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Abstract

Linear programming with linear complementarity constraints (LPLCC) is an area of active
research in Optimization, due to its many applications, algorithms, and theoretical existence re-
sults. In this paper, a number of formulations for important nonconvex optimization problems are
first reviewed. The most relevant algorithms for computing a complementary feasible solution,
a stationary point, and a global minimum for the LPLCC are also surveyed, together with some
comments about their efficiency and efficacy in practice.
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1 Introduction

A mathematical program with linear complementarity constraints (MPLCC) [15, 44, 51, 53] consists
of minimizing a continuously differentiable function on a set defined by a general linear complemen-
tarity problem (GLCP). Therefore the problem can be stated as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥, 𝑦)
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐸𝑤 = 𝑞 + 𝑀𝑥 + 𝑁𝑦

𝑥𝑖 ≥ 0, 𝑤𝑖 ≥ 0, 𝑖 ∈ 𝐼
𝑥𝑖𝑤𝑖 = 0, 𝑖 ∈ 𝐼
𝑤𝑗 = 0, 𝑗 ∈ {1, . . . , 𝑛}∖𝐼
𝑦 ∈ 𝐾𝑦,

(1)

where 𝐼 ⊆ {1, . . . , 𝑛}, 𝐸 ∈ ℝ
𝑝×𝑛, 𝑀 ∈ ℝ

𝑝×𝑛, 𝑁 ∈ ℝ
𝑝×𝑚, and 𝐾𝑦 is a polyhedron in ℝ

𝑚. Since the
pioneering work of Ibaraki [29] and Jeroslow [30] in the 1970s, many theoretical results, algorithms,
and applications of the MPLCC have been reported (see [44, 51, 53] for important monographs on the
MPLCC). The MPLCC is called a linear program with linear complementarity constraints (LPLCC)
if the function 𝑓 is linear, that is, it takes the form

𝑓(𝑥, 𝑦) = 𝑐𝑇𝑥 + 𝑑𝑇 𝑦 (2)
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where 𝑐 ∈ �𝑛 and 𝑑 ∈ �𝑚. The linear bilevel programming problem has been reformulated as an
LPLCC [6, 11, 14] and this formulation was used in the 1990s in the design of algorithms for finding
a global minimum for the former problem [7, 25, 35]. Other formulations of nonconvex programs
as LPLCC and many applications of this last problem have been discussed in the past several years
[44, 51, 53]. Recently, a great interest has reemerged on the design of new efficient algorithms for
finding stationary points and global minima for the LPLCC [5, 10, 17, 26, 27, 37, 38, 61]. These
methods either solve the LPLCC directly or find a solution to an equivalent nonconvex program. The
main objective of this paper is to survey the most important techniques for the LPLCC.

The GLCP is a nonconvex and NP-hard problem [39] that has been studied in the past several
years [39, 44, 51, 64]. A special case of the GLCP is the so called mixed linear complementarity
problem (mixed LCP), where the 𝑦-variables do not exist in its definition. Several direct and iterative
methods have been discussed for processing the mixed LCP [12, 49]. These techniques can be highly
efficient for special classes of matrices, namely, when the matrix 𝑀 is positive semi-definite (PSD)
and 𝐸 is the identity matrix or belong to related classes of matrices [12, 49]. The extensions of these
methods to the GLCP in these special cases are straightforward [18, 39, 64]. Absolute value and DC
programming [41, 46] have also been recommended for the solution of the LCP and can be extended
to deal with the GLCP without any major modification. In general, the mixed LCP and the GLCP
can only be processed by an enumerative method. An efficient algorithm of this type was introduced
in [1] and was subsequently improved in [33, 37]. The algorithm searches a solution to the GLCP
by exploiting a binary tree that is constructed based on the dichotomy that 𝑥𝑖 = 0 or 𝑤𝑖 = 0, as
associated with the complementary variables. A set of heuristic rules and a local quadratic solver,
such as MINOS [47], were incorporated in the algorithm to speed up the search for a solution.

Due to the nonnegativity requirement for the variables 𝑥𝑖 and 𝑤𝑖, 𝑖 ∈ 𝐼 , the ∣𝐼∣ constraints 𝑥𝑖𝑤𝑖 =
0, 𝑖 ∈ 𝐼 can be replaced by a complementarity constraint∑

𝑖∈𝐼
𝑥𝑖𝑤𝑖 = 0. (3)

Therefore the LPLCC can be seen as a nonlinear programming problem (NLP) with linear constraints
and a nonlinear equality restriction. A number of stationary concepts have been associated with the
LPLCC [17, 44, 51, 52, 53, 55, 62, 63]. Among them, strongly stationary and B-stationary points
are particularity noteworthy [17, 53]. Many algorithms have been developed in the past several years
for finding a stationary point for the MPLCC and LPLCC [2, 3, 9, 15, 16, 17, 19, 20, 21, 22, 28, 31,
32, 38, 43, 44, 51, 53, 56, 57]. As stated in [17], the complementary active-set algorithm (CASET)
developed in [56] and subsequently improved in [17, 38] is the most recommended approach for
finding a strongly stationary or a B-stationary point for an LPLCC. This algorithm exploits an active-
set methodology that only employs solutions of the GLCP.

A sequential linear complementarity (SLCP) algorithm was introduced in [35] for computing a
global minimum of a linear bilevel program by exploiting its LPLCC formulation and has subse-
quently been applied to other optimization problems and to the general LPLCC [34, 36]. The algo-
rithm achieves global convergence to an approximate global minimum of the LPLCC, but in practice,
is able to compute a true global minimum. This procedure has essentially two phases, namely, a para-
metric enumerative procedure (PAREN) that is able to compute solutions of the GLCP with strictly
decreasing values for the objective function, and the complementarity active-set (CASET) algorithm,
which is applied a finite number of times starting from these solutions of the GLCP found by the
PAREN method to derive stationary points [17, 38, 56] of the LPLCC. Branch-and-bound algorithms
[4, 5, 7, 10, 13, 25, 37, 61] have also been proposed for finding a global minimum to the LPLCC. Sim-
ilar to the enumerative method, this type of algorithm explores a binary tree that is generated based
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on the dichotomy that 𝑥𝑖 = 0 or 𝑤𝑖 = 0, as per the complementarity constraints 𝑥𝑖𝑤𝑖 = 0, 𝑖 ∈ 𝐼 . The
LPLCC can also be reduced to a 0 − 1 mixed-integer program (MIP) [24, 26, 27, 45, 59] and solved
by special-purpose techniques that deal with such problems.

The remainder of this paper is organized as follows. In Section 2, we recall some formulations
of optimization problems as LPLCCs. The solution of the GLCP is discussed in Section 3. The
computation of strongly stationary and B-stationary points for the LPLCC is addressed in Section
4. The sequential complementarity algorithm and the branch-and-bound methods are described in
Sections 5 and 6. The solution of the LPLCC via MIPs is studied in Section 7. Some concluding
remarks are presented in the final section of the paper.

