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1 Introduction

The Eigenvalue Problem (EP) is currently regarded as one of the three most important prob-

lems in Numerical Linear Algebra and finds many applications in several areas of science,

engineering, and economics [1–3]. Given a square matrix with real or complex entries, the

EP consists of finding a scalar and a vector satisfying a certain equation stated in [1,3]. The

scalar is called an eigenvalue and can be a real or a complex number, while the vector is the

eigenvector associated with the eigenvalue and may have real or complex components. The

number of eigenvalues of the EP is exactly the order of the matrix and many algorithms have

been developed to find one, some, or all the eigenvalues and their associated eigenvectors

[1–3].

A problem associated with the EP is the so-called Inverse Eigenvalue Problem (IEP) and

essentially consists of finding a matrix that conforms to a prescribed set of eigenvalues, and

in some cases, eigenvectors. The IEP may take several forms depending on the underlying

application, as discussed in detail in the monograph [4]. A number of techniques for the

solution of the resulting IEPs are also described in [4], along with the relevance of imposing

certain additional specific constraints in defining these problems.

The Eigenvalue Complementarity Problem (ECP) is a generalization of the EP that has

been introduced more recently [5] and also arises in many applications [6,7]. Given a square

real matrix, the ECP consists of finding a scalar and real non-negative vectors of dimension

equal to the matrix order satisfying equality, inequality and complementarity constraints.

The components of the vectors are called complementary, hence the name of the problem

[8]. A number of algorithms have been introduced for finding a complementary eigenvalue

and an associated eigenvector [9–15,7] and, more recently, for computing all the comple-

mentary eigenvalues [16]. Some generalizations of this problem have also been discussed in

[17–20]. In contrast with the EP, the ECP does not have a known fixed number of eigenval-

ues. Instead, two upper-bounds for the number of eigenvalues have been derived in [7,21]
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and in [22] for the symmetric and asymmetric cases, respectively.

An Inverse Eigenvalue Complementarity Problem (IECP) has been recently introduced

in [23] and subsequently studied in [24], where some applications of the problem are high-

lighted. Given a set of complementary eigenvalues, the problem consists of finding a matrix

and real non-negative vectors that satisfy the ECP conditions. The IECP may also contain

further constraints and may be generalized to other convex cones [24]. Two Newton type

approaches for solving the IECP have been proposed in [24]. However, these methods only

possess local convergence properties and may fail to find a solution for the IECP in general.

Line-search techniques may also be used with these algorithms, but can only guarantee sta-

tionary points of appropriate merit functions that may not be solutions to the IECP [25–27].

In this paper, we address the IECP as a global optimization problem. A first proposed

formulation NLP1 of the IECP is introduced such that IECP has a solution if and only if

NLP1 has a global minimum with a zero objective function value. If the eigenvectors are

also given, then NLP1 is a convex quadratic program that can be solved in polynomial time

[27]. However, in this paper, we assume that the eigenvectors have to be computed. A nec-

essary and sufficient condition for a stationary point of NLP1 to be a solution to the IECP is

established in the sequel, but the IECP requires a global optimization algorithm to be solved

in general. Accordingly, to assure finding a solution to IECP when it exists, we consider a

second formulation NLP2 that modifies NLP1 by introducing additional variables.

As before, IECP has a solution if and only if NLP2 has a global minimum with a zero ob-

jective function value. An enumerative method that assures global convergence is proposed

in this paper in order to find such a global minimum. The algorithm works with bounding

intervals for each component of the eigenvectors. For each node of the enumerative tree,

given an associated set of such intervals, a stationary point of NLP2 is computed, for which,

either the objective function value is zero and a solution to the IECP is therefore at hand,

or else, two new nodes are generated by partitioning a chosen interval into two new ones.

Lower and upper bounds for the entries of the matrix and some further constraints based on

the Reformulation-Linearization Technique (RLT) [28] are added to NLP2 for guaranteeing

global convergence of the algorithm to a solution to IECP, when it exists. Furthermore, the
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algorithm employs some judicious rules for selecting the node and the interval for parti-

tioning at each iteration in order to enhance its computational efficiency, besides facilitating

global convergence.

A number of elementary techniques for computing lower and upper bounds for the en-

tries of the matrix and for computing a stationary point of NLP2 from a stationary point

of NLP1 are also introduced to enhance the computational efficiency of the algorithm. In

some instances, it is important to add some further constraints to NLP2 so that the matrix

conforms to a desired structure, which also facilitates the solution of the underlying IECP.

Such restrictions include requirements for the matrix to be non-negative or symmetric, or

for the complementary eigenvalues to be ordinary eigenvalues of principal submatrices.

Computational results are presented to demonstrate that the algorithm is quite effective

in solving IECPs of the form generated, according to the process discussed in [24]. In fact,

the algorithm is able to solve all these IECPs relatively easily. In a second experiment, we

considered ECPs with special symmetric matrices as discussed in [7]. For this matrix, the

number of complementary eigenvalues of the ECP is known, each one being an ordinary

eigenvalue of a principal submatrix of the original matrix. We tried to solve IECPs of or-

der less than or equal to five for such complementary eigenvalues with and without further

constraints that enforce the non-negativity and symmetry for the matrix and require the com-

plementary eigenvalues to satisfy the property stated above. The algorithm was only able to

solve the case of order two when just the non-negativity and symmetry conditions were re-

quired, but could solve very efficiently IECPs of order less than or equal to five when the

remaining constraints involving the principal submatrices of the original matrix were also

added to the nonlinear programs NLP1 and NLP2.

