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Abstract. In this paper, we study the Eigenvalue Complementarity Problem (EiCP)
when its matrix A belongs to the class S(G) = {A = [aij ] : aij = aji 6= 0 iff ij ∈ E},
where G = (V,E) is a connected graph. It is shown that if all non diagonal elements
of A ∈ S(G) are non positive, then A has a unique complementary eigenvalue, which
is the smallest eigenvalue of A. In particular, zero is the unique complementary
eigenvalue of the Laplacian and the normalized Laplacian matrices of a connected
graph. The number c(G) of complementary eigenvalues of the adjacency matrix of a
connected graph G is shown to be bounded above by the number b(G) of induced non
isomorphic connected subgraphs of G. Furthermore, c(G) = b(G) if the Perron roots
of the adjacency matrices of these subgraphs are all distinct. Finally, the maximum
number of complementary eigenvalues for the adjacency matrices of graphs is shown
to grow faster than any polynomial on the number of vertices.
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1. Introduction

Given a real matrix A of order n, the Eigenvalue Complementarity Problem (EiCP)
consists of finding a real number λ and a vector x ∈ Rn − {0} such that

w = Ax− λx (1)
x ≥ 0, w ≥ 0 (2)
xTw = 0 (3)

where w ∈ Rn. Each solution (λ, x) of EiCP satisfies the feasibility conditions (1) and
(2) and the condition (3). Since x and w are nonnegative vectors then this last condition
is equivalent to n conditions:

xiwi = 0, i = 1, . . . , n (4)

So, for each i at most one of the variables xi or wi may be positive. These variables
are called complementary [7, 9] and the constraint (3) is named the complementarity
condition. If w = 0 and x is not required to be nonnegative then EiCP reduces to the
well-known Eigenvalue Problem (EiP) [14]:

Ax = λx (5)

Therefore, EiCP is an extension of EiP that contains a complementarity condition (3)
on nonnegative variables. In each solution (λ, x) of EiCP, λ is called a complementary
eigenvalue and x is an associated complementary eigenvector. Furthermore EiCP (1) —
(3) is said to be symmetric if its matrix A is symmetric. The words Pareto eigenvalue
and Pareto eigenvector have been used by many authors to name these complementary
eigenvalue and eigenvector (see for instance [31]).

EiCP was introduced in [31] and finds many applications in several areas of science,
engineering and economics [1, 9, 28, 29]. A number of efficient algorithms have been
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designed for the solution of EiCP and some of its extensions for the symmetric and
the nonsymmetric cases. Like the EiP, the symmetric EiCP is much easier to solve as
it reduces to the computation of a stationary point of the so-called Rayleigh Quotient
[14] on the ordinary simplex [30]. A local nonlinear programming solver [27] can be
employed to find a solution of the symmetric EiCP. In particular, projected-gradient and
DC algorithms have been proposed to solve efficiently the symmetric EiCP [20, 23, 30].
Semi-smooth [1, 2], projected [5, 29], DC [26] and enumerative [10, 21] algorithms have
been proposed for the solution of the nonsymmetric EiCP and some of its extensions.
Some of these methods can be combined in order to enhance their efficiency [5, 11].

Many applications of EiCP are modeled as undirected graphs and the matrix involved
is often a matrix associated with a graph. The main goal of this paper is to provide
tools for the EiCP that takes into account the structure of the matrix, when it is
associated with a graph1. Given a graph G, among many other matrices, we emphasize
here its adjacency matrix, its Laplacian matrix and its normalized Laplacian matrix
(see next section for definitions). Spectral Graph Theory is the research area where
the spectrum of a matrix is used to establish structural properties of its graph. The
first papers in the area appeared in connection with quantum chemistry by Hückel [18]
relating eigenvalues of the adjacency matrix with stability and energy of molecules. Out
of the many applications of the adjacency matrix, we mention a few in which classical
parameters are related to the spectra of graphs. The papers of Wilf [34] and Hofmann
[17] provided bounds for the chromatic number of a graph in terms of the eigenvalues
of the adjacency matrix. Important relations between the spectrum of the adjacency
matrix and hamiltonicity of a graph G have been studied by several authors (see [13]
for recent results).

