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1 Introduction

The Complementarity Problem (CP) considered in this paper consists of find-
ing x,w ∈ Rn and y ∈ Rm such that

H(x, y, w) = 0, x⊤w = 0, x, w ≥ 0, (1)

where H : Rn+m+n −→ Rn+m is continuously differentiable on an open set
that contains Ω, and

Ω =
{
(x, y, w) ∈ Rn+m+n : x,w ≥ 0

}
. (2)

The most popular particular case of (1) is the Linear Complementarity
Problem (LCP). In this case,

H(x,w) = Mx− w + q,

where M ∈ Rn×n and q ∈ Rn are given. Many applications of the LCP have
been proposed in science, engineering and economics [9,14,17,22,23,29].

If G : Rn −→ Rn and H(x,w) = G(x) − w, the CP reduces to the
Nonlinear Complementarity Problem [14]. Furthermore, let

K = {x ∈ Rn : h(x) = 0, x ≥ 0}

where h : Rn −→ Rm is a continuously differentiable function on Rn. We
denote ∇h(x) = (∇h1(x), . . . ,∇hm(x)). Then, under a suitable constraint
qualification, defining

H(x, y, w) = ((G(x) +∇h(x)y − w)⊤, h(x)⊤)⊤, (3)

the CP problem turns to be equivalent to the Variational Inequality problem
defined by the operator G over K [1,14,33]. In particular, if G is the gradient
of a continuously differentiable function f : Rn −→ R1, then CP with H
given by (3) represents the KKT conditions of the optimization problem
defined by minimizing f on the set K [14].

The formulation (1) is more general than (3), since there is no restric-
tion on the form of the function H . For example, H may involve the KKT
equations of a parametric optimization problem and, additionally, nonlinear
conditions involving variables, multipliers and parameters.

Many reformulations of complementarity and variational inequality prob-
lems have been discussed in the literature. See, for example, [2,3,11–15,18,
20,21,25,28,35] and references therein. Some reformulations use the fact that
[xiwi = 0, xi ≥ 0, wi ≥ 0] may be expressed as ϕ(xi, wi) = 0 by means of
the so called NCP functions. The best known one is the Fischer-Burmeister
function [19]. As a consequence, complementarity problems may be written
as nonlinear systems of equations and Newtonian ideas may be employed
for their resolution [18]. In the process os stating nonlinear complementar-
ity problems and variational inequality problems as unconstrained nonlinear
systems of equations based on NCP functions, several authors proved equiv-
alence between stationary points of the merit functions and solutions of the
original problem under different problem assumptions that go from strict
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monotonicity to P0-like conditions. See [11,12,25,15]. Reformulations with
simple constraints based on the Fischer-Burmeister function with equivalence
results were also proposed in [13].

In the present contribution, we consider the reformulation of CP as the
problem of finding a solution (x, y, w) ∈ Ω of the square nonlinear system

H(x, y, w) = 0, x1w1 = 0, . . . , xnwn = 0. (4)

The natural merit function [16,28] is introduced in Section 2, where suf-
ficient conditions are proved ensuring that (first-order) stationary points of
the corresponding bound-constrained minimization problem are solutions of
(4). Algorithmic consequences of this approach are discussed.

Notation

The set of natural numbers is denoted by N.
The symbol ‖ · ‖ denotes the Euclidean norm.

2 The Complementarity Problem and the natural merit function

Let us define F : Rn+m+n −→ Rn+m+n and f : Rn+m+n −→ R by

F (x, y, w) = (H(x, y, w)⊤, x1w1, . . . , xnwn)
⊤

and
f(x, y, w) = ‖F (x, y, w)‖2. (5)

We consider the problem

Minimize f(x, y, w) subject to (x, y, w) ∈ Ω, (6)

where Ω is given by (2).

We denote z = (x, y, w) from now on. Next we show that, if a stationary
point (x, y, w) of (6) is not a solution of the complementarity problem (1),
then the Jacobian matrix F ′(x, y, w) is singular. When one tries to solve a
nonlinear system F (x, y, w) = 0 with (x, y, w) ∈ Ω using a standard bound-
constraint minimization solver, the main reason for possible failure is the
convergence to “bad” stationary points of (6) (generally local minimizers).
Therefore, it is interesting to characterize the set of stationary points that
are not solutions of the system. In the following theorem, we show that
this set is reasonably small in the sense that all its elements have singular
Jacobians. Note that this property is not true for general nonlinear systems.
For example, for the system given by x+1 = 0, w− 1 = 0, the point (0, 1) is
stationary but the Jacobian is obviously nonsingular. Therefore, the property
proved below is a peculiarity of the complementarity structure of F .