The remainder of this paper is organized as follows. In Section 2, we analyze the formu-

lation NLP1. The formulation NLP2 and the enumerative algorithm are discussed in Section

3. Some advanced techniques for enhancing the computational efficiency of the algorithm

are described in Section 4. Computational experimental results are reported in Section 5,

and the paper concludes with some closing remarks in Section 6.



On the Solution of the Inverse Eigenvalue Complementarity Problem 5

2 A Nonlinear Programming Formulation

Given a square matrix A ∈ Rn×n, the ECP consists of finding a scalar λ ∈ R and a vector

x ∈ Rn such that

ECP: {w = Ax−λx, x > 0, w > 0, 〈x, w〉 = 0, 〈e, x〉 = 1},

where w ∈ Rn, and e ∈ Rn is a vector of ones. Note that the constraint 〈e, x〉 = 1 has been

added without any loss of generality to avoid the null vector to be a solution of the ECP. Due

to the non-negativity of the variables xi and wi, the complementarity condition 〈x, w〉 = 0

means that xi = 0 or wi = 0 for each i ∈ Nn.

As the name suggests, the IECP consists of finding a matrix A and vectors xk ∈ Rn and

wk ∈ Rn, k ∈ Np, for a given set of p complementary eigenvalues λk, k ∈ Np, such that

IECP: {wk = Axk−λkxk, xk > 0, wk > 0, 〈xk, wk〉 = 0, 〈e, xk〉 = 1},

for k ∈ Np. Since this problem is trivial for p 6 n (reducing to the IEP with wk ≡

0, ∀ k ∈ Np), we assume that p > n in this paper.

A first nonlinear formulation to the IECP is given as follows:

NLP1 : Minimize f1(x, w, A) :=
n∑

i=1

p∑

k=1

(
(ψk

i )2 + xk
i wk

i

)

subject to {wk
i > 0, xk

i > 0, 〈e, xk〉 = 1, i ∈ Nn, k ∈ Np},
where

ψk
i := wk

i + λkxk
i −

n∑

j=1

aijx
k
j , i ∈ Nn, k ∈ Np (1)

and aij are also decision variables.

We now investigate when a stationary point of NLP1 is a global minimum of NLP1, that

is, a solution to IECP (note that ψk
i in (1) is used only as an abbreviated notation and is not

actually a new auxiliary decision variable added to the problem).
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Theorem 2.1

(i) For any stationary point of NLP1, we have

n∑

i=1

(
(ψk

i )2 + xk
i wk

i

)
=

γk

2
, k ∈ Np,

where ψk
i are given by (1) and γk are the Lagrange multipliers associated with the

constraints 〈e, xk〉 = 1, k ∈ Np.

(ii) A stationary point of NLP1 is a solution to IECP if and only if γk = 0 for all k ∈ Np.

Proof: A stationary point of NLP1 satisfies:

2 ψk
i + xk

i = αk
i , i ∈ Nn; k ∈ Np, (2)

2 ψk
i (λk − aii)− 2

∑

l 6=i

ψk
l ali + wk

i = γk + βk
i , i ∈ Nn; k ∈ Np, (3)

p∑

k=1

ψk
i xk

j = 0, i ∈ Nn, j ∈ Nn,

αk
i > 0, wk

i > 0, αk
i wk

i = 0, i ∈ Nn; k ∈ Np, (4)

βk
i > 0, xk

i > 0, βk
i xk

i = 0, i ∈ Np; k ∈ Np, (5)
n∑

j=1

xk
j = 1 k ∈ Np, (6)

where αk
i , βk

i , and γk are Lagrange multipliers associated with the constraints wk
i > 0,

xk
i > 0, and 〈e, xk〉 = 1, respectively.

For all i ∈ Nn, k ∈ Np, (3) above is given by 2λkψk
i − 2

n∑

l=1

aliψ
k
l + wk

i = γk + βk
i .

Denoting the vectors ψk := (ψk
i ) ∈ Rn, βk := (βk

i ) ∈ Rn, and αk := (αk
i ) ∈ Rn, we can

rewrite this as follows:

2λkψk − 2AT ψk + wk = γke + βk. (7)

On the other hand, by (2) and (4), we have 2 ψk
i wk

i + xk
i wk

i = 0, i ∈ Nn, k ∈ Np, i.e.,

〈xk, wk〉+ 2〈ψk, wk〉 = 0. (8)
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Multiplying (7) by (xk)T , we have upon using (5) and (6) that

2λk〈xk, ψk〉 − 2〈Axk, ψk〉+ 〈xk, wk〉 = γk,

which upon adding (8) and noting (1) yields
∥∥∥ψk

∥∥∥
2
+ 〈xk, wk〉 =

γk

2
. This establishes Part

(i). Part (ii) now follows by noting that a feasible solution to Problem NLP1 solves IECP if

and only if the objective function value is zero. ¤

This theorem shows how a stationary point of NLP1 can possibly yield a solution to the

IECP, and provides insights into what makes this occur in practice. Indeed, this occurs quite

frequently as borne by our computational experiments reported in Section 5. Yet, a global

optimization algorithm is required to deal with the IECP in general. This is discussed in the

next section.