A well known property due to Fiedler [12] about the spectrum of the Laplacian
matrix of a graph G is that the multiplicity of zero as an eigenvalue equals the number
of connected components of G. Hence the second smallest eigenvalue – called algebraic
connectivity of G – is nonzero iff G is connected. The matrix tree theorem, attributed
to Kirchhoff, establishes an important relation between the number of spanning trees
and the nonzero Laplacian eigenvalues of a graph. These and many of the applications
of EiP for the Laplacian matrix in combinatorial optimization, physics, chemistry and
computer science, as well as mathematical properties and applications in graph theory
itself, can be found in the surveys [24, 25] and references therein. More recently, the
normalized Laplacian matrix has been defined in the context of random walks [6].

It is well-known that the symmetric EiP has exactly n real eigenvalues while the
nonsymmetric EiP has at most n. During the past several years, some researchers have
investigated the maximum number of complementary eigenvalues for the symmetric
and nonsymmetric EiCP [29, 30, 31, 33, 35].

It has been shown that EiCP has always a finite number of complementary eigenval-
ues. In particular, the maximum number of complementary eigenvalues of a symmetric
EiCP is 2n − 1 and this maximum is attained by a special matrix [29]. This number is
even bigger for the nonsymmetric EiCP [33]. An enumerative algorithm for computing
all the complementary eigenvalues have been proposed in [11] and has been shown to
be efficient if the dimension n of the EiCP is not too large.

In this paper, we investigate the number of complementary eigenvalues of symmetric
matrices that are associated with a graph G. We start in section 2 by reviewing some

1In this paper we always assume that the graph is undirected.
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definitions, and introducing the class of matrices

S(G) = {A = [aij] : A is symmetric and aji 6= 0 iff ij ∈ E}, (6)

where G = (V,E) is a connected graph. In section 3 we establish that if all non diagonal
elements of A ∈ S(G) are non positive, then A has a unique complementary eigenvalue,
which is the smallest eigenvalue of A. In particular, zero is the unique complementary
eigenvalue of the Laplacian and the normalized Laplacian matrices of a connected graph
G. In Section 4 we show that the complementary eigenvalues of the adjacency matrix of
a graph G are the Perron roots of the adjacency matrices of the induced non isomorphic
connected subgraphs of G. Hence, we show that for graphs G with n vertices, the
number c(G) of distinct complementary eigenvalues of its adjacency matrix is bounded
above by the number b(G) of these subgraphs. Furthermore c(G) = b(G) if all the
adjacency matrices of the nonisomorphic induced subgraphs of G have different Perron
roots.

Finding b(G) for a given graph G is a well-known hard problem in classical graph
theory. Our result c(G) ≤ b(G) may be seen as a practical lower bound for b(G), if
we are able to compute all the distinct complementary eigenvalues of the adjacency
matrix of G. An algorithm has been introduced in [11] for such a purpose and seems
to perform well when the number n of the order of the EiCP matrix (i.e., number
of vertices of the graph) is small. On the other hand, the number c(G) of distinct
complementary eigenvalues can be estimated for graphs where b(G) can be computed.
In Sections 5, 6 and 7, we investigate some properties of b(G) and the estimation of
the number of distinct complementary eigenvalues c(G) for some graphs G by studying
b(G). In particular we show that both quantities c(G)and b(G) may grow faster than
any polynomial in the number n of vertices of G.

2. Matrices of a graph

Let G = (V,E) be a simple graph with vertex set V = {v1, . . . , vn} and edge set E.
The Adjacency matrix A = A(G) of G is a square matrix of order n whose entries are

aij =

{
1, if {vi, vj} ∈ E,
0, otherwise. (7)

For the diagonal degree matrix D, where the entry dii is the degree of the vertex vi,
the matrix

L(G) = D − A (8)
is the Laplacian matrix of G. The normalized Laplacian matrix L(G) of G is defined
by

L(i, j) =


1, if i = j and di > 0,
− 1√

di·dj
, if {vi, vj} ∈ E,

0, otherwise,
(9)

where di denotes the degree of vi ∈ V . We observe that L(G) = D−1/2LD−1/2, if G
has no isolated vertices. In [4] the perturbed Laplacian matrix of the graph G was
introduced as LD(G) = D − A(G) where D is an arbitrary diagonal matrix and A(G) is
a weighted adjacency matrix. We notice that L(G), A(G) and L(G) are instances of
the perturbed Laplacian matrix. In fact, LD(G) encompasses other matrices associated
with G.

