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On the optimal design of river fishways
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A. Martı́nez · C. Rodrı́guez ·
M.E. Vázquez-Méndez · M.A. Vilar

Received: date / Accepted: date

Abstract A river fishway is a hydraulic structure enabling fish to overcome stream
obstructions such as dams in hydroelectric power plants. The main aim of this paper
is to present an application of mathematical modeling and optimal control theory to
an ecological engineering problem related to preserve and enhance natural stocks of
fish migrating between saltwater and freshwater. Particularly, we improve the optimal
shape design of a fishway. This problem is formulated within the framework of the op-
timal control of partial differential equations, approximated by a discrete optimization
problem, and solved by using both a gradient method (a Spectral Projected-Gradient
algorithm) and a derivative-free method (the Nelder-Mead algorithm). Finally, nu-
merical results are compared and analyzed for a standard real-world situation.

Keywords Fishway · Shape design · Numerical optimization · Optimal control ·
Partial differential equations

1 Introduction

Many species of fish attempt migrations on a regular basis, on time scales varying
from daily to annual, and with distances ranging from a few meters to thousands of
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kilometers. In this work, we pay attention to diadromous fish which migrate between
fresh and salt water. The best known diadromous fish are salmon (salmo salar), trout
(salmo trutta), eel (anguilla anguilla), sturgeon (acipenser sturio), lamprey (lampe-
tra fluviatilis, petromyzon marinus), barbel (barbus bocagei), carp (cyprimus carpio),
and perch (perca fluviatilis). There are three main types of diadromous fish, depend-
ing on their specific migration patterns: anadromous, catadromous and amphidro-
mous. Anadromous fish spend most of their adult lives in saltwater, and migrate to
freshwater rivers and lakes to reproduce. Anadromous fish species include lamprey,
sturgeon, salmon, and trout. More than half of all diadromous fish in the world are
anadromous. Catadromous fish spend most of their adult lives in freshwater, and mi-
grate to saltwater to spawn. Juvenile fish migrate back upstream where they stay until
maturing into adults, at which time the cycle starts again. One of the most common
catadromous species is the eel. About one quarter of all diadromous fish are catadro-
mous. Finally, amphidromous species move between estuaries and coastal rivers and
streams, usually associated with the search for food or refuge rather than reproduction
need. Amphidromous fish can spawn in either freshwater or in a marine environment.
Less than one fifth of all diadromous fish are amphidromous, for instance, the bull
shark (carcharhinus leucas).

Fish usually migrate because of reproductive needs. As a widely known example,
salmon are able to swim hundreds of kilometers upriver. The salmon - that will be
the type of fish considered in our study - hatch in small freshwater streams. From
there they migrate to sea to mature, where they live for three to six years. When
mature, the salmons return to the same streams where they were hatched to spawn.
When an artificial barrier is constructed in a stream (for example, a weir or a dam
in a hydroelectric power plant) European legal regulations force the installation of a
fishway in order to allow the salmon to overcome the barrier.

Fishways are hydraulic structures placed on (or around) man-made barriers to as-
sist the natural migration of diadromous fish. An exhaustive overview on the design
and management of river fishways (also known as fish ladders, fish passes or fish
steps) can be found in the interesting monograph of Clay [10]. In the literature, apart
from some nature-like structures as the rock-ramp fishways, three main types of fish-
ways are studied: the pool and weir type [28], the Denil type [25], and the vertical
slot type [27].

Pool and weir fishways were the earliest type constructed (first recorded attempts
to construct this type of fishway were made in Europe in the 17th century), and are
still built with the addition of orifices in their walls. A pool and weir fishway consists
of a number of pools formed by a series of weirs. The fish passes over a weir by
swimming fast enough to jump over the weir. After a short rest in the pool, the fish
then passes over the next weir, and so on, until the ascent is complete. The success
of this type of fishway depends on the maintenance of water levels, which can be
facilitated by the provision of a set of orifices in the weir walls close to the floor.

The Denil fishway is essentially a straight rectangular flume provided with closely
spaced baffles or vanes on the bottom and sides. The first of the classical works of
G. Denil on the scientific design of fish-passes was already published in 1909 in
Belgium. Of the many types of Denil fishways studied in the scientific literature, the
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Fig. 1 Schematic drawing of a vertical slot fishway

more commonly used are the standard Denil fishway, the Larinier fishway, and the
more sophisticated Alaskan steeppass fishway [26].

Nevertheless, here we deal with a third type of fishway, which is the more gen-
erally adopted for upstream passage of fish in stream obstructions: the vertical slot
fishway. This fishway consists of a rectangular channel with a sloping floor that is
divided into a reduced number of pools (see Fig. 1). Water runs downstream in this
channel, through a series of vertical slots from one pool to the next one below. The
water flow forms a jet at the slot, and the energy is dissipated by mixing in the pool.
The fish ascends, using its burst speed, to get past the slot, then it rests in the pool
until the next slot is tried [8].

