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Abstract

We provide Completely Positive and Copositive Optimization for-
mulations for the Constrained Fractional Quadratic Problem (CFQP)
and Standard Fractional Quadratic Problem (StFQP). Based on these
formulations, Semidefinite Programming (SDP) relaxations are derived
for finding good lower bounds to these fractional programs, which can
be used in a global optimization branch-and-bound approach. Applica-
tions of the CFQP and StFQP, related with the correction of infeasible
linear systems and eigenvalue complementarity problems are also dis-
cussed.

1 Introduction

Copositive optimization is an emerging field in optimization. The suc-
cess of this topic is due, not only to the elegance of the theory, but also
to the good results obtained in tighter semidefinite relaxations for hard
combinatorial optimization problems. For recent papers with a survey
flavor see, e.g., [12, 18, 22], and for a clustered bibliography [14].

The lower bounds based on this technique can be favorably com-
pared with bounds obtained by other methods. For instance, a study
with the standard quadratic problem reveals the dominance of coposi-
tivity based bounds over alternative techniques [11]. Although copos-
itive matrices have been studied for long in linear algebra [27], direct
applications in optimization are relatively recent. The idea of refor-
mulating some combinatorial optimization problems, such as the max-
imum clique problem, as an optimization problem over the copositive
cone was first proposed in [9]. This reformulation does not, of course,
drain out the difficulty of the problems. The hard component of the
optimization problems is cast into a feasibility condition with respect
to the copositive or completely positive cone, allowing for a remaining
linear representation of the problem. The major drawback has to do
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with algorithmic aspects. Verification of copositivity or complete posi-
tivity is (co-)NP-hard [35, 20]. While more results for dealing with this
problem are emerging, such as those of Bundfuss and Dür for adaptive
approximations of the copositive cone [16], and copositivity detection
[15, 10], the existent theory already enables and justifies copositivity-
based approaches. Computational results certify this statement.

In this paper, we consider the problem of minimizing a fractional
problem involving the ratio of two quadratic functions, over a polytope.
The challenge in addressing this problem arises from the nonconvex-
ity of the objective function, while the motivation lies on its many
applications, such as the Constrained Total Least Squares Problem
(CTLSP). The unconstrained Total Least Squares Problem (TLSP) is
concerned with the Least Squares Problem (LSP) with the additional
assumption of corruptness of the data as well as the output. The
CTLSP is a TLSP with additional constraints. There are some im-
portant subclasses of the CTLSP, such as the Regularized Total Least
Squares Problem (RTLSP), where an additional quadratic constraint
(Tikhonov regularization) is considered to ensure solution stability.
The application of Tikhonov regularization to the TLS problem was
introduced by Golub, Hansen and O’Leary [23], where a parameter-
dependent direct algorithm for an augmented Lagrangian formulation
was proposed. Most of the efficient methods to solve this problem
appeared in the last ten years. Simma, Van Huffel and Golub [45]
presented an iterative computational approach based on the solution
of a quadratic eigenvalue problem (QEP) in each iteration. In [41]
an approach also based on an eigenproblem for the RTLSP is solved
by an iterative inverse power method. Later the authors improved
their work using an alternative derivation of the eigenproblem that
allowed the construction of more efficient algorithmic approaches [42].
As pointed out by Beck, Ben-Tal and Teboulle in [7], those methods are
guaranteed only to converge to a point satisfying first order necessary
optimality conditions. In the paper, the authors presented a parame-
terized ε−optimal method consisting of the solution of a sequence of
convex minimization problems.

There is a generalization of the TLSP that is related with the min-
imal correction of inconsistent linear systems. In particular, when the
minimal correction is defined by the minimization of the Frobenius
norm of the perturbations of the matrix of coefficients and the inde-
pendent term, then this problem can be formulated as a fractional
quadratic program (FQP) [2]. When only equalities exist, then the
problem is equivalent to the TLSP [24]. The introduction of inequali-
ties in the linear system makes the problem much harder [1]. A branch-
and-bound approach was introduced for such a purpose in [2], which
includes a Reformulation Linearization Technique (RLT) for finding
lower bounds.

Another interesting application of the FQP is the Eigenvalue Com-
plementary Problem (EiCP) with symmetric real matrices. Finding
a complementary eigenvalue reduces to finding a stationary point of
the Rayleigh quotient on the simplex [40]. Hence, the computation of
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the largest complementary eigenvalue is equivalent to finding a global
minimum of a Standard Fractional Quadratic Program (StFQP). This
problem has several applications in engineering and physics, as for in-
stance, in the study of resonance frequency of structures and stability
of dynamical systems [19].

Regarding other related contributions, Beck and Teboulle [8] sug-
gested a convex optimization approach for minimizing the ratio of in-
definite quadratic functions over an ellipsoid. A main result of the
paper is that, under some conditions the problem can be recast as
a semidefinite optimization problem with no gap, whose optimal solu-
tion can be used to extract the optimal solution of the original problem.
This problem can be seen as a generalization of the RTLSP, as the as-
sumptions regarding the quadratic forms in the objective function are
mild, but in order to guarantee the existence of a minimum, the ma-
trix of the constraint set must be non-singular. However, in a general
RTLSP this matrix is not even necessarily square.

For the general quadratic fractional problem, Gotoh and Konno [25]
were able to globally solve small-scale problems using a method that
combines the classical Dinkelbach method and a branch-and-bound ap-
proach for the nonconvex quadratic problem. Yamamoto and Konno
[48] proposed an exact algorithm combining the classical Dinkelbach
approach and an integer optimization formulation for solving a non-
convex quadratic optimization problem.

Quadratically constrained quadratic problems are equivalent to a
particular subclass of constrained fractional quadratic problems [39].
In fact, if B is a symmetric positive-definite (pd) matrix then the prob-
lem

min

{
x>Cx

x>Bx
: Ax = o , x ∈ Rn+

}
is equivalent to

min
{
y>Cy : Ay = o , y>By = 1 , y ∈ Rn+

}
.

In this context it is appropriate to refer some of the recent work on
quadratically constrained quadratic problems [39], [6], [33], [3] as valid
approaches for the FQP. However, it seems that departure from homo-
geneity in the constraints Ax = o, that is, considering Ax = a with
a ∈ Rm \ {o} instead, yields more complications, at least if m > 1.
Studying this latter type of problem is the main purpose of the present
paper.

To the best of our knowledge, Preisig’s article [39] is the only refer-
ence where copositivity is explicitly used for finding the global solution
to the FQP. This paper deals with the Standard FQP (StFQP, where
the feasible set is the standard simplex) and contains two algorithms;
the first is a basic line search procedure which uses an unspecified
copositivity test as a subroutine, and seems to be not very effective
even for medium-scaled problems (n ≥ 20). This procedure requires
basically only strict copositivity of B. To also cope with larger problem
dimensions (n ≤ 200), Preisig suggests in [39] an iterative procedure for
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which convergence to a KKT point of the StFQP can be proved, pro-
vided that B is both positive-semidefinite (psd) and strictly copositive.
However, no information was provided on the quality of the solution
found by this algorithm, and thus even for StFQP this method cannot
be considered complete from a global optimization perspective.