Theorem 1 Suppose that z = (x, y, w) is a stationary point of (6). Then, if
‖F (x, y, w)‖ 6= 0, the Jacobian F ′(x, y, w) is singular.
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Proof Since the existence of the variables yi does not introduce any compli-
cation to the proof, in order to simplify the notation, we only consider the
case in which z = (x,w) and F (z) = F (x,w).

Let (x,w) be a stationary point of f over Ω. If xi = wi = 0, for some
i ∈ {1, . . . , n}, then row n + i of the Jacobian is null, and the Jacobian is
singular. Therefore the theorem is trivial in this case.

Assume that xik , wik > 0 for p indices ik, k = 1, . . . , p belonging to
{1, . . . , n}. Then there are three possible cases:

Case 1: p = n;
Case 2: p = 0;
Case 3: 1 ≤ p < n.

In Case 1, the derivatives of f with respect to all the variables must vanish.
Since

∇f(z) = 2F ′(z)⊤F (z),

this implies the desired result.
Let us now consider Case 2. Since xi+wi > 0 for all i = 1, . . . , n, we may

assume without loss of generality that

xi = 0, wi > 0

for all i = 1, . . . , n. The Jacobian may be written as follows:

F ′(x,w) =




∂H
∂x1

. . . ∂H
∂xn

∂H
∂w1

. . . ∂H
∂wn

w1 . . . 0 x1 . . . 0
...

. . .
...

...
. . .

...
0 . . . wn 0 . . . xn


 ,

where
∂H

∂xj

,
∂H

∂wj

∈ Rn

for j = 1, . . . , n. Therefore at (x,w) we have

F ′(x,w) =




∂H
∂x1

(x,w) . . . ∂H
∂xn

(x,w) ∂H
∂w1

(x,w) . . . ∂H
∂wn

(x,w)

w1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . wn 0 . . . 0


 . (7)

By stationarity, the derivatives of f with respect to wj must vanish. Hence,
by (7),

H(x,w)⊤
∂H

∂wj

(x,w) = 0

for all j = 1, . . . , n. Therefore, either H(x,w) = 0 or the vectors
∂H
∂w1

(x,w), . . . , ∂H
∂wn

(x,w) are linearly dependent. By (7), the latter case im-

plies the singularity of the Jacobian. On the other hand, if H(x,w) = 0
then F (x,w) = 0, due to the complementarity assumption (xiwi = 0 for all
i = 1, . . . , n).
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Let us now consider Case 3. Suppose, without loss of generality, that

xi, wi > 0 for i = 1, . . . , p < n

and
xi = 0, wi > 0 for i = p+ 1, . . . , n.

Then

F ′(x,w) =




∂H
∂x1

. . . ∂H
∂xp

∂H
∂xp+1

. . . ∂H
∂xn

∂H
∂w1

. . . ∂H
∂wp

∂H
∂wp+1

. . . ∂H
∂wn

w1 . . . 0 0 . . . 0 x1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
0 . . . wp 0 . . . 0 0 . . . xp 0 . . . 0
0 . . . 0 wp+1 . . . 0 0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . wn 0 . . . 0 0 . . . 0




(8)

where the partial derivatives ∂H
∂wj

are computed at (x,w), for all j = 1, . . . , n.

Clearly

F (x,w) =
(
H(x,w)⊤, x1w1, . . . , xpwp, 0, . . . , 0

)⊤
∈ Rn+n. (9)

Consider the function F : Rn+n −→ Rn+p given by

F (x,w) =
(
H(x,w)⊤, x1w1, . . . , xpwp

)⊤
(10)

and

F ′(x,w) =

[
C11 C12 C13 C14

On−p,p W On−p,p On−p,n−p

]
, (11)

where C11, C13 ∈ R(n+p)×p, C12, C14 ∈ R(n+p)×(n−p), Ojk is the null matrix

inRj×k, j, k ∈ N andW ∈ R(n−p)×(n−p) is a diagonal matrix whose diagonal
elements are wp+1, . . . , wn.

