
On the computation of a nonnegative matrix factorization and its application in

telecommunications

Ana Almeida†, Luís Merca Fernandes¥ , Joaquim Júdice*, João Patrício#

† University of Coimbra and Informatics and Systems Center, Coimbra, Portugal. E-mail: amca@mat.uc.pt
¥ Polytechnic Institute of Tomar and Institute of Telecommunications, Portugal. E-mail: lmerca@co.it.pt

* University of Coimbra and Institute of Telecommunications, Coimbra, Portugal. E-mail: Joaquim.Judice@co.it.pt
Polytechnic Institute of Tomar and Institute of Telecommunications, Portugal. E-mail: Joao.Patricio@co.it.pt

Abstract
1
— The Nonnegative Matrix Factorization (NMF) has

become an increasingly popular approach in many areas of

telecommunications. A number of properties and a nonlinear

programming formulation for NMF are introduced, which allow

approximations to the solution of diverse image processing

problems, ranging from data analysis to video summarization,

pattern recognition and image reconstruction. A spectral

projected-gradient algorithm is investigated for the solution of

the corresponding optimization problem. Techniques for finding

an initial point of the decomposition are also discussed. Some

computational experience is reported to highlight the efficacy of

these techniques in practice.

I. Introduction

The Nonnegative Matrix Factorization (NMF) problem can
be stated as follows: given a nonnegative matrix ,
find nonnegative matrices and such
that . This problem has been intensively applied in
recent years in various fields of science and engineering, such
as biomedical applications, face and object recognition, data
mining and semantic analysis. This approach seems to be
particularly effective for problems where the identification of
components is of utmost importance [8]. In this paper we
mainly focus on video and image signal processing. For these
problems, the matrices V,W and H have a particular structure
that reflects the nature of the problem. For this reason, NMF
is recommended for data compression prior to analysis and
component identification. Furthermore, NMF has become
increasingly popular for component and feature identification
in image and video signals, when compared with other
techniques, such as principal component analysis [4]. Other
fields of application include sensor technology and computer
hardware, where massive quantities of data have to be
processed and classical data analysis tools easily become
inadequate. The processing of these huge amounts of data
created the need of new tools for data representation,
disambiguation and dimensionality reduction. Furthermore,
in many situations the data observed from complex
phenomena represent the integrated result of several
interrelated variables acting together. A reduced system

model may provide the retrieval of information at a level
close to the original system. In practice, quite often the data
to be analyzed has to be nonnegative. Since classic tools
cannot guarantee the maintenance of this property, the NMF
may be a valid approach to deal with such problems.

II. Characterization of the NMF problem

We start by noting that, whenever there is one exact
factorization, there are infinity possible pairs for the

decomposition. In fact, if is a solution for NMF, so

are all the pairs of the form for any diagonal
matrix of order r with positive diagonal elements. The
question to be answered is not how many decompositions
there are but instead when one exists. It is a classical result
[3] that the existence of an exact factorization for a given
matrix depends on the parameter . The following
definition helps to understand the NMF problem.

Definition: Given a nonnegative matrix of order m � n , the
minimum positive integer such that there are matrices

 and satisfying is called the positive

rank of V and is denoted by .

Then the following result holds [3].

Theorem: For a given nonnegative matrix V of order m � n ,

Therefore finding an exact factorization for a nonnegative
matrix V directly depends on the value of that is used. The
exact factorization can only be achieved by fixing

. For values of r below this limit, only an

approximate decomposition for V can be computed. On the
other hand the increase of the value of r implies a bigger
computational work for computing the NMF of a matrix.
Finally there are no efficient algorithms to compute the
posrank of a nonnegative matrix. Fortunately, in some
applications such as image recognition, computing an exact
factorization is not an important issue [11]. Contrary to the
LU decomposition of a square matrix, there is no direct
algorithm for computing the nonnegative decomposition of a
nonnegative matrix. The most common approach is to
formulate NMF as an optimization problem and seek to
obtain an approximation of a global optimum to this problem

of good quality. The most important formulation for the NMF
employs the Frobenius norm of a matrix and is given as
below [8]:

(1)

where is a given nonnegative matrix of order m � n , is

a matrix, is a matrix and denotes the

Frobenius norm.
Clearly, the product is an approximate factorization of
the matrix V. As stated before, an appropriate decision for the
choice of the value of is critical in practice. The dimension
of this formulation is , which implies that, the
bigger is the order of the data matrix V and of the value of
the parameter r , the larger is the dimension of the
optimization problem. Other important challenges affecting
the numerical solution of the formulation (1) include the
existence of different local minima due to the non-convexity
of the objective function. Nevertheless, (1) constitutes a
global optimization problem for which the global optimal
value is known to be zero provided an exact factorization for
the matrix V exists for the chosen value of r .