3 An Enumerative Method

Consider the nonlinear programming formulation NLP1 of the IECP and introduce pn2

additional variables yk
ij that represent the product relationship:

yk
ij := aijx

k
j (9)

for all i, j ∈ Nn, and k ∈ Np. This leads to the following alternative nonlinear programming

formulation for the IECP:

NLP2 : Minimize
p∑

k=1

n∑

i=1




n∑

j=1

(yk
ij − aijx

k
j )2 + xk

i wk
i


 (10)

subject to
n∑

j=1

yk
ij − λkxk

i = wk
i , i ∈ Nn, k ∈ Np, (11)

n∑

j=1

xk
j = 1, k ∈ Np, (12)

xk
j > 0, wk

j > 0, j ∈ Nn, k ∈ Np, (13)
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where yk
ij and aij are also decision variables. The basic idea of the enumerative method pro-

posed in the sequel is to achieve convergence to a solution to the inverse eigenvalue problem

by iteratively partitioning the intervals of the xk
j -variables. Accordingly, assume that we

have the following general bounds on the xk
j -variables at any stage of this enumerative pro-

cess:

0 6 lkj 6 xk
j 6 uk

j 6 1, j ∈ Nn, k ∈ Np, (14)

where, to begin with, we have lkj = 0 and uk
j = 1, ∀j, k. Furthermore, let θ1 and θ2 be

real numbers such that θ1 6 aij 6 θ2 for all i, j. A procedure for estimating θi, i = 1, 2, is

discussed in Section 4. Given the bounds (14) on the xk
j -variables along with the assumed

restrictions on the aij-variables, we construct the following RLT bound-factor constraints

[28] in order to help induce (9):

(a) lkj (aij − θ1) 6 yk
ij − θ1xk

j 6 uk
j (aij − θ1), ∀i, j, k

(b) lkj (θ2 − aij) 6 θ2xk
j − yk

ij 6 uk
j (θ2 − aij), ∀i, j, k.

With this construct, the nonlinear formulation NLP2 for the IECP can be rewritten as fol-

lows:

NLP2 : Minimize f2(x, y, w, A) :=
n∑

i=1

n∑

j=1

p∑

k=1

(yk
ij−aijx

k
j )2 +

n∑

i=1

p∑

k=1

xk
i wk

i (15)

subject to
n∑

j=1

yk
ij − λkxk

i = wk
i , i ∈ Nn, k ∈ Np, (16)

n∑

j=1

xk
j = 1, k ∈ Np, (17)

lkj (aij − θ1) 6 yk
ij − θ1xk

j 6 uk
j (aij − θ1), i, j ∈ Nn, k ∈ Np, (18)

lkj (θ2 − aij) 6 θ2xk
j − yk

ij 6 uk
j (θ2 − aij), i, j ∈ Nn, k ∈ Np, (19)

θ1 6 aij 6 θ2, i, j ∈ Nn, (20)

xk
j , wk

j > 0, j ∈ Nn, k ∈ Np. (21)

Observe that (x, y, w, A) provides a solution to the IECP if and only if it solves Problem

NLP2 with a zero objective value. Accordingly, the proposed enumerative method seeks a
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global minimum of NLP2. To do this, a binary tree is generated based on partitioning the

intervals [lkj , uk
j ], where lkj and uk

j satisfy (14). Each node of the enumeration tree has a set

of such intervals associated with it, one for each x-variable. At each node, a stationary point

(x̄, ȳ, w̄, Ā) for NLP2 is computed. If the objective function value for this solution is zero,

then a solution to the IECP is at hand (i.e., we have obtained a global minimum to NLP2).

Otherwise, two new nodes are generated by branching on a variable (i.e, by partitioning

its corresponding interval), which is selected as one that yields the maximum discrepancy

index ξk
i at the stationary point (x̄, ȳ, w̄, Ā), where

ξk
i :=

n∑

j=1

|ȳk
ji − ājix̄

k
i |, ∀i, k.

A special heuristic rule for selecting a node at each iteration and some logical tests (which

are (partly) essential for the convergence proof) complete the steps of the enumerative

method. The detailed formal steps of this algorithm are presented below.

Enumerative Algorithm

Step 0. Let ε, ε1, and ε2 be positive tolerances. Set t = 1, lkj = 0, uk
j = 1, ∀ (j, k), and find

a stationary point (x̃, ỹ, w̃, ã) for NLP2. If f2(x̃, ỹ, w̃, Ã) 6 ε, then stop with A = [ãij ]

as a solution to IECP (within the tolerance ε). Otherwise, let L ={1} be the set of open

nodes, set UB(1) := f2(x̃, ỹ, w̃, Ã), and let N = 1 be the number of nodes generated.

Step 1. If L = ∅, terminate; the given IECP problem has no solution. Otherwise, select a

node t ∈ L such that

UB(t) := min{UB(i) : i ∈ L},

and let (x̃, ỹ, w̃, Ã) be the stationary point for Problem NLP2 that was found at this node.

Step 2. Let

ξ1k
i :=

n∑

j=1

|ỹk
ji − ãjix̃

k
i | and ξ2k

i := x̃k
i w̃k

i , ∀i, k. (22)
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Let Q1 := max
(i,k)

{ξ1k
i } and Q2 := max

(i,k)
{ξ2k

i }. If Q1 6 ε1 and Q2 6 ε2, then stop with

A = [ãij ] as a solution to IECP (within the tolerances (ε1, ε2)). Otherwise, let

(i∗, k∗) ∈ arg max
(i,k)

{
ξ1k
i

max{Q1, ε1} +
ξ2k
i

max{Q2, ε2}

}
, (23)

and partition the current interval [lk
∗

i∗ , uk∗
i∗ ] of xk∗

i∗ into [lk
∗

i∗ , x̂k∗
i∗ ] and [x̂k∗

i∗ , uk∗
i∗ ] to gen-

erate two nodes from node t, namely, N + 1 and N + 2, where

x̂k∗
i∗ :=





x̃k∗
i∗ , if min{x̃k∗

i∗ − lk
∗

i∗ , uk∗
i∗ − x̃k∗

i∗ } > 0.1(uk∗
i∗ − lk

∗
i∗ )

lk
∗

i∗ + uk∗
i∗

2
, otherwise.