During the last few decades, much attention has been paid, both from theoretical
and experimental viewpoints, to the hydraulic characteristics, the flow regimes, and
the turbulence structures in all types of river fishways (as can be seen, for instance,
in the pioneering works of Rajaratnam et al. [29,30,33,11,12,18]). However, the
fundamental role of a correct design in the fishway has received little attention. The
following list covers some of the research done in this area: the work of Kim [16] (for
the case of pool and weir fishways), the works of Odeh [23] and of Mallen-Cooper
and Stuart [19] (for the design of Denil fishways), and - in a more general approach
within the field of ecological/environmental engineering - the works of Karisch and
Power [13], Weber and Joy [32], Yasuda et al. [34] and Richmond et al. [31], among
others. However, the optimal design of a vertical slot fishway has only been previ-
ously analyzed by the authors [3–5] in a simple case.

As stated above, the objective of a fishway is enabling fish to overcome obstruc-
tions. In order to achieve this goal, water velocity in the fishway must be controlled.
Specifically, this means that in the zone of the channel near the slots, the velocity of
the water must be close to a desired velocity to allow the fish leap and swim up the
fishway. In the rest of the fishway, the velocity must be close to zero to allow the fish
rest. Moreover, in the entire channel, flow turbulence must be minimized. It is worth-
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Fig. 2 Ground plant (domain ω with boundaries γ0, γ1, γ2) and elevation of the fishway

while recalling here that the velocity of water in the channel has to be large enough to
attract the fish to the fishway, but it cannot be so large that it washes fish back down-
stream or exhausts them to the point of inability to continue their journey upriver.
Unfortunately, it is not difficult to find several examples of rivers where a wrong de-
sign of fishways has prevented the fish from gaining access to their spawning grounds
and contributing to a catastrophic decline in their numbers.

Water velocity can be directly controlled by determining the optimal shape of
the fishway, that is, the location and length of the baffles separating the pools. In
this work, we are going to use mathematical modelling and optimal control theory to
address the optimal design of a fishway. In order to do this, we begin by presenting
a mathematical model (shallow water equations) to simulate the water velocity in a
fishway and give a mathematical expression to evaluate the quality of that velocity
field in terms of the fish capabilities. Next, we study the problem of the optimal
design of a fishway: we describe the problem, formulate it as a shape optimization
problem, and show that it can be approximated by a discrete optimization problem. A
derivative-free method (the Nelder-Mead algorithm) and a gradient one (the Spectral
Projected-Gradient algorithm) are proposed in last sections to solve this optimization
problem. Finally, numerical results for a standard fishway are presented.

2 Numerical simulation of fishway hydrodynamics

Let ω ⊂ R2 be the ground plant of a fishway consisting of a rectangular channel
divided into a small number of pools with baffles and sloping floor, and two transition
pools (one at the beginning and another one at the end of the channel) with no baffles
and flat floor. A scheme of the standard fishway used in this paper can be seen in
Fig. 2: water enters by the left side and runs downstream to the right side, while fish
ascend in the opposite direction [4]. The number of pools (ten) and the dimensions
of the full channel correspond to an experimental scale fishway reported by Puertas,
Pena and Teijeiro [24]. The main distinction between previous contributions by the
authors [3–5] and the present paper consists of the inclusion of a third extra baffle
(which appears in the most usual vertical slot fishways) in order to control the flow
in a more accurate way. Although the formulations of both problems are very similar,
the number of parameters of the optimization problem increases from four to six.
This makes the previously used direct search method (the Nelder-Mead algorithm)
an excessively expensive method from a computational viewpoint, compelling us to
the search for a more computationally efficient type of optimization algorithm.
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Water flow inside the domain ω along the time interval (0,T ) is governed by the
shallow water equations [3]:





∂H
∂ t

+∇ ·Q = 0 in ω× (0,T ),

∂Q
∂ t

+∇ · (Q
H
⊗Q)+gH∇(H−η) = f in ω× (0,T ),

(1)

where

– H(x,y, t) is the height of water at point (x,y) ∈ ω and at time t ∈ (0,T ),
– u(x,y, t) = (u,v) is the depth-averaged horizontal velocity of water,
– Q(x,y, t) = uH is the areal flow per unit depth,
– g is the gravity acceleration,
– η(x,y) represents the bottom geometry of the fishway,
– second member f collects all the effects of bottom friction, atmospheric pressure

and so on.

These equations must be completed with a set of initial and boundary conditions. In
order to do that, we need to define three different parts in the boundary of ω: the
lateral boundary of the channel denoted by γ0, the inflow boundary denoted by γ1,
and the outflow boundary denoted by γ2. We also consider n the unit outer normal
vector to boundary. Thus, we assume the normal flux and the vorticity to be null on
the lateral walls of the fishway, we impose an inflow flux in the normal direction, and
we fix the height of water on the outflow boundary, that is,





H(0) = H0, Q(0) = Q0 in ω,

Q ·n = 0, curl(
Q
H

) = 0 on γ0× (0,T ),

Q = q1 n on γ1× (0,T ),
H = H2 on γ2× (0,T ).

