive.

4.4 Numerical Experiments: Step 2

4.5 Procedure 1

In Tables 5, 6 and 7 we report the performance of the enumerative algorithm to solve
LCP(p,Q) in order to detect copositivity or non-copositivity of the matrices. If the al-
gorithm finds a solution, then it gives an indication of just M 6∈ intCOP or M 6∈ COP
depending on the value of µ (µ = 0 or µ > 0, respectively). If a complementary fea-
sible solution is found with µ > 0, the algorithm terminates with a certificate that M
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Table 4 Performance of the algorithm for large matrices λ (En−AG)−En, with λ = ω(G)− 1 (Steps 0
and 1).

STEP 0 STEP 1
MATRIX (1) (2) (3) TRIVIAL BASIS OTHER BASIS UNB. RAY SOL.

M 6∈ COP M 6∈ intCOP M 6∈ COP IT TIME IT TIME M 6∈ intCOP
Brock200-1 - - - 131 0 2589 5.72E+00 X
Brock200-2 - - - 7 0 1246 3.05E+00 X
Brock200-3 - - - 11 0 1881 4.23E+00 X
Brock200-4 - - - 12 0 2062 5.14E+00 X
c-fat200-1 - - - 12 0 X
c-fat200-2 - - - 24 0 X
c-fat200-5 - - - 58 0 X
Hamming6-2 - - - 32 0 X
Hamming6-4 - - - 4 0 X
Hamming8-2 - - - 128 0 X
Hamming8-4 - - - 16 0 X
Johnson8-2-4 - - - 3 0 X
Johnson8-4-4 - - - 14 0 X
Johnson16-2-4 - - - 8 0 X
Johnson32-2-4 - - - 16 0 X
Keller4 - - - 7 0 1131 2.39E+00 X
Mann-a9 - - - 9 0 468 0 X
Mann-a27 - - - 27 0 14040 1.27E+02 X

is not copositive. If it finds a complementary feasible solution with µ = 0, then M is
not strictly copositive. In this latter case the algorithm continues until showing that
LCP(p,Q) has no solution with µ > 0 (and M ∈ COP) or finding a complementary
feasible solution with µ > 0 (and M 6∈ COP). If LCP(p,Q) has no solution, then
M ∈ intCOP (and M ∈ COP). A maximum CPU time of 7200 seconds is allowed for
the algorithm. In the following tables the notation NODES, IT and TIME stands re-
spectively, for the total number of nodes, iterations and time used by the enumerative
algorithm. We marked with (-) and (*) respectively, the instances for which a com-
plementary solution does not exist (M ∈ intCOP) and those for which the algorithm
was not able to find such a solution within the CPU time allowed.

Table 5 (Procedure 1) Performance of the enumerative algorithm to solve LCP(p,Q) for matrices of Sec-
tion 4.1.

MATRIX NODES IT TIME µ M ∈ intCOP M 6∈ intCOP M 6∈ COP
M1 1 4 0 9.19E-02 X
M2 1 5 0 1.16E-01 X
M3 14 19 1.74E+00 - X
M4 12 16 1.42E+00 - X
M5 1 8 0 0.00E+00 X
M6 1 2 0 0.00E+00 X
M7 1 2 0 0.00E+00 X

The numerical results indicate that the enumerative method was in general effi-
cient to show that the matrix is at least not strictly copositive. However, there were
three instances where the method was unable to terminate within the maximum time
allowed. Furthermore, the algorithm required a small amount of effort for the small-
est instances (Tables 5 and 6) but this effort increases very much when the order of
the matrices increases.
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Table 6 (Procedure 1) Performance of the enumerative algorithm to solve LCP(p,Q) for small matrices
λ (En−AG)−En, with λ = ω(G)−1.