2 Formulations of nonconvex programs as LPLCCs

The definition of a bilevel programming problem (BPP) [6, 11, 14] contains a hierarchy between two
optimization problems, such that the constraints of the upper (first) level problem are defined as part
of a parametric optimization problem, called the lower or second level problem. The BPP can be
stated as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥, 𝑦)
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦 ∈ 𝐾𝑦

𝐺1(𝑥, 𝑦) ≥ 0
𝐺2(𝑥, 𝑦) = 0
𝑥 ∈ 𝑎𝑟𝑔 min{𝑔(𝑥, 𝑦) : 𝑥 ∈ 𝐾𝑥, 𝐻1(𝑥, 𝑦) ≥ 0, 𝐻2(𝑥, 𝑦) = 0},

where 𝐾𝑥 and 𝐾𝑦 are polyhedra in ℝ
𝑛 and ℝ

𝑚 respectively, 𝑓 : ℝ𝑛+𝑚 → ℝ and 𝑔 : ℝ𝑛+𝑚 → ℝ are
real functions, and 𝐺𝑖 and 𝐻𝑖, 𝑖 = 1, 2 are vector real functions, such that 𝐺𝑖 : ℝ

𝑛+𝑚 → ℝ
𝑙𝑖 and

𝐻𝑖 : ℝ
𝑛+𝑚 → ℝ

𝑝𝑖 , 𝑛, 𝑚 ∈ ℕ and 𝑙𝑖, 𝑝𝑖 ∈ ℕ ∪ {0}, 𝑖 = 1, 2. It follows from its definition that the
functions 𝐺𝑖, 𝐻𝑖, 𝑔 and 𝑓 have an important impact on the difficulty of the BPP and the choice of the
techniques to deal with the problem. In this paper we assume that 𝐺𝑖 and 𝐻𝑖 are all linear functions,
𝑓 is linear, and 𝑔 is quadratic. Hence the BPP can be defined as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑔𝑇𝑥 + ℎ𝑇 𝑦
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐶𝑥 + 𝐷𝑦 = 𝑟

𝑦 ∈ 𝐾𝑦,

where 𝑥 is the optimal solution of the parametric quadratic convex program

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑐𝑇𝑥 + 𝑦𝑇𝑅𝑥 +
1

2
𝑥𝑇𝑄𝑥

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑥 + 𝐵𝑦 = 𝑏
𝑥 ≥ 0.

Replacing the second level quadratic problem by its Karush-Kuhn-Tucker conditions [8], the BPP
reduces to the following LPLCC:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑔𝑇𝑥 + ℎ𝑇 𝑦
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑐 + 𝑄𝑥 + 𝑅𝑇 𝑦 = 𝐴𝑇𝑢 + 𝑤

𝐴𝑥 + 𝐵𝑦 = 𝑏
𝐶𝑥 + 𝐷𝑦 = 𝑟
𝑥 ≥ 0, 𝑤 ≥ 0, 𝑦 ∈ 𝐾𝑦

𝑥𝑇𝑤 = 0.

(4)
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If no first level constraints 𝐶𝑥 + 𝐷𝑦 = 𝑟 exist, then the GLCP of the last LPLCC takes the form
[

𝐼𝑛
0

]
𝑤 =

[
𝑐
−𝑏

]
+

[
𝑄 −𝐴𝑇

𝐴 0

] [
𝑥
𝑢

]
+

[
𝑅𝑇

𝐵

]
𝑦

𝑥 ≥ 0, 𝑤 ≥ 0, 𝑦 ∈ 𝐾𝑦

𝑥𝑇𝑤 = 0,

where 𝐼𝑛 is the identity matrix of order 𝑛. An important fact of this LPLCC is that the matrix

[
𝑄 −𝐴𝑇

𝐴 0

]

involving the complementary variables is PSD, as 𝑄 ∈ PSD [12]. This issue is discussed later in this
paper.

The bilinear programming problem (BLP) has also been extensively investigated due to its large
number of applications [4, 40, 58]. It consists of minimizing a bilinear function in the variables 𝑥𝑖
and 𝑦𝑖 on a convex set defined by linear constraints. Therefore, it takes the form

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥, 𝑦) = 𝑐𝑇𝑥 + 𝑑𝑇 𝑦 + 𝑥𝑇𝐻𝑦
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑥 + 𝐵𝑦 = 𝑏

𝑥 ∈ 𝐾𝑥, 𝑦 ∈ 𝐾𝑦,
(5)

where 𝐾𝑥 ⊆ ℝ
𝑛 and 𝐾𝑦 ⊆ ℝ

𝑚 are polyhedra in the 𝑥- and 𝑦-variables, respectively. If

𝐾𝑥 = {𝑥 ∈ ℝ
𝑛 : 𝐶𝑥 = 𝑔, 𝑥 ≥ 0},

then BLP can be stated as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑑𝑇 𝑦 +min
𝑥

{
(𝑐 + 𝐻𝑦)𝑇𝑥 : 𝐴𝑥 + 𝐵𝑦 = 𝑏, 𝐶𝑥 = 𝑔, 𝑥 ≥ 0

}
.

𝑦 ∈ 𝐾𝑦
(6)

The dual program of the inner program above is given by

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (𝑏 − 𝐵𝑦)𝑇𝑢 + 𝑔𝑇 𝑣
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑇𝑢 + 𝐶𝑇 𝑣 ≤ 𝑐 + 𝐻𝑦.

(7)

By introducing the slack variables 𝑤𝑖 related to the inequality constraints of the dual program, and
applying the complementary slackness theorem [48], (�̄�, 𝑦) is an optimal solution of BLP (5) if and
only if (�̄�, 𝑦) is a global minimum of the MPLCC

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑑𝑇 𝑦 + 𝑔𝑇 𝑣 + 𝑏𝑇𝑢 − 𝑢𝑇𝐵𝑦

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

⎡
⎣ 𝐼𝑛

0
0

⎤
⎦𝑤 =

⎡
⎣ 𝑐

−𝑏
−𝑔

⎤
⎦+

⎡
⎣ 0 −𝐴𝑇 −𝐶𝑇

𝐴 0 0
𝐶 0 0

⎤
⎦
⎡
⎣ 𝑥

𝑢
𝑣

⎤
⎦+

⎡
⎣ 𝐻

𝐵
0

⎤
⎦ 𝑦

𝑥 ≥ 0, 𝑤 ≥ 0, 𝑦 ∈ 𝐾𝑦

𝑥𝑇𝑤 = 0.

Note that the matrix ⎡
⎣ 0 −𝐴𝑇 −𝐶𝑇

𝐴 0 0
𝐶 0 0

⎤
⎦
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is skew-symmetric and thus 𝑃𝑆𝐷 [12]. A BLP is called disjoint if there are no constraints involving
both 𝑥- and 𝑦-variables. So a disjoint bilinear program is equivalent to an LPLCC of the form

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑑𝑇 𝑦 + 𝑔𝑇 𝑣

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

[
𝐼𝑛
0

]
𝑤 =

[
𝑐
−𝑔

]
+

[
0 −𝐶𝑇

𝐶 0

] [
𝑥
𝑣

]
+

[
𝐻
0

]
𝑦

𝑥 ≥ 0, 𝑤 ≥ 0, 𝑦 ∈ 𝐾𝑦

𝑥𝑇𝑤 = 0.