By the optimality condition, we have

∂f

∂xj

(x,w) = 0, j = 1, . . . , p,

∂f

∂wj

(x,w) = 0, j = 1, . . . , n

But
∇f(x,w) = 2F ′(x,w)⊤F (x,w),

Hence the optimality condition states that F (x,w) is orthogonal to the
columns of C11, C13 and C14. Since these are n + p columns and F (x,w) ∈Rn+p, then either F (x,w) = 0 or the columns of C11, C13 and C14 are lin-
early dependent. In the first case, by (9) and (10), F (x,w) = 0. Otherwise,
by (8) and (11), the Jacobian F ′(x,w) is singular. This completes the proof.�
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To establish the second result concerning stationary points of (6), we first
consider the Variational Inequality Problem over a convex set

Find x ∈ K such that
G(x)⊤(x− x) ≥ 0, ∀x ∈ K,

(12)

where G : Rn −→ Rn is a continuously differentiable mapping, gi : Rn −→R1, i = 1, . . . , l are convex twice smooth functions on Rn and

K = {x ∈ Rn : Ax = b, x ≥ 0, gi(x) ≤ 0, i = 1, . . . , l} .

If K satisfies a constraint qualification, this problem is equivalent to the
following CP problem:

G(x) = A⊤y −∇g(x)µ+ w
Ax = b
g(x) + α = 0
x ≥ 0, µ ≥ 0, w ≥ 0, α ≥ 0
x⊤w = 0
µ⊤α = 0,

where g(x) = (g1(x), . . . , gp(x)), ∇g(x) = (∇g1(x), . . . ,∇gp(x)) ∈ Rn×l ,
x ∈ Rn, y ∈ Rm, µ ∈ Rl, w ∈ Rn and α ∈ Rl is a vector of slack variables
for the constraints g(x) ≤ 0. The natural merit function for this CP takes
the form:

Φ(x,w, y, β, α) =
∥∥G(x) +∇g(x)µ −A⊤y − w

∥∥2 + ‖Ax− b‖2 + ‖g(x) + α‖2

+

n∑

i=1

(xiwi)
2
+

l∑

i=1

(αiµi)
2.

Observe that, replacing x by (x, µ) and w by (w,α), the merit function
Φ coincides with the merit function f defined in (5).

Moreover, we may write:

Ω =
{
(x, y, w, µ, α) ∈ R2n+m+2l : x ≥ 0, w ≥ 0, µ ≥ 0, α ≥ 0

}

.

Theorem 2 If G is monotone on the nullspace of A, K 6= ∅ and K1 =
{x ∈ Rn : Ax = b, x ≥ 0} is bounded, then every stationary point of Φ over
Ω is a solution of (12).

Proof Let (x, y, w, µ, α) be a stationary point of the merit function over Ω.
Then,

[
G′(x)⊤ +

l∑

i=1

µi∇
2gi(x)

]
p+A⊤ (Ax− b)

+∇g(x) (g(x) + α) + (XW )w = v ⊥ x (13)
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−Ap = 0 (14)

−p+ (XW )x = z ⊥ w (15)

(g(x) + α) + (ΛΥ )µ = β ⊥ α (16)

∇g(x)⊤p+ (ΛΥ )α = γ ⊥ µ (17)

x, v, z, w, α, β, γ, µ ≥ 0,

where ∇2gi(x) is the Hessian of gi at x, Λ = diag(αi) ∈ Rl×l, Υ = diag(µi) ∈Rl×l and X = diag(xi) ∈ Rn×n, W = diag(wi) ∈ Rn×n, and

p = G(x) +∇g(x)µ−A⊤y − w.

By (16) and (17),

p⊤∇g(x) (g(x) + α) = [γ − (ΛΥ )α]
⊤
[β − ΛΥ )µ]

= γ⊤β +

l∑

i=1

(αiµi)
3.