MATRIX NODES IT TIME µ M 6∈ intCOP M 6∈ COP
c-fat14-1 3 15 0 1.67E-01 X
Brock14 1 18 0 0.00E+00 X
Brock16 10 52 1.02E+00 0.00E+00 X
Brock18 1 8 0 0.00E+00 X
Brock20 1 8 0 0.00E+00 X
Morgen14 1 12 0 2.00E-01 X
Morgen16 1 13 0 0.00E+00 X
Morgen18 32 98 7.96E+00 0.00E+00 X
Morgen20 1 16 0 2.00E-01 X
Morgen22 1 15 0 0.00E+00 X
Johnson6-2-4 1 19 0 0.00E+00 X
Johnson6-4-4 1 19 0 0.00E+00 X
Johnson7-2-4 1 19 0 2.86E-02 X
Jagota14 3 33 0 1.67E-01 X
Jagota16 13 103 3.05E+00 1.25E-01 X
Jagota18 23 236 8.36E+00 1.00E-01 X
sanchis14 12 69 1.40E+00 0.00E+00 X
sanchis16 10 28 1.02E+00 0.00E+00 X
sanchis18 1 8 0 2.00E-01 X
sanchis20 1 9 0 2.00E-01 X
sanchis22 80 226 7.35E+01 2.00E-01 X

Table 7 (Procedure 1) Performance of the enumerative algorithm to solve LCP(p,Q) for large matrices
λ (En−AG)−En, with λ = ω(G)−1.

MATRIX NODES IT TIME µ M 6∈ intCOP M 6∈ COP
Brock200-1 730 5.35E+04 7.20E+03 0.00E+00 X
Brock200-2 760 5.43E+04 7.20E+03 *
Brock200-3 734 6.19E+04 7.20E+03 *
Brock200-4 718 4.14E+04 7.20E+03 *
c-fat200-1 1 1.60E+01 0 8.33E-02 X
c-fat200-2 1 2.80E+01 0 4.17E-02 X
c-fat200-5 1 6.10E+01 0 1.72E-02 X
Hamming6-2 1 4.53E+02 0 3.13E-02 X
Hamming6-4 1 4.20E+01 0 0.00E+00 X
Hamming8-2 1 7.11E+03 2.25E+00 7.81E-03 X
Hamming8-4 7 3.99E+03 2.61E+00 6.25E-02 X
Johnson8-2-4 1 1.50E+01 0 0.00E+00 X
Johnson8-4-4 1 5.71E+02 0 7.14E-02 X
Johnson16-2-4 1 1.43E+02 0 0.00E+00 X
Johnson32-2-4 1 1.26E+03 2.71E+00 0.00E+00 X
Keller4 641 7.85E+04 2.93E+03 9.09E-02 X
Mann-a9 4 6.50E+01 0 0.00E+00 X
Mann-a27 840 3.80E+04 7.20E+03 0.00E+00 X

4.6 Procedure 2

Tables 8, 9 and 10 include the performance of Lemke’s algorithm for solving LCP(p,Q)
by changing the initial basic solution for each application k of the method (k =
1, . . . ,n+ 1). The process is repeated until the method finds a solution with µ > 0
(M 6∈ COP) or it computes a solution with µ = 0 (M 6∈ intCOP) or until it terminates
in an unbounded ray for all n+1 initial basic solutions (no conclusion is given then).
The notation IT stands for the total number of pivotal iterations required by Lemke’s
algorithm for the visited basis.
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Table 8 (Procedure 2) Performance of Lemke’s algorithm for the matrices of Section 4.1.

TRIVIAL BASIS OTHER BASIS
MATRIX IT TIME IT TIME M 6∈ intCOP M 6∈ COP
M1 1 0 3 0 X
M2 1 0 4 0 X
M3 1 0 7 0
M4 1 0 6 0
M5 1 0 19 0 X
M6 1 0 15 0 X
M7 1 0 22 0 X

Table 9 (Procedure 2) Performance of Lemke’s algorithm for small matrices λ (En−AG)−En, with λ =
ω(G)−1.