An even more general look at matrices of a graph was observed in [19]. If A = [aij]
is a symmetric matrix of order n, the graph of A, G = G(A), is the graph of n vertices
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entirely determined by the nondiagonal entries of A, so that G has an edge incident to
vertices vi and vj (for i 6= j) if and only if aij 6= 0. We notice that we may represent
the graph of any symmetric matrix as a graph with weights on its edges (determined
by the nondiagonal elements). The diagonal entries of A may be seen as weights on its
vertex set. In this context, for a given graph G, we may associate the set S(G) of all
matrices A whose graph is G, defined by (6).

Example 1. Consider the following matrix M :

M =


2 1 −1

√
2 0

1 3 0 4 −
√
3

−1 0 4 0 0√
2 4 0 −1 0

0 −
√
3 0 0 0


The weighted graph associated with M is given in Figure 1. The numbers inside the
vertices represent their weights (diagonal elements).

2
1

3
2

4
3

-1
4

0
5

1
-1

√
2 4 −

√
3

Figure 1. The graph of the matrix M .

3. Uniqueness of Complementary eigenvalues

We start with a technical result that we state for completeness.

Lemma 1. [31] Let A be a real matrix of order n and (λ, x) a solution to the EiCP (1)
– (3). Then λ is an eigenvalue of a principal submatrix of A.

Proof. We notice that a solution (λ, x) satisfies (4). Now consider

J = {i : xi > 0} and L = {i : xi = 0}.

Then wJ = 0 = AJJxJ + AJLxL − λxJ = AJJxJ − λxJ , implying that

AJJxJ = λxJ . (10)

Hence λ is an eigenvalue of the principal submatrix AJJ of A. �

Theorem 1. Let G be a connected graph with n vertices and S(G) be the set of matrices
of G, defined by (6). If the non diagonal entries of A ∈ S(G) are non positive, then A
has a unique complementary eigenvalue, which is the smallest eigenvalue of A.

Proof. As shown in [21, 31] EiCP has at least a solution. Let λ be such a comple-
mentary eigenvalue of A, and let x be the corresponding complementary eigenvector.
Furthermore, let J = {i : xi > 0} and L = {i : xi = 0}. By Lemma 1, λ is an eigenvalue
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of the principal submatrix AJJ of A. Suppose that J is strictly contained in {1, . . . , n}.
Then we may write x = (xJ , 0)

T and xJ satisfies

wJ = AJJxJ − λxJ = 0 (11)
wL = ALJxJ ≥ 0. (12)

Since the nondiagonal elements of A corresponding to edges are nonpositive and G
is connected, there exists at least a pair (j, `), with j ∈ J and ` ∈ L, such that a`j < 0.
Hence (12) cannot hold and none of the eigenvalues of principal submatrices AJJ of A
with J strictly included in {1, . . . , n} can be complementary eigenvalues. Hence λ and
x satisfy

Ax = λx, x > 0. (13)
In order to prove that λ is the unique complementary eigenvalue, let λ be another

complementary eigenvalue and x a corresponding complementary eigenvector. There-
fore

Ax = λx, 0 6= x ≥ 0. (14)
Since A is a symmetric matrix, then

xTAx = λxTx

xTAx = xTAx = λxTx = λxTx

By (13) and (14), xTx > 0 and λ = λ. It remains to prove that λ is the smallest
eigenvalue of A. The complementary eigenvector x associated to λ is a stationary point
of

min uTAu s.t. ||u|| = 1, u ≥ 0,

where ||u|| denotes the Euclidean norm of u [32]. Furthermore, λ = xTAx. Since x > 0
by (14), then the inequalities u ≥ 0 are all inactive at x and x is a stationary point of

min uTAu s.t. ||u|| = 1.

Hence λ is the smallest eigenvalue of A [14]. �

As a consequence of this theorem and the fact that the zero is the smallest eigenvalue
of L(G) and L(G), the following result follows.

Theorem 2. Zero is the unique complementary eigenvalue of the Laplacian and of the
normalized Laplacian matrices of a connected graph.