As before, the matrix involving the complementarity variables is PSD.
As stated in [10, 26, 61], a nonconvex quadratic program (QP) can also be solved by exploiting an

equivalent LPLCC formulation. Consider the following QP:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑐𝑇𝑥 + 1
2𝑥𝑇𝐻𝑥

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑥 = 𝑏
𝑥 ≥ 0,

(8)

where 𝐻 ∈ ℝ
𝑛×𝑛 is symmetric and not PSD, 𝐴 ∈ ℝ

𝑚×𝑛 with 𝑚 < 𝑛, 𝑏 ∈ ℝ
𝑚, and 𝑐 ∈ ℝ

𝑛. Let 𝑢
and 𝑤 represent the dual variables associated with the primal constraints. If �̄� is an optimal solution
for QP then there are vectors �̄� and �̄� such that (�̄�, �̄�, �̄�) is a solution of the GLCP[

𝐼𝑛
0

]
𝑤 =

[
𝑐
−𝑏

]
+

[
𝐻 −𝐴𝑇

𝐴 0

] [
𝑥
𝑢

]

𝑥 ≥ 0, 𝑤 ≥ 0
𝑥𝑇𝑤 = 0.

(9)

Furthermore, for each solution of the GLCP the QP objective function is linear in the variables 𝑥 and
𝑢, because

𝑐𝑇𝑥 +
1

2
𝑥𝑇𝐻𝑥 =

1

2
𝑐𝑇𝑥 +

1

2
𝑥𝑇 (𝑐 + 𝐻𝑥) =

1

2
(𝑐𝑇𝑥 + 𝑏𝑇𝑢).

Hence, any nonconvex QP with an optimal solution is equivalent to an LPLCC. Note that the matrix
associated with the complementary variables is not PSD.

Absolute value programming (AVP) has been studied in [46] and is also related to mathemat-
ical programming problems with linear complementarity constraints. Consider the following AVP
problem:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑐𝑇𝑥 + 𝑑𝑇 ∣𝑥∣
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑥 + 𝐵∣𝑥∣ = 𝑏,

(10)

where 𝑐, 𝑑, 𝑥 ∈ ℝ
𝑛, 𝑏 ∈ ℝ

𝑚, 𝐴, 𝐵 ∈ ℝ
𝑚×𝑛, and where ∣𝑥∣ ∈ ℝ

𝑛 denotes the vector whose ith

component is the absolute value of 𝑥𝑖. For each 𝑖, we can write

𝑥𝑖 = 𝑢𝑖 − 𝑣𝑖, 𝑢𝑖 ≥ 0, 𝑣𝑖 ≥ 0, 𝑢𝑖𝑣𝑖 = 0.

Then
∣𝑥𝑖∣ = 𝑢𝑖 + 𝑣𝑖,

and the AVP is equivalent to the following LPLCC:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑐 + 𝑑)𝑇𝑢 + (𝑑 − 𝑐)𝑇 𝑣
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (𝐴 + 𝐵)𝑢 + (𝐵 − 𝐴)𝑣 = 𝑏

𝑢 ≥ 0, 𝑣 ≥ 0
𝑢𝑇 𝑣 = 0.

As discussed in [48], there are some special cases where the complementarity constraint is redundant
and the AVP reduces to a simple linear program.
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3 Solution of the general linear complementarity problem

Consider again the GLCP introduced in Section 1:

𝐸𝑤 = 𝑞 + 𝑀𝑥 + 𝑁𝑦 (11)

𝑥𝑖 ≥ 0, 𝑤𝑖 ≥ 0, 𝑖 ∈ 𝐼 (12)

𝑤𝑗 = 0, 𝑗 ∈ {1, . . . , 𝑛}∖𝐼 (13)

𝑦 ∈ 𝐾𝑦 (14)∑
𝑖∈𝐼

𝑥𝑖𝑤𝑖 = 0, (15)

where 𝐼 ⊆ {1, . . . , 𝑛}, 𝑤, 𝑥 ∈ ℝ
𝑛, 𝑦 ∈ ℝ

𝑚, 𝑞 ∈ ℝ
𝑝, 𝐸, 𝑀 ∈ ℝ

𝑝×𝑛, 𝑁 ∈ ℝ
𝑝×𝑚, and where 𝐾𝑦 is a

polyhedron defined by

𝐾𝑦 = {𝑦 ∈ ℝ
𝑚 : 𝐴𝑦 = 𝑏, 𝑦 ≥ 0}, (16)

with 𝐴 ∈ ℝ
𝑡×𝑚 and 𝑏 ∈ ℝ

𝑡. It follows from its definition that the GLCP contains a set of linear
constraints (11) - (14) and (16) and the complementarity condition (15). As in linear programming,
(�̄�, 𝑦, �̄�) is a feasible solution for the GLCP if it satisfies the linear constraints. Furthermore, the
GLCP is feasible if there exists at least a feasible solution and infeasible, otherwise. A solution
(�̄�, 𝑦, �̄�) is called complementary if satisfies the constraints 𝑥𝑖𝑤𝑖 = 0 for all 𝑖 ∈ 𝐼 . Furthermore, it is
called nondegenerate if �̄�𝑖 + �̄�𝑖 ∕= 0 for all 𝑖 ∈ 𝐼 . Otherwise it is said to be degenerate.

It follows from the definitions above that a solution of the GLCP must be feasible and complemen-
tary. Furthermore a feasible GLCP may have a solution or not. This can be checked by considering
the following nonconvex quadratic program

(𝑄𝑃 ) 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
∑
𝑖∈𝐼

𝑥𝑖𝑤𝑖

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (11) − (14).
(17)

Since the objective function is bounded from below on the constraint set of the QP, this problem has
at least a global minimum (�̄�, 𝑦, �̄�) [26] and two cases may occur:

(i)
∑
𝑖∈𝐼

�̄�𝑖�̄�𝑖 = 0, so that (�̄�, 𝑦, �̄�) is a solution of the GLCP.

(ii)
∑
𝑖∈𝐼

�̄�𝑖�̄�𝑖 > 0, and so the GLCP has no solution, that is, it is unsolvable.

So a GLCP is either solvable or unsolvable (feasible or infeasible). Finding whether a GLCP is
feasible is easy, as this reduces to solving a linear program. However, checking whether a feasible
GLCP is solvable is an NP-hard problem [39], because this is equivalent to finding a global minimum
of a nonconvex quadratic program.

Despite being NP-hard, the GLCP can be solved relatively easily for some special cases. In the
previous section, we discussed a number of formulations of nonconvex programs that lead to a GLCP
of the form [

𝑤
0

]
=

[
𝑞
−𝑑

]
+

[
𝐻 −𝐶𝑇

𝐶 0

] [
𝑥
𝑢

]
+

[
𝑅
𝑆

]
𝑦

𝐴𝑦 = 𝑏, 𝑦 ≥ 0
𝑥 ≥ 0, 𝑤 ≥ 0

𝑥𝑇𝑤 = 0.

(18)
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Consider the following associated QP:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑞𝑇𝑥 + 1
2𝑥𝑇 (𝐻 + 𝐻𝑇 )𝑥 − 𝑥𝑇𝐶𝑇𝑢 + 𝑥𝑇𝑅𝑦

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐻𝑥 − 𝐶𝑇𝑢 + 𝑅𝑦 ≥ −𝑞
𝐶𝑥 + 𝑆𝑦 = 𝑑
𝐴𝑦 = 𝑏
𝑥 ≥ 0, 𝑦 ≥ 0.