TRIVIAL BASIS OTHER BASIS
MATRIX IT TIME IT TIME M 6∈ intCOP M 6∈ COP
c-fat14-1 1 0 6 0 X
Brock14 1 0 15 0 X
Brock16 1 0 59 0 X
Brock18 1 0 37 0 X
Brock20 1 0 24 0 X
Morgen14 1 0 16 0 X
Morgen16 1 0 19 0 X
Morgen18 1 0 7 0 X
Morgen20 1 0 13 0 X
Morgen22 1 0 28 0 X
Johnson6-2-4 1 0 3 0 X
Johnson6-4-4 1 0 3 0 X
Johnson7-2-4 1 0 89 0 X
Jagota14 1 0 14 0 X
Jagota16 1 0 18 0 X
Jagota18 1 0 22 0 X
sanchis14 1 0 5 0 X
sanchis16 1 0 45 0 X
sanchis18 1 0 5 0 X
sanchis20 1 0 5 0 X
sanchis22 1 0 22 0 X

The numerical results indicate that Lemke’s method was able to verify the matri-
ces to be not strictly copositive or not copositive for all instances but four. Actually,
three of these instances were the ones for which the enumerative method was not
conclusive. The computational effort also increases much with the dimension of the
problems.

4.7 Procedure 3

In the next tables 11-13 we report the performance of the solver CPLEX to find a fea-
sible solution for the problems MIP1 and MIP2. The symbol (*) stands for problems
where the solver CPLEX was unable to find a solution with α > 0 within 3600 sec-
onds of CPU time. In this case, CPLEX gives the feasible solution α = 0 for MIP1.
We used the notations NODES, IT and TIME respectively, for the number of nodes,
iterations and CPU seconds required by the solver.
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Table 10 (Procedure 2) Performance of Lemke’s algorithm for large matrices λ (En − AG)− En, with
λ = ω(G)−1.

TRIVIAL BASIS OTHER BASIS
MATRIX IT TIME IT TIME M 6∈ intCOP M 6∈ COP
Brock200-1 1 0 2.86E+03 6.41E+00
Brock200-2 1 0 1.43E+03 3.27E+00
Brock200-3 1 0 1.89E+03 5.82E+00
Brock200-4 1 0 2.12E+03 6.77E+00
c-fat200-1 1 0 1.20E+01 0 X
c-fat200-2 1 0 2.40E+01 0 X
c-fat200-5 1 0 5.80E+01 0 X
Hamming6-2 1 0 3.20E+01 0 X
Hamming6-4 1 0 4.00E+00 0 X
Hamming8-2 1 0 1.28E+02 0 X
Hamming8-4 1 0 1.60E+01 0 X
Johnson8-2-4 1 0 2.20E+01 0 X
Johnson8-4-4 1 0 2.31E+02 0 X
Johnson16-2-4 1 0 8.00E+00 0 X
Johnson32-2-4 1 0 1.60E+01 1.00E+00 X
Keller4 1 0 1.33E+03 2.47E+00 X
Mann-a9 1 0 1.80E+01 0 X
Mann-a27 1 0 4.73E+04 4.19E+02 X

Table 11 (Procedure 3) Performance of applying CPLEX to MIP1 and MIP2 for the matrices of Section
4.1.

MIP1 MIP2
(α 6= 0, (α 6= 0,

MATRIX α = 0 yn+1 = 0) yn+1 > 0 ) IT NODES TIME yn+1 = 0 yn+1 > 0 IT NODES TIME
M ∈ intCOP M 6∈ intCOP M 6∈ COP M ∈ COP M 6∈ COP

M1 X 10 0 0
M2 X 9 0 0
M3 X 20 5 0
M4 X 20 5 0
M5 X 22 3 0 X 68 26 0
M6 X 21 5 0 X 32 10 0
M7 X 56 12 0 X 59 18 0

The numerical results indicate that using the MIP formulation of LCP(p,Q) seems
to be an interesting approach for showing that a matrix is not strictly copositive or not
copositive. Like the remaining procedures, the computational effort is small for the
smallest problems but tends to increase with the dimension of the problems. The pro-
cedure could not give an indication of non-copositivity for four instances. However,
Lemke’s method has shown non-copositivity for these four matrices.

4.8 Summary of numerical results

As a conclusion of this numerical study, we suggest to use in Step 2 Procedure 2
(Lemke’s method) first and then Procedure 3 (mixed integer formulation) when the
Procedure 2 is not conclusive. It is important to add that such a hybrid method was
able to show that all matrices but one (Mann-a27) of the maximum clique collection
are not copositive.