4. The adjacency matrix: a problem reduction

In this section we study the EiCP (1) – (3) when A is the adjacency matrix given by
(7) of a graph G = (V,E) with vertex set V = {v1, . . . , vn} and edge set E. For any
solution (λ, x) of the EiCP,

0 = xTw = xTAx− λxTx.
Hence

λ =
xTAx

xTx
. (15)

Since A is the adjacency matrix of a graph G, then A ≥ 0, and this implies that λ
is nonnegative. λ = 0 is always a complementary eigenvalue associated to a canonical
basis vector. Next, we will seek properties of positive complementary eigenvalues. We
notice that a solution (λ, x) satisfies (4). So we can consider J = {i : xi > 0}, and
L = {i : xi = 0}. Then (11) and (12) hold and
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AJJxJ = λxJ , (16)
implying that λ is an eigenvalue of the principal submatrix AJJ . There is no loss of
generality in assuming that AJJ is irreducible, and, therefore, by the Perron-Frobenius
theorem [14], there is a positive eigenvalue associated with a positive eigenvector.

Hence, each principal submatrix AJJ of A gives at least a solution (λ, x) to the EiCP,
with a positive eigenvalue given by the Perron root of AJJ . By using a proof similar
to the one presented for Theorem 1, we come to the conclusion that the Perron root
of AJJ is the unique complementary eigenvalue of EiCP associated to this principal
submatrix. Hence we can state the following theorem.

Theorem 3. Let G be a connected graph and A be its adjacency matrix. Let λ be the
Perron root of A.

(a) λ is a complementary eigenvalue associated to a positive eigenvector.
(b) λ is the unique eigenvalue of A that is a complementary eigenvalue.
(c) All complementary eigenvalues are nonnegative.
(d) The positive complementary eigenvalues are the Perron roots of principal sub-

matrices of A.

We notice that each principal submatrix of an adjacency matrix corresponds to an
induced subgraph of G, which is a subgraph where the edges are removed only when its
vertices are.

We now observe that when a graph is disconnected, its spectrum is the union of the
spectrum of each connected component. Then the Perron root is the largest of the
Perron roots of its connected components. So in order to count the number of distinct
Perron roots, it is enough to consider connected graphs and, more importantly, the
counting may be done considering only connected (distinct) subgraphs.

Consequently, as a result of item (d) of the above proposition, the number of distinct
complementary eigenvalues of the adjacency matrix of a graph is related to the number
of distinct induced connected subgraphs. Since distinct subgraphs may have the same
Perron roots, the latter is at least as large as the former.

We call the complementary eigenvalues of G the solutions to the EiCP associated to
A. We summarize these conclusions in the following result.

Theorem 4. Let G be a connected graph with n vertices and A its adjacency matrix.
Let c(G) be the number of complementary eigenvalues of G and b(G) be the number of
induced non isomorphic connected subgraphs of G. Then

c(G) ≤ b(G).

We formulate the question of interest in this note.

Question 1. Given a graph G with n vertices, what is the number c(G) of distinct
complementary eigenvalues of G?

By Theorem 4 c(G) is bounded above by the number b(G) of non isomorphic con-
nected induced subgraphs of G. Furthermore c(G) = b(G) if the adjacency matrices of
all these subgraphs have distinct Perron roots. Unfortunately, the computation of b(G)
is a well known hard problem in graph theory (see, for example [3, 16]).

Since A is a symmetric matrix, then [31]

c(G) ≤ 2n − 1, (17)
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for a graph with n vertices. Theorem 4 shows that the inequality (17) is strict, as b(G)
is smaller than 2n − 1 (see Theorem 5 below). So the adjacency matrix of a graph is
one of the classes of symmetric matrices such that the large upper bound given in (17)
cannot be attained. So, it will be interesting to obtain an upper bound for c(G) and
b(G) or at least to investigate whether b(G) and c(G) are exponential in n or not. This
will be discussed in the next sections. Theorem 4 can also be used to estimate b(G)
by using c(G). An enumerative method has been designed in [11] to compute all the
complementary eigenvalues of a given matrix. This algorithm seems to perform well for
matrices of small orders, whence it can be used to estimate b(G) for graphs with small
number of nodes.

5. On the relation between c(G) and b(G)

The Perron root of the adjacency matrix of a graph G is also called the index of G
and will be denoted henceforth by λ1(G).

The reason for c(G) ≥ b(G) is that it is possible that two non isomorphic connected
induced subgraphs may have the same index. Consider, for example, the cycle C4 with
4 vertices and the star S5 with 5 vertices, both have index equal 2. They may be seen
as induced subgraphs of the graph G composed by a vertex connecting one vertex of
each C4 and S5.