Furthermore, using (13) and (15), we have that

p⊤(XW )w = −z⊤(XW )w + x⊤(XWXW )w

=

n∑

i=1

ziw
2
i xi +

n∑

i=1

x3
iw

3
i

=

n∑

i=1

(xiwi)
3
,

and, by (14),

p⊤v = v⊤(XW )x− z⊤v =

n∑

i=1

x2
iwivi − z⊤v = −z⊤v.

Since Ap = 0, then p = Zd, for some d ∈ Rn−m, where Z ∈ Rn×(n−m)

is a matrix whose columns form a basis of the nullspace of A. The above
inequalities and (14) yield:

d⊤Z⊤

[
G′(x)⊤ +

l∑

i=1

µi∇
2gi(x)

]
Zd =

−

(
v⊤z + γ⊤β +

l∑

i=1

(αiµi)
3 +

n∑

i=1

(xiwi)
3

)
≤ 0.

Since Z⊤

[
G′(x)⊤ +

l∑

i=1

µi∇
2gi(x)

]
Z is positive semi–definite, it follows that

d⊤Z⊤

[
G′(x)⊤ +

l∑

i=1

µi∇
2gi(x)

]
Zd = 0
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and 



v⊤z = 0
β⊤γ = 0
α⊤µ = 0
x⊤w = 0.

Since (XW )x = 0, it follows from (15) that

p = −z ≤ 0.

Hence,

Ap = 0, p ≤ 0.

Since K1 = {x ∈ Rn : Ax = b, x ≥ 0} is bounded, then p = 0. Therefore,
using x⊤w = α⊤µ = 0 in the equations (13) – (17), we obtain:

A⊤(Ax − b) +∇g(x)(g(x) + α) = v
g(x) + α = β

x ≥ 0, v ≥ 0, α ≥ 0, β ≥ 0
x⊤v = α⊤β = 0.

(18)

Define:

I = {i ∈ {1, 2, . . . ,m} : gi(x) ≥ 0} .

If i /∈ I, we have that gi(x) < 0, so, by (18), αi ≥ βi. Thus, since αiβi = 0,
we obtain that βi = 0. Therefore, gi(x) + αi = 0.

If i ∈ I we have that gi(x) + αi = βi > 0. Thus, since αiβi = 0, we have
that αi = 0. Therefore, the first equation of (18) may be written:

A⊤(Ax − b) +
∑

i∈I

∇gi(x)gi(x) = v. (19)

Since K 6= ∅, there exists x̃ such that Ax̃ = b, x̃ ≥ 0. Pre-multiplying (19)
by (x− x̃)⊤, we obtain:

(x− x̃)⊤[A⊤(Ax − b) +
∑

i∈I

∇gi(x)gi(x)] = (x− x̃)⊤v.

Then, since x⊤v = 0,

‖Ax− b‖2 +
∑

i∈I

∇gi(x)gi(x)] = −x̃⊤v ≤ 0. (20)

By the convexity of gi, we have:

gi(x)− gi(x̃) ≤ ∇gi(x)
⊤(x− x̃), i = 1, . . . , p. (21)

By (20) and (21), using that gi(x) ≥ 0 for i ∈ I, we get:

‖Ax− b‖2 +
∑

i∈I

gi(x)(gi(x)− gi(x̃) ≤ 0.
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Since x̃ is feasible, this implies that:

‖Ax− b‖2 +
∑

i∈I

gi(x)
2 ≤ 0.

Therefore, Ax = b and gi(x) = 0 for all i ∈ I. This completes the proof. �

Remark. Equivalence results based on Fischer-Burmeister reformulations
usually do not need the compactness of the polytope K1. Compactification

of the domain may be obtained adding the equality
∑n+1

i=1 xi = M for large
M , a transformation that does not alter the structure of problem (12). In [4]
the conditions under which this type of transformation preserve the correct
solutions of the problem have been analyzed.

Next we show that, for some Affine Variational Inequality Problems, a
stationary point of the natural merit function over Ω either gives a solution
or shows that the problem is infeasible. Consider again the set

K = {x ∈ Rn : Ax = b, x ≥ 0} (22)

with A ∈ Rm×n full rank and m < n. Let the columns of Z ∈ Rn×(n−m) be
a basis of the nullspace of A. Let us consider the problem

Compute x ∈ K
such that (Mx+ q)⊤ (x− x) ≥ 0, ∀x ∈ K

(23)

where M ∈ Rn×n and q ∈ Rn. As before, x is a solution of (23) if and only
if (x, y, w) is a solution of the problem:

w = q +Mx−A⊤y
0 = Ax− b
x⊤w = 0
x,w ≥ 0.