(24)

Step 3. For each node s = N + 1 and s = N + 2, let [lkj , uk
j ] denote the bounding interval

for xk
j at the node, and do the following:

1. If
n∑

j=1

uk
j < 1, or

n∑

j=1

lkj > 1, for any k : then this subproblem is infeasible; if

s = N + 1, then proceed to the next node in the loop of Step 3 (or directly to Step

4 if both nodes have been processed).

2. (i) For any k, j : If lkj > 0 ⇒ set wk
j = 0.

(ii) For any k : If
n∑

j=1

uk
j = 1, then fix xk

j = uk
j , ∀j, and also let lkj ≡ uk

j , ∀ j.

(iii) For any k : If
n∑

j=1

lkj = 1, then fix xk
j = lkj , ∀j, and also let uk

j ≡ lkj , ∀ j.

3. Find a stationary point (x̃, ỹ, w̃, Ã) of NLP2 for the subproblem at node s. If

f2(x̃, ỹ, w̃, Ã) 6 ε then stop with a solution A = [ãij ] for IECP.

Step 4. L = L\ {t} and return to Step 1.

The following theorem establishes the global convergence of the proposed enumerative al-

gorithm:

Theorem 3.1 The enumerative algorithm for NLP2 run with ε1 = ε2 = 0 either terminates

finitely with a solution to IECP (possibly indicating that no solution exists), or else, an

infinite branch-and-bound (B&B) tree is generated such that along any infinite branch of

this tree, any accumulation point of the stationary points obtained for NLP2 solves IECP.
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Proof: The case of finite termination is obvious (including the detection that no solution

exists). Hence, suppose that an infinite B&B tree is generated, and consider any infinite

branch. Denote the vector ζ = (x, y, w, a), and let any accumulation point of the stationary

points obtained for NLP2 along this branch, as corresponding to a sequence of indices s ∈ S,

yield {ζs} → ζ∗ and {[lks, uks]}s → [lk∗, uk∗], ∀ k ∈ Np, where [lks, uks] denotes the

vector of bounds on xk at node s of the B&B tree, ∀ k ∈ Np, s ∈ S. We will show that ζ∗

yields a solution to IECP.

Note that, along the infinite branch under consideration, there exists some index-pair

(̂i, k̂) such that we branch on the interval for xk̂
î

infinitely often. Let this correspond to

nodes indexed by s ∈ S1 ⊆ S. By the partitioning rule (24), since the interval length for xk̂
î

decreases by a geometric ratio of at most 0.9 over s ∈ S1, we have in the limit that

lk̂∗
î

= uk̂∗
î

= xk̂∗
î

= ν∗, say. (25)

Observe that we also have in the limit that

xk̂∗
î

.wk̂∗
î

= 0, (26)

since either xk̂∗
î

= 0, or else, if xk̂∗
î

> 0, then by the logical tests at Step 3, for s ∈ S1 large

enough, we have by (25) that wk̂s
î
≡ 0, whence wk̂∗

î
= 0.

Furthermore, from (25) and the RLT bound-factor constraints (18) and (19), we have in the

limit that

ν∗(a∗
jî
− θ1) 6 yk̂∗

jî
− θ1ν∗ 6 ν∗(a∗

jî
− θ1), ∀ j ∈ Nn (27)

and

ν∗(θ2 − a∗
jî

) 6 θ2ν∗ − yk̂∗
jî

6 ν∗(θ2 − a∗
jî

), ∀ j ∈ Nn, (28)

where we have interchanged the indices i and j to suit (25). The constraints (27) and (28)

reduce to ν∗a∗
jî

6 yk̂∗
jî

6 ν∗a∗
jî

, ∀ j ∈ Nn, i.e., by (25),

yk̂∗
jî

= a∗
jî

xk̂∗
î

, ∀ j ∈ Nn. (29)



12 Carmo P. Brás et al.

Thus, from (26) and (29), we have that in the limit in (22), as s → ∞ with s ∈ S1, the

entities

ξ1k̂∗
î

= ξ2k̂∗
î

= 0.

However, by the selection of the index-pair (̂i, k̂) for s ∈ S, via (23), we get in the limit as

s →∞, s ∈ S1 that ξ1k
i = ξ2k

i = 0, ∀ i, k, i.e.,

yk∗
ji = a∗jix

k∗
i , and xk∗

i .wk∗
i = 0, ∀ i, j ∈ Nn, k ∈ Np. (30)

Consequently, the set of constraints (16) yield from (30) that

n∑

j=1

a∗ijx
k∗
j − λkxk∗

i = wk∗
i , ∀ i ∈ Nn, k ∈ Np, (31)

and the remaining constraints (17)–(21) yield

θ1 6 a∗ij 6 θ2, ∀ i, j, and xk∗ > 0, wk∗ > 0, and 〈e, xk∗〉 = 1,∀ k ∈ Np. (32)

Thus, (30)–(32) imply that ζ∗ represents a solution to IECP. ¤

Remark 3.1 Note that, by the proof of Theorem 3.1, only one set of the two RLT bound-

factor constraints (18)–(19) are necessary to assure convergence to a solution to IECP. How-

ever, we retain the pair of constraints since they better guide the algorithm to converge more

efficiently.

4 Improving Computational Efficiency

4.1 Computing Stationary Points for NLP2

In the previous section, we have shown that a stationary point (x̄, w̄, Ā) of NLP1 may pro-

vide a solution to the IECP. As reported in Section 5, our computational experiments showed

that, in practice, such a stationary point may in many cases solve the IECP. Accordingly, we

recommend computing such a stationary point at the root node of the enumerative algo-
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rithm. If such a stationary point does not yield a solution to the IECP, then it would be

computationally beneficial if a stationary point for NLP2 could be computed from the avail-

able stationary point for NLP1 without much additional effort. In this section, we investigate

whether this is possible, firstly at the root node, and later at any node of the tree.

