
Feasibility problems with complementarity constraints
I

R. Andreania, J. J. Júdiceb,1, J. M. Mart́ıneza, T. Martinia,∗

aDepartment of Applied Mathematics, IMECC-UNICAMP, State University of Campinas,
Rua Sérgio Buarque de Holanda, 651 Cidade Universitária “Zeferino Vaz”, Distrito Barão

Geraldo, 13083-859 Campinas SP, Brazil
bInstituto de Telecomunicações, University of Coimbra, Coimbra, Portugal

Abstract

A Projected-Gradient Underdetermined Newton-like algorithm will be intro-

duced for finding a solution of a Horizontal Nonlinear Complementarity Problem

(HNCP) corresponding to a feasible solution of a Mathematical Programming

Problem with Complementarity Constraints (MPCC). The algorithm employs

a combination of Interior-Point Newton-like and Projected-Gradient directions

with a line-search procedure that guarantees global convergence to a solution of

HNCP or, at least, a stationary point of the natural merit function associated

to this problem. Fast local convergence will be established under reasonable as-

sumptions. The new algorithm can be applied to the computation of a feasible

solution of MPCC with a target objective function value. Computational expe-

rience on test problems from well-known sources will illustrate the efficiency of

the algorithm to find feasible solutions of MPCC in practice.

Keywords: Global optimization, Nonlinear programming, Nonlinear Systems

of Equations, Complementarity Problems, Mathematical Programming with

IThis work was supported by PRONEX-Optimization (PRONEX - CNPq / FAPERJ E-26
/ 171.164/2003 - APQ1), FAPESP (Grants 06/53768-0, 2012/10444-0 and CEPID Industrial
Mathematics 2011/51305-0) and CNPq.

∗Corresponding author
Email addresses: andreani@ime.unicamp.br (R. Andreani), Joaquim.Judice@co.it.pt

(J. J. Júdice), martinez@ime.unicamp.br (J. M. Mart́ınez), tiaramartini@gmail.com (T.
Martini)

1The research of Joaquim J. Júdice was partially supported in the scope of R&D Unit
UID/EEA/50008/2013, financed by the applicable financial framework FCT/MEC through
national funds and when applicable co-funded by FEDER - PT2020 partnership agreement.

Preprint submitted to European Journal of Operations Research September 15, 2015

Complementarity Constraints.

1. Introduction

A Mathematical Programming Problem with Complementarity Constraints

(MPCC) [34, 36, 38] can be defined in the form

Minimize ϕ(x, y, w) subject to H(x, y, w) = 0 and min{x,w} = 0, (1)

where x,w ∈ IRn, y ∈ IRm, while ϕ : IR2n+m → IR, and H : IR2n+m → IRr are

continuously differentiable functions. The feasible set of MPCC will be denoted

by D and min{x,w} denotes a vector of components min{xi, wi}, i = 1, . . . , n.

For all i = 1, . . . , n, the variables xi, wi are said to be complementary and

satisfy:

xi > 0, wi > 0, xiwi = 0, i = 1, . . . , n. (2)

MPCC has appeared frequently in optimization models and has significant

applications in different areas of science, engineering and economics [34, 36, 38].

Many theoretical and application papers in Operations Research, as well as sur-

vey papers on related topics [7, 8, 25, 28, 32], have been devoted to this prob-5

lem in recent years. For example, transport network models were considered

in [17, 42, 43], bilevel optimization in [28], variational inequality formulations

in [41], multiobjective problems with complementarity constraints in [33, 46],

electricity markets in [10, 19, 22, 45], quadratic programming with complemen-

tarity constraints in [39], optimality conditions in [37], order-value applications10

in [1], and oligopolistic equilibrium in [44], among others.

Clearly, MPCC can be seen as a Nonlinear Programming Problem where

the n complementarity constraints min{xi, wi} = 0 are replaced with (2) or

even with x>w = 0, x > 0, w > 0. Attempts for solving MPCC by means

of nonlinear programming algorithms present some difficulties, mainly because15

these algorithms may converge to points from which there exist obvious first-

order descent directions. This issue is a consequence of the so-called double

2

zeros or biactive indices, i.e., feasible points satisfying at least a constraint

xiwi = 0 with both variables xi and wi equal to zero. These difficulties have

motivated much research on weak forms of stationarity [13, 20, 34, 36, 38, 40]20

and several algorithms have been designed to compute such weak stationary

points [4, 5, 6, 11, 14, 15, 16, 20, 23, 24, 26, 30, 34, 36, 38].

In this paper, we will discuss how to compute a feasible solution of the

MPCC, that is, a solution of the following Horizontal [18] (possibly nonlinear)

Complementarity Problem (HNCP):


H(x, y, w)

x1w1

...

xnwn

 = 0, x ≥ 0, w ≥ 0. (3)

We will assume that r ≤ m + n, so that the number of equations in (3) is

smaller than or equal to the number of unknowns. The case in which r = m+n

has been studied in [3]. The case of H affine has been thoroughly discussed25

in the literature (see for instance [25] for a recent survey). The HNCP is NP-

hard in this case [35] but there are many MPCCs where finding a single feasible

solution can be considered as an easy task [25].

The problem of finding a feasible point of MPCC at which the objective

function achieves a target value ct is naturally formulated as follows:

ϕ(x, y, w) 6 ct, H(x, y, w) = 0, x > 0, w > 0 and x>w = 0. (4)

Note that the problem (4) can be written as a standard HNCP adding two

auxiliary variables v1 and v2, as follows:

ϕ(x, y, w) + v1 = ct, H(x, y, w) = 0, v1v2 = 0, xiwi = 0, i = 1, . . . , n,

v1 ≥ 0, v2 ≥ 0, x ≥ 0, and w ≥ 0.
(5)

In this paper we will extend the algorithm introduced in [3], which deals with

3

the case r = n+m, for the underdetermined HNCP (3) where r may be smaller30

than n + m. The Projected-Gradient Underdetermined Newton-like algorithm

(PGUN) combines fast interior-point iterations with projected-gradient steps.

A line-search procedure is employed guaranteeing sufficiently reduction of the

natural merit function [2] associated to HNCP. This will allow us to establish

global convergence of the PGUN algorithm to a solution of HNCP or to a35

stationary point of the merit function with a positive function value. In this

case the algorithm terminates unsuccessfully. Fast local convergence will be

established under reasonable hypotheses.

Computational experience with PGUN for solving the HNCP associated to

feasible solutions of some MPCC test problems from a well-known collection40

[29] will show that, for many instances, projected-gradient iterations are seldom

used and the algorithm is able to converge very fast to a solution of HNCP.

For other instances, PGUN converges slowly using projected-gradient iterations

to a stationary point of the merit function that seems not to be a solution of

the HNCP. A practical criterion will be introduced to stop prematurely PGUN45

and avoid many projected-gradient iterations. As the natural merit function is

nonconvex, the choice of the starting point is very important for the success of

PGUN. Here we will suggest to restart the PGUN algorithm with a new initial

point whenever the criterion mentioned before forced the algorithm to stop

prematurely. Numerical results with an implementation of PGUN incorporating50

these two practical procedures (premature stopping criterion and restarting)

show that the method is in general efficient to solve the HNCP and seems to

perform better than a Projected Levenberg-Marquardt algorithm [27]. We have

also tested PGUN for solving (5) associated to a target ct equal to the best

known objective function value of some MPCCs from the collection mentioned55

before. As discussed in [12], the introduction of the target constraint to HNCP

makes this problem more difficult to tackle and PGUN has more difficulties to

solve the HNCP in this case. Despite this, PGUN has been able to provide a

target feasible solution of MPCC for the large majority of tested instances.

The organization of this paper is as follows. The properties of the merit60

4

function for the HNCP are studied in Section 2. The algorithm PGUN will be

described and its global convergence will be analyzed in Section 3. Section 4 will

be devoted to the local convergence of the PGUN algorithm. Computational

experience with the PGUN algorithm will be reported in Section 5 and some

conclusions will be presented in the last section of the paper.65

Notation: The 2-norm of vectors and matrices will be denoted by ‖ · ‖. If

there is no risk of confusion we denote (x, y, w) = (x>, y>, w>)>, as it has been

already done in the Introduction. We adopt the usual convention of denoting

X the diagonal matrix whose entries are the elements of x ∈ IRn. The Moore-

Penrose pseudoinverse of the matrix A will be denoted by A†. The Jacobian

matrix of Φ : IRn → IRm, with components ϕ1, . . . , ϕm, will be defined by

Φ′(z) =


∂ϕ1

∂z1
(z) . . . ∂ϕ1

∂zn
(z)

...
. . .

...

∂ϕm

∂z1
(z) . . . ∂ϕm

∂zn
(z)

 .

We define e = (1, . . . , 1)> and

Ω = {(x, y, w) : x > 0, w > 0}. (6)

The Interior of this set will be denoted by Int(Ω).

2. Stationary points of the sum of squares

The HNCP (3) may be expressed in the form

F (x, y, w) = 0, x ≥ 0, w ≥ 0, (7)

5

where F : IRn+m+n −→ IRr+n is given by

F (x, y, w) =


H(x, y, w)

x1w1

...

xnwn

 , (8)

and H : IRn+m+n → IRr has continuous first derivatives.70

We define the natural merit function:

f(x, y, w) = ‖F (x, y, w)‖2 (9)

and we consider the problem

Minimize f(x, y, w) subject to (x, y, w) ∈ Ω, (10)

where Ω is defined in (6). From now on we will denote z = (x, y, w).

It is well known that, if z∗ is an unconstrained stationary point of “Minimize

‖Φ(z)‖2” and the residual Φ(z∗) is not null, then the rows of the Φ′(z∗) are

linearly dependent. In general, this property is not true in the presence of

bound constraints. In what follows, generalizing a result proved in [2], we prove75

that the non-full-rank property also holds in the case of problem (10) with the

definitions (8) and (9).

Theorem 2.1. Suppose that z = (x, y, w) ∈ Ω is a stationary point of (10).

Then,

(a) if H(z) = 0 or H ′y(z) is full row-rank, then z is solution of (7);80

(b) if ‖F (z)‖ 6= 0, the rows of the Jacobian F ′(z) are linearly dependent.