(2)

The use of the 2D shallow water equations (instead of the more expensive 3D equa-
tions) has been recently validated in [9], where a comparison of the 2D numerical
results with velocity measurements (performed by using particle imaging velocime-
try and acoustic Doppler velocimetry) allowed the validation of the numerical results.

Using the above notation we can give a mathematical expression to evaluate the
water velocity in the fishway. We have to bear in mind two objectives:

(i) In the zone of the channel near the slots (say the lower third) the velocity must
be as close as possible to a typical horizontal velocity c to allow the fish leap
and swim up the fishway (c must be chosen bearing in mind that the maximum
swimming speed for salmon is about 3ms−1), and in the remaining of the fishway
the velocity must be close to zero so the fish can rest. In short, the velocity of
water must be close to the following target velocity:

v(x1,x2) =
{

(c,0), if x2 ≤ 1
3 W,

(0,0), otherwise,
(3)

where W is the width of the channel (in our case, as shown in Fig. 2, W = 0.97m).
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(ii) Flow turbulence must be minimized in all the channel in order to avoid fish dis-
orientation, that is, the vorticity must be as reduced as possible.

According to this, if we fix a weight parameter ξ ≥ 0 for the role of the vorticity
and define the objective function

J =
1
2

∫ T

0

∫

ω
‖Q

H
−v‖2 +

ξ
2

∫ T

0

∫

ω
|curl(

Q
H

)|2, (4)

the water velocity u = Q/H will be better for our purposes, when the value of the
cost function J becomes smaller.

In order to evaluate J, we first need to solve the shallow water equations (1)
with initial and boundary conditions (2). In this work we use an implicit discretiza-
tion in time, upwinding the convective term by the method of characteristics, and
Raviart-Thomas finite elements for the space discretization (the whole details of the
numerical scheme can be seen in Bermúdez et al. [6]). For the time interval (0,T ),
we choose a natural number N, consider the time step ∆ t = T/N > 0 and define the
discrete times tk = k∆ t for k = 0, . . . ,N. We also consider a Lagrange-Galerkin finite
element triangulation τh of the domain ω. Thus, the numerical scheme provides, for
each discrete time tk, an approximated flux Qk

h and an approximated height Hk
h , which

are piecewise-linear polynomials and discontinuous piecewise-constant functions, re-
spectively. This numerical procedure has shown a very good performance in several
related problems previously analyzed by the authors, for instance, the optimal depu-
ration levels in a wastewater treatment plant [20], the optimal location of wastewater
outfalls [2], or the optimal purification of polluted waters [1]. Finally, with these
approximated fields we can compute the approximated velocity uk

h = Qk
h/Hk

h , and
approximate the value of J by

J∆ t
h =

∆ t
2

N

∑
k=1

∑
E∈τh

{
∫

E
‖uk

h−v‖2 +ξ
∫

E
|curl(uk

h)|2}. (5)

3 Optimal shape design of a fishway

In this section we study how to improve the optimal design of a fishway. As com-
mented before, we can control the water velocity through the location and length of
the baffles in the pools. To be consistent, for the channel described in the previous
section, we assume that the structure of the ten pools with sloping floor has to be the
same (the shape of the entire fishway is given by the shape of the first pool), and then
we take the three midpoints corresponding to the end of the baffles in the first pool
(points a = (s1,s2), b = (s3,s4) and c = (s5,s6) in Fig. 3) as design variables.

We look for points a, b and c that provide the best velocity for the fish (i.e. min-
imizing the function J given by (4)). However, we must impose several design con-
straints: first, we assume that points a, b and c are inside the dashed rectangle of
Fig. 3, that is, the following twelve geometrical relations must be satisfied (in order
to avoid unnecessary symmetrical duplicate solutions):

{
xmin = 1

4 1.213≤ s1,s3,s5 ≤ 3
4 1.213 = xmax,

ymin = 0≤ s2,s4,s6 ≤ 1
2 0.97 = ymax.

(6)
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The second type of constraints are related to the fact that the vertical slot must
be large enough so that salmon can pass comfortably through it. This requirement
translates into the two following linear constraints:

{
∆1 = s3− s1 ≥ 0.1 = h1,
∆2 = s2− s4 ≥ 0.05 = h2.