Consider Problem NLP2 given by (10)-(13), without the additional constraints (18)-(20),

and for the sake of clarity, call this relaxed (yet valid) formulation NLP 2. Furthermore,

suppose that (x̄, w̄, Ā) is a stationary point for NLP1. Now, consider the following np pro-

grams:

Minimize





n∑

j=1

(yk
ij − āij x̄

k
j )2 :

n∑

j=1

yk
ij = w̄k

i + λkx̄k
i



 , (33)

for i ∈ Nn, k ∈ Np. Each one of these programs can be written in the following abbreviated

form:

Minimize {c0 − 2〈c, y〉+ 〈y, y〉 : 〈e, y〉 = b0} .

This optimization problem is a strictly convex quadratic program that has a unique optimal

solution ȳ satisfying {2ȳ − 2c = λe, 〈e, ȳ〉 = b0}, where λ is the multiplier associated with

the linear constraint. Thus, the unique optimal solution is given by

ȳ = c +
b0 − 〈e, c〉
〈e, e〉 e.

Applying this result to the np programs (33), we have that the corresponding optimal solu-

tion is given by

ȳk
ij := āij x̄

k
j +

1

n
(w̄k

i + λkx̄k
i −

n∑

l=1

āilx̄
k
l ). (34)

The next theorem shows that (x̄, ȳ, w̄, Ā) is a stationary point for the nonlinear program

NLP 2.

Theorem 4.1 If (x̄, w̄, Ā) is a stationary point for NLP1 and ȳ is given by (34), then

(x̄, ȳ, w̄, Ā) is a stationary point for NLP 2.

Proof: Consider the program NLP1. Let αk
i , βk

i , ηk
i , γk be the Lagrange multipliers associ-

ated with the constraints wk
i > 0, xk

i > 0,

n∑

j=1

yk
ij − λkxk

i − wk
i = 0, and

n∑

j=1

xk
j = 1,
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respectively. If

ρk
ij := yk

ij − aijx
k
j ,

then any stationary point for this problem satisfies the following conditions:

xk
i = −ηk

i + αk
i , αk

i wk
i = 0, αk

i > 0, i ∈ Nn, k ∈ Np, (35)

2
n∑

l=1

ρk
li(−ali) + wk

i = −λkηk
i + γk + βk

i , βk
i xk

i = 0, βk
i > 0, i ∈ Nn, k ∈ Np, (36)

2ρk
ij = ηk

i , i, j ∈ Nn, k ∈ Np, (37)

−2
p∑

k=1

ρk
ijx

k
j = 0, i, j ∈ Nn. (38)

By using (37), we can rewrite (35), (36), and (38) as follows:

xk
i + ηk

i = αk
i , i ∈ Nn, k ∈ Np,

ηk
i (λk − aii)−

∑

l 6=i

ali ηk
i + wk

i = γk + βk
i , i ∈ Nn, k ∈ Np, (39)

p∑

k=1

ηk
i xk

j = 0, i, j ∈ Nn, (40)

αk
i > 0, βk

i > 0, i ∈ Nn, k ∈ Np, (41)

αk
i wk

i = βk
i xk

i = 0, i ∈ Nn, k ∈ Np. (42)

Now, if (x̄, w̄, Ā) is a stationary point for NLP1 and ȳ is given by (34), then (x̄, ȳ, w̄, Ā)

satisfies the conditions (39)–(42), with αk
i , βk

i , γk being the Lagrange multipliers

associated with the stationary point of NLP1, and with 2ηk
i = ψk

i , i ∈ Nn, k ∈ Np, where

ψk
i is given by (1). This set of conditions implies that (x̄, ȳ, w̄, Ā) is a stationary point

for NLP 2. ¤

For this stationary point (x̄, ȳ, w̄, Ā), we have

f2(x̄, ȳ, w̄, Ā) =
n∑

i=1

n∑

j=1

p∑

k=1

(ȳk
ij − āij x̄

k
j )2 +

n∑

i=1

p∑

k=1

x̄k
i w̄k

i

=
n∑

i=1

p∑

k=1




n∑

j=1

(ȳk
ij − āij x̄

k
j )2 + x̄k

i w̄k
i



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=
n∑

i=1

p∑

k=1


 1

n2

n∑

j=1


w̄k

i + λkx̄k
i −

n∑

j=1

āij x̄
k
j




2

+ x̄k
i w̄k

i




=
1

n

n∑

i=1

p∑

k=1


w̄k

i + λkx̄k
i −

n∑

j=1

āij x̄
k
j




2

+
n∑

i=1

p∑

k=1

x̄k
i w̄k

i .

Consequently any stationary point (x̄, w̄, Ā) for NLP1 gives a stationary point (x̄, ȳ, w̄, Ā)

for NLP 2, with ȳ given by (34), and with f2(x̄, ȳ, w̄, Ā) = 0 if and only if f1(x̄, w̄, Ā) = 0.

Now, suppose that we are at any node t of the tree generated by the enumerative method, and

consider the following nonlinear program NLP1(t) that is obtained from NLP1 by adding

the bounds on the entries of A and the intervals for the variables xk
i associated with the node

t:

NLP1(t) : Minimize f1(x, w, A) :=
n∑

i=1

p∑

k=1

[(wk
i + λkxk

i −
n∑

j=1

aijx
k
j )2 + xk

i wk
i ]

subject to
n∑

j=1

xk
j = 1, k ∈ Np

θ1 6 aij 6 θ2, i ∈ Nn, j ∈ Nn

lki 6 xk
i 6 uk

i , i ∈ Nn, k ∈ Np

wk
i > 0, i ∈ Nn, k ∈ Np.