(19)

By exploiting the special structure of the QP (19) and using a proof similar to the one presented in
[39], it is possible to show that either the GLCP (18) is infeasible or solvable and any stationary
(KKT) point of the QP (19) is a solution of this GLCP. Therefore the GLCP associated with LPLCC
formulations of bilevel and bilinear programs introduced in the previous section can be solved by
computing a stationary (KKT) point of the nonconvex quadratic program (19). This can be done by
using an active-set method [23, 50], such as MINOS [47], or an interior-point algorithm [18, 64]. On
the other hand, the GLCP (9) associated with the quadratic program (8) can be solved by finding a
stationary point for this quadratic program using these techniques [50].

DC (difference of convex function) programming [42] has become quite popular in recent years for
dealing with nonconvex programming problems and has been proposed in [41] for finding a solution
of an LCP (GLCP with 𝐼 = {1, . . . , 𝑛} and 𝑚 = 0). The application of this approach to the GLCP
is straightforward. Consider the formulation of the GLCP as the nonconvex quadratic program (17)
and let 𝑧 = (𝑥𝐼 , 𝑥𝐽 , 𝑤𝐼 , 𝑤𝐽 , 𝑦)𝑇 ∈ ℝ

2𝑛+𝑚 where 𝐽 = {1, . . . , 𝑛}∖𝐼 . Furthermore, let 𝐻 be the
symmetric matrix of order (2𝑛 + 𝑚) whose columns 𝐻.𝑗 are defined as follows:

𝐻.𝑗 =

⎧⎨
⎩

𝑒𝑛+𝑗 𝑖𝑓 𝑗 ∈ {1, . . . , ∣𝐼∣}
𝑒𝑗−𝑛 𝑖𝑓 𝑗 ∈ {𝑛 + 1, . . . , 𝑛 + ∣𝐼∣}
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

where 𝑒𝑙 ∈ ℝ
2𝑛+𝑚 is the 𝑙th column of the identity matrix, and ∣𝐼∣ represents the number of elements

of the set 𝐼 . Because all the eigenvalues of 𝐻 belong to the interval [−1, 1], then

𝐻 + 𝜌𝐼2𝑛+𝑚

is a positive definite matrix for each 𝜌 > 1, where 𝐼2𝑛+𝑚 is the identity matrix of order (2𝑛 + 𝑚).
Hence, there are infinite DC decompositions of the objective function of the quadratic program (17)
as ∑

𝑖∈𝐼
𝑥𝑖𝑤𝑖 = 𝑧𝑇 (𝐻 + 𝜌𝐼2𝑛+𝑚)𝑧 − 𝜌∣∣𝑧∣∣22

= 𝑔𝜌(𝑧)− ℎ𝜌(𝑧),

where ∣∣𝑧∣∣2 denotes the Euclidean norm of the vector 𝑧.
By using one of these decompositions for a fixed 𝜌 > 1, a DC Algorithm (DCA) has been intro-

duced in [41], which can be used without any modification to find a stationary point of the nonconvex
quadratic program (17). To describe an iteration of this algorithm, let 𝑧 be a current feasible solution
of the program (17), that is, a feasible solution to the GLCP. The gradient ∇ℎ𝜌(𝑧) of ℎ𝜌(𝑧) at 𝑧 is first
computed by

�̄� = ∇ℎ𝜌(𝑧) = 2𝜌𝑧.

Then, the following strictly convex quadratic program is considered:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧𝑇 (𝐻 + 𝜌𝐼2𝑛+𝑚)𝑧 − �̄�𝑇 𝑧

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (11) − (14).
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Because the GLCP is feasible, this quadratic program is also feasible and has a unique optimal global
solution. Now, either 𝑧 ≃ 𝑧 and 𝑧 is a stationary point of (17), or a new iteration has to be performed
with 𝑧 as the new point.

As discussed in [41], DCA achieves global convergence to a stationary point of the quadratic
program (17). Hence DCA is able to find a solution of a GLCP of the form (18) when 𝐻 is a PSD
matrix, but there is no theoretical guarantee that the algorithm is successful in general. Computational
experiments reported in [41] show that the efficiency and efficacy for finding a solution of the GLCP
(that is a global optimal solution of the quadratic program (17)) depends strongly on the initial point
and the constant 𝜌 used in the DC decomposition. The same conclusion should hold for the GLCP,
which means that DCA can solve the GLCP efficiently in many cases but not always.

Absolute value programming (AVP) has also been shown to be an interesting approach for solving
the LCP [46] and can be useful for solving the GLCP. Consider the GLCP where 𝐼 = {1, . . . , 𝑛},
𝐸 = 𝐼𝑛 is the identity matrix of order 𝑛 and 𝐾𝑦 is given by (16). As discussed in [46], by scaling the
square matrix 𝑀 if necessary, 𝐼𝑛 − 𝑀 is nonsingular and the GLCP can be reduced to the following
system

(𝐼𝑛 + 𝑀)(𝐼𝑛 − 𝑀)−1𝑧 − ∣𝑧∣ = −((𝐼𝑛 + 𝑀)(𝐼𝑛 − 𝑀)−1 + 𝐼𝑛)(𝑞 + 𝑁𝑦) (20)

𝑥 = (𝐼𝑛 − 𝑀)−1(𝑧 + 𝑞 + 𝑁𝑦) (21)

𝑤 = 𝑞 + 𝑀𝑥 + 𝑁𝑦 (22)

𝐴𝑦 = 𝑏 (23)

𝑦 ≥ 0. (24)

It immediately follows from (21) and (22) that 𝑤 = 𝑥 − 𝑧 in any solution of the system. According
to [46], let 𝑠 ∈ ℝ

𝑛 and 𝑡 ∈ ℝ
𝑛 be two additional vectors and consider the following concave program

(CP):

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜌𝑒𝑇 (𝑡 − ∣𝑧∣) + 𝑒𝑇 𝑠 = 𝑓(𝑠, 𝑡, 𝑥, 𝑦, 𝑧)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (𝐼𝑛 − 𝑀)𝑥 = 𝑧 + 𝑞 + 𝑁𝑦

−𝑠 ≤ 2𝑥 − 𝑧 − 𝑡 ≤ 𝑠 (25)

−𝑡 ≤ 𝑧 ≤ 𝑡

𝐴𝑦 = 𝑏

𝑦 ≥ 0,

where 𝜌 is a positive real number (may be equal to one) and 𝑒 ∈ ℝ
𝑛 is a vector of ones. Then, it is

easy to show that (𝑠, 𝑡, 𝑥, 𝑦, 𝑧) is a global minimum of CP (25) with 𝑓(𝑠,𝑡, �̄�, 𝑦, 𝑧) = 0 if and only if
(�̄�, 𝑦, �̄� = �̄� − 𝑧) is a solution of the GLCP.