1.1 Contributions of the paper

Following the ideas presented in [9] for finding a global minimum of a
quadratic nonconvex program over the standard simplex, in this pa-
per an exact completely positive formulation for the CFQP is first
introduced. The completely positive condition is relaxed, and a con-
vex semidefinite lower bounding problem is obtained. We prove that
dual attainability is impossible for this formulation, and we propose
a second dual formulation, based on a more general cone, for which
this property is verified. Applications of the CFQP and in particu-
lar of the StFQP on the correction of linear systems and symmetric
eigenvalue complementarity problem are discussed. Preliminary com-
putational experience with a set of randomly generated CFQPs is re-
ported which illustrates the quality of the lower-bounds as compared
with those given by a more traditional approach, such as BARON [43].
We also compare our approach with the performance of GloptiPoly
3, a general-purpose SDP-based method to optimize rational functions
over a semi-algebraic set.

1.2 Outline of the paper

The paper is organized as follows. In Section 2 we introduce the Con-
strained Fractional Quadratic Problem over a polytope, CFQP, along
with some model properties and assumptions.

An exact Completely Positive (CP) Optimization formulation for
the CFQP, some theoretical results regarding primal and dual attain-
ability and a SDP relaxation based on the CP formulation are discussed
in Section 3.

Section 4 studies the Standard Quadratic Fractional Problem
(StFQP), that is, a CFQP whose constraint set is the unit simplex.
The interest of this study is corroborated by the description of two
particular applications of the StFQP, namely the Eigenvalue Com-
plementary Problem (EiCP) and the Constrained Total Least Squares
(CTLS). Dimensionality reduction, dual attainability results and lower
bounding problems are also discussed in this section.

Computational experience showing the quality of the lower-bounds,
of the SDP relaxation of the conic formulation is reported in Section 5.
Finally, Section 6 contains some conclusions.

1.3 Notation, matrix cones and duality

Vectors are denoted by lowercase boldface letters (e.g., o is the zero
vector) and matrices by uppercase letters (e.g., O is the zero matrix,
or In the n× n identity matrix, the columns of which are denoted by
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e1, . . . , en). N denotes the set of nonnegative integers, Rn denotes n-
dimensional Euclidean space and Rn+ the positive orthant therein, and
the standard simplex is denoted by

∆ = conv (e1, . . . , en) =
{
x ∈ Rn+ : e>x = 1

}
(1)

with e =
∑
i ei = [1, . . . , 1]> ∈ Rn. The notation A � B is used for

the condition that A − B is psd, while A ≥ B means that A − B has
no negative entries. The transpose of A is A> and A •B = trace(AB)
represents the Frobenius inner product of two matrices A and B in

Mn =
{
A an n× n matrix : A> = A

}
.

With respect to this duality, the dual cone of the copositive matrices

Cn =
{
C ∈Mn : x>Cx ≥ 0 for all x ∈ Rn+

}
is the cone of completely positive matrices

C∗n =
{
D ∈Mn : D = Y Y >, Y an n× k matrix with Y ≥ O

}
.

Let Pn ⊂Mn be cone of symmetric psd n× n matrices and Nn ⊂
Mn be the cone of nonnegative symmetric matrices. It is known that
K0 = Pn +Nn provides a approximation of the copositive cone Cn in
the sense of K0 ⊆ Cn. Since Pn and Nn are self-dual cones we have

C∗n ⊆ K∗0 = (Pn +Nn)∗ = Pn ∩Nn .

The latter matrix cone is also called the cone of doubly nonnegative ma-
trices, and sometimes denoted by Dn. Given a general closed, pointed
convex cone K ⊆M and its dual cone

K∗ = {S ∈M : S • Z ≥ 0 for all Z ∈ K}

the following programs form a pair of primal-dual conic optimization
problems :

max {C •X : Ai •X = bi , 1 ≤ i ≤ m, X ∈ K∗} (2)

and

min

{
b>y : C −

m∑
i=1

yiAi ∈ K

}
. (3)

We will mostly deal with the cases K = Cn and K = D∗n = Pn +Nn,
but any choice K = Krn for usual SDP- or LP-based approximation
hierarchies (Krn)r∈N would do, where Krn is in some sense close to Cn
for large r; see [37, 13, 38, 26, 49, 21], who all more or less follow the
ideas first put forward in [36, 32]. Recall that checking membership of
Krn in any such hierarchy usually involves psd matrices of order nr+1,
rendering these approximations computationally intractable for large
r and n.
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2 The Constrained Fractional Quadratic
Problem

2.1 Problem formulation and model assumptions

In this section we consider the CFQP

ψ = min

{
f(x) =

x>Cx + 2c>x + γ

p(x)
: x ∈ T

}
(4)

where

T =
{
x ∈ Rn+ : Ax = a

}
and p(x) = x>Bx + 2b>x + β .

For simplicity of exposition, let us assume here that there are 0 < δ <
η < +∞ such that

p(x) ∈ [δ, η] for all x ∈ T . (5)

For an in-depth discussion of this and related conditions occurring,
e.g., in [29], we refer to the next subsection.

The Standard Quadratic Optimization Problem (StQP),

min
{
f(x) = x>Cx : x ∈ ∆

}
(6)

is a special case of the CFQP when p(x) ≡ 1 and the polytope T = ∆
is the standard simplex. This problem is known to be NP-hard and
thus the same applies to the CFQP (4).

For convenient notation, we introduce

A =

[
a>a −a>A
−A>a A>A

]
, B =

[
β b>

b B

]
, C =

[
γ c>

c C

]
. (7)

Using Schur complements, it is easy to see that condition (5) holds if
βB −bb> is pd and T is bounded, but (5) may hold in relevant cases
even if βB − bb> is singular; see Subsection 4.3 below.

Note that A = [−a , A]>[−a , A] ∈ Pn+1 is psd but, typically,
singular:

Ax = a ⇐⇒ Az = [−a , A]z = o ⇐⇒ z>Az = 0 ,

where z = [1 , x>]> ∈ Rn+1. Hence we may rephrase (4) as

ψ = min

{
z>Cz

z>Bz
: z ∈ Rn+1

+ , z1 = 1 , z>Az = 0

}
. (8)

Problems of this kind appear in context of repair of inconsistent linear
(inequality) systems, see Subsection 4.3 below. In the sequel, we will
always assume A 6= O, which implies trace(A) > 0.

The feasible set T is compact if and only if T 6= ∅ and

ker A ∩ Rn+ = {o} ,

which amounts to require that Ay = o and y ∈ Rn+ together already
imply y = o. Further, we introduce the polyhedral cone generated by
the constraints

ΓA =
{
z ∈ Rn+1

+ : Az = o
}
. (9)
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As usual, we say that B is strictly ΓA -copositive if and only if
z ∈ Rn+1

+ \ {o} and Az = o imply z>Bz > 0.

Lemma 1 If T is compact, strict positivity of p over T is equivalent
to strict ΓA -copositivity of B, and this implies condition (5).