(7)

If the half width of the baffle is r = 0.0305m, (standard datum as appeared in Puer-
tas et al. [24]) we are actually imposing that the slot width must be, at least, of√

(0.1−2r)2 +0.052 = 0.063m.
Finally, the third type of constraints are related to structural stability, as given by

the two additional linear constraints:{
∆3 = s1− s5 ≥ 1

2 0.0305 = d1,
∆4 = s6− s2 ≥ 1

2 0.0305 = d2.
(8)

Then, the optimization problem can be formulated as follows:

Problem (P): Find the optimal shape of domain ω , specifically, find vector s =
(a,b,c) = (s1,s2,s3,s4,s5,s6)T ∈ R6 verifying constraints (6)-(8), in such a way that
Q and H, given by the solution of the state system (1)-(2) on the fishway ω ≡ ω(s),
minimize the objective function J ≡ J(s) defined by (4).

A mathematical analysis of a simpler related problem can be found in Alvarez-
Vázquez et al. [3,4]. For its numerical resolution we propose two different types of
methods: firstly, a derivative-free method (the Nelder-Mead algorithm), which is suit-
able for geometrical problems; secondly, a gradient method (the Spectral Projected-
Gradient algorithm) where the necessary derivatives will be approached by finite dif-
ference approximations, and the projection computed via a linear complementarity
problem. Both methods are described in the next sections. Finally, in the last sec-
tion, the results achieved by both algorithms for a realistic case are analyzed and
compared.
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4 First approach: Derivative-free optimization

The Nelder-Mead (NM) simplex method [22] is a direct search method, which merely
compares function values; the values of the objective function being taken from a set
of sample points (simplex) are used to continue the sampling.

In order to minimize a given function Φ : Rn → R, the algorithm can be easily
summarized in the following way: Recall that the convex hull of n + 1 points in Rn

not contained in the same n-hyperplane is called a n-simplex. The method constructs
a sequence of simplices as approximations to a minimum point. The n + 1 vertices
y1,y2, . . . ,yn+1 of each simplex are sorted according to the objective function val-
ues: Φ(y1) ≤ Φ(y2) ≤ . . . ≤ Φ(yn+1), and the worst vertex yn+1 is replaced with a
new point y(ν) = (1 + ν)y− ν yn+1, where y is the centroid of the convex hull of
{y1,y2, . . . ,yn}, that is, y = (y1 + . . .+ yn)/n. The value of ν is selected from a se-
quence −1 < νδ < 0 < νγ < νβ < να (typical values are νδ =−0.5, νγ = 0.5, νβ =
1, να = 2) by rules given in the following algorithm:

While Φ(yn+1)−Φ(y1) is not small enough, compute y(νβ ) and Φβ = Φ(y(νβ )).
Then:

(a) (Reflection) If Φβ < Φ(y1), compute Φα = Φ(y(να)). If Φα < Φβ , replace yn+1
with y(να); otherwise replace yn+1 with y(νβ ). Go to (f).

(b) (Expansion) If Φ(y1)≤Φβ < Φ(yn), replace yn+1 with y(νβ ) and go to (f).
(c) (Outside contraction) If Φ(yn) ≤ Φβ < Φ(yn+1), compute Φγ = Φ(y(νγ)). If

Φγ ≤Φβ , replace yn+1 with y(νγ) and go to (f); otherwise go to (e).
(d) (Inside contraction) If Φ(yn+1)≤Φβ , compute Φδ = Φ(y(νδ )). If Φδ < Φ(yn+1),

replace yn+1 with y(νδ ) and go to (f); otherwise go to (e).
(e) (Shrinking) For k = 2, . . . ,n+1, set yk = y1 +(yk− y1)/2.
(f) (Sorting) Resort the resulting vertices according to Φ values.

Although the NM algorithm is not guaranteed to converge in the general case,
it has good convergence properties in low dimensions (see Lagarias et al. [17] for
a detailed analysis of the convergence in one and two dimensions under convexity
requirements). Moreover, in order to prevent stagnation at a non-optimal point, we
use a modification proposed by Kelley [15]: we define the simplex gradient DΦ =
V−T ∆Φ , where V and ∆Φ are the matrices given by:

V = (y2− y1,y3− y1, . . . ,yn+1− y1)
∆Φ = (Φ(y2)−Φ(y1),Φ(y3)−Φ(y1), . . . ,Φ(yn+1)−Φ(y1))

(9)

Thus, when stagnation is detected, we modify the simplex by an oriented restart,
replacing it by the new smaller simplex ŷ1 = y1, ŷ j = ŷ1−β j−1e j−1, 2≤ j ≤ n+1,
where ek denotes the k-th vector of the canonical basis of Rn, and

βk =
{ σ

2 , if (DΦ)k ≥ 0,
−σ

2 , otherwise, (10)

for the typical length σ = min
2≤ j≤n+1

‖y j− y1‖.