It is interesting to note that the CP (25) is a DC program and can be solved by a DC algorithm [42].
Alternatively, a sequential linear programming (SLP) algorithm introduced in [46] can be applied to
find a stationary point of CP (25). As stated before, there is no theoretical guarantee that the method
finds a global minimum of the CP. However, numerical experiments reported in [46] indicate that
the algorithm is, in general, able to terminate successfully with a solution to the LCP. Hence, this
approach appears to be interesting to exploit in the future for solving the GLCP in practice.

Since the GLCP is an NP-hard problem, an enumerative algorithm is required in general to solve
it. This method [1, 33, 37] exploits a binary tree that is constructed based on the dichotomy that
𝑥𝑖 = 0 or 𝑤𝑖 = 0 for each complementary pair of variables.
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⋅ ⋅ ⋅ ⋅⋅⋅

𝑥𝑖1 = 0 𝑤𝑖1 = 0

𝑥𝑖2 = 0 𝑤𝑖2 = 0

Figure 1: Branching on enumerative method.

In order to accelerate the search for a solution of the GLCP, each node of the tree in the algorithm
attempts to compute a stationary point of the following quadratic program:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
∑
𝑖∈𝐼

𝑥𝑖𝑤𝑖

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐸𝑤 = 𝑞 + 𝑀𝑥 + 𝑁𝑦
𝑥𝑖 = 0, 𝑖 ∈ 𝐹𝑥

𝑤𝑗 = 0, 𝑗 ∈ 𝐹𝑤

𝑤𝑖 ≥ 0, 𝑥𝑖 ≥ 0, 𝑖 ∈ 𝐼
𝑤𝑗 = 0, 𝑗 ∈ {1, . . . , 𝑛}∖𝐼
𝑦 ∈ 𝐾𝑦,

(26)

with 𝐹𝑥 ⊆ 𝐼 and 𝐹𝑤 ⊆ 𝐼 being the sets defined by the fixed 𝑥- and 𝑤-variables in the path of the
tree from the root to this node. Now, either the program (26) is infeasible and the node is pruned, or
a stationary point (�̄�, 𝑦, �̄�) can be computed by a local optimization algorithm. Based on this, two
cases may occur:

(i)
∑
𝑖∈𝐼

�̄�𝑖�̄�𝑖 = 0, whence a solution of the GLCP has been attained and the algorithm stops.

(ii)
∑
𝑖∈𝐼

�̄�𝑖�̄�𝑖 > 0, whence two nodes have to be generated for a pair of complementary variables

(𝑥𝑖, 𝑤𝑖) such that �̄�𝑖 > 0 and �̄�𝑖 > 0.

A good implementation of an enumerative algorithm requires some heuristic rules for selecting the
pair of complementary variables and for choosing a node from the set of open nodes of the tree to
be investigated next. These issues are discussed in [33]. Furthermore, the stationary points of the
quadratic program can be computed by using an active-set method [23, 50], such as MINOS [47].

The foregoing brief description of the algorithm immediately leads to the conclusion that it essen-
tially looks for a stationary point of the complementarity gap function having a zero objective function
value in order to find a solution to the GLCP. If such a solution does not exist but the linear constraints
are feasible, then an extensive search needs to be typically performed in the tree before the algorithm
terminates. This feature makes the algorithm particulary suitable for finding a solution to the GLCP
but almost impractical when dealing with a feasible GLCP that has no solution.

4 Finding a stationary point for the LPLCC

The MPLCC and LPLCC can be seen as nonlinear programming problems (NLPs) with linear con-
straints and a nonlinear equality (3). The special structure of this last constraint prevents the well-
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known Mangasarian-Fromovitz constraint qualification [50] to hold. This fact has prompted an ex-
tensive research effort on new definitions of stationarity and constraint qualifications for the MPLCC
[17, 44, 51, 52, 53, 55, 62, 63]. The concepts of B-stationary and strongly stationary points for the
MPLCC (and LPLCC) play an important role on the solution of the LPLCC. In order to define such
points, consider the MPLCC

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥, 𝑦)
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (11) − (15),

(27)

where 𝐾𝑦 is the polyhedron defined by (16), and where 𝑓 : ℝ𝑛+𝑚 → ℝ is a continuous differentiable
function on an open set containing the constraint set of the MPLCC, that is, the solution set of the
GLCP. Let (�̄�, 𝑦, �̄�) be a solution of the GLCP and consider the following sets:

𝐼𝑥 = {𝑖 ∈ 𝐼 : �̄�𝑖 = 0}
𝐼𝑤 = {𝑖 ∈ 𝐼 : �̄�𝑖 = 0}.

Then (�̄�, 𝑦, �̄�) is a B-stationary point [17] if and only if it is a stationary (KKT) point of all the
nonlinear programs NLP(𝐿), 𝐿 ⊆ 𝐼𝑥 ∩ 𝐼𝑤, of the following form:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥, 𝑦)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐸𝑤 = 𝑞 + 𝑀𝑥 + 𝑁𝑦

𝐴𝑦 = 𝑏

𝑦 ≥ 0

𝑥𝑖 = 0, 𝑤𝑖 ≥ 0, 𝑖 ∈ 𝐼∖(𝐼𝑥 ∩ 𝐼𝑤) and �̄�𝑖 = 0

𝑥𝑖 ≥ 0, 𝑤𝑖 = 0, 𝑖 ∈ 𝐼∖(𝐼𝑥 ∩ 𝐼𝑤) and �̄�𝑖 = 0

𝑥𝑖 ≥ 0, 𝑤𝑖 = 0, 𝑖 ∈ 𝐿

𝑥𝑖 = 0, 𝑤𝑖 ≥ 0, 𝑖 ∈ (𝐼𝑥 ∩ 𝐼𝑤)∖𝐿
𝑤𝑗 = 0, 𝑗 ∈ {1, . . . , 𝑛}∖𝐼.

This concept is very important since any local and global minimum for the LPLCC is a B-stationary
point [17, 53, 55]. However, a certificate for B-stationarity has a combinatorial nature and may be
quite demanding for degenerate solutions with ∣𝐼𝑥 ∩ 𝐼𝑤∣ being relatively large. On the other hand,
a strongly stationary point is much more accessible for embedding within an algorithm. A solution
(�̄�, 𝑦, �̄�) of the GLCP is a strongly stationary point [17] if and only if there exist 𝜆 ∈ ℝ

𝑚, 𝑣 ∈ ℝ
𝑡

𝛼, 𝛽 ∈ ℝ
𝑛 and 𝛾 ∈ ℝ

𝑝 such that

0 = 𝐸𝑇𝜆 + 𝛼

∇𝑥𝑓(�̄�, 𝑦) = −𝑀𝑇𝜆 + 𝛽

∇𝑦𝑓(�̄�, 𝑦) = −𝑁𝑇𝜆 + 𝐴𝑇 𝑣 + 𝛾

𝛼𝑖 ≥ 0, 𝛽𝑖 ≥ 0, 𝑖 ∈ 𝐼𝑥 ∩ 𝐼𝑤

𝛼𝑖�̄�𝑖 = 𝛽𝑖�̄�𝑖 = 0, 𝑖 ∈ 𝐼

𝛽𝑗 = 0, 𝑗 ∈ {1, . . . , 𝑛}∖𝐼
𝛾 ≥ 0

𝛾𝑇 𝑦 = 0,

where ∇𝑥𝑓(�̄�, 𝑦) and ∇𝑦𝑓(�̄�, 𝑦) represent the vectors of components of the gradient of 𝑓 at (�̄�, 𝑦, �̄�)
associated with the 𝑥- and 𝑦-variables. For the LPLCC, 𝑓(�̄�, 𝑦) = 𝑐𝑇 �̄� + 𝑑𝑇 𝑦 and