Proof. If z =

[
1
x

]
then z>Bz = p(x) and z ∈ ΓA implies that

x ∈ T . Hence strict ΓA -copositivity of B is sufficient for positivity

of p over T . To see necessity, let z =

[
ζ
v

]
∈ ΓA with ζ > 0. Then

x = 1
ζv ∈ T and z>Bz = ζ2p(x) > 0. However, if ζ = 0, then v ∈ Rn+

must satisfy Av = o, by the construction of A. Hence v = o and strict
ΓA -copositivity of B follows. �

Compactness of T and strict positivity of p over this set implies that
problem (4) always has an optimal solution (primal attainability).

For further convenient reference, we repeat our overall model as-
sumptions here:

T =
{
x ∈ Rn+ : Ax = a

}
6= ∅ ;

ker A ∩ Rn+ = {o} ⇐⇒ Ay 6= o if y ∈ Rn+ \ {o} ;

B is strictly ΓA-copositive: z>Bz > 0 if Az = o , z ∈ Rn+ \ {o} .

(10)

2.2 SDP approach for general rational optimization

In the paper [29], SDP-based methods for optimization of general ra-

tional polynomial functions f(x) = n(x)
p(x) with polynomials n(x) and

p(x) over feasible sets S are studied, where either S = Rn (the uncon-
strained case) or else S is a semi-algebraic set which is the (partial)
closure of an open set.

Here we are dealing with the constrained case min {f(x) : x ∈ T },
where n and p are of degree two, but typically T has no interior points.
So the assumptions on T here and on S in [29] are incompatible. But
there are further assumptions on the problems which need discussion.
Before proceeding to them, note that a closer look at the arguments
in [29] reveals that the above-mentioned assumption on S can be re-
placed with the following assumption on S and p:

for any pair {x+,x−} ⊆ S , there is a path x(t) ∈ S
linking x+ and x− , i.e., x(0) = x− and x(1) = x+ ,

such that χ(t) = p(x(t)) is a polynomial in t .

 (11)

Obviously, this condition is satisfied if S is a convex set, a property
our feasible set T enjoys, and is also implied if existence of polynomial
paths x(t) linking any two points in S is guaranteed. A study of
this latter condition falls into the field of real algebraic geometry and
therefore is beyond the scope of this paper. So let us proceed to two
further assumptions stated in [29]:
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(a) the polynomials p and n have no common real polynomial factor
which is non-constant;

(b) the polynomials p and n have no common (real) root in S.

It is easily seen that (a) and (b) are not implied by each other, take,
e.g., p(x) = 2x2

1 + x2
2− 1 and n(x) = x2

1 + 2x2
2− 1 with S the unit disc

(or T some polytope containing S), or else n(x) = 2p(x) = x2
1 + x2

2

and S = T = ∆.
Assumption (a) can also be easily enforced for the CFQP. Other-

wise we would arrive at the fractional linear case for which of course
there is the LP reformulation, going back to Charnes and Cooper (a
referee kindly pointed out that there is also a (nonlinear) SDP formu-
lation in [47, Section 7.1]). However, while seemingly quite natural,
assumption (a) is not needed in the following auxiliary result which
deals with boundedness of the constrained rational optimization prob-
lem. Also, S can be an arbitrary set satisfying (11), e.g., any convex
set.

Proposition 2.1 Suppose that (11) holds and that the polynomials

p and n have no common (real) root in S. Then f(x) = n(x)
p(x) can be

bounded (from below and/or above) over S only if p(x) does not change
sign strictly over S. To be more precise: if S0 = {x ∈ S : p(x) = 0},
then

sup {f(x) : x ∈ S \ S0} = +∞ and inf {f(x) : x ∈ S \ S0} = −∞ ,

provided that there are {x+,x−} ⊆ S such that p(x−) < 0 < p(x+).

Proof. Suppose p(x−) < 0 < p(x+) for some {x+,x−} ⊆ S and link
these points by a polynomial path x(t) ∈ S as in assumption (11).
Then, as χ(t) = p(x(t)) is a univariate polynomial with χ(0) < 0 <
χ(1), it is well known (and quite elementary to prove) that there must
be a transversal real root t̄ ∈ [0, 1] of χ: χ(t̄− ε) < 0 < χ(t̄+ ε) must
hold for sufficiently small ε > 0. Since x̄ = x(t̄) is a root of p in S,
we must have n(x̄) 6= 0, by assumption (b) above. Suppose for the
moment that n(x̄) > 0; then along the two sequences x±ε = x(t̄ ± ε),
we have evidently lim

ε↘0
f(x±ε ) = ±∞, and the result follows. The same

argument holds in the opposite case n(x̄) < 0, switching signs. �

So apparently the common root assumption (b) plays a key role
in investigating boundedness. However, for the CFQP the procedure
suggested in [29] to check this, namely to certify

inf
{
p2(x) + n2(x) : x ∈ S

}
> 0 ,

requires bounding a quartic optimization problem over T which may
be even more difficult than establishing copositivity to enforce the
model assumptions (10). For sure there are non-convex instances for
this quartic objective function. For instance consider arbitrary B and
b with β = 1 and select any x in the interior of Rn+. Next pick a
vector v 6= o with v ⊥ Bx + b, then select A such that Av = o but
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arbitrary else, and put a = Ax so that x± tv ∈ T for sufficiently small
t > 0. Now choose C = B − ρI and c = b + ρx where ρ ∈ R is to
be determined later, and γ = 1 − ρx>x, so that p(x) = n(x), and,
by construction, v ⊥ {Bx + b, Cx + c}. Finally let ρ be such that
v>[p(x)B + n(x)C]v = v>(2B − ρI)v < 0. Then a straightforward
calculation shows

v>D2[p2(x) + n2(x)]v = 2v>[p(x)B + n(x)C]v < 0 .

This remains true for sufficiently small departures from p which yield
a non-constant objective f .

3 Copositivity and CFQP

3.1 Completely positive formulation

As stated before, the fractional quadratic problem (4) can be rewritten
in homogeneous form (8). Putting Z = zz>, rewriting z>Az = A • Z,
with A psd and observing that Z11 = z2

1 and z ∈ Rn+1
+ , we have

ψ = min

{
C • Z
B • Z

: Z11 = 1 , A • Z = 0 , rank(Z) = 1 , Z ∈ C∗n+1

}
.(12)

By homogeneity, for any Z feasible to (12) we can replace the constraint
Z11 = 1 by Z11 > 0. We may also define X = 1

B•Z Z ∈ C
∗
n+1 which

also has rank one with X11 > 0 and satisfies B •X = 1, to obtain the
following equivalent problem

ψ = min
{
C •X : B •X = 1, A •X = 0, rank(X) = 1,

X11 > 0, X ∈ C∗n+1

}
. (13)

This problem is non-standard in two aspects. First, it includes a strict
linear inequality for defining feasibility; second, and probably more
familiar in the context of SDP relaxations, it contains a (non-convex)
rank-one constraint. Next we prove that we still obtain an equivalent
problem by dropping the rank condition and the constraint X11 > 0,
so that (13) turns out to be equivalent to the following problem

min
{
C •X : B •X = 1, A •X = 0, X ∈ C∗n+1

}
. (14)

To prove this statement we must introduce the following lemma, which
parallels an important result on the CP representation of mixed-binary
quadratic optimization problems [17]; see also [5].