6

Proof. If z is a stationary point of (10), then

1

2
∇f(z) = F ′(z)>F (z) =


H ′x(z)> W

H ′y(z)> 0

H ′w(z)> X




H(z)

x1 w1

...

xn wn

 =


γ

0

α

 , (11)

xi γi = 0, i = 1, . . . , n,

wi αi = 0, i = 1, . . . , n,

x ≥ 0, γ ≥ 0, w ≥ 0, and α ≥ 0.

(12)

(a) If H(z) = 0, we deduce that:

 W

X



x1 w1

...

xn wn

 =

 γ

α

 .

Thus, x̄iw̄i = 0 for all i = 1, . . . , n and z is a solution of (7).

On the other hand, if H ′y(z) is full row-rank, then, by (11), H(z) = 0.

Therefore, as proved above, we have that z is solution of (7).

(b) Suppose now that F (z) 6= 0. By (11), if xi = wi = 0 for some i ∈

{1, . . . , n}, the column r + i of


H ′x(z)> W

H ′y(z)> 0

H ′w(z)> X


is null, Then the the rows of F ′(z) are linearly dependent.85

Assume that xik > 0 and wik > 0 for q indices ik, k = 1, . . . , q belonging to

{1, . . . , n}. Then there are three possible cases:

Case 1: q = n;

Case 2: q = 0;

Case 3: 1 ≤ q < n.90

7

In Case 1, the stationarity imposes that the derivatives of f with respect to

all the variables must vanish. Therefore,


H ′x(z)> W

H ′y(z)> 0

H ′w(z)> X




H(z)

x1 w1

...

xn wn

 = 0,

with xiwi > 0 for all i = 1, . . . , n. Then, the rows of F ′(z) are linearly depen-

dent.

Let us now consider Case 2. Since the case in which there exists i such

that x̄i = w̄i = 0 has already been considered, we have that x̄i + w̄i > 0

for all i = 1, . . . , n. Then, we may assume without loss of generality that

x̄i = 0, w̄i > 0 for all i = 1, . . . , n. Then, by (11),


H ′x(z)> W̄

H ′y(z)> 0

H ′w(z)> 0


 H(z)

0

−

γ

0

0

 = 0. (13)

Thus,  H ′y(z)> 0

H ′w(z)> 0

 H(z)

0

 =

 0

0

 .
This implies that the matrix H ′y(z)> 0

H ′w(z)> 0


has at most r − 1 linearly independent columns. Therefore, the matrix

H ′x(z)> W̄

H ′y(z)> 0

H ′w(z)> 0



8

has at most n+ r − 1 linearly independent columns. Since X̄ = 0, this implies

that 
H ′x(z)> W̄

H ′y(z)> 0

H ′w(z)> X̄


has at most n + r − 1 linearly independent columns. Thus F ′(z̄) has at most

n + r − 1 linearly independent rows. Since F ′(z̄) has n + r rows, it turns out

that this Jacobian is not full row-rank.95

Let us now consider Case 3. Suppose, without loss of generality, that

xi, wi > 0 for i = 1, . . . , q < n (14)

and

xi = 0, wi > 0 for i = q + 1, . . . , n. (15)

Splitting the first block of (11) into two blocks corresponding to its first q

and last n− q equations, using (12), (14) and (15), calling Ĥ ′x(z) to the matrix

formed by the first q rows of H ′x(x̄, ȳ, z̄)>, and calling Ŵ to the diagonal q × q

matrices whose entries are w̄1, . . . , w̄q, we obtain:


Ĥ ′x(z)> Ŵ

H ′y(z)> 0

H̄ ′w(z)> X̄

H̃ ′w(z)> 0




H(z)

x1 w1

...

xq wq

 =


0

0

0

 . (16)

Therefore, the matrix

A =


Ĥ ′x(z)> Ŵ

H ′y(z)> 0

H̄ ′w(z)> X̄

H̃ ′w(z)> 0


has at most r + q − 1 linearly independent columns. Now define H̃ ′x(z)> as

the matrix containing the last n− q rows of H ′x(z)>, W̃ as the diagonal matrix

9

whose entries are w̄q+1, . . . , w̄n, and

B =



Ĥ ′x(z)> Ŵ 0

H̃ ′x(z)> 0 W̃

H ′y(z)> 0 0

H̄ ′w(z)> X̄ 0

H̃ ′w(z)> 0 0


Since B comes from adding n− q rows and columns to A, the matrix B has at100

most n + r − 1 linearly independent columns. But, by (11), (14), and (15), we

have that B = F ′(z)>. Therefore, the Jacobian is not a full row-rank matrix,

as we wanted to prove. �

3. Projected gradient underdetermined Newton-like algorithm and105

global convergence

In this section we introduce a Projected Gradient Underdetermined Newton-

like (PGUN) Algorithm for the solution of the (possibly) underdetermined sys-

tem (8). This algorithm is an extension of the method introduced in [3] for the

solution of this system when the number of equalities is equal to the number of110

variables, i.e., when r = n + m. PGUN generates iterates lying inside Int(Ω)

and combines interior-point Newton-like and projected-gradient directions with

a line-search procedure. The steps of the PGUN method are presented below.

PGUN Algorithm

Step 0: Initial setup: Consider γ > 0 and γk > 0 for all k ∈ IN and such115

that
∑∞
k=0 γk = γ < ∞. Let τ ∈ (0, 1), σ ∈ (0, 1), 0 < η1 < η2, ρ > 0,

β ∈ (0, 1
2), cbig > csmall > 0, csmall < 1. Let z0 = (x0, y0, w0) ∈ Int(Ω).

Assume that zk = (xk, yk, wk) ∈ Int(Ω), σk ∈ [0, 1/6], τk ∈ [τ, 1), and

ηk ∈ [η1, η2]. Then, the steps for obtaining zk+1 = (xk+1, yk+1, wk+1) ∈

Int(Ω) or declaring finite convergence are the following:120

10

Step 1: Declare finite convergence if the scaled projected–gradient is zero: Com-

pute g(zk, ηk) = PΩ(zk − ηk∇f(zk)) − zk. If g(zk, ηk) = 0, stop. (An

approximate stationary point of (10) has been obtained.)

Step 2: Newton-like direction: Compute, if possible, dk = (dkx, d
k
y , d

k
w) ∈ IRn+m+n

satisfying

H ′(zk)dk +H(zk) = 0 (17)

and

xkiw
k
i + xki

(
dkw
)
i
+ wki

(
dkx
)
i

= µki , (18)

where µk > 0 and

‖µk‖∞ ≤ σk
(
xk
)>
wk

n
. (19)

If such a direction dk does not exist or if ‖dk‖ > cbig, go to Step 4.

Step 3: Compute the maximum steplength: Compute

αbreak
k = max{α ≥ 0 | zk + αdk ∈ Ω} (20)

and

αmax
k = min

{
1, τkα

break
k

}
. (21)

If αmax
k ≤ csmall min

{
1, ‖dk‖

}
, go to Step 4. Otherwise, go to Step 5.125

Step 4: Projected gradient direction: Compute (or re-define) dk = g(zk, ηk),

and set αmax
k = τk.

Step 5: Line–search: Set α = αmax
k .

Step 5.1: If

‖F (zk + αdk)‖ ≤ ‖F (zk)‖ − ρ‖αdk‖2 + γk (22)

set αk = α and go to Step 6.

Step 5.2: Choose αnew ∈ [βα, (1−β)α], set α = αnew and go to Step 5.1.130

11

Step 6: Compute the new iterate: Choose zk+1 ∈ Ω such that

‖F (zk+1)‖ ≤ ‖F (zk + αkd
k)‖. (23)

End.

Given zk not satisying the stopping criterion g(zk, ηk) = 0, the fact that

zk+1 is well defined follows trivially from Step 5, using γk > 0. The global

convergence of PGUN is established in Theorem 3.1.

Theorem 3.1. Given zk = (xk, yk, wk) such that xk > 0, wk > 0 and g(zk, ηk) 6=135

0), the point (xk+1, yk+1, wk+1) ∈ Int(Ω) is always well defined. Moreover, if{
zk
}

is a sequence generated by Algorithm PGUN and z∗ is a cluster point such

that limk∈K1 z
k = z∗, where K1 ⊂ IN is an infinite subsequence of indices, then:

1. z∗ is a stationary point of Minimize f(z) subject to z ∈ Ω.

2. If F ′(z∗) is a full row-rank matrix, then F (z∗) = 0.140

3. If K1 contains infinitely many indices k such that dk is computed (at

Step 2) as a Newton-like direction, then F (z∗) = 0.

Proof. The stationarity of z∗ and the fact that F (z∗) = 0 when K1 contains

infinitely many Newton-like iterations follow exactly as in [3], where the theo-

rem was proved for the (square) case in which n + m = r. In the general case145

considered here the second part of the thesis is a consequence of the stationarity

of z∗ and Theorem 2.1. �

4. Local convergence

At Step 2 of PGUN one considers the linear system given by (17) and (18).

If this linear system is incompatible the algorithm goes to Step 4 where a pro-

jected gradient direction is computed. All along this section we will assume

that, whenever (17)–(18) is compatible, the computed direction dk will be the

12

minimum-norm solution of that system. This implies that dk belongs to the

range space of F ′(zk)> and

dk = F ′(zk)†

 −H(zk)

−XkWke+ µk

 , (24)

where µk > 0 satisfies (19).150

Note that the minimum-norm Newtonian direction associated with the sys-

tem F (z) = 0 would be obtained taking µk = 0 in (24).

In Theorem 3.1 we proved that limit points of a sequence generated by PGUN

are necessarily stationary points of the natural merit function f . Moreover,

when the Jacobian of F is full row-rank at a limit point, this point is a solution155

of the problem. Finally, every limit point of a subsequence of iterates xk such

that dk is always computed at Step 2 is necessarily a solution of the nonlinear

system. These global convergence results will be complemented in this section

by local characterizations that tell us something about convergence of the whole

sequence and its speed of convergence.160

The local results that will be presented in this section are closely related with

the local convergence results of Newton’s method for underdetermined nonlinear

systems. Roughly speaking, we are going to prove that, in a neighborhood of a

solution at which the Jacobian has full row-rank, PGUN reduces to something

very similar to Newton’s method with the minimum norm choice of the solu-165

tion of the linear system and, as a consequence, enjoys the local convergence

properties of that method. However, the identification of the local PGUN and

Newton’s method in that case is not complete because µk may not be zero in

(24).