(24)

Theorem 3 Let (x, y, w) be a stationary point over Ω of the merit function

f(x, y, w) = ‖q +Mx−A⊤y − w‖2 + ‖Ax− b‖2 +
n∑

i=1

(xiwi)
2

(25)

If the columns of Z form a basis of the nullspace of A and Z⊤MZ is a positive
semi–definite matrix, then

(i) If f(x̄, ȳ, w̄) = 0, then (x̄, ȳ, w̄) is a solution of (24).
(ii) If f(x̄, ȳ, w̄) > 0, then the problem (24) is infeasible.

Proof Let (x, y, w) be a stationary point of the merit function (25) over Ω.
By a proof similar to the one presented in Theorem 2, (x, y, w) satisfies

M⊤p +A⊤(Ax− b) = v ⊥ x
−Ap = 0
−p = z ⊥ w

(26)
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x ⊥ w, x, v, z, w ≥ 0,

where
p = q +Mx−A⊤y − w.

These are the KKT conditions of the following convex quadratic program

min
x,y,w

‖q +Mx−A⊤y − w‖2 + ‖Ax− b‖2

subject to x ≥ 0, w ≥ 0.

The result follows since the objective function is convex. �

Let us now consider a Quadratic Program (QP):

Minimize q⊤x+ 1
2x

⊤Mx = f(x)
subject to Ax = b

x ≥ 0.
(27)

The KKT conditions for this Program consist of an LCP of the form of (24).
By Theorem 3, if f is convex over the nullspace of A, then a stationary point
(x, y, w) of the merit function (25) over Ω solves the convex QP, in the sense
that:

1. If f(x, y, w) = 0, then x is a global minimum of the quadratic program;
2. If f(x, y, w) > 0, then the quadratic program is primal or dual infeasible.

In particular, this result applies to Linear Programming problems, which
have the form (27) with M = 0.

3 Conclusions

In this paper we considered the Complementarity Problem CP in the form
(4), as a general square nonlinear system that includes complementarity con-
straints. This form is more general than the ones that represent optimality
conditions and variational inequality problems. We used the natural squared
norm of the residual as merit function, and we showed that stationary points
of this function over Ω are solutions of the problem or possess singular Ja-
cobians (Theorem 1). Furthermore, for the variational inequality problem
(VI) with a mapping F and a convex domain K, under a weak monotonicity
assumption and a boundedness condition on K, stationary points are solu-
tions of the problem (Theorem 2). When F is affine and K is a polyhedron,
a stationary point of the natural merit function either gives a solution to
the VI or shows that the VI has no solution (Theorem 3). In particular, for
linear and convex quadratic programs, a stationary point of the associated
natural merit function either provides an optimal solution or establishes that
the problem is primal or dual infeasible.

Nonlinear systems of equations with bounds on the variables have been
considered in [5]. Many other papers (see, por example, [6–8]) deal with
convex-constrained optimization and are able to handle large scale problems.
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The results presented here help to predict what can be expected from those
general convex-constraint approaches, when applied to the complementarity
problem using the natural sum-of-squares merit function. Moreover, the em-
ployment of simply-constrained instead of unconstrained reformulations is
advantageous to avoid possible convergence to stationary points that do not
satisfy positivity constraints and do not fulfill the monotonicity-like assump-
tions required for equivalence results.

Interior point methods applied to specific complementarity problems were
defined in [24,27,31,32,34,36], among others. The effect of degeneracy was
analyzed in [10,26]. A large number of numerical experiments using a method
that combines interior points and projected gradients was given in [30].

In spite of the large number of specific methods for different complemen-
tarity problems, many users prefer to use well established bound-constraint
minimization algorithms for solving practical problems. Since these solvers
usually generate sequences that converge to first-order stationary points, the
relations between stationary points and solutions will continue to be algo-
rithmically relevant.

Acknowledgements The authors are indebted to the Associate Editor and two
anonymous referees for their insightful comments on this paper.
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