On the other hand, since the NM algorithm is specified for unconstrained prob-
lems, we need to reformulate our original problem (P) by means of a penalty ar-
gument in order to deal with the sixteen linear constraints (6)-(8). Particularly, for a
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large enough parameter µ > 0, we approximate (P) by the unconstrained optimiza-
tion problem:

min
s∈R6

Φ(s) (11)

where, for s = (s1,s2, . . . ,s6) ∈ R6, the value of Φ(s) can be computed from the
following algorithm:
Step i. (Domain construction) Consider the corresponding domain ω(s), and an asso-
ciated triangulation τh(s).
Step ii. (State system resolution) Solve the state system (1)-(2) on ω(s) as it was
proposed in the previous section, and compute the value of J(s) by expression (5).
Step iii. (Constraints) Define Ψ(s) in such a way that Ψ(s) ≤ 0 ⇔ s verifies (6)-(8),
i.e., consider, for instance,

Ψ(s) = max{ 1
4 1.213− s1,

1
4 1.213− s3,

1
4 1.213− s5,

s1− 3
4 1.213,s3− 3

4 1.213,s5− 3
4 1.213,−s2,−s4,−s6,

s2− 1
2 0.97,s4− 1

2 0.97,s6− 1
2 0.97,0.1− s3 + s1,

0.05− s2 + s4,
1
2 0.0305− s1 + s5,

1
2 0.0305− s2 + s6}.

(12)

Step iv. (Penalty) Compute the value of the discrete penalty function

Φ(s) = J(s)+ µ max{Ψ(s),0}. (13)

5 Second approach: Differentiable optimization

We denote by Ω the closed and convex subset ofR6 consisting of all the points s∈R6

satisfying the constraints (6)-(8), that is, defining l1 = l3 = l5 = xmin, u1 = u3 = u5 =
xmax, l2 = l4 = l6 = ymin, u2 = u4 = u6 = ymax, the admissible set Ω is given by

Ω = {s = (s1,s2, . . . ,s6) ∈ R6 : li ≤ si ≤ ui, i = 1,2, . . . ,6, (14)
s3− s1 ≥ h1, s2− s4 ≥ h2, s1− s5 ≥ d1, s6− s2 ≥ d2}

Then, our original problem (P) can be rewritten as:

min
s∈Ω

J(s) (15)

In order to solve this problem, we also propose a Spectral Projected-Gradient
algorithm (SPG) due to Birgin et al. [7] (providing in each iteration an admissible
point in Ω ) where global convergence is assured under reasonable hypotheses (see
[7] for details). So, assuming the gradient ∇J to be available in each iteration, the
SPG algorithm can be summarized into the following steps:
Step 0. (Initialization) Let s̄ ∈Ω , and let ε > 0 be a positive tolerance.
Step 1. (Search direction computation) Let d = PΩ (s̄−η∇J(s̄))− s̄, where η > 0 is
given by:

– First iteration: η = 1,
– Subsequent other iterations: Let s̄ be the current point and s̃ the previous point.

Compute x = s̄− s̃ and y = ∇J(s̄)−∇J(s̃). Then, if xT y > 0, take η = xT x
xT y ; else-

where, take η as a fixed positive value.
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Furthermore, y = PΩ (z) represents the projection y of z ∈ R6 onto Ω that can be
computed in an easy way (due to the special characteristics of our admissible set Ω )
as the stationary point (that is, the global minimum) of the strictly convex quadratic
function minimizing the distance from z to Ω :

min
y∈Ω

1
2
‖y− z‖2

2 = min
y∈Ω

1
2

zT z− zT y+
1
2

yT y (16)

Step 2. (Termination) If d = 0 (in practice, ‖d‖2 < ε), then stop: s̄ is a stationary point
of J on Ω .
Step 3. (Stepsize) Compute a value α ∈ (0,1] such that J(s̄+αd)≤ J(s̄)+αβ∇J(s̄)T d,
with β > 0 (usually, β ∈ [10−4,10−1]). So, in order to compute the stepsize α in an
iterative way, choose γ > 0 (usually, γ = 2), take θ1 = J(s̄) and θ2 = β∇J(s̄)T d, and
then, for p = 0,1,2, . . ., define α = 1

γ p , and stop when J(s̄+αd)≤ θ1 +αθ2.
Step 4. (Update) Define s̃ = s̄+αd, and go to Step 1 with s̄ = s̃.

In this algorithm, the values of function J(s̄) can be directly obtained from ex-
pression (5) in previous sections. An expression for the gradient could also be ob-
tained by solving the adjoint state system (see [4]). However, this expression is too
cumbersome for our problem and, in general, not useful in practice. We propose to
approximate the gradient of J by a finite difference approach:

For a fixed s̄ ∈ Ω , the gradient ∇J(s̄) =
(

∂J
∂ s1

(s̄), ∂J
∂ s2

(s̄), . . . , ∂ J
∂ s6

(s̄)
)

can be ap-
proximated, for δ > 0 small enough, by:

∂J
∂ si

(s̄)≈ J(s̄+δei)− J(s̄)
δ

, i = 1,2, . . . ,6.