Recall that PGUN does not admit negative components of (xk, wk). There-170

fore, the search direction is multiplied by a factor αkmax that inhibits the possibil-

ity of taking a trial point with non-positive components in (x,w). For proving

that, eventually, PGUN behaves as a pure Newton-like method, we need to

prove that αkmax is as close to 1 as desired. This essentially means that we

13

do not need to truncate the direction computed at (24). We will prove this175

property in Theorem 4.1. In Theorem 4.2 we will prove that, if the Jacobian

has full row-rank at a limit point, the whole sequence converges to that limit

point. As a by-product we will prove that, eventually, αk = αmaxk , which means

that the first trial point at Step 5 of PGUN is accepted because the norm of

F decreases as required by (22). The consequence of Theorems 4.1 and 4.2 is180

that, for k large enough, PGUN is very similar to Newton’s method with the

Moore-Penrose pseudoinverse choice of linear-system solution. The fact that

αk = αmaxk , together with Theorem 4.1, implies that αk ≈ 1. Therefore, the

result of Theorem 4.3 (superlinear and quadratic convergence) is not surprising,

since this is the type of result that is typically obtained for Newton’s method185

in the underdetermined and regular case. Here we could invoke well-known re-

sults as the ones given by Chen and Yamamoto in [9] but we prefer include the

complete proof for the sake of completeness.

4.1. Behaviour of the maximum steplength

In this section we aim to prove that, in a neighbourhood of a solution z∗ of190

(7) such that F ′(z∗) is full row-rank, the steplength αmaxk , computed at Step 3

of PGUN (formulas (20) and (21)), with dk computed at Step 2, can be taken

as close to 1 as desired. This means that, given an arbitrary δ < 1, if zk is

close enough to the solution, the maximal steplength αbreakk is bigger than δ.

This result has been proved in the case that 2n+m = r+ n (square system) in195

[3]. The proof in the rectangular case is more involved since the solution of the

Newtonian linear system is not unique.

Theorem 4.1 Assume that Algorithm PGUN is applied to problem (7) and

that z∗ is a solution at which the Jacobian F ′(z∗) is full row-rank. Assume that200

δ ∈ (0, 1). Then, there exists ε > 0 such that, whenever ‖zk − z∗‖ ≤ ε one has

that dk is well defined by (17) and (18) and αbreakk ≥ δ.

Proof. Assume that F ′(z∗) is full row-rank and F (z∗) = 0. Denote W ∈ IRn×n

the diagonal matrix whose entries are w1, . . . , wn and X the diagonal matrix

14

whose entries are x1, . . . , xn. Then,205

F ′(z) =


H ′x(z) H ′y(z) H ′w(z)

W 0 X

 ∈ IR(r+n)×(2n+m).

Since F ′(z∗) is full row-rank, x∗i and w∗i can not be zero simultaneously.

Without loss of generality (perhaps changing the names of some variables xi

and wi), we may assume that x∗i = 0 and w∗i > 0 for all i = 1, . . . , n. So,

F ′(z∗) =


H ′x(z∗) H ′y(z∗) H ′w(z∗)

W∗ 0 0

 .
Therefore, by the linear independence of the rows of F ′(z∗), the matrix[

H ′y(z∗) H ′w(z∗)
]

is full row-rank.210

Let ε > 0 be such that, for all z such that ‖z − z∗‖ ≤ ε,

F ′(z) and H ′yw(z) ≡
[
H ′y(z) H ′w(z)

]
are full row-rank. (25)

Since H has continuous first derivatives, (25) implies that ‖F ′(z)†‖ and

‖H ′yw(z)†‖ are uniformly bounded for all z such that ‖z − z∗‖ ≤ ε.

For a generic z = (a, b, c), a > 0, c > 0 such that ‖z − z∗‖ ≤ ε, and

µ > 0 ∈ IRn we define x, y, and w in such a way that (x− a, y− b, w− c) is the

minimum norm solution of:H
′
x(a, b, c)(x− a) +H ′y(a, b, c)(y − b) +H ′w(a, b, c)(w − c) = −H(a, b, c),

C(x− a) +A(w − c) = −Ca+ µ.

(26)

Clearly, x, y, w are functions of a, b, c, and µ but we do not make this depen-

dence explicit in order to simplify the notation.

15

By the boundedness of ‖F ′(a, b, c)†‖,

lim
(z,µ)→(z∗,0)

‖x− a‖ = lim
(z,µ)→(z∗,0)

‖w − c‖ = lim
(z,µ)→(z∗,0)

‖y − b‖ = 0. (27)

So,

lim
(z,µ)→(z∗,0)

(x,w) = (x∗, w∗) = (0, w∗). (28)

By (26) and simplifying the notation, we have that:

 H ′x H ′y H ′w

C 0 A



x− a

y − b

w − c

 =

 −H

−Ca+ µ

 ∈ IRr+n. (29)

Taking the minimum norm solution of (29), we have that (x−a, y−b, w−c)>

belongs to the range space of F ′(z∗)>. Therefore, there exist q ∈ IRp and t ∈ IRn

such that 
x− a

y − b

w − c

 =


(H ′x)> C

(H ′y)> 0

(H ′w)> A


 q

t

 ∈ IRm+2n. (30)

Therefore, 
x− a = (H ′x)>q + Ct

y − b = (H ′y)>q

w − c = (H ′w)>q +At

(31)

Thus, by (29) and (31),

 H ′x(H ′x)> +H ′y(H ′y)> +H ′w(H ′w)> H ′xC +H ′wA

C(H ′x)> +A(H ′w)> C2 +A2

 q

t

 =

 −H

−Ca+ µ


(32)

Therefore,

t = −(C2 +A2)−1(C(H ′x)> +A(H ′w)>)q − (C2 +A2)−1(Ca− µ). (33)

16

By the first equation of (32) and (33) we have that:

((H ′x(H ′x)> +H ′y(H ′y)> +H ′w(H ′w)>)

−(H ′xC +H ′wA)(C2 +A2)−1(C(H ′x)> +A(H ′w)>))q

= −H + (H ′xC +H ′wA)(C2 +A2)−1(Ca− µ).

(34)

Note that

(C2 +A2)−1 = C−1(I + C−1A2C−1)−1C−1. (35)

Let us define H̃ ′ = H ′x(H ′x)>+H ′y(H ′y)>+H ′w(H ′w)>− (H ′xC+H ′wA)(C2 +215

A2)−1(C(H ′x)> +A(H ′w)>).

Then, by (35),

H̃ ′ = H ′x(H ′x)> +H ′y(H ′y)> +H ′w(H ′w)>

−(H ′x +H ′wAC
−1)(I + C−1A2C−1)−1((H ′x)> + C−1A(H ′w)>).

(36)

By (36), since A→ 0, we have that H̃ ′ → H ′y(z∗)H ′y(z∗)>+H ′w(z∗)H ′w(z∗)>.

Since the matrix
[
H ′y H ′w

]
is full row-rank, we have that, if (a, b, c) is close

enough to z∗, H̃ ′ is nonsingular and its inverse is bounded. Then, recalling that,

by (34),

q = (H̃ ′)−1(−H + (H ′xC +H ′wA)(C2 +A2)−1(Ca− µ)), (37)

we obtain that q is bounded if (a, b, c) is close enough to the solution and µ is

close enough to 0. Moreover, since Ca − µ → 0, we have that q = q(a, b, c, µ)

tends to zero as (a, b, c) tends to z∗ and µ tends to zero.220

In other words,

lim
(z,µ)→(z∗,0)

q(a, b, c, µ) = 0. (38)

Analogously, by (33),

lim
(z,µ)→(z∗,0)

t(a, b, c, µ) = 0. (39)

17

Recall that x− a = (H ′x)>q + Ct. Then, by (33),

Ct = −C((C2 +A2)−1(C(H ′x)> +A(H ′w)>)q − (C2 +A2)−1(Ca− µ))

= −CC−1(I + C−1A2C−1)−1C−1C((H ′x)> + C−1A(H ′w)>)q

−CC−1(I + C−1A2C−1)−1C−1C(a− C−1µ)

= −(I + C−1A2C−1)−1((H ′x)> + C−1A(H ′w)>)q

−(I + C−1A2C−1)−1(a− C−1µ)

(40)

and

x = (H ′x)>q + Ct+ a

= (I − (I + C−1A2C−1)−1)a+ (I − (I + C−1A2C−1)−1)(H ′x)>q

−(I + C−1A2C−1)−1(C−1A(H ′w)>)q + (I + C−1A2C−1)−1C−1µ.

(41)

Observe that

I − (I + C−1A2C−1)−1 = I − I −
∑∞
j=1(−1)j(C−1A2C−1)j

= C−1A2C−1(I +
∑∞
j=1(−1)j(C−1A2C−1)j).

Then, by (41),

x = C−1A2C−1(I +
∑∞
j=1(−1)j(C−1A2C−1)j)a

+C−1A2C−1(I +
∑∞
j=1(−1)j(C−1A2C−1)j)((H ′x)>q)

−AC−1(I + C−1A2C−1)−1((H ′w)>)q + (I + C−1A2C−1)−1C−1µ.

Therefore, for all i = 1, . . . , n we have that

xi ≥ (ci)
−2(ai)

2[(I +
∑∞
j=1(−1)j(C−1A2C−1)j)a]i

+(ci)
−2(ai)

2[(I +
∑∞
j=1(−1)j(C−1A2C−1)j)((H ′x)>q)]i

−(ci)
−1ai[(I + C−1A2C−1)−1((H ′w)>)q]i.

(42)

Our objective now is to investigate the possible values of α ∈ [0, 1] such that

αxi + (1− α)ai = 0 (43)

18

or

αwi + (1− α)ci = 0. (44)

If (44) takes place, then

α =
ci

ci − wi
. (45)

But, by (27) and since w∗i > 0, an α ∈ [0, 1] satisfying (45) cannot exist if ε is

small enough.

Therefore, we only need to analyze the values of α that satisfy (43).

By (43), α = 1 + αxi

ai
. Then, by (42),

α ≥ 1 + α (ci)
−2(ai)

2

ai
[(I +

∑∞
j=1(−1)j(C−1A2C−1)j)a]i

+ (ci)
−2(ai)

2

ai
[(I +

∑∞
j=1(−1)j(C−1A2C−1)j)((H ′x)>q)]i

− (ci)
−1ai
ai

[(I + C−1A2C−1)−1(H ′w)>q]i.