Lemma 2 Under the model assumptions (10),{
X ∈ C∗n+1 : B •X = 1, A •X = 0

}
=

= conv
{
zz> : z ∈ Rn+1

+ : z1 > 0 , z>Bz = 1 , Az = o
}
.

Proof. The inclusion ⊇ is immediate given the definition of C∗n+1. For

the ⊆ part, first note that any X ∈ C∗n+1 with B • X = 1 satisfies
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X 6= O. Let X ∈ C∗n+1 \ {O}. Then there is the representation

X =

r∑
i=1

yiy
>
i with yi ∈ Rn+1

+ \ {o} , for all i ,

for some r ≥ 1. Since A is psd,

0 ≤ y>i Ayi ≤
r∑
j=1

y>j Ayj = A •X = 0 =⇒ Ayi = o . (15)

Hence yi ∈ ΓA \ {o} and we can define

λi = y>i Byi

which is strictly positive by (10) for all i = 1, . . . , r. Let

zi =
1√

y>i Byi

yi ∈ ΓA .

Then by construction z>i Bzi = 1 and Azi = o. For all i, the first

coordinate ζi of zi =

[
ζi
vi

]
must not vanish. Otherwise Azi = o

would imply Avi = o, and vi ∈ Rn+ would by (10) yield vi = o or
zi = o or yi = o, which is absurd. Then

r∑
i=1

λi =

r∑
i=1

y>i Byi =

r∑
i=1

B • yiy>i = B •X = 1 . (16)

So X can be written as X =
∑r
i=1 λiziz

>
i , and the result follows. �

Theorem 1 Under the model assumptions (10), problems (13) and (14)
are equivalent. Moreover, there is always an optimal solution of the
form Z∗ = Z∗11zz

> to (14) with z> = [1 , (x∗)>] which encodes in
x∗ ∈ T an optimal solution to (4).

Proof. Any optimal solution X∗ to (14) is a convex combination of
rank-one matrices like Z∗, due to Lemma 2. Hence (13) and (14) must
have the same minimal objective value by convexity (in fact, linearity)
of the objective function. Therefore this and the remaining assertion
follow from standard convex optimization arguments. �

3.2 Duality and copositive optimization

By weak duality of (14)

ψ ≥ λ∗ = sup
{
λ : C − λB − µA ∈ Cn+1

}
. (17)

Slater’s condition is always violated for (14). Indeed, if Z ∈ int C∗n+1

is feasible to (14), then Z − αIn+1 ∈ C∗n+1 for a small α > 0, and in
particular this matrix is psd. But

A • (Z − αIn+1) = 0− α trace(A) < 0 ,
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is a contradiction to the fact of A ∈ Pn+1 \ {O}. Therefore it is
not possible to infer strong duality (in particular, dual attainability)
from standard arguments. However, under our assumptions, the dual
problem is strictly feasible, which implies attainability of the primal
(14) (this was already established in Section 2 before) and zero duality
gap, that is ψ = λ∗. To establish this result, we need to introduce
another lemma.

Lemma 3 If a symmetric matrix D is strictly ΓA -copositive and A is
psd, then there is ρ > 0 such that D + ρA is strictly copositive (w.r.t.
the whole Rn+).

Proof. Let ω = −min
x∈∆

x>Dx. By continuity of the quadratic form

and compactness of ∆, there exist δ > 0 and η > 0 such that x>Dx ≥ δ
whenever dist(x, ker A) < η and x ∈ ∆. On the other hand, the set
P = {x ∈ ∆ : dist(x, ker A) ≥ η} is either empty (the trivial case) or
compact. In the latter case, by construction, we have ν = min

x∈P
x>Ax >

0. Finally let

ρ = max{1, 2ω

ν
} ≥ 1 > 0 .

Then x>(D + ρA)x ≥ x>Dx ≥ δ > 0 for all x ∈ ∆ \ P by the above
construction. But for any x ∈ P we have x>(D + ρA)x ≥ −ω + 2ω =
ω. Now the result follows if ω > 0. If ω ≤ 0 then x>Dx ≥ 0 and
x>(D + ρA)x ≥ 0 + 1ν = ν > 0. Hence D + ρA is strictly copositive.
�

Theorem 2 Under the model assumptions (10), the dual problem (17)
is strictly feasible (i.e., Slater’s condition is satisfied). Hence the du-
ality gap is zero, and the primal problem (14) has always an optimal
solution, that is, ψ = λ∗ = C • Z∗ for some Z∗ feasible to (14).

Proof. Lemma 1 and Lemma 3 imply that there is a ρ > 0 such
that B + ρA is strictly copositive. By continuity, this is still true for
γC +B + ρA for small γ > 0. Also, by positive homogeneity, we may
divide by γ and still C − λB − µA ∈ int C∗n+1, where λ = − 1

γ and

µ = − ρ
γ . �

For a slightly modified dual program we present an attainability
result.

Theorem 3

ψ = max
{
λ : C − λB is ΓA -copositive

}
. (18)

Proof. Suppose that C − λB is ΓA -copositive. For any x ∈ T , we
have z = [1 , x>]> ∈ ΓA , so that

z>Cz− λz>Bz ≥ 0 .
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As z>Bz > 0, this implies λ ≤ z>Cz
z>Bz

= f(x), and therefore λ ≤ ψ. To

establish the result, we consider a solution x̄ to (4) and show that λ̄ =
ψ = f(x̄) satisfies that C − λ̄B is ΓA -copositive. Let z = [1 , x>]> ∈
ΓA. For any x ∈ T

z>Cz− λ̄z>Bz = z>Bz [f(x)− f(x̄)] ≥ 0 .

Now ΓA -copositivity follows as in the proof of Lemma 1. �

To use (18) directly we should have an algorithm for checking ΓA
-copositivity. While there were some algorithms designed for this task,
procedures to check classical Rn+-copositivity are much more popu-
lar [16, 10].

The equality (18) would imply dual attainability if we could prove
that for a ΓA-copositive matrix D and a psd matrix A there is ρ ∈ R
such that D + ρA is copositive. Unfortunately, this property does not
hold, as the following example shows.

Example: Let D =

[
0 −1
−1 0

]
and A =

[
1 0
0 0

]
.

Then D is ΓA -copositive, but there is no ρ ∈ R such that D+ ρA is a
copositive matrix.

Since the primal problem is never strictly feasible, dual attainabil-
ity is still not established and remains an open question. However,
for some special cases it is possible to have dual attainability, as it
is the case of the StFQP analyzed in Section 4. For this class, also
an approximation result will be shown: it admits a polynomial-time
approximation scheme (see Section ??).