∇𝑥𝑓(�̄�, 𝑦) = 𝑐, ∇𝑦𝑓(�̄�, 𝑦) = 𝑑.
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It follows from the definitions that any strongly stationary point is a B-stationary point [17, 53, 55].
The converse is valid for nondegenerate solutions or under a linear independence constraint qualifi-
cation (LICQ) discussed in [53, 55]. This algebraic definition of a strongly stationary point and the
ability to compute a solution of the GLCP discussed in Section 3, enable the development of a comple-
mentarity active-set (CASET) algorithm for the MPLCC and LPLCC. Such a procedure was initially
proposed in [56] and was subsequently improved, implemented, and tested in [38]. The algorithm
starts with a solution of the GLCP and uses an active-set methodology that maintains the complemen-
tarity constraint to be satisfied throughout the process. This is achieved by simple modifications of
the criteria for the selection of the constraints to be removed and inserted in the working active-set in
each iteration. As discussed in [38], the algorithm achieves global convergence to a strongly stationary
point under the LICQ condition mentioned before. Recently [17], this algorithm has been extended to
guarantee a B-stationary point in the degenerate case.

The CASET algorithm was implemented using MINOS environment [38, 47], and the new ideas
discussed in [17] can also be incorporated in this implementation. Computational experiments re-
ported in [38] show that the CASET algorithm is usually quite efficient for finding a strongly station-
ary point. Computing a B-stationary point in the degenerate case is much more demanding in prac-
tice. However, numerical results presented in [17] clearly indicate that the complementarity active-set
method performs well in practice even for degenerate solutions, and seems to outerperform other in-
teresting alternative nonlinear programming (penalty, regularization, smoothing, nonsmooth, interior-
point and SQP) approaches that have been designed for finding a stationary point of a mathematical
program with (linear or nonlinear) complementarity constraints, and can also be applied to the LPLCC
[2, 3, 9, 15, 16, 19, 20, 21, 22, 28, 31, 32, 43, 44, 51, 53, 57].

5 A sequential algorithm for finding a global minimum of LPLCC

The algorithm was introduced in [35] for computing a global minimum of a linear bilevel program
by exploiting its equivalence to an LPLCC, and was subsequently extended to deal with the gen-
eral LPLCC [34, 36]. It contains two procedures, namely a parametric method (PAREN) for finding
solutions of the GLCP with strictly decreasing objective function values, and the CASET algorithm
for finding strongly stationary points of the LPLCC. In order to describe the algorithm, consider the
LPLCC (1)-(2) and let 𝐾𝑦 be defined by (16). In each major iteration 𝑘 of the sequential method,
the linear objective function is incorporated in a constraint of the form 𝑐𝑇𝑥 + 𝑑𝑇 𝑦 ≤ 𝜆𝑘, where 𝜆𝑘

is a parameter that prevents the computation of a solution of the GLCP with objective value equal or
superior to that for the previously computed solutions. The introduction of this additional constraint
leads to another GLCP of the form

𝐺𝐿𝐶𝑃 (𝜆𝑘) :
⎡
⎣ 𝐸𝑤

0
𝜇

⎤
⎦ =

⎡
⎣ 𝑞

𝑏
𝜆𝑘

⎤
⎦ +

⎡
⎣ 𝑀 𝑁

0 −𝐴
−𝑐𝑇 −𝑑𝑇

⎤
⎦ [

𝑥
𝑦

]

𝑦, 𝜇 ≥ 0
𝑥𝑖 ≥ 0, 𝑤𝑖 ≥ 0, 𝑖 ∈ 𝐼
𝑤𝑗 = 0, 𝑗 ∈ {1, . . . , 𝑛}∖𝐼
𝑤𝑖𝑥𝑖 = 0, 𝑖 ∈ 𝐼.

(28)

In the initial iteration (𝑘 = 1), the algorithm finds a solution (�̄�, 𝑦, �̄�) to the original GLCP via one of
the procedures discussed in Section 3. Starting with this initial point (�̄�, 𝑦, �̄�), the CASET algorithm
is then applied to find a strongly stationary point for the LPLCC. Any subsequent iteration 𝑘 > 1
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starts by updating the parameter 𝜆𝑘 according to

𝜆𝑘 = 𝑐𝑇𝑥𝑘−1 + 𝑑𝑇 𝑦𝑘−1 − 𝛾 ∣𝑐𝑇𝑥𝑘−1 + 𝑑𝑇 𝑦𝑘−1∣, (29)

where (𝑥𝑘−1, 𝑦𝑘−1, 𝑤𝑘−1) is the last stationary point found by the CASET algorithm and where 𝛾 is
a small positive parameter. If the GLCP (𝜆𝑘) has a solution, then, as before, the CASET algorithm
is employed to obtain a new strongly stationary point for LPLCC. If GLCP has no solution, then
(𝑥𝑘−1, 𝑦𝑘−1, 𝑤𝑘−1) is at least an 𝜀-approximate global minimum with 𝜀 = 𝛾 ∣𝑐𝑇𝑥𝑘−1 + 𝑑𝑇 𝑦𝑘−1∣.

The algorithm is therefore an intelligent procedure for searching for stationary points of the
LPLCC until an 𝜀-approximate global minimum is computed. In practice, the algorithm is able to
find a global minimum even for not too small values of 𝛾 [34, 35, 36].

As discussed in the previous section, the extended procedures described in [17] can be employed
in the CASET algorithm in order to guarantee a strongly stationary or a B-stationary point in each
major iteration of the algorithm. In our opinion, a certificate of B-stationarity is quite demanding for
the objective of deriving during each major iteration a solution of the GLCP that has an objective
function value smaller than the one obtained in the previous iteration. However, the investigation on
the use of these extended procedures in the sequential complementarity algorithm is an interesting
topic for future research.

Next, we discuss the solution of the GLCP(𝜆𝑘) for each iteration 𝑘 > 1. As shown in [39],
each GLCP(𝜆𝑘) is NP-hard and only an enumerative method is able to always solve it in practice.
Numerical results reported in [34, 35, 36] clearly indicate that the enumerative method discussed in
Section 3 is a valid approach to deal with all the solvable cases of GLCP(𝜆𝑘) as required by the
sequential method. To understand this, recall that solving the GLCP(𝜆𝑘) amounts to finding a global
minimum of the following nonconvex quadratic program:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
∑
𝑖∈𝐼

𝑥𝑖𝑤𝑖 (30)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑙𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑜𝑓 (28).