III. Algorithms for the NMF problem

A great deal of effort has been devoted to the design of
efficient algorithms. In particular, the multiplicative Lee-
Seung algorithm [1, 7, 9] has been recommended by several
authors. This procedure is essentially a fixed-point approach
that can be expressed as follows:

Lee-Seung Algorithm:

1. Initialize W, H;

2. While stopping condition is not satisfied, repeat

It is possible to show that the algorithm converges under
some reasonable assumptions. However, there is no guarantee
that the accumulation point found by the algorithm is even a
stationary point of the objective function on the constraint set
defined by the nonnegative constraints mentioned above. On
the positive side, the algorithm is quite simple to implement
for a dense or a sparse matrix V .
Another approach for the solution of this problem is the so-
called Alternate Least-Squares (ALS) Algorithm [1, 7, 11].
This method consists of alternately solving two linear least-
squares problems and can be stated as follows:

Alternate Least-Squares (ALS) Algorithm:

1. Given ;
2. While stopping condition is not satisfied, repeat

a. Solve linear least-squares problem

b. Solve linear least-squares problem

This algorithm derives from the observation that the NMF
objective function is convex on either of the two variables H
and W. Therefore, given one of these two matrices, the other
one can be computed by linear least-squares calculations. The
nonnegative constraints on both the linear least-squares
problems ensure convergence of the Alternate Least-Squares
Algorithm to a stationary point of the objective function on
the set defined by the nonnegative constraints. However, a
great amount of work is required as two least-squares
problems with nonnegative constraints have to be solved in
each iteration. In practice, the optimal solutions of the
unconstrained least-squares problems are found and then
projected to the constraint set of the NMF optimization
problem (1). This is simply done by transforming all the
negative components of the unconstrained optimal solutions
of the linear least-squares problems to zero. This
modification reduces the amount of work of the algorithm to
a great extent. On the negative side, there is no guarantee that
the modified algorithm converges to a stationary point of the
objective function on the constraint set defined by the
nonnegative constraints.
Recognizing the drawbacks of the two approaches discussed
before, we propose to use of the so-called Spectral Projected-
Gradient (SPG) method to the solution of the optimization
problem (1). This algorithm has been considered to be an
efficient technique for the solution of large-scale optimization
structured problems [2, 4, 8]. In some cases [8] the algorithm
even outperforms some the most important commercial
nonlinear programming codes, such as LOQO [12] and
MINOS [10]. The SPG algorithm can be applied to general
minimization problems of the form

subject to

where , and is a convex and closed set.

If x = (W, H), the objective function is given by

�(W , H) =
1

2
V �WH

F

2
=

1

2
(v

ij
j=1

n

�
i=1

m

� � w
ik

k=1

r

� h
kj

)2

and the constraint set is defined by nonnegative constraints,
the steps of the SPG algorithm can be sated as below.

Spectral Projected-Gradient (SPG) Algorithm:

0. Given , , , and

;
1. Compute and ;

2. Compute the projected gradient direction:

where P(X,Y) is the projection of (X,Y) on the set
defined by the nonnegative constraints.

3. If then is a stationary

point;
Stop;

4. Compute , where is the first

nonnegative integer m satisfying
�(Wk + �

mdW ,Hk + �
mdH) ��(Wk ,Hk)� ��m (dW ,dH)T�

where � = (�W�(Wk ,Hk),�H�(Wk ,Hk)).

5. Update

6. Set and return to Step 1.

According to [8], the parameter �k is computed by the

following procedure:
k = 0 ��k = 1

�k > 0 :�k =
P[�min ,�max]

�k

�k

�

�
�

	

�

if �k > 0

�max otherwise

�

��

�

�

�

where P[l ,u](�) represents the projection of � �R on the

interval [l,u] ,

�k = (Wk ,Hk)� (Wk�1,Hk�1)()
T

(Wk ,Hk)� (Wk�1,Hk�1)()

�k = (Wk ,Hk)� (Wk�1,Hk�1)()
T

(�W�(Wk ,Hk),�H�(Wk ,Hk))

and �min and �max are small and large numbers respectively.