3.3 Lower bounds based on copositive relaxations

Previously we proved that

ψ = min

{
f(x) =

x>Cx + 2c>x + γ

x>Bx + 2b>x + β
: Ax = a,x ∈ Rn+

}
(19)

= min
{
C •X : B •X = 1, A •X = 0, X ∈ C∗n+1

}
. (20)

Checking condition X ∈ C∗n+1 is (co-)NP-hard [35, 20], but it is possible
to exploit this equality to get a lower bound for the CFQP, using the
inclusion C∗n+1 ⊆ Dn+1 = Pn+1 ∩Nn+1. So by solving

ψcop = min
{
C •X : B •X = 1, A •X = 0, X ∈ Dn+1

}
, (21)

we obtain a lower bound for (19). In addition, given that

X =

[
1 x>

x xx>

]
for any rank-one completely positive matrix X, we may reinforce the
lower bound by requiring in addition an upper bound uu> in the vari-
able X, where the components of u ∈ Rn+1 are given by

ui+1 = max
{
xi : Ax = a , x ∈ Rn+

}
for i = 1, . . . , n and u1 = 1 .

12



Hence the following SDP gives a tighter lower bound for the CFQP:

ψ+
cop = min

{
C •X : B •X = 1, A •X = 0, X � 0, 0 ≤ X ≤ uu>

}
.(22)

The remainder of this subsection investigates the boundedness of
the feasible set of the relaxed problem (21).

Lemma 4 Suppose that assumption (10) holds, and

X =

[
X11 x>

x Y

]
∈ Dn+1 .

(a) If X 6= O satisfies A •X = 0 then X11 > 0.

(b) If X11 > 0 and A • X = 0, then A>A • (X11Y − xx>) = 0 and
x̄ = 1

X11
x ∈ T .

Proof. (a) If X11 = 0, then also x = o, and 0 = A •X = (A>A) • Y .
But Y ∈ Pn as X ∈ Dn+1. Hence Y (Rn) ⊆ ker A and in particular
Yw ∈ ker A for all w ∈ Rn+. Since Y ∈ Nn, then Yw ∈ Rn+, too.
Hence Yw ∈ ker A∩Rn+ = {o}, or Y (Rn+) = {o}, which entails Y = 0
and thus X = O, contradicting the assumption.
(b) Since X ∈ Pn+1, also the Schur complement X11Y − xx> ∈ Pn.
Therefore we get

0 ≤ (A>A) • (X11Y − xx>) = X11(A>A) • Y − ‖Ax‖2

and by consequence

0 ≤ ‖X11a−Ax‖2

= ‖Ax‖2 − 2(X11a)>(Ax) + ‖X11a‖2

≤ X11(A>A) • Y − 2(X11a)>(Ax) + ‖X11a‖2

= X11(A •X) = 0 ,

which establishes both assertions. �

For the next auxiliary result we resort on the condition B ∈ Pn
which was also employed in [39].

Lemma 5 Assume (10) B psd. Then there is a finite M > 0 such
that X11 + ‖x‖ ≤M for all X feasible to (21).

Proof. Suppose that Xν
11 ↗ ∞ along a sequence Xν of (21)-feasible

points. Since T is compact, we may assume without loss of generality
that x̄ν = 1

Xν11
xν → x̄ ∈ T as ν →∞. Since we have

1 = X11 + 2b>x +B • Y ≥ X11 + 2b>x +
1

X11
x>Bx

due to the fact that both B and the Schur complement Y − 1
X11

xx>

are psd for any feasible X, it follows for z̄ν = [1, x̄>ν ]> ∈ ΓA \ {o} that

1

Xν
11

≥ 1 + 2b>x̄ν + (x̄ν)>B(x̄ν) = (z̄ν)>B(z̄ν)

13



for all ν. Hence in the limit z̄>Bz̄ = 0, contradicting z̄ = lim
ν→∞

z̄ν ∈
ΓA\{o}. Then X11 must be bounded (and positive). Now x̄ = 1

X11
x ∈

T must be bounded too, since T is compact. So x = X11x̄ must be
bounded. �

Finally we sharpen the assumption on B to be positive-definite, to
derive boundedness of the feasible region.

Corollary 3.1 If B is positive-definite, then under the assumption (10)
the feasible set of (21) is bounded.

Proof. If B • X = 1, then B • Y = 1 − βX11 − 2b>x must be
bounded by Lemma 5. Now choose ρ > 0 such that B − ρI ∈ Pn.
Then ρYjj ≤ ρI • Y ≤ B • Y must be bounded, and therefore Y , too,
since Y ∈ P implies |Yjk| ≤

√
YjjYkk for all j, k. �

Note that all above results hold a fortiori for the higher-order re-
laxations Krn+1 ⊆ Dn+1.

4 Standard Fractional Quadratic Problem

4.1 Formulation

The Standard Fractional Quadratic Problem (StFQP) is a CFQP where
the constraint set is the standard simplex ∆ as defined in (1). The
StFQP is NP -hard as the StQP is also NP -hard. Despite the con-
straints being simpler, this problem class retains most of the com-
plexity of the previous polyhedron case. It is possible to transform a
bounded CFQP into an equivalent StFQP using a vertex based rep-
resentation. This reduction is not useful in practice if the number of
vertices is large, but in any case it helps to establish theoretical results.
The importance of the StFQP is well established from the fact that it
can be used to formulate some combinatorial optimization problems.
Also in branch-and-bound methods for global fractional quadratic op-
timization, a simplex partition of the domain is often used, such that
each node in the branch-and-bound tree corresponds to a StFQP.

Nonhomogeneous quadratic expressions q(x) = x>Ĉx + 2c>x + γ
over the simplex ∆ can be made homogeneous by defining C = Ĉ +
ce> + ec> + γee> so that x>Cx = q(x) for all x ∈ ∆. So in this
section we consider, without loss of generality, the problem

min

{
x>Cx

x>Bx
: x ∈ ∆

}
. (23)

In this context, Lemma 1 reduces to the evident fact that x>Bx > 0 for
all x ∈ ∆ if and only if B is strictly copositive. In turn, this condition
is equivalent to our overall model assumption (10) in context of StFQP.

14



In the particular case of a StFQP, dual attainability was implicitly
already established in [39, Theorem 3.5]:

min

{
x>Cx

x>Bx
: x ∈ ∆

}
= min {C •X : B •X = 1 , X ∈ C∗n}

= max {λ : C − λB ∈ Cn} .
(24)

In the paper [39], Preisig has developed a bisection method based upon
the last reformulation, using a copositivity test as a black box. In view
of recent developments in copositivity testing, see in particular [15, 10],
it may be worth while to revisit this approach, but in this paper we
follow a different one.

Comparing the resulting pair in (24) to the original CP formulation
in (14) and in (17), we obtain a dimension reduction from n+1 as in the
general CFQP case to n in the StFQP case. Based on this formulation,
we proceed to lower bounds based on the SDP relaxation of (24). Let

ψ = max {λ : C − λB ∈ Cn} .