The numerical experiments also show that in general it is easier to show that a
matrix M is not strictly copositive than showing that M is not copositive. For that
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Table 12 (Procedure 3) Performance of applying CPLEX to MIP1 and MIP2 for small matrices λ (En−
AG)−En, with λ = ω(G)−1.

MIP1 MIP2
(α 6= 0, (α 6= 0,

MATRIX α = 0 yn+1 = 0) yn+1 > 0) IT NODES TIME yn+1 = 0 yn+1 > 0 IT NODES TIME
M ∈ intCOP M 6∈ intCOP M 6∈ COP M ∈ COP M 6∈ COP

c-fat14-1 X 546 68 0 X 561 9.00E+01 0
Brock14 X 281 34 0 X 932 2.12E+02 0
Brock16 X 205 25 0
Brock18 X 14 0 0 X 1474 3.71E+02 0
Brock20 X 374 54 0 X 2957 4.19E+02 0
Morgen14 X 69 1 0
Morgen16 X 40 4 0 X 1038 1.99E+02 0
Morgen18 X 304 29 0 X 1406 2.40E+02 0
Morgen20 X 478 66 0 X 1786 2.89E+02 0
Morgen22 X 199 23 0 X 1414 2.78E+02 0
Johnson6-2-4 X 179 19 0 X 239 4.90E+01 0
Johnson6-4-4 X 122 8 0 X 160 2.80E+01 0
Johnson7-2-4 X 340 38 0 X 1026 1.21E+02 0
Jagota14 X 266 53 0
Jagota16 X 719 137 0
Jagota18 X 1934 297 0
sanchis14 X 169 27 0 X 696 1.75E+02 0
sanchis16 X 182 20 0
sanchis18 X 37 1 0
sanchis20 X 42 2 0
sanchis22 X 62 1 0

reason we make use of Lemma 6 to establish that the matrix Mann-a27 of the clique
collection is not copositive. Let M := (ω(G)−1)(En−AG)−En be this matrix. The
matrix H :=En−AG is a nonnegative matrix with positive diagonal elements and H ∈
intCOP [11, Chapter 3]. When we apply the hybrid method to the matrix P := M +
0.1H (i.e., β = 0.1) then the algorithm terminates in Step 1 with the indication that
P 6∈ intCOP . The algorithm used more than one initial basic solution, and required
2.56E+04 iterations and 2.67E+02 CPU time. So, matrix Mann-a27 for λ =ω(G)−1
is not copositive.

As a final conclusion of this numerical study, the hybrid algorithm with Steps 0,
1 and 2 as discussed above was able to establish non-copositivity for all maximum
clique matrices. Note that for one matrix this certificate has been given based on the
application of the algorithm to a carefully chosen related matrix. This means that such
a procedure was able to give a lower bound of ω(G) for all these problems. Table 14
demonstrates this behavior of the hybrid algorithm and shows the superiority of this
algorithm over the approaches discussed by Bomze and Eichfelder [3], Bundfuss and
Dür [8], and Žilinskas and Dür [33].

4.9 Global solution with Baron

Tables 15, 16 and 17 report the performance of the solver BARON (with default pa-
rameters settings) for finding the global minimum of problem (1). We marked with (*)
the problems for which the solver was not able to prove the optimality of the solution
within the allowed 7200 CPU seconds and we report the best upper bound obtained by
the solver for the limited time of execution. For all small instances λ (En−AG)−En
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Table 13 (Procedure 3) Performance of applying CPLEX to MIP1 and MIP2 for large matrices λ (En−
AG)−En, with λ = ω(G)−1.