Thus,

α ≥ 1 + α(ci)
−2ai[(I +

∑∞
j=1(−1)j(C−1A2C−1)j)a]i

+α(ci)
−2ai[(I +

∑∞
j=1(−1)j(C−1A2C−1)j)(H ′x)>q]i

−αci[(I + C−1A2C−1)−1(H ′w)>q]i

(46)

By (38) and (46), given any δ ∈ [0, 1), and taking ε small enough we obtain

that α = 1. Consequently, αbreakk ≥ δ. �225

4.2. Convergence of the whole sequence

Assumption L. For all z, z′ ∈ Ω,

‖F ′(z)− F ′(z′)‖ ≤ L‖z′ − z‖ ∀ z, z′ ∈ Ω ⊂ IRm+2n. (47)

As a consequence, for all z, z′ ∈ Ω,

‖F (z′)− F (z)− F ′(z)(z′ − z)‖ ≤ L

2
‖z′ − z‖2. (48)

19

Theorem 4.2 Assume that Assumption L holds, z∗ ∈ Ω is a cluster point of a

sequence generated by Algorithm PGUN, F ′(z∗) is full row-rank and, for k large

enough, we choose

zk+1 = zk + αkd
k (49)

at Step 6 of the algorithm. Assume, further, that cbig (used at Step 2 of Algo-

rithm PGUN) is greater than 4‖F ′(z∗)†‖ and limk→∞ τk = 1. Then, limk−→∞ zk =

z∗ and

αk = αmaxk (50)

for k large enough.

Proof. Let K1 be an infinite sequence of indices such that limk∈K1
zk = z∗. By

Theorem 3.1, z∗ is a stationary point of f over Ω.230

The choice of dk at Step 2 of the algorithm gives:

H ′(zk)dk +H(zk) = 0 (51)

and

(
xki [dkw]i + wki [dkx]i + xkiw

k
i

)2
= σ2

k

〈xk, wk〉2

n2
≤ σ2

k

∑n
i=1(xkiw

k
i)2

n
.

So,

n∑
i=1

(xki [dkw]i + wki [dkx]i + xkiw
k
i)2 ≤ σ2

k

n∑
i=1

(xkiw
k
i)2 ≤ σ2

k‖F (zk)‖2.

Then, by (51),

‖F ′(zk)dk + F (zk)‖ ≤ σk‖F (zk)‖. (52)

Since F ′(z∗) is full row-rank, there exists ε1 > 0 such that ‖F ′(z)†‖ ≤

M1 ≡ 2‖F ′(z∗)†‖ and F ′(z) is full row rank whenever ‖z− z∗‖ ≤ ε1. Moreover,

F ′(z)†F ′(z)F ′(z)† = F ′(z)†. Therefore, by (52), for k ∈ K1 large enough and

20

‖zk − z∗‖ ≤ ε1,

‖dk‖ =

∥∥∥∥∥∥F ′(zk)†

 −H(zk)

−XkWke+ µk

∥∥∥∥∥∥
=

∥∥∥∥∥∥F ′(zk)†F ′(zk)F ′(zk)†

 −H(zk)

−XkWke+ µk

∥∥∥∥∥∥
= ‖F ′(zk)†F ′(zk)dk‖ ≤ ‖F ′(zk)†‖‖F ′(zk)dk + F (zk)− F (zk)‖

≤ ‖F ′(zk)†‖(‖F ′(zk)dk + F (zk)‖+ ‖F (zk)‖) ≤M1(1 + σk)‖F (zk)‖.
(53)

By Theorem 3.1, we have that F (z∗) = 0. Moreover, since cbig ≥ 4‖F ′(z∗)†‖,

if ‖zk − z∗‖ ≤ ε1, k ∈ K1, large enough, we have that ‖F (zk)‖ ≤ 1 and (53)

implies that dk is computed at Step 2.

Define M2 = 2‖F ′(z∗)‖. Then, since F and F ′ are continuous, F (z∗) = 0.

By (53) and Theorem 4.1 there exists ε2 ∈ (0, ε1] such that for all k ∈ IN such235

that ‖zk − z∗‖ ≤ ε2, we have that:

(i) ‖dk‖ ≤M1(1 + σk)‖F (zk)‖;

(ii) αmax
k ≥ max{1− 1

12M1M2
, 11

12};

(iii) ‖F ′(zk)‖ ≤M2;

(iv) ‖F (zk)‖ ≤ 1
12LM2

1
;240

(v) ρ‖αmaxk dk‖2 ≤ 1
2‖F (zk)‖.

Then, for all k ∈ IN such that ‖zk − z∗‖ ≤ ε2,

‖F (zk + αmaxk dk)‖

≤ ‖F (zk + αmaxk dk)− F (zk)− αmaxk F ′(zk)dk‖+ ‖F (zk) + αmaxk F ′(zk)dk‖

≤ L
2 (αmaxk)2‖dk‖2 + ‖F (zk) + F ′(zk)dk‖+ (1− αmaxk)‖F ′(zk)dk‖

≤ L
2 (αmaxk)2‖dk‖2 + σk‖F (zk)‖+ (1− αmaxk)‖F ′(zk)dk‖

≤ L
2 (αmaxk)2M2

1 (1 + σk)2‖Fzk‖2 + σk‖F (zk)‖

+(1− αmaxk)‖F ′(zk)‖M1(1 + σk)‖Fzk‖

≤
(
L
2 (αmaxk)2M2

1 ‖F (zk)‖+ σk + (1− αmaxk)(1 + σk)M2M1

)
‖F (zk)‖

≤ 1
2‖F (zk)‖ ≤ ‖F (zk)‖ − ρ‖αmaxk dk‖2 + γk.

(54)

21

Therefore, by (22), for all k ∈ IN such that ‖zk − z∗‖ ≤ ε2, we have that

αk = αmaxk (proving (50)),

zk+1 = zk + αmaxk dk, and ‖F (zk+1)‖ ≤ 1

2
‖F (zk)‖. (55)

Since limk∈K1 F (zk) = F (z∗) = 0, there exists k0 ∈ K1 such that ‖zk0 −

z∗‖ ≤ ε2
4 and ‖F (zk0)‖ ≤ ε2

4(4M1+1) . We will prove by induction that ‖zk−z∗‖ ≤

ε2 for all k ≥ k0, k ∈ IN . This is trivial for k = k0.

Assume, by inductive hypothesis, that ‖zk − z∗‖ ≤ ε2 for all k = k0, k0 +245

1, . . . , k0 + j−1. Then, by (55), ‖F (zk+1)‖ ≤ 1
2‖F (zk)‖ for k = k0 + 1, . . . , k0 +

j − 1.

By (55) and (i)-(v), we can write:

‖zk0+j − zk0‖ = ‖
∑j−1
i=0 α

max
k0+id

k0+i‖ ≤ 2M1

∑j−1
i=0

(
1
2

)i ‖F (zk0)‖

≤ 4M1‖F (zk0)‖ ≤ ε2
4 .

Therefore, ‖zk0+j−z∗‖ ≤ ‖zk0+j−zk0‖+‖zk0−z∗‖ ≤ ε2
2 . Thus, ‖zk0+j−z∗‖ ≤

ε2. This completes the inductive proof.

Let us prove now that {zk} is a Cauchy sequence.250

Let j ≥ k0 and ` ≥ 1. Then,

‖zj+` − zj‖ ≤
∑`−1
i=0 α

max
j+i ‖dj+i‖

≤ 2M1

∑`−1
i=0(1

2)i+1‖F (zj)‖

≤ 2M1

∑`−1
i=0(1

2)i+1‖F (zj)‖ ≤ 2M1‖F (zj)‖.

(56)

Since limj→∞ ‖F (zj)‖ = 0, (56) implies that {zk} is a Cauchy sequence.

Then, since z∗ is a limit point, we have that limk−→∞ zk = z∗. �

4.3. Superlinear and quadratic convergence

In this section we will prove that, under the assumptions of Theorem 4.2255

and adequate choices of the parameters σk, the algorithm exhibits superlinear

or quadratic convergence.

22

We will consider the following assumption on the parameters σk.

Assumption S. Choose σk such that

lim
k→∞

σk = 0. (57)

Theorem 4.3. Assume that {zk} is generated by Algorithm PGUN and con-

verges to z∗ such that F (z∗) = 0, where F ′(z∗) is full row-rank, and for k large

enough we choose

zk+1 = zk + αkd
k (58)

at Step 6 of the algorithm. Assume that the hypotheses of Theorem 4.2, and260

both assumptions L and S hold. Then, zk converges superlinearly to z∗.

Moreover, if there exists c1, c2 > 0 such that, for all k large enough,

σk ≤ c1‖F (zk)‖ and 1− τk ≤ c2‖F (zk)‖, (59)

zk converges quadratically to z∗.

Proof. Since τk → 1 we have that limk→∞ αmaxk = 1.

By Theorem 4.2, for all k large enough there exists M > 0 such that ‖dk‖ ≤

M‖F (zk)‖, ‖F ′(zk)‖ ≤M and

‖F (zk+1)‖ ≤ ‖F (zk+1)− F (zk)− αmaxk F ′(zk)dk‖+ ‖F (zk) + αmaxk F ′(zk)dk‖

≤ L
2 (αmaxk)2‖dk‖2 + ‖F (zk) + F ′(zk)dk‖+ (1− αmaxk)‖F ′(zk)dk‖

≤ L
2M

2‖F (zk)‖2 + σk‖F (zk)‖+ (1− αmaxk)M2‖F (zk)‖

≤
(
L
2M

2‖F (zk)‖+ σk + (1− αmaxk)M2
)
‖F (zk)‖ = Rk‖F (zk)‖

(60)

where Rk =
L

2
M2‖F (zk)‖+ σk +M2(1− αmaxk). Moreover,

‖zk+1 − z∗‖ ≤
∞∑

j=k+1

αmaxj ‖dj‖ ≤ 2M

∞∑
j=1

(
1

2

)j
‖F (zk+1)‖.

23

By (60) and (48) we have that

‖zk+1 − z∗‖ ≤ 2MRk‖F (zk)‖

= 2MRk‖F (zk)− F (z∗)− F ′(zk)(zk − z∗) + F ′(zk)(zk − z∗)‖

≤ 2MRk‖F (zk)− F (z∗)− F ′(zk)(zk − z∗)‖+ ‖F ′(zk)(zk − z∗)‖

≤ 2MRk
(
L
2 ‖z

k − z∗‖+M
)
‖zk − z∗‖

≤ 2MRkL
(
L
2 +M

)
‖zk − z∗‖.