As in the general description of Subsection 3.3, we again employ the
cone of doubly nonnegative matrices Dn = (Pn ∩ Nn) ⊇ Cn with its
dual cone D∗n = Pn +Nn ⊆ C∗n, and define, following [4] and [11],

ψcop = max {λ : C − λB ∈ Pn +Nn} ≤ ψ . (25)

By strong duality

ψcop = min {C •X : B •X = 1, X ∈ Dn} (26)

= min {C •X : B •X = 1, X � 0, X ≥ 0} . (27)

Hence ψcop is a lower bound for (23). In analogy to (22), a stronger
lower bound can be found by solving

ψ+
cop = min {C •X : B •X = 1, X ∈ Pn, 0 ≤ X ≤ E} , (28)

where E = ee> is the n × n all-ones matrix. Here we use the fact
that for all x ∈ ∆, we have xixj ≤ 1, all i, j, so that X = xx> ≤ E.
Therefore

ψcop ≤ ψ+
cop ≤ ψ . (29)

4.2 Application of StFQP: Symmetric eigenvalue
complementarity problem

Given matrices
{
Â, B̂

}
⊂ M with B̂ pd, the Symmetric Eigenvalue

Complementarity Problem (EiCP) [40], [44] consists in finding

λ > 0 and x ∈ Rn+\{o} such that w := (λB̂−Â)x ∈ Rn+ and x>w = 0 .

For any solution (λ,x) of EiCP, the value of λ is called Complementary

Eigenvalue of the matrices (Â, B̂) and x is the corresponding Comple-
mentary Eigenvector. The symmetric EiCP can be reduced to the
problem of finding a stationary point of the Rayleigh function on the
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simplex [40], for which a number of efficient global nonlinear optimiza-
tion algorithms can be useful [30]. This problem has found applications
in the study of resonance frequency of structures and stability of dy-
namical systems [19]. In practice, it is important to find the maximum
complementary eigenvalue for the EiCP. A sequential algorithm for
this purpose has been introduced in [31]. Alternatively, such an eigen-
value can be computed as a global minimum of the StQFP (23) with

C = −Â and B = B̂.

4.3 Inconsistent systems of linear constraints

The repair of an inconsistent system is an important application of the
CFQP. Suppose that we are given a convex set X ⊆ Rn, anm×nmatrix
A, and a vector a ∈ Rn which form a system of linear (in)equalities

Ax
(

=
≤

)
a that has no solution x ∈ X.

An interesting formulation of this inconsistent problem consists of
minimizing the Frobenius norm correction [H,p] of the matrix [A,a],
that is,

(PI) : φ = min ‖[H,p]‖2F
subject to (A+H)x

(
=
≤

)
a + p (30)

H ∈ Rm×n, p ∈ Rm, x ∈ X .

The interest in formulating this correction problem lies not only in
a direct diagnosis and correction of the infeasible model, but also in
an insight into the nature of the infeasibility, that is provided by the
“near” feasible solution of problem (30).

Problem (30) was shown [1] to be equivalent to the following CFQP,

where without loss of generality we assume that
(

=
≤

)
represents m−r

initial equalities, followed by r inequalities.

(PF ) : φ = min
‖v‖2

1 + ‖x‖2
(31)

subject to Ax− v
(

=
≤

)
a (32)

vi ≥ 0 for i = m− r + 1, · · · ,m (33)

x ∈ X . (34)

Suppose that X = Rn+. Accordingly to the m− r initial equalities,

and r inequalities, let A =

[
Am−r
Ar

]
and v =

[
vr
vr

]
. Introducing a

vector of r slack variables s ∈ Rr+ in the inequality constraints, problem
(PF ) is a particular case of problem (4) with

C =

 0 0 0
0 Im 0
0 0 0

 , c = o, γ = 0, B =

 In 0 0
0 0 0
0 0 0

 ,b = o, β = 1
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and

T =


 x

v
s

 ∈ Rn+m+r
+ :

[
Am−r −Im−r 0 0
Ar 0 −Ir Ir

]
x

vm−r
vr
s

 = a

 .

Now consider a special case of (30) with no restrictions on x (so
X = Rn) and only equality constraints:

(PE) min ‖[H,p]‖2F

subject to (A+H)x = a + p
H ∈ Rm×n , p ∈ Rm , x ∈ Rn . (35)

This problem is relatively easy to solve, as it can be reduced to a
Total Least Squares Problem (TLSP). If additional constraints, such as
x ≥ o are introduced, then a more difficult problem has to be tackled.
There are many applications of this problem, for instance, in regression
analysis when the coefficients of the model must be non-negative, and
noise is assumed both in the input as in the output data.

An unconstrained formulation for this problem exists [1], and is
given by

(PNL0) φ = inf

{
‖Ax− a‖2

1 + ‖x‖2
: x ∈ Rn+

}
. (36)

We can rephrase (36) as a homogeneous quadratic fractional problem

(PNL1) ψ = inf
{
g(z) : z ∈ Rn+1

+ , z1 > 0
}

(37)

where g(z) = z>Az
zT z

, and, as before,

A = [−a A]T [−a A] =

[
a>a −a>A
−A>a A>A

]
. (38)

Note that A replaces C in the general StFQP formulation (23), and
that A plays a different role in the general CFQP formulation.

We use (37) and introduce some results that, under a sufficient
condition easily verifiable, allows to drop constraint z1 > 0 in favor of
the more manageable constraint z1 ≥ 0. Under the same assumptions,
we prove that (36) is equivalent to a StFQP.

Theorem 4 Let

(PNL2) ψ = min {g(z) : z ∈ ∆} , (39)

and

(PNL3) ς = inf
{
g(z) : z ∈ Rn+

}
. (40)

Then ψ = ς.

Proof. The existence of an optimal solution of (PNL2) is obvious. By
inclusion we know that ς ≤ ψ. Now suppose that ς < ψ. Then there
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exists a vector z0 ∈ Rn+ \ {o} and an optimal solution z1 ∈ ∆ of (39)
such that

z>0 Az0

z>0 z0
<

zT1 Az1

z>1 z1
.

Since z0

z>
0 e

is also a feasible solution of (39), then z1 cannot be an

optimal solution of (39). Hence ψ = ς. �

Theorem 5 Let x be a global solution to

min

{
x>A>Ax

x>x
: x ∈ ∆

}
. (41)

If

(A>a)>x > 0 , (42)

then

(PNL1) : inf
{
g(z) : z1 > 0 , z ∈ Rn+

}
(43)

is equivalent to

(PNL2) : min {g(z) : z ∈ ∆} . (44)

Proof. By Theorem 4, (PNL2) is equivalent to (PNL3), so it is sufficient

to show that z =

(
0
x

)
cannot be an optimal solution of (PNL2).

Supposing the contrary, then z =

(
0
x

)
satisfies the KKT conditions

∇g(z) = λe + w

w ≥ o , z ≥ o

z>w = 0

e>z = 1

where ∇g(z) represents the gradient of g at z. But

∇g(z) =
2

z>z

[
Az− µz

]
,

where µ = g(z). Furthermore, by Euler’s homogeneity theorem,

0 = z̄>∇g(z̄) = λe>z̄ + 0 = λ .

Then z =

(
0
x

)
satisfies

Az̄− µz̄ = 2(z̄>z̄)∇g(z̄) = 2(z̄>z̄)w ≥ o ,

that is [
a>a −a>A
−A>a A>A

] [
0
x

]
− µ

[
0
x

]
≥ 0 .