In practice�min = 10�2 and�max = 102 are appropriate in

general.
Furthermore the projection (Z,U) = P(X,Y) is computed as
follows:

Zij = min 0,Xij{ }, Uij = min 0,Yij{ }, for all i, j

As before, the implementation of the SPG method is quite
simple. Furthermore it is possible to show [2] that under
reasonable hypotheses the algorithm converges to a stationary
point of the objective function on the constraint set defined
by the nonnegative constraints.
All the three methods described in this section are local in the
sense that can guarantee at most a stationary point of the
objective function on the set defined by the nonnegative
constraints. However, the main objective of these algorithms
is to find a feasible solution with a small objective function
value. Computational experience reported elsewhere shows
that the choice of initial point is quite important to

this goal. In practice the algorithms are run several times with
different initial points and the NMF is chosen as the feasible

solution (H ,W) of (1) with a smaller objective function
value. As discussed in [1] several approaches have been
recommended for finding such initial points. One of the
simplest techniques that has been quite employed in practice
consists of randomly generate the elements of these initial
matrices. Alternatively, a second simple approach assigns
fixed values to the elements of the matrices. It is believed that
the first approach performs well and usually better than the
one that uses initial iterates with fixed elements.

IV. Computational Experience

In this section we study the numerical efficiency of the SPG
algorithm and the effect of the initial approximations on the
performance of the SPG algorithm. For this purpose, a
random test problem was built, such that the nonnegative
matrix is constructed so that

V = V1 :u1u2…un�r[],ui �R
m ,V1 �R

m�r

whereV1 is a given randomly generated matrix, ui are

column vectors of the form ui = [v1,r+i…vn,r+i]
T ,

i = 1,…,n � r and

vk ,r+i = vkj� ji
j=1

r

� , k = 1,…,m

with � ji � 0 , for all i, j . Trivially, at least one factorization

V =W 'H ' exists and is given by

W ' = V1 and H ' =

� �11 … �1,n�r

Ir � � … �

� � r1 … � r ,n�r

�

�

�

�

�

�

�

�

	

	

	

	

Two NMF problems (PROB1 and PROB2) were generated
following this procedure. Tables 1, 2 and 3 display the
performances of Lee-Seung, ALS and SPG algorithms,
respectively on the solution of these problems. In these
tables, NVAR represents the total number of variables of the
optimization problem (1), CPU is the total CPU time required
for the solution of the optimization problem (1) on a Pentium
4 computer with 1Gb RAM running at 2Ghz, ITER is the
total number of iterations and VAL is the value of the
objective function at the solution found by the algorithms.
Finally we have used the tolerance � = 10�4 for the SPG
algorithm and the stopping criteria stated in [6] for the two
remaining algorithms with the same tolerance. Four initial
matrices were tested in the experience. The first technique
for the construction of the initial matrix is denoted by Rand
and consists of choosing all the elements as randomly
positive values in the interval [0,1] . The remaining three
initial matrices have all its elements equal to 0.25, 0.50 and
0.75 respectively. The values in the row Rand displayed in
these tables correspond to the average of the computational
effort required by the three algorithms for the solution of
each one of the problems PROB1 and PROB2 with 5
different initial points.

The results seem to indicate that the random initial point
strategy leads to good approximations for the solution of the
NMF problems by the SPG algorithm, at the expense of large
iteration counts and CPU times. On the other hand, fixed
strategies force the algorithm to compute stationary points
that are not solutions of the NMF problems in a quite small
number of iterations and CPU time. These conclusions also
seem to be valid for the two remaining algorithms. The
experiences also show that the SPG algorithm always finds
stationary points of (1) with a small objective function value
when the RAND initial strategy is employed, while the two
remaining methods are not so consistent in this extent.

Problems M N r NVAR INIT CPU ITER VAL
Rand 0.08 416.2 0.07
0.25 0.02 2 2.13
0.50 0.02 2 2.13

PROB1 12 24 4 144

0.75 0.02 2 2.13
Rand 0.11 431.6 0.15
0.25 0.02 2 4.87
0.50 0.02 2 4.87

PROB2 24 48 4 288

0.75 0.02 2 4.87

Table 1 – Performance of the Lee-Seung algorithm.