Furthermore, given the stationary point (x̄, w̄, Ā) for NLP1(t) at this node, assume that

θ1 < āij < θ2, and define the following sets associated with x̄ = [xk
i ] ∈ Rnp :

Jk := {j : lkj < x̄k
j < uk

j }, k ∈ Np

Lk := {j : x̄k
j = lkj }, k ∈ Np

Uk := {j : x̄k
j = uk

j }, k ∈ Np.

Let ȳ = [yk
ij ] ∈ Rn2p be accordingly defined by (for i ∈ Nn, and k ∈ Np)

ȳk
ij := āij l

k
j , j ∈ Lk

ȳk
ij := āiju

k
j , j ∈ Uk,

and let ȳk
ij for j ∈ Jk be the unique optimal solution of the np programs:

Minimize





∑

j∈Jk

(yk
ij − āij x̄

k
j )2 :

∑

j∈Jk

yk
ij = w̄k

i + λkx̄k
i −

∑

j∈(Lk∪Uk)

ȳk
ij



 .
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As per (34), we thus have for i ∈ Nn, k ∈ Np, and j ∈ Jk,

ȳk
ij := āij x̄

k
j +

1

|Jk| (w̄
k
i + λkx̄k

i −
n∑

l=1

āilx̄
k
l ),

where |Jk| represents the number of elements in the set Jk.

Similarly to the proof of Theorem 4.1, it is easy to show that (x̄, ȳ, w̄, Ā) is a station-

ary point of NLP2 given by (15)-(21) at node t and f2(x̄, ȳ, w̄, Ā) = 0 if and only if

f1(x̄, w̄, Ā) = 0. If this is not the case, then it is necessary to verify whether (x̄, ȳ, w̄, Ā)

is feasible for NLP2. This usually occurs in our computational experience and (x̄, ȳ, w̄, Ā)

yields a stationary point for NLP2 at node t. If this is not the case, then a new stationary

point for NLP2 is computed from scratch.

4.2 Bounds for the Matrix A

The enumerative algorithm requires lower and upper bounds θ1 and θ2 for all the variables

aij of the solution matrix A of the IECP. Too large absolute values for these bounds might

induce numerical problems for the local solver used to find stationary points for NLP1(t) and

NLP2. In this section, we discuss a good heuristic (but theoretically valid in some special

cases as indicated below) choice for these lower and upper bounds. We also show by an

example the benefit of this choice in practice.

Taking into consideration the structure of the ECP, we heuristically propose the following

choices for θ1 and θ2:

θ2 := δ × max
k∈Np

|λk|, and θ1 := −θ2, (43)

(or θ1 = 0, when A is non-negative), where δ is a positive real number such that δ ≥ n.

Based on a result presented in [23], one of the referees suggested that for

n < p ≤ n(n + 1)

2
, the following values of θi are valid:

θ1 := min{0, λ1}, and θ2 := max{λn, λp − λ1}, (44)

where the given eigenvalues λi are assumed to be in nondecreasing order. We therefore use

the bounds (44) whenever the stated condition holds true.
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4.3 Additional Constraints

The numerical resolution of an IECP is a challenging task even for low dimensional in-

stances. In this section, we explore the cases where the matrix A has special properties that

can be further exploited.

(i) Non-negative matrix A:

When we know that there exists a solution to the IECP with A being a non-negative

matrix, we can reduce the range bounds for the matrix A and consider θ1 = 0.

(ii) Symmetric matrix A:

Numerical experiments to be reported in Section 5 include cases involving symmetric

matrices A. For these instances, the additional set of constraints aij = aji, ∀ i 6= j, can

be included in the formulation NLP2 to reduce the complexity of the problem.

(iii) Fixing diagonal elements:

Consider a particular problem where the set of eigenvalues λk, k ∈ Np,

includes the diagonal elements of the matrix. By fixing the diagonal elements of A, i.e.,

aii = λi, i ∈ Nn and imposing the constraints aij > 0, ∀i 6= j, the complexity of the

problem can be decreased, since the vectors xk and wk corresponding to the values of

the diagonal are easily computed by letting xk equal the corresponding unit vector, and

so the effective cardinality of the set of eigenvalues reduces to p− n.

(iv) Complementary eigenvalues being classic eigenvalues of principal submatrices:

Since the complementary eigenvalues are always ordinary eigenvalues of principal sub-

matrices of A [16], we can include valid constraints on xk
i and wk

i in order to reduce

the complexity of the problem when we know the principal submatrices of A that corre-

spond to these eigenvalues. This is achieved by introducing the constraints





∑

j∈Ik

xk
j = 1, xk

j = 0, ∀ j /∈ Ik, wk
j = 0, ∀ j ∈ Ik



 , (45)

where Ik is the set of indices defining the corresponding principal submatrix of A.
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5 Computational Experience

We report some computational experience with the proposed enumerative algorithm in this

section. All experiments were carried out using a personal computer with a 3.0 GHz Pentium

IV processor and 2 GBytes of RAM memory. We used GAMS [29] to implement the most

advanced version of the enumerative method, in which at each node t, a stationary point

for NLP2 was computed from a stationary point of NLP1(t) according to the procedure dis-

cussed in Section 4. Furthermore, stationary points for NLP1 and NLP2 (when necessary)

were computed by using the solver MINOS [30].

In the first set of experiments, we solved the problems described in [24] of di-

mensions n = 4, . . . , 7, and for a given set of eigenvalues Λ = {λ1, . . . , λp}, with

p = n + 3, . . . , n + 9. The upper and lower bounds θ2 and θ1 for the entries of A were

respectively set as n×max
k∈Np

|λk| and −θ2, and the values of Λ were determined from a uni-

form distribution on [−1, 1].