We see that a necessary and sufficient condition for a graph G to have c(G) = b(G)
is that all non isomorphic connected subgraphs of G have different indices. Hence,
we raise the following problem, which is interesting on its own for the spectral graph
theory community, and also for estimating the maximum number of complementary
eigenvalues of the adjacency matrix.

Question 2. Characterize graphs G in which all induced connected subgraphs have
different indices, i.e., graphs G such that c(G) = b(G) ?

We observe that the path Pn, the complete graph Kn, the star Sn = K1,n−1 and
the cycle Cn, all with n vertices, are examples of graphs G having exactly n non
isomorphic connected induced subgraphs, each having different indices, meaning that
c(G) = b(G) = n.

Question 2 asks to characterize graphs G for which b(G) = c(G), which may be hard
in general. Let us now turn to a problem of bounding these quantities. We are first
going to study the number b(G) of non isomorphic connected induced subgraphs of G.
The following a priori result may be stated.

Theorem 5. Let G be a connected graph G with n vertices. Then the number b(G) of
non isomorphic connected induced subgraphs of G satisfies

n ≤ b(G) < 2n − 1. (18)

Proof. In order to prove this result, let G be a connected graph with n vertices.
Hence G provides the first induced graph. Now, we can always choose a vertex whose
removal provides a connected induced subgraph with n− 1 vertices. This process may
be repeated until finding a graph of a single vertex. We have, therefore, exhibited n
induced connected subgraphs of G and they are all non isomorphic since they have
different number of vertices.

The upper bound follows because for each k = 0, . . . , n there are exactly
(
n
k

)
ways of

choosing k vertices. Hence, if all choices give connected and distinct subgraphs, then we
would have 2n such subgraphs. Now, we notice there is no connected subgraph with 0
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vertices, there is only one subgraph with 1 vertex, there is a single connected subgraph
with 2 vertices and hence we can improve the bound to at least 2n−1+1−

(
n
1

)
+1−

(
n
2

)
.

Hence b(G) < 2n − 1. �
Let Gn be set of all connected graphs on n vertices and let

cn = max
G∈Gn

c(G),

bn = max
G∈Gn

b(G).

The lower bound n ≤ bn given by Theorem 5 is indeed attained by the path Pn, by
the star Sn, by the complete graph Kn and by the cycle Cn. It is worth noticing that
for these graphs both b(G) and c(G) match the lower bound for bn. From Theorem 4,
we see that cn ≤ bn and since bn ≥ n, we ask whether there are graphs G for which the
number of complementary eigenvalues is smaller than n.

Question 3. Does there exist a connected graph G with n vertices for which c(G) < n?

Clearly, the upper bound bn ≤ 2n−1 given by Theorem 5 can be improved if we take
into account that many subgraphs are not connected or are isomorphic. Since our main
interest here is in the number c(G) of complementary eigenvalues, we leave as future
research problem to find sharper upper bounds for bn.

Due to the inequality (18), we may ask whether bn and cn are exponential in the
number n. In the next sections, we study this topic. We will provide examples of
family of graphs with n vertices for which the quantities bn and cn grow faster than
any polynomial in n. To make it a more precise statement, we say that a quantity an
grows faster than any polynomial in n if

lim
n→∞

an
nk

=∞, for any k > 1. (19)

6. An example for bn

It may be questioned whether the upper bound given by Theorem 5 can be improved
so that b(G) is a polynomial function of n. In this section we give an example of a
graph whose number of connected non isomorphic induced subgraphs is larger than
any polynomial. A starlike is a tree that has a unique vertex with maximum degree
r ≥ 3. We may picture a starlike with this unique vertex of degree r > 2 having r
attached paths of sizes m1,m2, . . . ,mr. It is convenient to denote such a starlike by
S(m1,m2, . . . ,mr). In this section, we consider the starlike S(r,m) having a vertex with
r > 2 attached paths Pm all with m > 0 vertices each. Figure 2 gives an illustration.

c

...
...

...
.... . . m

r

Figure 2. A starlike S(r,m).
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Lemma 2. Let S(r,m) with m, r ≥ 2. The number of non isomorphic connected
induced subgraphs of S(r,m) is given by(

m+ r

r

)
−
(
m

2

)
.