In this way, once the value of J(s̄) is obtained from (5), in order to compute
∇J(s̄), only six function evaluations of J are required. Computation of the stepsize
only needs one function evaluation of J, for each trial.

Finally, the quadratic problem (16) giving the projection y = PΩ (z), can be un-
coupled into two simpler quadratic problems. In fact,

min
(y1,y2,...,y6)

6

∑
i=1
{ 1

2 z2
i − ziyi + 1

2 y2
i }

subject to li ≤ yi ≤ ui, i = 1,2, . . . ,6,
y3− y1 ≥ h1, y2− y4 ≥ h2,
y1− y5 ≥ d1, y6− y2 ≥ d2.




⇐⇒





min
(y1,y3,y5)

1
2 (z2

1 + z2
3 + z2

5)− (z1y1 + z3y3 + z5y5)+ 1
2 (y2

1 + y2
3 + y2

5)

subject to li ≤ yi ≤ ui, i = 1,3,5,
y1− y5 ≥ d1, y3− y1 ≥ h1,

and
min

(y2,y6,y4)
1
2 (z2

2 + z2
6 + z2

4)− (z2y2 + z6y6 + z4y4)+ 1
2 (y2

2 + y2
6 + y2

4)

subject to li ≤ yi ≤ ui, i = 2,6,4,
y2− y4 ≥ h2, y6− y2 ≥ d2.
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Since each one of the above quadratic problems has only three dimensions, they
can easily be solved by using the Karush-Kuhn-Tucker (KKT) conditions. For in-
stance, the first uncoupled problem corresponding to variables (y1,y3,y5) (for the
second problem involving variables (y2,y6,y4), the argumentation is completely anal-
ogous), we must remark that the four bound constraints l1 ≤ y1 ≤ u1, y3 ≥ l3, y5 ≤ u5
are redundant (as a straight consequence of the other non-bound constraints (7) and
(8) and due to the fact that l1 = l3 = l5, u1 = u3 = u5). Thus, from the original eight
constraints, only four linear constraints are left for the optimization problem. In this
way, these two quadratic problems can be rewritten as:

min
(x1,x2,x3)

α− (a1x1 +a2x2 +a3x3)+ 1
2

(
x2

1 + x2
2 + x2

3
)

subject to x2 ≤ u,
x3 ≥ l,
x1− x3 ≥ d,
x2− x1 ≥ h,

where u, l, d, h, α and ai, for i = 1,2,3, are real numbers. Let w = (w1,w2,w3,w4)T

be the vector of the Lagrange multipliers associated to the four constraints. Further-
more, let

A =




0 −1 0
0 0 1
1 0 −1

−1 1 0


 , b =




−u
l
d
h


 ,

and write the linear constraints in the form

Ax− v = b, v≥ 0,

where v = (v1,v2,v3,v4)T is the vector of the slack variables. Since the objective
function is strictly convex and quadratic in R3 and the linear constraints are consis-
tent, the optimization problem has a unique (global) optimal solution that satisfies the
KKT conditions:

v = Ax−b,
−a+ x = AT w,
v≥ 0, w≥ 0,

vT w = 0,

where a = (a1,a2,a3)T . Thus, the optimal solution is given by

x = a+AT w

that is, 



x1 = a1 +w3−w4,
x2 = a2−w1 +w4,
x3 = a3 +w2−w3.

To compute the Lagrange multipliers wi, we eliminate the unrestricted variables xi to
get the following linear complementarity problem (LCP):

v = (−b+Aa)+AAT w,
v≥ 0, w≥ 0,

vT w = 0.
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Fig. 4 Initial fishway and corresponding water height at final time T = 300s for random point: a =
(0.6,0.15), b = (0.9,0.07), c = (0.5,0.4). Height values: 0.26 (blue), 0.38 (green), 0.46 (yellow), 0.50
(orange), 0.54 (red).

Fig. 5 Initial horizontal velocity field at final time T = 300s for random point: a = (0.6,0.15), b =
(0.9,0.07), c = (0.5,0.4).

Let

q =−b+Aa = (u−a2,a3− l,a1−a3−d,−a1 +a2−h)T

and

M = AAT =




1 0 0 −1
0 1 −1 0
0 −1 2 −1

−1 0 −1 2


 .

Since M is a Z-matrix (all off-diagonal elements are non-positive), then this LCP(q,M)
can be solved by the so-called Chandrasekaran’s algorithm [21]:
Step 0. Let w = 0, v = q and I = {i : vi < 0}. If I = /0, then w = 0 is a solution of the
LCP.
Step 1. Consider the system of linear equations

MIIwI =−qI

If MII is singular then the LCP is infeasible. Otherwise, let wI be the unique solution
of this linear system and set

w j = 0, ∀ j 6∈ I.

Step 2. Compute 



vi = 0, if i ∈ I,
vi = qi + ∑

j∈I
mi jw j, if i 6∈ I,

and let J =
{

j : v j < 0
}

.
Step 3. If J = /0, then w is a solution of the LCP. Otherwise go to Step 1 with I = I∪J.