We solved 103 test problems for each combination of n and p. Table 1 presents the per-

formance of the enumerative algorithm, where the following notation is used: MAX NODES

and AVERAGE, are respectively, the maximum and average numbers of searched nodes in

the enumerative algorithm, and % PE is the percentage of problems that required the use

of the enumerative algorithm to determine a solution (i.e., IECP was not solved at Step 0

of the algorithm). The numerical results show that the stationary point found for NLP1 at

the root node solves IECP in many cases (see values of (100-PE)%). Furthermore, the pro-

posed method enumerated a very small number of nodes for all the 28× 103 test problems.

In order to provide a comparison with an alternative technique, we report computational

results for applying GAMS-BARON [31] directly to the nonlinear program NLP1. These

results are displayed in Table 2. In this table, MAX NODES stands for the maximum number of

nodes visited by BARON to solve a problem, % PB is the percentage of problems that were

not solved at the preprocessing phase, and % OS indicates the percentage of test problems

for which BARON was able to identify a solution to the IECP within the time limit of 3600

CPU seconds. The results clearly show that the proposed enumerative algorithm is more
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p
n n+3 n+4 n+5 n+6 n+7 n+8 n+9

4 MAX NODES 12 45 98 39 34 87 68
AVERAGE 1.1 1.3 1.5 1.6 1.7 2.3 2.6

% PE 2.7 7.0 9.3 15.4 23.4 23.4 30.4

5 MAX NODES 15 8 8 8 8 12 7
AVERAGE 1.1 1.1 1.1 1.1 1.1 1.1 1.1

% PE 2.9 2.6 2.7 4.0 5.5 6.2 8.5

6 MAX NODES 8 8 8 8 9 8 8
AVERAGE 1.0 1.0 1.1 1.1 1.1 1.1 1.1

% PE 1.7 1.4 3.6 3.7 4.9 1.5 6.4

7 MAX NODES 8 8 8 8 8 8 8
AVERAGE 1.1 1.1 1.1 1.1 1.1 1.1 1.1

% PE 6.4 2.4 3.9 4.1 7.8 13.0 20.8

Table 1 Performance of the enumerative algorithm (with 1000 instances for each size).

efficient than BARON for the solution of these IECPs.

The numerical results show that this choice is quite promising at least for this set of

p
n n+3 n+4 n+5 n+6 n+7 n+8 n+9

4
MAX NODES 262 159 1180 16478 8634 15184 23228

% PB 18.1 63.7 74.4 80.2 96.8 97.2 98.1
%OS 100.0 100.0 100.0 100.0 100.0 89.3 68.2

5
MAX NODES 45 176 182 67 157 92 221

% PB 24.8 32.6 43.2 44.8 58.6 69.5 47.8
%OS 100 100 100 100 100 100 100

6
MAX NODES 0 1 146 243 33 49 145

% PB 0.0 22.4 24.1 35.4 34.7 72.5 41.8
%OS 100.0 100.0 100.0 100.0 100.0 100.0 100.0

7
MAX NODES 0 0 0 0 1 4 63

% PB 0.0 0.0 0.0 0.0 1.1 1.0 25.7
%OS 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 2 Performance of the solver BARON for solving NLP1 (with 1000 instances for each size).

problems, as it leads to better results than (43). However, formula (44) can only be applied

when p ≤ n(n + 1)/2. This is the reason for the absence of results in Table 3 for n = 4 and

p = n + 7, n + 8, n + 9. In general, of course, one should apply (44) whenever applicable

as indicated in Section 4.2.

As suggested by one of the referees, we tried to solve ten problems with the relatively

larger values of n = 10 and p = 20. The enumerative method successfully solved 8 of these

problems at node 1 by finding a stationary point of NLP1 that turned out to be a solution to

IECP. For the two remaining problems, the stationary point found for NLP1 did not solve

IECP. Furthermore, the procedure described in Section 4.1 did not provide a stationary point

for NLP2. Due to the large number of the so-called superbasic variables (see [30] for an ex-
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p
n n+3 n+4 n+5 n+6 n+7 n+8 n+9

4 MAX NODES 25 61 45 8
AVERAGE 1.1 1.5 2.8 1.0 - - -

% PE 4.1 16.2 37.1 14.6

5 MAX NODES 3 2 4 9 10 6 9
AVERAGE 1.0 1.0 1.0 1.0 1.1 1.2 1.3

% PE 0.1 0.5 1.8 3.5 6.1 12.2 18.9

6 MAX NODES 2 2 6 2 2 3 3
AVERAGE 1.0 1.0 1.0 1.0 1.0 1.0 1.0

% PE 0.1 0.1 0.3 0.3 0.4 1.1 1.1

7 MAX NODES 1 1 2 2 2 2 2
AVERAGE 1.0 1.0 1.0 1.0 1.0 1.0 1.0

% PE 0.0 0.0 0.1 0.3 0.8 3.0 7.3

Table 3 Performance of the enumerative algorithm with the bounds defined by (44) (with 1000 instances for
each size).

planation of the meaning of these variables), the solver MINOS was unable to compute a

stationary point for Problem NLP2 from scratch. So at least for this set of problems, the

inability to solve IECP is not directly related to the enumerative algorithm, and to better

assess the proposed algorithmic approach, a more effective local NLP solver needs to be

incorporated in the enumerative method for dealing with such IECPs of larger dimensions.

For the second set of experiments, we considered ECPs with the matrix A = [2i+j ].