Proof. In order to simplify the argument, we first notice that each non isomorphic
connected induced subgraph may be seen as an r-tuple (x1, . . . , xr), with 0 ≤ xi ≤ m,
and xi ≥ xi+1, where each xi represents the number of nodes of the respective path that
appears in the subgraph. The restriction xi ≥ xi+1 ensures that only non isomorphic
subgraphs are counted, except in the case when xi = 0 for i > 2. When only x1 6= 0
or x2 6= 0, then some subgraphs are multi counted. For example (2,2,0), (3,1,0) and
(4,0,0) represent the same path P5 as subgraphs of the starlike S(3, 3). We first count
the total number of r-tuples with the restriction xi ≥ xi+1 and then account for the
repetitions.

Let k ∈ {1, . . . , r} be the number of distinct values that appear in the r-tuple. We
see there are

(
m+1
k

)
ways of choosing k distinct values from {0, 1, . . . ,m}. For each of

these choices, we need to choose the configuration, that is the number of each individual
value. For example, for r = 4, k = 2, if we choose the values 1 and 3, we may have the
4-uples (3,3,3,1), (3,3,1,1) or (3,1,1,1). In general the number of configurations is equal
to the number of positive integral solutions of the equation y1 + · · ·+ yk = r, which is
known to be equal to

(
r−1
k−1

)
. Hence the total count is

kr =
r∑

k=1

(
m+ 1

k

)(
r − 1

k − 1

)
.

Let us now count the number of paths given by the (x1, x2, 0, · · · , 0), with x1 ≥ x2 >
0. We can use the same reasoning above to arrive at k2 =

∑2
k=1

(
m
k

)(
r−1
k−1

)
=
(
m+1
2

)
.

Notice that kr − k2 counts all unlabelled subgraphs, except the paths with more than
m+ 1 vertices. Now these paths may be seen as the tuples of the form (m, l, 0, · · · , 0)
for l = 1, . . . ,m, which gives m additional paths. Hence, the number of non isomorphic
connected induced subgraphs of S(r,m) is given by kr − k2 +m, that is

r∑
k=1

(
r − 1

k − 1

)(
m+ 1

k

)
+m−

(
m+ 1

2

)
. (20)

Using Vandermonde’s convolution formula
(
l+s
n

)
=
∑

k

(
r
k

)(
s

n−k

)
(see, for example [15,

p.170]), we see that kr =
∑r

k=1

(
m+1
k

)(
r−1
k−1

)
=
∑r

k=1

(
m+1
k

)(
r−1
r−k

)
=
(
m+r
r

)
. Since m −(

m+1
2

)
= −

(
m
2

)
, the result follows. �

By applying Stirling’s formula (see, for example, [15, p.519]), one may conclude that(
m+ r

m

)
≈

√
1

2π

(
1

m
+

1

r

)(
1 +

r

m

)m (
1 +

m

r

)r
.

If we take m = r, we arrive at the following result.

Corollary 1. The number b(G) of non isomorphic connected induced subgraphs of the
starlike G = S(m,m),m > 1 with n = m2 + 1 vertices is asymptotically given by

22
√
n√

π
√
n
.
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Theorem 6. For all natural n > 3, there exists a graph Gn having n vertices whose
number b(Gn) of non isomorphic connected induced subgraphs grows faster than any
polynomial in n.

Proof. For a given natural n, we can always place it between two consecutive squares:
r2 < n ≤ (r+1)2. Hence there exists an integer 1 ≤ l ≤ 2r+1 such that n = r2+ l. We

now construct a starlike S(r,m), withm satisfying
{
m = r if 1 ≤ l ≤ r
m = r + 1 if r + 1 ≤ l ≤ 2r + 1.

The number of vertices left out is n−(mr+1) =

{
l − 1 if 1 ≤ l ≤ r
l − r − 1 if r + 1 ≤ l ≤ 2r + 1.

In any case, we have 0 ≤ n − (mr + 1) ≤ r. Then we can place one vertex at the end
of each path, leaving all paths with at most m + 1 vertices. The final starlike tree Gn

with n vertices has a unique vertex of degree r, and the r paths have either m or m+1
vertices. The number of induced non isomorphic connected subgraphs of Gn is larger
than S(r,m) and this counting may be done using the technique of Lemma 5. Since
r ≈ m ≈

√
n, we may apply Stirling formula as in Corollary 1, and it is clear that

lim
n→∞

c(Gn)

nk
=∞ for any k > 1, hence we obtain the result. �

Example 2. For n = 14, the construction above gives an initial S(r,m) with (r,m) =
(3, 4), since 32 < n = 14 ≤ (3+ 1)2 and, hence n = r2 + l = 32 +5. There is one vertex
left out to be placed at the end of a path. The final G14 is a starlike with a central vertex
of degree 3 attached to 2 paths P4 and 1 path P5.