Problems M N r NVAR INIT CPU ITER VAL
Rand 0.06 85 1.61
0.25 0.03 3 2.12
0.50 0.03 3 2.12

PROB1 12 24 4 144

0.75 0.03 3 2.12
Rand 0.06 118 0.08
0.03 0.03 3 4.86
0.03 0.03 3 4.86

PROB2 24 48 4 288

0.03 0.02 3 4.86

Table 2 – Performance of the ALS algorithm

Problems M N r NVAR INIT CPU ITER VAL
Rand 0.38 3505.6 0.00492
0.25 0.04 59 4.47
0.50 0.07 110 4.47

PROB1 12 24 4 144

0.75 0.03 43 4.47
Rand 1.00 5194.4 0.003748
0.25 0.05 47 4.86
0.50 0.05 67 4.86

PROB2 24 48 4 288

0.75 0.05 39 4.86

Table 3 – Performance of the SPG algorithm.

V. Conclusions

In this paper some important issues concerning the
nonnegative decomposition of a matrix are first introduced.
The use of the SPG algorithm for computing an approximate
NMF is investigated. Some experiences with the SPG and the
traditional Lee-Seung and ALS algorithms on a set of NMF
instances are also reported. The numerical results seem to
indicate that the SPG algorithm is in general able to compute
good quality approximate factorizations in a reasonable
amount of time. Furthermore, the SPG algorithm has shown
to be competitive with Lee-Seung and ALS methods in terms
of computational effort and seems to be more consistent than
their alternative techniques for computing good approximate
decompositions. The incorporation of preconditioning
techniques in the SPG algorithm may improve its efficiency
and efficacy and should be investigated in future.

Keywords: matrix factorization, nonlinear programming,
large-scale problems, image processing models.

REFERENCES

[1] M. W. BERRY, M. BROWNE, A. N. LANGVILLE, P. V.
PAUCA, AND R. J. PLEMMONS, Algorithms and applications

for approximate nonnegative matrix factorization,
Computational Statistics & Data Analysis, 52 (2007), pp.
155–173.

[2] E. G. BIRGIN, J. M. MARTINEZ, AND M. RAYDAN,
Nonmonotone spectral projected gradient methods on convex

sets, SIAM Journal on Optimization, 10 (2000), pp. 1196–
1211.

[3] J. E. COHEN, AND U. G. ROTHBLUM, Nonnegative Ranks,

Decompositions, and Factorizations of Nonnegative

Matrices, Linear Algebra and its Applications 190 (1993), pp.
149-168.

[4] E. G. BIRGIN, J. M. MARTINEZ, AND M. RAYDAN,
Algorithm 813 SPG: software for convex–constrained

optimization, ACM Transactions on Mathematical Software,
27 (2001), pp. 340–349.

[5] W.-S. CHEN, B. PAN, B. FANG, M. LI, AND J. TANG,
Incremental nonnegative matrix factorization for face

recognition, Mathematical Problems in Engineering, 2008.

[6] A. CICHOCKI AND R. ZDUNEK, NMFLAB – MATLAB

Toolbox for Non-Negative Matrix Factorization,
http://www.bsp.brain.riken.jp/ICALAB/nmflab.html

[7] P. O. HOYER, Nonnegative matrix factorization with

sparseness constraints, Jour. Machine Learning Research, 5
(2004), pp. 1457–1469.

[8] J. JÚ DICE, M. RAYDAN, S. ROSA, AND S. SANTOS, On the

solution of the symmetric eigenvalue complementarity

problem by the spectral projected gradient algorithm,
Numerical Algorithms, 45 (2008), pp. 391–407.

[9] D. D. LEE AND H. S. SEUNG, Learning the parts of objects

by non-negative matrix factorization, Nature, 401 (1999), pp.
788–791.

[10] B. A. MURTAGH AND M. A. SAUNDERS, MINOS 5.1 user

guide, tech. report, Department of Operations Research,
Stanford University, 1987.

[11] P. PAATERO AND U. TAPPER, Positive matrix

factorization: a non-negative factor model with optimal

utilization of error estimates of data values, Environmetrics,
5 (1994), pp. 111–126.

[12] R. J. VANDERBEI, LOQO: An interior point code for

quadratic programming, Optimization Methods and
Software, 12 (1999), pp. 451–484.