MIP1
(α 6= 0, (α 6= 0,

MATRIX α = 0 yn+1 = 0) yn+1 > 0) IT NODES TIME
M ∈ intCOP M 6∈ intCOP M 6∈ COP

Brock200-1 X 3.46E+06 8.59E+04 9.13E+02
Brock200-2 X 2.47E+06 5.48E+04 5.29E+02
Brock200-3 X 7.21E+06 1.79E+05 1.55E+03
Brock200-4 X 8.83E+04 1.96E+03 4.86E+01
c-fat200-1 X 1.31E+05 2.34E+03 5.84E+01
c-fat200-2 X 5.31E+05 5.95E+03 1.54E+02
c-fat200-5 * 1.61E+07 3.57E+05 3.60E+03
Hamming6-2 X 4.52E+07 3.20E+06 3.13E+03
Hamming6-4 X 2.90E+05 1.62E+04 1.13E+01
Hamming8-2 * 5.88E+06 1.48E+05 3.60E+03
Hamming8-4 * 1.13E+07 1.33E+05 3.60E+03
Johnson8-2-4 X 4.60E+01 0.00E+00 0
Johnson8-4-4 X 1.40E+05 5.07E+03 1.06E+01
Johnson16-2-4 X 3.47E+07 5.68E+05 3.60E+03
Johnson32-2-4 X 1.59E+06 7.75E+03 3.60E+03
Keller4 X 2.42E+07 5.67E+05 3.60E+03
Mann-a9 X 4.43E+06 3.78E+05 4.00E+02
Mann-a27 * 1.53E+06 6.31E+04 3.60E+03

MIP2

MATRIX yn+1 = 0 yn+1 > 0 IT NODES TIME
M ∈ COP M 6∈ COP

Brock200-1
Brock200-2
Brock200-3
Brock200-4
c-fat200-1 X 9.92E+04 4.63E+03 3.72E+01
c-fat200-2 X 2.67E+05 2.40E+04 8.11E+01
c-fat200-5
Hamming6-2
Hamming6-4 X 4.23E+04 2.55E+03 1.94E+00
Hamming8-2
Hamming8-4
Johnson8-2-4 X 2.22E+03 3.49E+02 0
Johnson8-4-4
Johnson16-2-4
Johnson32-2-4
Keller4 X 2.22E+07 1.84E+06 3.60E+03
Mann-a9 X 3.28E+07 1.80E+07 3.60E+03
Mann-a27

this upper bound allows to conclude that M 6∈ COP but it is inconclusive for five of
the bigger matrices. Note that M is considered to be copositive if the globally opti-
mal value is greater than or equal to minus the square root of macheps (10−8). These
results clearly indicate that it is better to employ our new hybrid method to estab-
lish non-copositivity than an efficient global optimizer for studying this property by
exploiting the definition of a copositive matrix.

5 Conclusions

In this paper we introduce a number of procedures based on the linear complemen-
tarity problem and on linear programming. These procedures proved to be useful
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Table 14 Comparison of lower bounds for DIMACS collection with the results in [3], [8] and [33].

LOWER BOUNDS
MATRIX ω(G) HYBRID ALGORITHM in [3] in [8] in [33]
Brock200-1 21 21 13
Brock200-2 12 12 9 10
Brock200-3 15 15 11 11
Brock200-4 17 17 7 13
c-fat200-1 12 12
c-fat200-2 24 24
c-fat200-5 58 58
Hamming6-2 32 32 32 28 32
Hamming6-4 4 4 4 4
Hamming8-2 128 128 128 128
Hamming8-4 16 16 16 12 16
Johnson8-2-4 4 4 4 4 4
Johnson8-4-4 14 14 14 14 14
Johnson16-2-4 8 8 8 8 8
Johnson32-2-4 16 16 16
Keller4 11 11 6 9 8
Mann-a9 16 16 16 16
Mann-a27 126 126 121

Table 15 Performance of the solver Baron for the matrices of Section 4.1.

MATRIX UPPER BOUND NODES TIME M ∈ intCOP M ∈ COP M 6∈ COP
M1 -9.19E-02 129 0 X
M2 -1.16E-01 365 0 X
M3 2.30E-01 21 0 X
M4 2.30E-01 7 0 X
M5 -7.40E-17 1.42E+03 0 X
M6 0.00E+00 6.98E+04 4.68E+01 X
M7 0.00E+00 1.73E+05 1.53E+02 X

Table 16 Performance of the solver Baron for small matrices λ (En−AG)−En, with λ = ω(G)−1.