For a solvable GLCP(𝜆𝑘), the global minimum value of the objective function is zero and this serves as
a stopping criterion for the enumerative method. Since the CASET algorithm is usually fast in finding
a strongly stationary point of the LPLCC and the number of major iterations (number of GLCPs(𝜆𝑘) to
be solved) is usually small in practice, then the sequential algorithm is usually efficient in computing
a global minimum for a LPLCC. However, to provide a certificate that such a global minimum has
been achieved, it is required to establish that the last GLCP(𝜆𝑘) has no solution. This amounts to
showing that the quadratic program (30) has a global minimum with a positive objective function
value. Hence no premature stopping criterion can be used and the enumerative method typically
requires an extensive tree search before terminating with such a certificate.

The design of an efficient procedure to provide a certificate of global optimality has been the
subject of intense research. An interesting approach is to design an underestimating optimization
problem whose global minimum is relatively easy to compute and that yields a positive lower bound
for the program (30). Then GLCP(𝜆𝑘) can be declared as unsolvable. In particular SDP [10] and RLT
[59] techniques may be useful in this extent. Despite promising results in some cases, much research
has to be done to assure the general efficiency of these techniques in practice.

6 Branch-and-bound algorithms for a global minimum of LPLCC

Consider again the LPLCC (1)-(2). Similar to the enumerative method, a branch-and-bound algorithm
for the LPLCC exploits a binary tree of the form presented in Section 3, which is constructed based
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on the dichotomy that 𝑥𝑖 = 0 or 𝑤𝑖 = 0 for the pairs of complementary variables. The simplest
technique of this type has been introduced by Bard and Moore in [7] for finding a global minimum
of a linear bilevel program by exploiting its LPLCC formulation. This method can be applied to the
general LPLCC without any modification. For each node of the binary tree generated by the branch-
and-bound algorithm, a lower bound for the optimal value of the LPLCC is computed by solving the
so-called relaxed linear program RLP(𝑘) that is obtained from the LPLCC (1)-(2) by omitting the
complementarity constraints and adding some equalities 𝑧𝑖 = 0, where 𝑧𝑖 is an 𝑥𝑖- or 𝑤𝑖-variable that
was fixed along the branches on the path from the root to the current node 𝑘. For instance, the RLP(5)
associated with node 5 of the binary tree of Section 3 takes the following form:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑐𝑇𝑥 + 𝑑𝑇 𝑦

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐸𝑤 − 𝑀𝑥 − 𝑁𝑦 = 𝑞

𝑦 ∈ 𝐾𝑦

𝑤𝑖 ≥ 0, 𝑥𝑖 ≥ 0, 𝑖 ∈ 𝐼

𝑤𝑗 = 0, 𝑗 ∈ {1, . . . , 𝑛}∖𝐼
𝑥𝑖1 = 0, 𝑤𝑖2 = 0.

If the optimal solution (�̄�, 𝑦, �̄�) obtained for this RLP(𝑘) satisfies the complementarity constraints,
then 𝑐𝑇 �̄�+ 𝑑𝑇 𝑦 is an upper-bound for the global optimal value of the LPLCC. The tree is then pruned
at the node 𝑘 and a new open node is investigated. If (�̄�, 𝑦, �̄�) is not a complementary solution, then
there must exist at least an index 𝑖 such that �̄�𝑖 > 0 and �̄�𝑖 > 0. A branching is then performed from
the current node 𝑘 and two nodes (𝑘 + 1) and (𝑘 + 2) are generated such that respectively restrict
𝑥𝑖 = 0 and 𝑤𝑖 = 0. Termination of the algorithm occurs when there is no open node whose lower
bound is smaller than the best upper bound computed by the algorithm. In this case the solution
(�̃�, 𝑦, �̃�) associated with this upper bound is a global minimum for the LPLCC.

The branch-and-bound algorithm should include good heuristics rules for choosing the open node
and the pair of complementary variables for branching. The algorithm terminates in a finite number of
iterations (nodes) with a global minimum or with a certificate that there is no complementary feasible
solution, or that the LPLCC is unbounded. Computational experience reported in [4, 5, 13, 34, 35, 36]
indicates that the algorithm is not very efficient for dealing with LPLCC, as the number of nodes tends
to greatly increase with the number ∣𝐼∣ of pairs of complementary variables.

During the past several years, a number of methodologies have been recommended by many
authors to improve the Bard and Moore branch-and-bound algorithm [4, 5, 10, 13, 25, 61]. These
improvements have been concerned with the quality of the lower bounds and upper bounds and the
branching procedure. Cutting planes [4, 5, 61] and SDP [10] have been used for computing better
lower bounds than the ones given by the relaxed linear programs. On the other hand, some ideas of
combinatorial optimization have been employed to design more efficient branching strategies that lead
to better upper bounds for the branch-and-bound method [4, 5, 13, 25]. Computational experiments re-
ported in [4, 5, 10, 13, 25, 61] clearly indicate that these techniques portend significant improvements
for the efficiency of branch-and-bound methods in general.

Another improvement of the Bard and Moore algorithm has been proposed in [37]. The resulting
complementarity branch-and-bound (CBB) algorithm can be applied to an LPLCC with a constraint
set of the form (18), where 𝐻 is a PSD matrix, and is therefore useful for finding a global minimum
for linear and linear-quadratic bilevel problems and for disjoint bilinear programs. Contrary to the
Bard and Moore method, the CBB algorithm uses solutions of the GLCP throughout the process.
Therefore, the CASET algorithm can be applied at each node with a significant improvement on the
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quality of the upper bounds. Disjunctive cuts are recommended to find lower bounds for the LPLCC.
Computational experience reported in [37] indicate that the CBB algorithm outerperforms Bard and
Moore method in general, and appears to be a promising approach for the computation of a global
minimum for the LPLCC.

7 Solution of LPLCC by integer programming

Consider the LPLCC (1) - (2) with 𝐾𝑦 given by (16), and let 𝐾 be the feasible set of the corresponding
GLCP. If 𝜃 is a positive real number such that

𝑀𝑎𝑥 𝑥𝑖 ≤ 𝜃 ,
(𝑥, 𝑦, 𝑤) ∈ 𝐾

𝑀𝑎𝑥 𝑤𝑖 ≤ 𝜃 ,
(𝑥, 𝑦, 𝑤) ∈ 𝐾

(31)

then each complementarity constraint 𝑥𝑖𝑤𝑖 = 0 can be replaced by

𝑥𝑖 ≤ 𝜃𝑧𝑖

𝑤𝑖 ≤ 𝜃(1− 𝑧𝑖) (32)

𝑧𝑖 ∈ {0, 1}.
By applying this transformation to each one of the constraints 𝑥𝑖𝑤𝑖 = 0, 𝑖 ∈ 𝐼 , the LPLCC reduces
to the following mixed-integer linear program (MILP):

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑐𝑇𝑥 + 𝑑𝑇 𝑦
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐸𝑤 = 𝑞 + 𝑀𝑥 + 𝑁𝑦

𝐴𝑦 = 𝑏
𝑥𝑖 ≤ 𝜃𝑧𝑖 , 𝑖 ∈ 𝐼
𝑤𝑖 ≤ 𝜃(1− 𝑧𝑖) , 𝑖 ∈ 𝐼
𝑤𝑗 = 0 , 𝑗 ∈ 𝐽
𝑥𝑖 ≥ 0 , 𝑤𝑖 ≥ 0 , 𝑖 ∈ 𝐼
𝑧𝑖 ∈ {0, 1} , 𝑖 ∈ 𝐼
𝑦 ≥ 0,

(33)

where 𝐽 = { 1, . . . , 𝑛}∖𝐼 . Therefore a global minimum for the LPLCC can be found by computing
a global minimum to this MILP. This approach has been used by some authors for finding a global
minimum of the LPLCC [24]. It is important to add that such an equivalence also provides a certificate
of unsolvability and unboundedness of the LPLCC from those pertaining to the MILP.