Therefore, −(A>a)>x ≥ 0, which is impossible by hypothesis. �
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In practice, the following condition

min
j

[A>a]j > 0 (45)

is sufficient for the equivalence of problems (PNL2) and (PNL3). In fact,
as x ∈ ∆, then

(A>a)>x ≥ min
j

[A>a]j

n∑
i=1

xi = min
j

[A>a]j > 0 .

Although more restrictive, this condition (45) is easily verifiable.

5 Computational experience

In this section we report encouraging numerical experience for a set
of randomly generated CFQPs. Lower bounds obtained by the SDP
relaxation of the completely positive conic formulation are presented.
To solve the SDP problems, the self-dual SDP code SeDuMi [46] was
used, with the interface code YALMIP [34].

These values were compared with the lower bound obtained by
Gloptipoly 3 [28], a software for the Generalized Problem of Moments
(GPM) [32]. Any rational polynomial optimization problem over a
semialgebraic set can be formulated as a linear moment problem [29].
Gloptipoly 3 allows to build up a hierarchy of SDP relaxations of the
GPM, to generate a monotonic sequence of optimal values converging
to the global optimum.

In addition, we present a comparison with the lower bound at the
root node, obtained by the well-known and robust global optimization
code BARON (Branch And Reduce Optimization Navigator) [43], which
combines constraint propagation, interval analysis, and duality in an
enhanced branch-and-reduce framework. The optimal value obtained
by BARON was used to establish the gaps of the lower bounds.

When generating instances of program (19), some specific remarks
seem to be in order. A naive direct implementation of the copositive
relaxation (21) introduces numerical difficulties when solving the SDP
problem, due to the homogeneous constraint A •X = 0; c.f. [3], where
it is mentioned that the “SDP may be unbounded even though all of
the original variables have finite upper and lower bounds” (albeit for a
possibly indefinite A there); note that the latter difficulty is excluded
under additional assumptions, as shown in Corollary 3.1.

Here we propose a simple transformation which even results in im-
mediate size reduction, basically from n2 to (n − m)2. So let A be
psd but singular, so that dim ker A = k + 1 for some k ∈ N. First
we describe an orthonormal basis of this kernel. Remember that A is
supposed to be an m × n matrix with full row rank m < n (to allow
for a non-trivial feasible set T ). Then A>A is psd but has a kernel of
dimension k = n−m, spanned by the orthonormal vectors u1, . . . ,uk,
say. So the m ×m matrix AA> is nonsingular, and it is easy to see
that ui = [0,u>i ]> form an orthonormal system in ker A ⊆ Rn+1, as
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detailed, e.g., in the proof of Lemma 4. Next, denote by

ũ0 =

[
1

A>(AA>)−1a

]
and u0 =

1

‖ũ0‖
ũ0 .

Then the orthonormal system {u0, . . . ,uk} spans ker A, as can be
checked in a straightforward manner, using again arguments from the
proof of Lemma 4.

Now let Q be a (k+1)×(n+1) matrix, collecting the above system
as rows: Q> = [u0, . . . ,uk]. It follows that, for any X ∈ Dn+1, we have
A •X = 0 if and only if AX = O if and only if

X = Q>Y Q for some Y ∈ Pk+1 satisfying Q>Y Q ∈ Nn+1 .(46)

Hence, using C •X = (QCQ>) • Y etc., we arrive at the reduced SDP

min
{

(QCQ>) • Y : (QBQ>) • Y = 1 , Q>Y Q ≥ O , Y ∈ Pk+1

}
, (47)

working on smaller psd matrices, but retaining O(n2) linear inequali-
ties.

For β = γ = 1 and for selected values of n and m = bn2 c, we have
generated instances of program (4) as follows:

1. a symmetric psd n × n matrix B is randomly generated, along
with a suitably scaled vector b ∈ int(Rn+) such that B given by (7)

need not be psd, and can have negative entries (but obviously B ∈
D∗n+1). Observe that by construction, B is strictly Rn+-copositive

and therefore, for any choice of A, strictly ΓA-copositive for sure.

2. a (possibly indefinite) symmetric n×n matrix C is randomly gen-
erated with entries of varying sign, along with a randomly drawn
vector c ∈ Rn (again, no sign restrictions on the coordinates).

3. an m× n matrix A with a strictly positive first row, but varying
sign of entries elsewhere, is randomly generated;

4. an arbitrary vector x ∈ ∆ is drawn at random. Then the choice
a = Ax ensures that T is compact, so the model assumptions (10)
are guaranteed.

5. Finally, based on (A,a), the matrix Q is determined and a so-
lution Y to (47) is calculated. As stated before, X = Q>Y Q
solves (21). The objective C • X = (QCQ>) • Y is used as a
relaxation bound.

Instances of sizes n ∈ {4, 9, 49, 79} were generated, resulting in SDP
instances of dimensionality 5, 10, 50 and 80, which numbers appear in
the instance name as the first number after ABJ. The nonnegativity
constraint X ≥ O pose a notorious impediment on the problem size to
allow for satisfactory handling by any SDP solver. The maximum size
of 80 was possible due to the size reduction achieved in (47). The clear
impact of this reduction is depicted in the three last columns of Figure
1. For two problems of size 5 (ABJ5 0) and 10 (ABJ10 0), SeDuMi

output reports the size of the SDP problems, for the GPM approach,
the direct copositive relaxation (21) and with (47).

Table 1 reports for each instance the information,
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GPM (Gloptipoly3) Copositive Relaxation Copositve Relaxation with

Reduction

ABJ5_0 eqs m = 210, order n = 98,

dim = 2380, blocks = 7

nnz(A) = 2385 + 0, 

nnz(ADA) = 44100, 

nnz(L) = 22155

Detailed timing (sec)

Pre          IPM          Post

7.001E-03 3.920E-01 2.002E-03

eqs m = 15, order n = 33,

dim = 53, blocks = 3

nnz(A) = 55 + 0,

nnz(ADA) = 225,

nnz(L) = 120

Detailed timing (sec)

Pre          IPM          Post

5.200E-02 7.001E-02 9.958E-04

eqs m = 6, order n = 27, 

dim = 33, blocks = 3

nnz(A) = 121 + 0,

nnz(ADA) = 36, 

nnz(L) = 21

Detailed timing (sec)

Pre          IPM          Post

4.003E-03  3.800E-02 9.958E-04 

ABJ10_0 eqs m = 5005, order n = 718, 

dim = 85638, blocks = 12

nnz(A) = 138325 + 0, 

nnz(ADA) = 25050025, 

nnz(L) = 12527515

Detailed timing (sec)

Pre          IPM          Post

8.460E-01  4.794E+02 2.800E-02

eqs m = 55, order n = 113, 

dim = 203, blocks = 3

nnz(A) = 210 + 0,

nnz(ADA) = 3025,

nnz(L) = 1540

Detailed timing (sec)

Pre          IPM          Post

6.100E-02 6.500E-02 1.006E-03

eqs m = 15, order n = 99, 

dim = 119, blocks = 3

nnz(A) = 1291 + 0,

nnz(ADA) = 225, 

nnz(L) = 120

Detailed timing (sec)

Pre          IPM          Post

2.900E-02  5.301E-02 1.992E-03 

Figure 1: Sizes of SDP relaxations

• Instance — Instance name;

• Cop R — Value of the lower bound obtained by the SDP relax-
ation of the copositive formulation (47);

• Time1(s) — CPU time in seconds to obtain Cop R;

• Gap — The relative gap provided by Cop R,∣∣∣∣Cop R-BARON Optimal value

BARON Optimal value

∣∣∣∣ ;

• GPM — Value of the lower bound obtained by Gloptipoly 3;

• Time2(s) — CPU time in seconds to obtain the GPM lower
bound;

• St — Status of Gloptipoly 3 solution for the default relaxation
order;

• root B — Value of the lower bound obtained at the root node by
BARON;

All the tests have been performed on a Pentium Intel(R) Core(TM)i7,
with CPU E8400, 2.8GHz, 4,00 GB RAM, and 64-bit operating system
Windows. A tolerance parameter 10−4 was considered for BARON and
SeDuMi.