Since limk→∞Rk = 0, zk converges superlinearly to z∗.265

Now, taking c = max{c1, c2}, since max{σk, 1−αmaxk } ≤ max{σk, 1− τk} ≤

c‖F (zk)‖, we have that

‖zk+1 − z∗‖ ≤ 2M
(
L
2M

2‖F (zk)‖+ σk + (1− αmaxk)M2
)
‖F (zk)‖

≤ 2M
(
L
2M

2 + (1 +M2)c
)
‖F (zk)‖2

≤ 2M(L2 +M)2
(
L
2M

2 + (1 +M2)c
)
‖zk − z∗‖2.

Therefore, quadratic convergence is proved. �

5. Computational Experience

In this section we will report some experiments with the PGUN algorithm

for the solution of (3) and (5). In order to have a better idea of the efficiency of270

PGUN in practice, we have compared the PGUN method with the Projected-

Gradient Levenberg-Marquardt (PLM) algorithm [27].

5.1. The Projected Levenberg-Marquardt Algorithm

The Projected Levenberg-Marquardt (PLM) is an algorithm for the solution

of constrained nonlinear systems F (z) = 0, z ∈ Z, where Z ∈ IRn is a nonempty,275

closed and convex set. For solving this problem the method is applied to a

nonlinear program of a form similar to (10) where the merit function is also

defined by (9).

24

The PLM algorithm generates a sequence {zk} by

zk+1 = PZ(zk + dkU) k = 0, 1, ...,

where dkU is the unique solution of the system of linear equations

(J>k Jk + µkI)dU = −J>k F (zk) (61)

and Jk is an approximation to the Jacobian F ′(zk).

We present below, in general terms, the method based on Algorithm 3.12 of280

[27] with the additional line search step considered in the experimental section

of [27].

For more details about the method and its convergence properties see [27].

PLM Algorithm285

Step 0: Initial setup: Choose z0 ∈ Z, µ > 0, β, σ, γ ∈ (0, 1), ρ > 0 and p > 1.

Step 1: Declare finite convergence: If F (zk) = 0, stop.

Step 2: Unconstrained direction: Choose Jk, set µk = µ‖F (zk)‖2 and compute

dkU as the solution of (61).

Step 3: Levenberg-Marquardt step: If

‖F (PZ(zk + dkU))‖ 6 γ‖F (zk)‖, (62)

then set zk+1 = PZ(zk + dkU) and go to Step 1.290

Step 4: Line Search step: If the search direction sk = PZ(zk + dkU) − zk is a

descent direction of f in the sense that ∇f(zk)>sk 6 −ρ‖sk‖p, set α = 1

and

Step 4.1: If

‖F (zk + tsk)‖2 6 ‖F (zk)‖2 + γα∇f(zk)>sk

25

then set zk+1 = zk + αsk and go to Step 1.

Step 4.2: Choose αnew ∈ (0, α), set α = αnew and go to Step 4.1.295

Step 5: Projected Gradient step: Compute a stepsize αk = max{βl | l =

0, 1, 2, ...} such that

f(zk(αk)) 6 f(zk) + σ∇f(zk)>(zk(αk)− zk),

where zk(α) = PZ(zk − α∇f(zk)). Set zk+1 = zk(αk) and go to Step 1.

5.2. Implementation issues and test problems

The codes for the PGUN and PLM algorithms were written in Fortran 77

with double precision and the experiments were performed using gfortarn-4.6

on an Intel CORE I3-2310M@2.10 GHz with 100 Gb of HD and 4Gb of Ram.300

Furthermore we used the ma48 routine of the Harwell Subroutine Library [21]

for the solution of the linear systems required by the two algorithms.

We considered the following stopping criteria:

SC1: Stop with zk if ||g(zk, η)|| < 10−5.

SC2: Stop with zk when SC1 is satisfied and ||F (zk)|| < 10−6.305

SC3: Stop at iteration k if ||F (zk)|| > 10−3 and ||F (zk−1)|| − ||F (zk)|| <

10−4.

PGUN stops if SC1 occurs at a projected gradient iteration. However, if

SC1 takes place at a interior point Newton-like (IP) iteration we continue the

execution with the hope of satisfying SC2. If, during this process, a projected310

gradient iteration is required, we stop with the diagnostic SC1.

In some cases the PGUN algorithm converges very slowly using projected-

gradient (PG) iterations to a stationary point with a positive value of the merit

function. In this case, PGUN is not converging to a solution of the HNCP and

there is no reason to continue the execution of the algorithm. To avoid this315

occurrence, we decided to stop prematurely the algorithm by using the third

26

stopping criterion. Moreover, when SC3 occurs the algorithm is restarted with

a new initial point.

PLM employs fast Levenberg-Marquardt (LM) and slow Projected-Gradient

(PG) iterations and use the same stopping criteria SCi, i = 1, 2, 3, employed320

by PGUN with the LM iterations replacing the IP ones.

We limited the number of iterations of both PGUN and PLM by max{100,min{r+

1, 2n + m}3} and the CPU time by 600 seconds. The initial iterate for both

methods was given by:

x0 = e, y0 = 0, w0 = e (63)

where e is a vector of ones. The following values for the algorithmic parameters325

of PGUN were used: αmin = 10−8, β = 0.25, cbig = 104, csmall = 10−10,

ηk = η = 1.0, γk = 1
k2 , ρ = 10−3, σk = σ = 1√

2n+m
, τk = τ = 0.9995

and θ = 0.5. For the PLM Method we utilized the default parameters of [27]:

αmin = 10−12, β = 0.9, µ = 10−5, σ = 10−4, γ = 0.99995, p = 2.1 and ρ = 10−8.

We have made the experiments with both the algorithms on the solution of330

48 MPCC test problems of the collection MacMPEC [29]. These problems are

presented in Table 1. In this table, m is the dimension of y, n is the dimension

of x and w, p is the dimension of (ϕ(x, y, w), H(x, y, w))>, nz is the number of

possible non zero elements of the Jacobian matrix, density is the density of the

Jacobian matrix and min is the lower value known for the function.335

5.3. Experiment 1: Computing a Simple Feasible Solution of MPCC

In order to compute a simple feasible solution of the MPCC, we considered

the HNCP of the form (3). Table 2 shows the number of complementary pairs

for each problem. In this table, NCP represents the number of original com-

plementary pairs and NNG is the number of complementary pairs after each340

nonnegative non-complementary variable xi is transformed into a pair of com-

plementary variables (xi, wi) with wi an auxiliary variable.

Table 3 reports the performance of the PGUN algorithm for finding a sim-

27

Table 1: Selected problems of the Mathematical Programs with Equilibrium Constraints col-
lection.

Problem m n p nz density min Problem m n p nz density min
bard1 0 6 5 29 22% 17.0000 liswet1 52 102 104 760 1% 0.01399
bard2 0 22 18 98 6% -6598.00 nash1 2 7 7 35 16% 7.8e-30
bard3 0 8 6 38 17% -12.6787 outrata31 0 7 6 37 20% 3.20770
bilevel1 2 12 12 62 10% -60.0000 outrata32 0 7 6 38 21% 3.44940
bilevel3 2 8 8 44 15% -12.6787 outrata33 0 7 6 38 21% 4.60425
bilin 0 10 8 56 16% 18.4000 outrata34 0 7 6 40 22% 6.59268
dempe 2 2 3 12 40% 28.2500 portfl1 1 75 14 1149 9% 1.5e-05
design cent1 9 7 13 60 13% 1.86065 qpec1 10 21 21 113 5% 80.0000
desilva 2 7 7 33 15% -1.00000 qpecgen1 5 103 103 11124 26% 0.09900
df1 1 6 6 27 17% 0.00000 ralph2 0 2 1 7 58% 0.00000
ex911 2 7 8 42 18% -13.0000 ralphmod 0 109 105 10831 23% -683.033
ex921 0 7 6 34 19% 17.0000 scale1 0 2 1 7 58% 1.00000
ex922 0 9 7 38 13% 100.000 scale2 0 2 1 7 58% 1.00000
ex925 1 6 6 30 19% 5.00000 scale3 0 2 1 7 58% 1.00000
ex928 0 6 5 24 18% 1.50000 scale4 0 2 1 7 58% 1.00000
flp2 0 7 5 33 20% 0.00000 scale5 0 2 1 7 58% 100.000
gauvin 0 5 4 22 24% 20.0000 scholtes1 1 3 2 14 40% 2.00000
gnash1 1 11 11 57 11% -230.823 scholtes2 1 3 2 14 40% 15.0000
hakonsen 0 9 7 46 16% 24.3668 scholtes3 0 2 1 7 58% 0.50000
jr1 1 2 2 10 50% 0.50000 scholtes4 1 4 3 18 29% -3.0e-07
jr2 1 2 2 10 50% 0.50000 scholtes5 0 3 2 12 40% 1.00000
kth1 0 2 1 7 58% 0.00000 sl1 2 11 10 49 10% 0.00010
kth2 0 2 1 7 58% 0.00000 stackelberg1 0 4 3 16 29% -3266.67
kth3 0 2 1 7 58% 0.50000 traffic1 0 739 737 3679 0.17% 45.1500

ple feasible solution of the Mathematical Program with Complementarity Con-

straints (MPCC). In this table, we use the following notations:345

TERM: termination of the algorithm which can be one of the following:

IP-1: algorithm stopped with an interior-point Newton-like (IP) it-

eration satisfying SC1.

IP-2: algorithm stopped with an IP iteration satisfying SC2.

PG-1: algorithm stopped with a projected-gradient (PG) iteration350

satisfying SC1.

IP: number of interior-point Newton-like (IP) iterations.

PG: number of projected-gradient (PG) iterations.