Hence, A is non-negative and symmetric, and for each n, the ECP has 2n − 1 complemen-

tary eigenvalues of the form

λI =
∑

i∈I

22i, (46)

where I = {i1, . . . , il} are subsets of Nn with l > 1 and 1 6 i1 6 . . . 6 il 6 n [7].

Furthermore, each one of these complementary eigenvalues is an ordinary eigenvalue of the

corresponding principal submatrix AII . Based on these ECPs, we considered IECPs with

the complementary eigenvalues given by (46), and performed the following experiments:

• Experiment I:

We only assumed that A is a non-negative matrix by setting θ1 = 0. The enumerative

algorithm found a solution for the problem with n = 2 in 4 nodes, but was not able to

solve the IECP for n > 3.

• Experiment II:

Besides the assumption θ1 = 0, we fixed the diagonal elements of the matrices equal

to the corresponding eigenvalues with the consequent reduction of eigenvalues to
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p − n. The enumerative algorithm found a solution for the instance n = 3 of these

test problems, for both the asymmetric and symmetric cases, while exploring 29 and 12

nodes, respectively. However, problems having n = 4 and n = 5 remained unsolved.

• Experiment III:

We fixed θ1 = 0 and forced each of the complementary eigenvalues to be an ordi-

nary eigenvalue of a principal submatrix of A, that is, we imposed the constraints (45)

discussed in Section 4 within the formulations NLP1 and NLP2. The enumerative algo-

rithm was able to find a solution at the root node for all the IECPs with n 6 5, where

a different matrix from the one given by (46) was computed when symmetry was not

required.

These results clearly indicate the importance of incorporating additional valid restrictions

within the IECP in practice.

The third experiment suggested by one of the referees comprises the solution of the

IECP with n = 4 and the spectral data specified in Table 4. For this example, choice (44)

λ1 = 16.2823 λ7 = 27.5767 λ13 = 67.4575 λ19 = 148.0000
λ2 = 16.4149 λ8 = 31.0162 λ14 = 89.4233 λ20 = 187.1730
λ3 = 18.7114 λ9 = 36.4681 λ15 = 90.0000 λ21 = 194.5836
λ4 = 19.1341 λ10 = 39.1435 λ16 = 97.5010 λ22 = 216.2813
λ5 = 22.6080 λ11 = 56.9700 λ17 = 117.3920 λ23 = 221.9223
λ6 = 22.8635 λ12 = 67.4251 λ18 = 138.5319 −

Table 4 Experiment with n = 4 and p = 23.

for the lower and upper bounds θ1 and θ2 cannot be used. Furthermore the use of δ = n

in the choice (43) was not good as the enumerative algorithm was unable to terminate in

1000 nodes. The reason for this seems to be the fact that the solution matrix to be com-

puted by the enumerative method has some large elements in magnitude. So, we increased

δ to 3n in this case, and the enumerative algorithm was able to terminate at the root node

with an ε-optimal solution where termination was triggered by the objective value of NLP2

falling below 10−6. For the obtained solution, the maximum discrepancy in the comple-

mentarity constraints (max
i,k

{wk
i xk

i }) was 4.44E-07 and the maximum absolute discrepancy

in the structural constraints (max
i,k

|wk
i − Ai.x

k + λkxk
i | where Ai. is the ith row of A) was

5.96E-04. Despite the reasonable accuracy of this solution, when we computed all the com-
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plementary eigenvalues using the parametric algorithm introduced in [16], we came to the

conclusion that this matrix indeed has a different set of complementary eigenvalues than the

ones given, suggesting that a more accurate solution needs to be determined with tighter

tolerances. Unfortunately, our attempt to do so turned out to be futile since the software MI-

NOS was unable to compute stationary points with smaller values of the tolerances. Hence,

we can only claim that the attained solution satisfies the IECP constraints within the stated

tolerances. In our experience, this type of behavior may occur when p is much larger than

n. As stated in Section 4.3, further constraints relating the elements of the solution matrix

A and the given complementary eigenvalues could be added in order to reduce the value of

p and the relative difficulty of the underlying IECP. Another possible strategy to deal with

such challenging cases is to design a hybrid enumerative algorithm for the IECP in the spirit

of the one described in [16]. This is certainly an interesting area of future research that we

intend to pursue.

6 Conclusions

In this paper, we have considered a challenging class of problems known as the Inverse

Eigenvalue Complementarity Problem (IECP), and have analyzed two nonlinear formula-

tions NLP1 and NLP2. Our results exhibited that a stationary point for the NLP1 can, in

many cases, provide a solution to the IECP. However, to guarantee finding a solution to

IECP when one exists, an enumerative method was designed that solves the problem by

finding a global minimum for the program NLP2. Some additional techniques were intro-

duced for setting appropriate lower and upper bounds for the entries of the solution matrix

A and for computing the stationary points required at each iteration of the enumerative algo-

rithm. Computational experiments were reported using certain standard problems from the

literature, which demonstrated that the enumerative algorithm is quite effective in practice,

considering the complexity of this problem. For some instances, imposing certain implied

structural constraints for the matrix A were instrumental in solving the problem. For future

research, the use of such valid constraints and of enhanced local search techniques for im-



On the Solution of the Inverse Eigenvalue Complementarity Problem 23

proving the computational efficiency of the enumerative algorithm are areas that deserve

attention. Another interesting topic for future research is the solution of the IECP on other

convex cones, e. g., second-order cones. Furthermore, it is of interest to explore the solution

of other inverse problems that occur in different classes of applications, including control

theory and structural analysis.
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16. Fernandes, L.M., Júdice, J.J., Sherali, H.D., Fukushima, M.: On the computation of all eigenvalues for

the eigenvalue complementarity problem. Manuscript, Instituto de Telecomunicações, Coimbra, Portugal
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