It is also worthwhile remarking here that this algorithm is polynomially bounded
as the number of iterations is smaller than or equal to 4. Furthermore the case of
infeasible LCP in Step 1 cannot occur, as the theory shows that this LCP has a unique
solution.
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Fig. 6 Initial horizontal velocity field in the central pool at final time T = 300s.

6 Numerical results

In this section we present several numerical results obtained for a standard situation.
We have considered the fishway under study, whose scheme is shown in Fig. 2. Both
initial and boundary conditions were held constant, particularly, H0 = 0.5m, Q0 =
(0,0)m2s−1, q1 = − 0.065

0.97 m2s−1, H2 = 0.5m. The time interval for the simulation
was T = 300s. Moreover, for the sake of simplicity, for the second member f we have
only considered the bottom friction stress for a Chezy coefficient of 57.36m0.5s−1.
For the objective function we chose a target velocity value c = 0.8ms−1, and a weight
parameter ξ = 0. Finally, for the time discretization we chose N = 3000 (that is, a
time step of ∆ t = 0.1s) and, for the different space discretizations, we tried several
regular triangulations of about 9500 elements.

Although we have developed many numerical experiences, we present here only
a couple of examples for this realistic problem. However, we can point out the fol-
lowing essential remarks. The initial starting point for the optimization algorithm
shows a great influence in the computed optimal solution. Starting from different
initial points we arrive to different optimal configurations (local minima), but all of
them show very similarly acceptable levels of fulfilment. As far as the sensitivity of
the solution to each parameter is concerned, all the six parameters seem to be equally
important, since in our experiments we could not rapidly fix any parameter to speed
up optimization. Moreover, we observed how the optimal configurations show a ve-
locity profile very close to the target velocity: a velocity parallel to the side wall in
the slot zone (except around the ends of baffles that should be, obviously, avoided),
and almost null in the remaining of the fishway. We can also note that this is not true
for the non-optimal configurations. Finally, we can also observe how the recirculation
areas, clearly noticed in the initial configuration, completely disappear in the optimal
configuration, providing a significantly improved design.
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Fig. 7 NM algorithm: Optimal fishway and corresponding water height at final time T = 300s for optimal
point: aNM = (0.7248,0.1573), bNM = (0.9169,0.0494), cNM = (0.4450,0.4727). Height values: 0.26
(blue), 0.38 (green), 0.46 (yellow), 0.50 (orange), 0.54 (red).

Experiment 1: NM algorithm

In this first example, we used a penalty parameter µ = 105. Applying the NM al-
gorithm we passed, after 167 function evaluations, from initial cost J (as shown in
Table 1) for point ]1 of a random simplex, to the minimum cost J = 240.4255, cor-
responding to the optimal design variables aNM = (0.7248,0.1573), bNM = (0.9169,
0.0494), cNM = (0.4450,0.4727). The complete process took a total of about 99
hours of CPU time in a laptop with two Intel Pentium 4 microprocessors. Figs. 4 and
5 show, respectively, the water height at the final time of the simulation (representing
the stationary situation) and the water velocity corresponding to the fishway given
by the initial random configuration for point ]1 (see Table 1). Figs. 7 and 8 show
the water height and the water velocity in the whole fishway at the final time of the
simulation corresponding to the optimal configuration given by aNM , bNM and cNM .
In both cases we observed that the flow structure is very similar in each pool of each
fishway and that, in the optimal case, a clearly defined streamline appears passing
through all of the vertical slots.

Two close-ups of the central pool are shown, respectively, in Figs. 6 and 9. In the
case of the initial shape (Fig. 6) we can identify the standard flow patterns presented,
for instance, in Rajaratnam et al. [27]: a direct flow region where the flow circulates
in a curved trajectory at high velocity from one slot to the next downstream, and two
recirculation regions - the larger one located between the long baffles and the smaller
one located between the short baffles - flowing in opposite directions. In the case of
the optimal shape (Fig. 9) the direct flow velocity is very close to the target horizontal
velocity v, the smaller recirculation region is completely removed, and the larger one
is highly reduced. Finally, comparing Figs. 4 and 7, we can also see how, in the initial
case (Fig. 4) the eddy areas create great differences in the height of water inside each
pool, but in the optimal case (Fig. 7) these variations are much smoother.

Table 1 Initial random 7-simplex for NM algorithm

point ] s1 s2 s3 s4 s5 s6 J(s)

1 0.6 0.15 0.9 0.07 0.5 0.4 551.0569
2 0.4 0.13 0.9 0.03 0.31 0.3 450.5361
3 0.5 0.16 0.7 0.1 0.35 0.4 649.5730
4 0.6 0.15 0.85 0.08 0.4 0.25 533.9816
5 0.7 0.15 0.9 0.05 0.4 0.45 275.9281
6 0.5 0.24 0.55 0.04 0.4 0.3 > 105

7 0.45 0.18 0.6 0.12 0.35 0.3 1025.8988
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Fig. 8 NM algorithm: Horizontal velocity field at final time T = 300s for optimal point: aNM =
(0.7248,0.1573), bNM = (0.9169,0.0494), cNM = (0.4450,0.4727).