7. An example for cn

In this section, we show that the number of complementary eigenvalues of graphs
may also grow faster than polynomially with the number of vertices. We are going to
look at starlike trees as in the previous section. We should proceed with care because
non isomorphic starlike trees may have the same index, therefore leading to the same
complementary eigenvalue. For example, the starlike S(3, 2) with 7 vertices and the
star S(4, 1) with 5 vertices both have index 2. They may be seen as induced subgraphs
of the same larger starlike. For an account about the index of starlike trees, we refer to
[22], where conditions are given for the indices of starlikes to be integers.

Consider now a general starlike tree S(m1,m2, . . . ,mr) having r > 2 paths Pmi

attached to a vertex. Let Sn be the set of all starlike trees with n > 3 vertices. The
following is a recent result that is essential to our example (see [8])./

Lemma 3. Any two non isomorphic starlike trees in Sn have different indices.

Lemma 4 (Cardinality of Sn). Let n > 3 be an integer. The number of starlike trees
of Sn is asymptotically given by

1

4n
√
3
expπ

√
2n

3
.

Proof. We first set m1 ≥ m2 ≥ · · · ≥ mr > 0 to guarantee that the starlikes are
non isomorphic. Then it is easy to see that counting the number of starlike trees
S(m1, . . . ,mr) of Sn and 3 ≤ r ≤ n − 1 paths, is equivalent to counting the number
of different configurations of (m1, . . . ,mr) such that m1 +m2 + · · ·+mr = n− 1. But
this is exactly the number of partitions of n − 1 having at least three parts. If we let
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p(k) be the number partitions of k (with no restriction) then our number accounts to
p(n− 1)−

(
bn−1

2
+ 1c

)
. The famous Hardy-Ramanujan approximation, states that

p(k) ∼ 1

4k
√
3
expπ

√
2k

3
.

Since replacing n by n− 1 and subtracting the linear term does not change the asymp-
totic behavior, the result follows. �

Corollary 2. Let G be the starlike G = S(m,m),m > 2 with n = m2+1 vertices. The
number c(G) of distinct complementary eigenvalues of G grows asymptotically at least
as

exp π
√
2
√
n/3

4
√
3n

.

Proof. Notice that any starlike having m vertices will have at most m− 1 =
√
n paths

and the largest path can not have more than m− 1 =
√
n vertices, meaning that it is a

connected subgraph of G = S(m,m). By Lemma 3 they are all distinct and, therefore,
contribute with a complementary eigenvalue of G. Now the asymptotic value follows
from Lemma 4. �

Theorem 7. For all n > 3, there exists a graph Gn with n vertices whose number c(Gn)
of distinct complementary eigenvalues grows faster than any polynomial in n.

Proof. For a given n > 3, we construct the same starlike Gn from S(r,m) of Theorem
6 with r2 < n + l ≤ (r + 1)2, 0 ≤ l ≤ 2r + 1 and m = r or r + 1. Then, using
Corollary 2, as m ≈

√
n, the number c(Gn) of distinct complementary eigenvalues of

Gn is asymptotically faster than any polynomial in n. �

8. Concluding remarks

We studied the EiCP whose matrix A belongs to the class S(G) associated to a
connected graph G(V,E) defined by (6). We showed that any matrix A ∈ S(G) has
a unique complementary eigenvalue if all its non diagonal elements are non positive.
As a consequence, zero is the only complementary eigenvalue of the Laplacian and the
normalized Laplacian matrices of G. We also studied the number c(G) of complemen-
tary eigenvalues of the adjacency matrix of an undirected graph G. We showed that
c(G) is bounded above by the number of induced connected subgraphs of G. Further-
more, we were able to show that the maximum number of complementary eigenvalues of
adjacency matrices of graphs is asymptotically faster than any polynomial in the num-
ber of nodes. Some questions are included that should be considered open problems.
The investigation of classes of graphs for which the maximum number of complemen-
tary eigenvalues is polynomial in the number of nodes is an interesting area of future
research. The design of special purpose techniques for computing complementary eigen-
values of adjacency matrices of these graphs is certainly another topic of interest in our
future research.
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