28

Table 2: Number of complementary pairs for Experiment 1

Problem NCP NNG Problem NCP NNG Problem NCP NNG

bard1 3 2 gauvin 2 2 qpecgen 100 2
bard2 4 17 gnash1 8 2 ralph2 1 0
bard3 2 5 hakonsen 4 4 ralphmod 100 8
bilevel1 6 5 jr1 1 0 scale1 1 0
bilevel3 4 3 jr2 1 0 scale2 1 0
bilin 6 3 kth1 1 0 scale3 1 0
dempe 1 0 kth2 1 0 scale4 1 0
design-cent1 3 3 kth3 1 0 scale5 1 0
desilva 2 4 liswet1-inv50 50 51 scholtes1 1 1
df1 1 4 nash1 2 4 scholtes2 1 1
ex911 5 1 outrata31 4 2 scholtes3 1 0
ex921 4 2 outrata32 4 2 scholtes4 1 2
ex922 4 4 outrata33 4 2 scholtes5 2 0
ex925 3 2 outrata34 4 2 sl1 3 7
ex928 2 3 portfl1 12 62 stackelberg1 1 2
flp2 2 4 qpec1 10 10 traffic1 244 494

CG: number of times that the algorithm changed from an IP to a PG

iteration or conversely.355

NE: number of function evaluations.

TIME: CPU time (in seconds), measured with the function etime. A time

smaller than 1e-4 is considered as zero.

||F (z)||: value of ||F (z)||, where z is the solution computed by the algo-

rithm.360

SPG norm: norm of the projected-gradient at the solution computed by

the algorithm.

Feas: feasibility measure, that is, Feas = ||h(z)||.

Comp: complementarity measure, that is, Comp = maxi=1,n{xiwi}.

∗ The algorithm computed a feasible solution of MPCC with an initial365

point different from (63).

29

∗∗ failure: The algorithm was not able to compute a feasible solution of

MPCC after 10 trials with different starting points.

Table 3: Performance of the PGUN method for Experiment 1

Problem TERM IP PG CG NE TIME ||F (z)|| SPG norm Feas Comp
bard1 IP-1 6 0 0 7 0.0000 1.17e-08 3.08e-08 1.16e-08 1.19e-09
bard2 IP-2 12 0 0 13 0.0040 5.86e-14 4.23e-13 1.20e-14 5.73e-14
bard3 IP-1 5 0 0 6 0.0000 4.72e-07 1.06e-06 2.88e-07 3.12e-07
bilevel1 IP-2 25 0 0 26 0.0040 9.90e-07 2.97e-06 9.90e-07 1.36e-20
bilevel3 IP-2 51 0 0 52 0.0040 9.64e-07 4.09e-06 9.64e-07 4.19e-23
bilin IP-1 7 0 0 8 0.0000 2.68e-08 8.96e-09 1.84e-09 2.48e-08
dempe IP-1 5 0 0 6 0.0000 1.25e-07 5.07e-07 1.25e-07 1.98e-12
design-cent1 IP-2∗ 8 0 0 9 0.0000 6.80e-08 1.05e-08 4.51e-09 6.79e-08
desilva IP-1 5 0 0 6 0.0000 2.21e-07 6.11e-07 2.17e-07 2.94e-08
df1 IP-2 10 0 0 11 0.0000 8.97e-08 1.26e-07 8.97e-08 2.72e-23
ex911 IP-1 8 0 0 9 0.0000 6.08e-08 3.80e-07 5.08e-08 3.34e-08
ex921 IP-2 31 0 0 32 0.0000 6.08e-07 1.74e-06 6.08e-07 1.97e-22
ex922 IP-2 14 0 0 15 0.0000 4.84e-07 4.77e-10 1.13e-15 4.84e-07
ex925 IP-1 8 0 0 9 0.0000 4.57e-07 7.93e-08 6.38e-16 4.57e-07
ex928 IP-1 5 0 0 6 0.0000 2.16e-08 6.12e-09 9.91e-17 1.86e-08
flp2 IP-1 7 0 0 8 0.0000 4.55e-13 1.06e-12 1.14e-15 4.54e-13
gauvin IP-1 8 0 0 9 0.0000 5.13e-07 2.43e-07 4.43e-15 5.13e-07
gnash1 IP-1∗ 14 0 0 15 0.0000 4.42e-11 4.60e-11 4.42e-011 1.86e-17
hakonsen IP-1 9 0 0 10 0.0000 3.54e-11 4.26e-09 3.54e-11 3.45e-15
jr1 IP-2 10 0 0 11 0.0000 9.53e-07 1.31e-09 0.0000 9.53e-07
jr2 IP-2 10 0 0 11 0.0000 9.53e-07 1.31e-09 0.0000 9.53e-07
kth1 IP-2 10 0 0 11 0.0000 9.53e-07 1.31e-09 - 9.53e-07
kth2 IP-2 10 0 0 11 0.0000 9.53e-07 1.31e-09 - 9.53e-07
kth3 IP-2 10 0 0 11 0.0000 9.53e-07 1.31e-09 - 9.53e-07
liswet1-inv50 IP-1 26 0 0 45 0.1400 3.21e-08 3.96e-08 2.82e-08 1.18e-08
nash1 IP-1 8 0 0 9 0.0000 6.52e-07 7.94e-08 2.25e-15 6.52e-07
outrata31 IP-1 8 0 0 9 0.0000 1.06e-08 2.03e-08 3.79e-09 9.93e-09
outrata32 IP-1 8 0 0 9 0.0000 1.06e-08 2.03e-08 3.79e-09 9.93e-09
outrata33 IP-1 8 0 0 9 0.0000 1.06e-08 2.03e-08 3.79e-09 9.93e-09
outrata34 IP-1 8 0 0 9 0.0000 1.06e-08 2.03e-08 3.79e-09 9.93e-09
portfl1 IP-2∗ 2098 0 0 2100 5.6403 2.21e-09 3.19e-09 2.21e-09 4.98e-17
qpec1 IP-2 12 0 0 13 0.0040 2.66e-07 9.20e-11 0.00000 5.96e-08
qpecgen ∗∗
ralph2 IP-2 10 0 0 11 0.0000 9.53e-07 1.31e-09 - 9.53e-07
ralphmod IP-1 16 0 0 17 0.8080 7.28e-09 1.64e-07 6.40e-11 6.95e-09
scale1 IP-2 10 0 0 11 0.0000 9.53e-07 1.31e-09 - 9.53e-07
scale2 IP-2 10 0 0 11 0.0000 9.53e-07 1.31e-09 - 9.53e-07
scale3 IP-2 10 0 0 11 0.0000 9.53e-07 1.31e-09 - 9.53e-07
scale4 IP-2 10 0 0 11 0.0000 9.53e-07 1.31e-09 - 9.53e-07
scale5 IP-2 10 0 0 11 0.0000 9.53e-07 1.31e-09 - 9.53e-07
scholtes1 PG-1 13 2 3 16 0.0000 6.40e-09 6.40e-09 6.40e-09 9.31e-15
scholtes2 PG-1 13 2 3 16 0.0000 6.40e-09 6.40e-09 6.40e-09 9.31e-15
scholtes3 IP-2 10 0 0 11 0.0000 9.53e-07 1.31e-09 - 9.53e-07
scholtes4 IP-2 10 0 0 11 0.0000 9.53e-07 1.31e-09 1.61e-17 9.53e-07
scholtes5 IP-2 11 0 0 12 0.0000 3.37e-07 2.32e-10 0.00000 2.38e-07
sl1 IP-2 13 0 0 14 0.0000 4.09e-07 4.14e-10 1.94e-14 4.09e-07
stackelberg1 IP-1 7 0 0 8 0.0000 3.49e-07 8.48e-06 3.40e-15 3.49e-07
traffic1 ∗∗

The performance of the PGUN algorithm for finding a simple feasible solu-

tion of the 48 MPCCs is illustrated in Table 3. These results indicate that in370

general the algorithm converged fast to a solution of HNCP, as it performed a

small number of IP iterations. In fact, there was only one case in which PGUN

required too many IP iterations and only 2 instances where the algorithm re-

quired 2 slow PG iterations. For 3 instances the stopping criterion SC3 was

applied to avoid the slow convergence of PGUN to a stationary point of the375

30

merit function that would not be a solution of HNCP. In these 3 cases PGUN

converged to a solution of HNCP by using an alternative starting point. Fi-

nally, the algorithm was unable to find a feasible solution of the MPCC in two

instances.

We also note from the values of Feas and Comp that PGUN is usually able380

to compute accurate feasible solutions of the MPCC. Furthermore, the use of

the stopping criterion SC2 was shown appropriate for such a goal. This is an

interesting point as these accurate solutions can be used as initial points for

projected and active-set algorithms [11, 16, 26, 38] that have been designed for

the computation of stationary points of MPCC.385

In order to have a better idea of the performance of PGUN in practice, we

also solved the test problems by the PLM algorithm. The results of the perfor-

mance of this method are displayed in Table 4, where the notations mentioned

before were used together with the following additional ones:

TERM: algorithm termination, which can be one of the following:390

LM-1: algorithm stopped with a Levenberg-Marquardt (LM) itera-

tion satisfying SC1.

LM-2: algorithm stopped with a LM iteration satisfying SC2.

PG-1: algorithm stopped with a projected gradient (PG) iteration

satisfying SC1.395

LM: number of LM iterations (steps 2, 3 and 4).

PG: number of PG iterations (step 5).