An analysis of Table 1 reveals that the lower bounds provided by
solving the SDP relaxation of the Copositive formulation are very good,
as the gaps show, and outperforms the initial lower bound of BARON,
and of the GPM relaxation. For problems of size 50 and 80 Gloptipoly
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Table 1: Copositive Relaxation versus Gloptipoly 3 and BARON
Instance Cop R Time1(s) Gap GPM R Time2(s) St. root B.
ABJ5 0 -0.7865 2.700e-02 0.4837 -0.5275 1.045e+00 1 -26.1028
ABJ5 1 -0.4923 3.400e-02 1.8293 -0.5414 1.014e+00 1 -11.8308
ABJ5 2 -0.7693 2.700e-02 0.6771 -0.5089 9.672e-01 1 -11.9631
ABJ5 3 -0.3603 2.900e-02 0.9907 -0.2207 1.310e+00 1 -3.9613
ABJ5 4 -1.2562 2.700e-02 0.5467 -0.9428 9.984e-01 1 -0.8123
ABJ5 5 +0.4643 3.000e-02 0.1552 +0.2225 1.108e+00 1 -2.2940
ABJ5 6 -0.5768 3.100e-02 0.5831 -0.3671 9.828e-01 1 -8.6291
ABJ5 7 -0.0815 3.300e-02 15.2108 -0.0657 8.892e-01 1 -5.1034
ABJ5 8 -0.5946 2.600e-02 0.4752 -0.3708 9.516e-01 1 -0.4031
ABJ5 9 -0.8705 3.100e-02 0.9123 -0.5753 6.708e-01 1 -0.4553
ABJ10 0 -0.3095 3.500e-02 0.5090 -0.1962 7.010e+02 1 -23.9325
ABJ10 1 -0.6779 3.100e-02 0.4781 -0.4882 5.737e+02 1 -0.4587
ABJ10 2 +0.4144 3.400e-02 0.0533 +0.4288 6.395e+02 1 -3.4076
ABJ10 3 -0.3105 3.500e-02 1.2843 -0.1840 6.298e+02 1 -12.3357
ABJ10 4 -0.3885 3.900e-02 0.4746 -0.2689 5.122e+02 1 -0.2635
ABJ10 5 -0.7710 4.300e-02 0.2028 -0.6198 6.619e+02 1 -55.5414
ABJ10 6 -1.2861 3.100e-02 0.5562 -0.8749 7.123e+02 1 -0.8265
ABJ10 7 -0.1154 3.900e-02 1.1720 -0.0760 6.219e+02 1 -25.4559
ABJ10 8 -0.6486 3.100e-02 0.2828 -0.4558 6.239e+02 1 -0.5056
ABJ10 9 -0.3070 4.800e-02 0.5997 -0.1794 6.183e+02 1 -0.1919
ABJ50 0 -0.7435 3.238e+00 0.3552 O of M - -502.4740
ABJ50 1 -0.9606 2.731e+00 0.2229 O of M - -0.7856
ABJ50 2 -0.7844 3.192e+00 0.2786 O of M - -0.6135
ABJ50 3 -0.4022 2.983e+00 0.3630 O of M - -1463.1800
ABJ50 4 -0.2677 3.001e+00 0.8199 O of M - -451.7790
ABJ50 5 -0.6484 2.981e+00 0.6369 O of M - -0.3962
ABJ50 6 -0.5760 3.498e+00 0.3702 O of M - -989.5200
ABJ50 7 -0.6486 2.993e+00 0.3201 O of M - -0.4914
ABJ50 8 -0.5985 3.221e+00 0.3456 O of M - -490.0360
ABJ50 9 -0.3730 3.244e+00 0.3215 O of M - -626.8870
ABJ80 0 -0.4427 5.049e+01 0.5019 O of M - -1394.8500
ABJ80 1 -0.5806 5.532e+01 0.2984 O of M - -0.4472
ABJ80 2 -0.8597 5.532e+01 0.2869 O of M - -0.6681
ABJ80 3 -0.4345 5.519e+01 0.3302 O of M - -1849.5000
ABJ80 4 -0.8625 5.101e+01 0.3214 O of M - -0.6528
ABJ80 5 -0.4670 5.117e+01 0.3301 O of M - -0.3511
ABJ80 6 -0.3473 5.539e+01 0.6090 O of M - -2488.4700
ABJ80 7 -0.5883 5.105e+01 0.3607 O of M - -1487.1000
ABJ80 8 -0.4181 5.532e+01 0.5004 O of M - -736.0130
ABJ80 9 -0.7023 5.099e+01 0.3568 O of M - -0.5177

3 ran out of memory (O of M), as expected given the size of the corre-
sponding SDP problem (as the results in Figure 1 suggested). As the
status for Gloptipoly 3 indicates, increasing the relaxation order has
no effect. Moreover, the results show that the reduction proposed in
(47) is crucial as the size of the problem increases.

In our opinion, the numerical results show that the SDP ideas
discussed in this paper are promising to be incorporated in a robust
branch-and-bound algorithm for dealing with the CFQP.

6 Conclusions

In this paper we present copositive exact formulations for the CFQP
and the StFQP. The practical interest in these problems is discussed,
with emphasis on the eigenvalue complementarity problem and the cor-
rection of inconsistent linear systems. For the StFQP we proved that
dual attainability holds, while a more specific copositivity condition is
needed for this result to hold for a general CFQP. Based on these for-
mulations SDP relaxations are proposed providing good lower bounds.
Theoretical results presented in this paper have important implications
in the computation of lower bounds for the CFQP. Computational ex-
perience with SDP relaxation of the CFQP is presented showing small
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relative gaps. When compared with the initial lower bound given by
BARON and Gloptipoly 3 the SDP relaxation of the copositive for-
mulation produces better lower bounds, particularly when the size of
problems increases. These SDP-based lower bounds seem useful to
be included in a branch-and-bound approach to be developed in the
future.
Acknowledgements. The authors are indebted to two anonymous
referees and an anonymous Associate Editor for valuable remarks which
led to several improvements of a previous version; for instance, Sub-
section 2.2 was added upon the suggestions of a referee.
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