An obvious drawback of this approach lies in the existence of the large positive constant 𝜃 that
may not even exist. A first approach of overcoming such a drawback is to consider 𝜃 as a nonnegative
variable and solve the resulting mixed-integer nonlinear program (MINLP) by an appropriate tech-
nique such as BARON [54, 60]. It is also possible to reduce the LPLCC into a MINLP without the
use of such a parameter by exploiting for each 𝑖 ∈ 𝐼 the equivalence between 𝑥𝑖𝑤𝑖 = 0 and

𝑥𝑖(1− 𝑧𝑖) = 0

𝑧𝑖𝑤𝑖 = 0

𝑧𝑖 ∈ {0, 1},
as first established in [45]. As before, the resulting MINLP can be solved by BARON [54, 60] or via
any other special-purpose algorithm. This equivalence and the so-called reformulation-linearization
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technique (RLT) [59] can also be used to construct an MILP formulation of the LPLCC. However,
the GLCP has to be solvable and its feasible set must be bounded for the reduction to be possible.
Furthermore, the resulting formulation has too many variables that result from the RLT approach. De-
spite these drawbacks, some promising computational results for LCPs of relatively small dimensions
have been reported in [59].

A probably better idea for avoiding the use of a large constant has been introduced in [27] and
has been subsequently applied to the special case of LPLCC associated with nonconvex quadratic
programs [26]. Consider the MILP as a multiparametric linear program LP(𝜃, 𝑧) on the parameters 𝜃
and 𝑧. Given any values of 𝜃 and 𝑧, the dual 𝐷𝐿𝑃 (𝑧, 𝜃) of this linear program takes the form:

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑞𝑇𝛼 + 𝑏𝑇𝛽 − 𝜃[𝑧𝑇𝑢 + (𝑒 − 𝑧)𝑇 𝑣𝐼 ]

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (𝐸𝑇𝛼)𝑖 − 𝑣𝑖 ≤ 0, 𝑖 ∈ 𝐼

(𝐸𝑇𝛼)𝑗 + 𝑣𝑗 = 0, 𝑗 ∈ 𝐽

(−𝑀𝑇𝛼)𝑖 − 𝑢𝑖 ≤ 𝑐𝑖, 𝑖 ∈ 𝐼

(−𝑀𝑇𝛼)𝑗 = 𝑐𝑗 , 𝑗 ∈ 𝐽

−𝑁𝑇𝛼 + 𝐴𝑇𝛽 ≤ 𝑑

𝑢 ≥ 0, 𝑣𝐼 ≥ 0,

where 𝛼 ∈ ℝ
𝑝, 𝛽 ∈ ℝ

𝑡, 𝑢 ∈ ℝ
∣𝐼∣ and 𝑣 ∈ ℝ

𝑛 are the dual variables associated with the constraints
of LP(𝜃, 𝑧), and where 𝑣𝐼 = (𝑣𝑖)𝑖∈𝐼 ∈ ℝ

∣𝐼∣, 𝑧 = (𝑧𝑖)𝑖∈𝐼 ∈ ℝ
∣𝐼∣, and 𝑒 ∈ ℝ

∣𝐼∣ is a vector of ones. An
interesting property of this linear program is that its constraint set does not depend on the values of 𝜃
and 𝑧. By recognizing this fact and using a minimax integer programming formulation of the MINLP
(33), a Benders decomposition technique has been designed in [27] that uses extreme points and un-
bounded rays of the dual constraint set. This algorithm has been shown to converge in a finite number
of iterations with a global minimum of the LPLCC or with a certificate of unsolvability or unbound-
edness [26, 27]. Simple (or disjunctive) cuts and a recovery procedure for obtaining a solution to the
GLCP from a feasible solution are recommended in a preprocessing phase to enhance the efficiency
of the algorithm [27]. Computational experiments reported in [26, 27] indicate that the method is in
general efficient in practice. Furthermore, the preprocessing phase has a very important impact on
the computational performance of the algorithm. The possible use of the sequential complementarity
algorithm discussed in Section 5 in the preprocessing phase seems to be an interesting topic for future
research.

8 Conclusions

In this paper, we have presented a number of formulations of important nonconvex programs as linear
programs with linear complementarity constraints (LPLCC). Algorithms for finding a complementary
feasible solution for the LPLCC were discussed. Active-set and interior-point methods, DC and ab-
solute value programming seem to work well for special cases, but not in general. An enumerative
method that incorporates a local quadratic solver can efficiently find such a solution in general. A
complementarity active set method is recommended for finding a strongly stationary or a B-stationary
point for the LPLCC. Computing a global minimum of an LPLCC is a much more difficult task that
can be done by either using an enumerative based algorithm that is applied directly to the problem, or
by solving an equivalent mixed-integer linear or nonlinear program. Despite the promising numerical
performance of these techniques for finding a complementary feasible solution, a stationary point, and
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a global minimum for the LPLCC, the design of more efficient methodologies and better certificates
for a global minimum are important topics for future research.
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making many useful suggestions.
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[24] Z. H. GÜMÜZ AND C. A. FLOUDAS, Global optimization of mixed-integer bilevel programming
problems, Computational Management Science, 2 (2005), pp. 181–212.

[25] P. HANSEN, B. JAUMARD, AND G. SAVARD, New branch-and-bound rules for linear bilevel
programming, SIAM Journal on Scientific and Statistical Computing, 13 (1992), pp. 1194–1217.

[26] J. HU, J. MITCHELL, AND J.-S. PANG, An LPCC approach to nonconvex quadratic programs,
to appear in Mathematical Programming.

[27] J. HU, J. E. MITCHELL, J.-S. PANG, K. P. BENNETT, AND G. KUNAPULI, On the global solu-
tion of linear programs with linear complementarity constraints, SIAM Journal on Optimization,
19 (2008), pp. 445–471.

[28] X. M. HU AND D. RALPH, Convergence of a penalty method for mathematical programming
with complementarity constraints, Journal of Optimization Theory and Applications, 123 (2004),
pp. 365–390.



18

[29] T. IBARAKI, Complementary programming, Operations Research, 19 (1971), pp. 1523–1529.

[30] R. G. JEROSLOW, Cutting-planes for complementarity constraints, SIAM Journal on Control
and Optimization, 16 (1978), pp. 56–62.

[31] H. JIANG AND D. RALPH, Smooth SQP methods for mathematical programs with nonlinear
complementarity constraints, SIAM Journal on Optimization, 10 (1999), pp. 779–808.

[32] , Extension of quasi-Newton methods to mathematical programs with complementarity con-
straints, Computational Optimization Applications, 25 (2003), pp. 123–150.
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