The numerical results indicate that the PLM algorithm used a small number

of fast LM iterations to converge and rarely employs slow PG iterations. As

before, the stopping criterion SC3 was used in order to stop prematurely the400

convergence to points that are not feasible solutions of MPCC. As for the PGUN

algorithm the use of the stopping criterion SC2 usually leads to accurate feasible

solutions of MPCC (see values in the columns Comp and Feas). Finally, the

31

Table 4: Performance of the PLM Method for Experiment 1

Problem TERM LM PG CG NE TIME ||F (z)|| SPG norm Feas Comp
bard1 LM-1 3 0 0 4 0.0000 3.35e-09 1.02e-08 8.84e-16 3.35e-09
bard2 LM-1∗ 11 1 2 23 0.0000 5.76e-08 2.09e-07 2.17e-11 4.44e-08
bard3 LM-2 7 0 0 8 0.0000 7.25e-09 2.44e-08 5.67e-09 4.45e-09
bilevel1 ∗∗
bilevel3 LM-2 8 0 0 9 0.0000 6.74e-09 5.46e-09 1.63e-09 6.54e-09
bilin LM-1 7 0 0 8 0.0000 8.81e-12 4.40e-12 1.51e-16 8.81e-12
dempe LM-2 42 0 0 43 0.0000 6.13e-07 1.71e-06 4.33e-07 4.33e-07
designcent1 LM-2∗ 9 0 0 10 0.0000 1.06e-10 3.25e-10 1.06e-10 7.45e-14
desilva LM-2 8 0 0 9 0.0000 1.91e-10 3.07e-10 1.83e-10 3.95e-11
df1 LM-1 9 0 0 10 0.0000 2.02e-08 6.36e-08 1.93e-08 5.52e-09
ex911 LM-2 6 0 0 126 0.0000 9.56e-10 7.93e-10 9.44e-16 7.91e-10
ex921 LM-2 5 0 0 113 0.0000 1.61e-10 3.20e-10 6.76e-16 1.57e-10
ex922 LM-2∗ 7 0 0 8 0.0000 2.81e-10 5.95e-07 4.39e-15 2.17e-10
ex925 LM-2 11 0 0 12 0.0000 5.16e-08 6.35e-09 1.05e-15 5.16e-08
ex928 LM-1 7 0 0 8 0.0000 1.78e-07 4.48e-08 1.00e-16 1.78e-07
flp2 LM-1 5 0 0 6 0.0000 6.75e-10 2.69e-10 5.93e-16 6.73e-10
gauvin LM-1∗ 6 0 0 7 0.00000 5.18e-09 7.95e-10 4.97e-13 5.18e-09
gnash1 ∗∗
hakonsen ∗∗
jr1 LM-2 18 0 0 19 0.0000 7.68e-08 1.37e-10 1.08e-19 7.68e-08
jr2 LM-2 18 0 0 19 0.0000 7.68e-08 1.37e-10 1.08e-19 7.68e-08
kth1 LM-2 17 0 0 18 0.0000 6.71e-07 1.16e-09 - 6.71e-07
kth2 LM-2 17 0 0 18 0.0000 6.71e-07 1.16e-09 - 6.71e-07
kth3 LM-2 17 0 0 18 0.0000 6.71e-07 1.16e-09 - 6.71e-07
liswet1-inv50 ∗∗
nash1 LM-2 7 0 0 8 0.0000 4.93e-08 2.21e-08 1.36e-15 4.93e-08
outrata31 LM-1 8 0 0 18 0.0000 2.54e-07 7.06e-07 1.13e-07 2.27e-07
outrata32 LM-1 8 0 0 18 0.0000 2.54e-07 7.06e-07 1.13e-07 2.27e-07
outrata33 LM-1 8 0 0 18 0.0000 2.54e-07 7.06e-07 1.13e-07 2.27e-07
outrata34 LM-1 8 0 0 18 0.0000 2.54e-07 7.06e-07 1.13e-07 2.27e-07
portfl1 ∗∗
qpec1 LM-2 19 0 0 20 0.0000 5.68e-07 4.49e-10 0.00000 1.32e-07
qpecgen ∗∗
ralph2 LM-2 17 0 0 18 0.0000 6.71e-07 1.16e-09 - 6.71e-07
ralphmod ∗∗
scale1 LM-2 17 0 0 18 0.0000 6.71e-07 1.15e-09 - 6.71e-07
scale2 LM-2 17 0 0 18 0.0000 6.71e-07 1.15e-09 - 6.71e-07
scale3 LM-2 17 0 0 18 0.0000 6.71e-07 1.15e-09 - 6.71e-07
scale4 LM-2 17 0 0 18 0.0000 6.71e-07 1.15e-09 - 6.71e-07
scale5 LM-2 17 0 0 18 0.0000 6.71e-07 1.15e-09 - 6.71e-07
scholtes1 LM-1 8 0 0 9 0.0000 3.60e-07 4.32e-08 2.49e-08 3.59e-07
scholtes2 LM-1 8 0 0 9 0.0000 3.60e-07 4.32e-08 2.49e-08 3.59e-07
scholtes3 LM-2 17 0 0 18 0.0000 6.71e-07 1.16e-09 - 6.71e-07
scholtes4 LM-1 16 0 0 11 0.0000 2.02e-04 8.90e-06 3.04e-14 1.96e-04
scholtes5 LM-1 3 0 0 98 0.0000 9.99e-19 9.99e-19 0.00000 9.99e-19
sl1 ∗∗
stackelberg1 LM-1∗ 25 0 0 1767 0.0000 2.29e-09 2.61e-09 3.12e-15 2.29e-09
traffic1 ∗∗

PLM method seems to have more failures for finding a feasible solution than

the PGUN algorithm. This leads to our recommendation of using PGUN for405

computing a feasible solution of an MPCC.

5.4. Experiment 2: Computing a Target Feasible Solution of MPCC

Next, we report the experiments with PGUN and PLM for computing a

target feasible solution (i.e., a solution of HNCP (5)) of the MPCC test prob-

lems mentioned before when the target value ct is the best value given by the410

collection. The definition of the test problems used in this experiment and the

numerical results on the performance of the algorithms for these instances are

32

displayed in Table 5 and Tables 6 and 7, respectively. In these tables we used

the notations mentioned before and the additional one:

SLACK: represents the value of the slack variable associated to the target415

constraint. If SLACK is greater than a tolerance 10−6, then the algorithm was

able to compute a better feasible solution than the one given by the collection.

Table 5: Number of complementary pairs for Experiment 2

Problem NCP NNG Problem NCP NNG Problem NCP NNG

bard1 3 3 gauvin 2 3 qpecgen 100 3
bard2 4 18 gnash1 8 3 ralph2 1 1
bard3 2 6 hakonsen 4 5 ralphmod 100 9
bilevel1 6 6 jr1 1 1 scale1 1 1
bilevel3 4 4 jr2 1 1 scale2 1 1
bilin 6 4 kth1 1 1 scale3 1 1
dempe 1 1 kth2 1 1 scale4 1 1
design-cent1 3 4 kth3 1 1 scale5 1 1
desilva 2 5 liswet1-inv50 50 52 scholtes1 1 2
df1 1 5 nash1 2 5 scholtes2 1 2
ex911 5 2 outrata31 4 3 scholtes3 1 1
ex921 4 3 outrata32 4 3 scholtes4 1 3
ex922 4 5 outrata33 4 3 scholtes5 2 1
ex925 3 3 outrata34 4 3 sl1 3 8
ex928 2 4 portfl1 12 63 stackelberg1 1 3
flp2 2 5 qpec1 10 11 traffic1 244 495

The numerical results indicate the same type of performance shown before.

However, there is an increase of failures of the algorithms when the objective420

function constraint is included in the HNCP associated to a target feasible solu-

tion. Furthermore PGUN and PLM always computed the feasible solution given

by the collection (see values in the column SLACK). These conclusions confirm

the conclusions in [12] that computing a target feasible solution is usually more

difficult than finding a simple feasible solution.425

33

Table 6: Performance of the PGUN method for Experiment 2

Problem TERM IP PG CG NE TIME ||F (z)|| SPG norm Feas Comp SLACK
bard1 IP-1 9 0 0 10 0.0000 7.93e-10 6.21e-09 7.72e-10 1.81e-10 -6.68e-18
bard2 IP-1 18 0 0 19 0.0080 1.06e-12 9.27e-07 1.06e-12 8.36e-14 -1.72e-23
bard3 IP-1 13 0 0 14 0.0000 1.54e-08 8.22e-08 1.48e-08 3.98e-09 -1.55e-17
bilevel1 ∗∗
bilvel3 IP-1 13 0 0 14 0.0000 2.74e-08 1.49e-07 2.70e-08 4.91e-09 3.12e-17
bilin ∗∗
dempe ∗∗
design-cent1 ∗∗
desilva IP-2 13 0 0 14 0.0000 5.01e-07 8.52e-07 5.01e-07 1.41e-11 -1.03e-16
df1 IP-2 13 0 0 14 0.0000 7.90e-07 2.02e-06 7.89e-07 4.69e-08 -1.53e-16
ex911 IP-1 10 0 0 11 0.0000 6.26e-13 7.65e-13 2.11e-15 4.52e-13 1.29e-17
ex921 IP-1 9 0 0 10 0.0000 7.74e-09 5.92e-08 7.37e-09 1.68e-09 -2.22e-18
ex922 IP-2 17 0 0 18 0.0040 6.18e-07 3.93e-07 1.96e-08 6.12e-07 -3.15e-22
ex925 IP-2 16 0 0 17 0.0000 4.48e-07 2.00e-06 4.48e-07 1.12e-15 1.04e-16
ex928 IP-2 8 0 0 9 0.0000 2.13e-09 6.00e-09 7.22e-10 2.01e-09 1.15e-13
flp2 IP-2 19 0 0 20 0.0000 3.59e-07 6.72e-10 3.59e-07 2.16e-17 -1.11e-16
gauvin IP-1 20 0 0 21 0.0000 3.24e-07 2.90e-06 3.24e-07 3.54e-16 -1.06e-16
gnash1 IP-1∗ 43 0 0 57 0.0040 2.36e-07 8.88e-07 2.36e-07 3.09e-14 -5.87e-17
hakonsen IP-1∗ 10 0 0 11 0.0000 8.37e-15 9.94e-13 8.37e-15 5.07e-22 1.44e-05
jr1 IP-2 11 0 0 12 0.0000 3.45e-07 4.88e-07 3.45e-07 3.00e-17 -1.52e-18
jr2 IP-2 12 0 0 13 0.0000 3.65e-07 5.17e-07 3.65e-07 1.86e-17 2.60e-18
kth1 IP-1∗ 5 0 0 6 0.0000 6.87e-07 4.88e-07 6.87e-07 2.84e-10 1.56e-10
kth2 IP-1 2 0 0 3 0.0000 6.12e-07 3.53e-07 4.99e-07 2.49e-07 2.49e-07
kth3 IP-2 12 0 0 13 0.0000 6.38e-07 6.38e-07 6.38e-07 7.83e-17 -1.93e-17
liswet1-inv50 ∗∗
nash1 IP-2∗ 14 0 0 15 0.0000 6.86e-07 1.13e-09 6.86e-07 5.00e-19 -1.43e-17
outrata31 IP-1 11 0 0 12 0.0000 5.05e-08 1.23e-07 5.05e-08 1.29e-09 1.24e-14
outrata32 II-IP∗ 2197 0 0 5607 0.2280 3.70e-06 1.07e-05 3.70e-06 9.13e-15 1.16e-14
outrata33 IP-1 15 0 0 16 0.0000 2.54e-06 7.39e-06 2.54e-06 5.88e-16 -5.96e-15
outrata34 IP-1 14 0 0 15 0.0000 2.61e-06 7.29e-06 2.61e-06 1.63e-16 8.24e-16
portfl1 ∗∗
qpec1 IP-2∗ 20 0 0 22 0.0080 5.61e-07 8.49e-09 5.61e-07 2.92e-16 1.40e-17
qpecgen ∗∗
ralph2 IP-2 13 0 0 14 0.0000 4.01e-07 3.58e-07 3.58e-07 1.79e-07 -6.20e-25
ralphmod ∗∗
scale1 IP-2 11 0 0 12 0.0000 7.88e-07 1.57e-06 7.88e-07 8.23e-17 -4.34e-19
scale2 IP-2 39 0 0 85 0.0000 3.31e-07 6.62e-07 3.31e-07 2.75e-19 3.00e-19
scale3 IP-2 15 0 0 16 0.0000 3.16e-07 6.33e-07 3.16e-07 4.58e-19 1.30e-19
scale4 IP-1∗ 86 0 0 275 0.0000 4.86e-06 9.35e-06 4.60e-05 8.36e-07 1.04e-06
scale5 IP-1∗ 14 0 0 15 0.0000 2.01e-08 4.03e-06 2.01e-08 2.35e-17 2.96e-19
scholtes1 IP-2 15 0 0 16 0.0000 7.98e-07 1.42e-09 7.98e-07 4.42e-16 -1.75e-17
scholtes2 IP-2∗ 6 0 0 7 0.0000 4.52e-08 1.80e-07 4.52e-08 1.49e-10 2.65e-10
scholtes3 IP-2∗ 8 0 0 9 0.0000 4.13e-07 4.13e-07 4.13e-07 1.04e-16 -1.68e-17
scholtes4 IP-2 11 0 0 12 0.0000 3.52e-07 3.05e-10 1.84e-18 2.39e-07 -2.84e-20
scholtes5 PG-1 19 1 1 32 0.0000 2.22e-05 2.10e-07 2.22e-05 1.09e-19 -2.21e-20
sl1 IP-2 15 0 0 16 0.0000 6.44e-07 5.81e-09 2.88e-07 5.76e-07 -1.10e-16
stackelberg1 IP-1 27 0 0 28 0.0000 7.76e-08 3.73e-06 7.76e-08 2.99e-14 -7.33e-18
traffic1 ∗∗