MATRIX UPPER BOUND NODES TIME M ∈ COP M 6∈ COP
c-fat14-1 -1.67E-01 3.57E+05 5.76E+02 X
Brock14 -2.00E-01* 4.60E+05 7.20E+03 X
Brock16 -2.00E-01* 8.96E+05 1.61E+03 X
Brock18 -2.00E-01* 4.60E+05 7.20E+03 X
Brock20 -2.00E-01* 2.51E+06 7.20E+03 X
Morgen14 -2.00E-01* 1.51E+05 7.20E+03 X
Morgen16 -2.00E-01* 4.73E+05 7.20E+03 X
Morgen18 -2.00E-01* 2.86E+06 7.20E+03 X
Morgen20 -2.00E-01* 2.34E+06 7.20E+03 X
Morgen22 -2.00E-01* 1.85E+06 5.83E+03 X
Johnson6-2-4 -3.33E-01* 1.80E+06 4.30E+03 X
Johnson6-4-4 -3.33E-01* 1.72E+06 4.09E+03 X
Johnson7-2-4 -3.33E-01* 2.92E+04 7.20E+03 X
Jagota14 -1.67E-01 3.06E+04 5.27E+01 X
Jagota16 -1.25E-01 6.62E+05 1.42E+03 X
Jagota18 -1.00E-01* 2.11E+06 7.20E+03 X
sanchis14 -2.00E-01* 3.83E+05 5.15E+02 X
sanchis16 -2.00E-01* 3.93E+05 7.13E+02 X
sanchis18 -2.00E-01* 3.68E+05 6.37E+02 X
sanchis20 -2.00E-01* 4.02E+06 7.20E+03 X
sanchis22 -2.00E-01* 3.29E+06 7.20E+03 X
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Table 17 Performance of the solver Baron for matrices λ (En−AG)−En, with λ = ω(G)−1.

MATRIX UPPER BOUND NODES TIME M ∈ COP M 6∈ COP
Brock200-1 5.26E-02* 7.49E+02 7.20E+03
Brock200-2 1.00E-01* 7.75E+02 7.20E+03
Brock200-3 7.69E-02* 8.92E+02 7.20E+03
Brock200-4 6.67E-02* 8.62E+02 7.20E+03
c-fat200-1 -8.33E-02* 4.20E+03 7.20E+03 X
c-fat200-2 -4.17E-02* 3.68E+03 7.20E+03 X
c-fat200-5 -1.72E-02* 3.06E+03 7.20E+03 X
Hamming6-2 -3.13E-02* 6.68E+04 7.20E+03 X
Hamming6-4 -2.50E-01* 3.80E+04 7.20E+03 X
Hamming8-2 -7.81E-03* 1.19E+03 7.20E+03 X
Hamming8-4 -6.25E-02* 9.15E+02 7.20E+03 X
Johnson8-2-4 -2.50E-01* 1.35E+06 7.20E+03 X
Johnson8-4-4 -7.14E-02* 4.04E+04 7.20E+03 X
Johnson16-2-4 -1.25E-01* 5.31E+03 7.20E+03 X
Johnson32-2-4 -6.25E-02* 3.31E+02 7.20E+03 X
Keller4 -9.09E-02* 1.21E+03 7.20E+03 X
Mann-a9 -6.25E-02* 3.91E+05 7.20E+03 X
Mann-a27 6.84E-02* 1.02E+03 7.20E+03

for studying the copositivity or non-copositivity of a matrix. A hybrid algorithm has
been constructed based on these procedures and has shown to perform well to estab-
lish non-copositivity of matrices of the so-called maximum clique collection that are
usually used as test instances for similar procedures.

Numerical results with these instances indicate that the hybrid algorithm is more
efficient to detect that a matrix is not strictly copositive than showing that it is not
copositive. This conclusion has been exploited to establish the non-copositivity of
one of the matrices of the maximum clique set by showing that a carefully chosen
related matrix is not strictly copositive. In our opinion, such type of approach should
deserve more attention in the future. Recently, a similar strategy was suggested by
Sponsel et al. in [29, Theorem 3.3].

It is also interesting to investigate the performance of the algorithm discussed
in this paper for instances with copositive matrices. Finally, the use of these tech-
niques to provide lower and upper bounds of copositive programming formulations
of some structured global optimization problems (such as the maximum clique prob-
lem) should deserve attention in the near future.
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