Fig. 9 NM algorithm: Horizontal velocity field in the central pool at final time T = 300s.

Fig. 10 SPG algorithm: Optimal fishway and corresponding water height at final time T = 300s for op-
timal point: aSPG = (0.7032,0.1593), bSPG = (0.9002,0.0633), cSPG = (0.4076,0.4238). Height values:
0.26 (blue), 0.38 (green), 0.46 (yellow), 0.50 (orange), 0.54 (red).

Experiment 2: SPG algorithm

In this second example, we chose a stepsize δ = 10−3, a spectral parameter η = 1015

and a tolerance ε = 10−3. Applying the SPG algorithm, we passed, after only 5 itera-
tions, from initial cost J = 275.9281, corresponding to the point ]5 a =(0.7,0.15), b =
(0.9,0.05), c = (0.4,0.45) (the “best” point of above initial random simplex), to the
minimum cost J = 242.6674, corresponding to the optimal design variables aSPG =
(0.7032,0.1593), bSPG = (0.9002,0.0633), cSPG = (0.4076,0.4238). In this case,
the total CPU time was reduced to 27.4 hours (nearly a 72% reduction with respect to
experiment 1). Figs. 10-12 show the water height and the water velocity in the whole
fishway at the final time of the simulation corresponding to the optimal configuration
given by aSPG, bSPG and cSPG. The same remarks on experiment 1 (showing very
similar results) apply to this example.
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Fig. 11 SPG algorithm: Horizontal velocity field at final time T = 300s for optimal point: aSPG =
(0.7032,0.1593), bSPG = (0.9002,0.0633), cSPG = (0.4076,0.4238).

Fig. 12 SPG algorithm: Horizontal velocity field in the central pool at final time T = 300s.

7 Conclusions

Mathematical modelling has been used to simulate height and velocity of the wa-
ter in a standard vertical slot fishway. Moreover, optimization and optimal control
techniques have been employed to control the water velocity. Particularly, we have
obtained a more suitable shape design for fishways, which is optimal in terms of
swimming capabilities and rest necessities for fish when passing through the fishway.

After obtaining a well-posed formulation for the environmental problem, we have
proposed two different approaches in order to achieve the optimal shape. In the first
approach, we used a direct search method (NM algorithm). In the second approach,
we used the SPG method, where the derivatives were computed via a finite differ-
ence approximation. Analyzing the numerical experiences developed by the authors,
we conclude that both algorithms are effective, robust and reliable. The cost value
achieved in the example is slightly better for the optimal shape obtained by the NM
algorithm, but, as a counterpart, the computational effort is clearly lower for the SPG
method.

It is worthwhile remarking here that the optimization problem is non-convex,
so there exist several local minima with different optimal values. Our experiences
show that both algorithms determine different local minima. Nevertheless, both local
minima produce design solutions that are interesting and satisfactory, from a practical
viewpoint, for the model under study.
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Finally, it is important to emphasize that the NM algorithm presents computa-
tional difficulties when applied to a more complex model with a larger number of
design variables. It is this inability of the direct method to deal with these problems
that led to our proposal of using the projected-gradient algorithm. In fact, if the con-
straints of the model are simple, as in our problem, special-purpose techniques may
be designed for the computation of the projection and the SPG method will be able
to solve efficiently the optimization problem related to the model.
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1. Alvarez-Vázquez LJ, Martı́nez A, Muñoz-Sola R, Rodrı́guez C, Vázquez-Méndez ME, The water con-
veyance problem: Optimal purification of polluted waters, Math Models Meth Appl Sci 15:1393-1416
(2005)

2. Alvarez-Vázquez LJ, Martı́nez A, Rodrı́guez C, Vázquez-Méndez ME, Numerical optimization for the
location of wastewater outfalls, Comput Optim Appl 22:399-417 (2002)

3. Alvarez-Vázquez LJ, Martı́nez A, Rodrı́guez C, Vázquez-Méndez ME, Vilar MA, Optimal shape de-
sign for fishways in rivers, Math Comput Simul 76:218-222 (2007)

4. Alvarez-Vázquez LJ, Martı́nez A, Vázquez-Méndez ME, Vilar MA, An optimal shape problem related
to the realistic design of river fishways, Ecological Eng 32:293-300 (2008)

5. Alvarez-Vázquez LJ, Martı́nez A, Vázquez-Méndez ME, Vilar MA, Vertical slot fishways: modeling
and optimal management, J Comput Appl Math 218:395-403 (2008)
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