6. Conclusions

In this paper, we introduced a Projected-Gradient Underdetermined Newton-

like (PGUN) algorithm for computing a feasible solution of a Mathematical Pro-

gramming Problem with Complementarity Constraints (MPCC). The algorithm

can also be applied for the computation of a feasible solution of MPCC that430

satisfies a certain objective function target. In both cases the algorithm searches

a solution of an associated Horizontal Complementarity Problem (HNCP). It

was shown that PGUN is globally convergent to a solution of HNCP or to a

stationary point of an associated natural merit function. Fast local convergence

was established under reasonable hypotheses. The PGUN algorithm seems to435

perform well for the computation of feasible solutions of an MPCC and seems

34

Table 7: Performance of the PLM method for Experiment 2

Problem TERM LM PG CG NE TIME ||F (z)|| SPG norm Feas Comp SLACK
bard1 ∗∗
bard2 ∗∗
bard3 LM-2 83104 0 0 7171315 8.0325 6.59e-08 3.64e-07 6.59e-08 1.00e-17 4.22e-18
bilevel1 ∗∗
bilvel3 LM∗ 4097 0 0 4120 0.5920 2.31e-03 6.48e-03 2.31e-03 8.71e-14 0.00000
bilin ∗∗
dempe ∗∗
design-cent1 LM-1∗ 9 0 0 39 0.0000 3.40e-07 5.08e-07 2.35e-07 1.34e-07 -1.16e-07
desilva LM-2∗ 18 1 2 145 0.0040 2.09e-08 1.27e-06 2.66e-09 2.07e-08 -1.94e-07
df1 ∗∗
ex911 ∗∗
ex921 ∗∗
ex922 ∗∗
ex925 ∗∗
ex928 LM-2∗ 10 1 2 125 0.0000 9.35e-13 5.79e-10 1.16e-15 9.35e-13 1.40e-18
flp2 LM-2∗ 22 0 0 52 0.0000 9.76e-07 4.58e-09 9.76e-07 2.49e-17 9.42e-18
gauvin ∗∗
gnash1 ∗∗
hakonsen LM-1∗ 13 0 0 26 0.0000 4.52e-08 1.21e-07 5.16e-10 4.52e-08 1.44e-05
jr1 LM-2∗ 14 0 0 15 0.0000 5.68e-07 8.04e-07 5.68e-07 1.06e-17 4.50e-18
jr2 LM-2∗ 15 0 0 16 0.0000 7.56e-07 1.06e-06 7.56e-07 1.97e-19 5.24e-19
kth1 LM-1 7 1 2 119 0.0000 7.31e-19 4.08e-10 6.69e-19 2.44e-19 -8.88e-20
kth2 LM-1 1 0 0 2 0.0000 9.00e-10 0.00000 9.00e-10 0.00000 0.00000
kth3 LM-2∗ 4 0 0 5 0.0000 7.23e-07 7.22e-07 7.23e-07 9.65e-10 6.81e-16
liswet1-inv50 ∗∗
nash1 ∗∗
outrata31 LM-1∗ 10 0 2 29 0.0000 4.48e-09 1.84e-07 4.48e-09 9.18e-13 1.92e-13
outrata32 LM∗ 2197 0 0 298916 0.2360 3.72e-06 1.08e-05 3.72e-06 1.13e-15 1.24e-16
outrata33 ∗∗
outrata34 ∗∗
portfl1 ∗∗
qpec1 LM-1∗ 1 0 0 2 0.0000 2.11e-07 8.68e-08 2.07e-07 1.20e-08 -1.05e-08
qpecgen ∗∗
ralph2 LM-2 18 0 0 19 0.0000 6.66e-07 5.96e-07 5.96e-07 2.98e-07 5.92e-18
ralphmod ∗∗
scale1 LM-2 10 0 0 11 0.0000 9.58e-07 1.91e-06 9.58e-07 9.87e-18 7.46e-18
scale2 LM-2∗ 23 0 0 24 0.0000 5.65e-07 1.13e-06 5.65e-07 3.60e-20 1.80e-20
scale3 LM-1∗ 1 1 1 14 0.0000 1.64e-08 1.62e-08 1.64e-08 1.39e-10 1.39e-10
scale4 ∗∗
scale5 LM-1∗ 19 1 2 123 0.0040 3.68e-08 7.37e-06 3.68e-08 7.09e-20 7.01e-17
scholtes1 LM-2∗ 22 0 0 23 0.0040 5.35e-07 1.17e-09 5.35e-07 2.97e-17 1.29e-16
scholtes2 LM-1∗ 10 1 2 222 0.0040 5.50e-11 3.23e-09 5.50e-11 4.53e-16 -5.92e-16
scholtes3 LM-1∗ 1 0 0 2 0.0000 6.38e-09 8.20e-09 5.31e-09 2.50e-09 2.50e-09
scholtes4 PG-1 16 1 1 37 0.0040 2.17e-06 1.93e-08 4.48e-09 1.46e-06 3.40e-18
scholtes5 LM-2 19 0 0 20 0.0000 5.79e-07 1.32e-09 5.79e-07 2.82e-18 4.21e-18
sl1 ∗∗
stackelberg1 ∗∗
traffic1 ∗∗

to be more efficient than a Projected Levenberg-Marquardt (PLM) algorithm

designed before for the same goal. The choice of the initial point for the PGUN

and PLM algorithms seems to have an important impact on the efficiency of

these algorithms. Future research will address the combination of PGUN with440

algorithms that require feasible initial points for solving MPCC in order to solve

practical problems.

7. Acknowledgement

We are indebted to the associate editor and two anonymous referees for

helpful remarks that improved a lot the quality of this paper.445

35

References

[1] R. Andreani, C. Dunder, and J. M. Mart́ınez. Nonlinear-programming re-

formulation of the order-value optimization problem. Mathematical Meth-

ods of Operations Research, 61(3):365–384, 2005.

[2] R. Andreani, J. J. Júdice, J. M. Mart́ınez, and J. Patŕıcio. On the nat-450

ural merit function for solving complementarity problems. Mathematical

Programming, 130(1):211–223, 2011.

[3] R. Andreani, J. J. Júdice, J. M. Mart́ınez, and J. Patŕıcio. A projected-

gradient interior-point algorithm for complementarity problems. Numerical

Algorithms, 57(4):457–485, 2011.455

[4] M. Anitescu. On using the elastic mode in nonlinear programming ap-

proaches to mathematical programs with complementarity constraints.

SIAM Journal on Optimization, 15(4):1203–1236, 2005.

[5] M. Anitescu, P. Tseng, and S. J. Wright. Elastic-mode algorithms for

mathematical programs with equilibrium constraints: global convergence460

and stationarity properties. Mathematical Programming, 110(2):337–371,

2007.

[6] H. Y. Benson, A. Sen, D. F. Shanno, and J. Vanderbei. Interior-point

algorithms, penalty methods and equilibrium problems. Computational

Optimization and Applications, 34(2):155–182, 2006.465

[7] I. M. Bomze. Copositive optimization–recent developments and applica-

tions. European Journal of Operational Research, 216(3):509–520, 2012.

[8] X. Chen. Smoothing methods for complementarity problems and their

applications: a survey. Journal of the Operations Research Society of Japan,

43:32–47, 2000.470

[9] X. Chen and T. Yamamoto. Newton-like methods for solving underdeter-

mined nonlinear equations with nondifferentiable terms. Journal of Com-

putational and Applied Mathematics, 55(3):311–324, 1994.

36

[10] A. Ehrenmann and K. Neuhoff. A comparison of electricity market designs

in networks. Operations research, 57(2):274–286, 2009.475

[11] H. Fang, S. Leyffer, and T. Munson. A pivoting algorithm for linear pro-

gramming with linear complementarity constraints. Optimization Methods

and Software, 27(1):89–114, 2012.

[12] L. Fernandes, A. Friedlander, M. Guedes, and J. J. Júdice. Solution of

a general linear complementarity problem using smooth optimization and480

its application to bilinear programming and lcp. Applied Mathematics &

Optimization, 43(1):1–19, 2001.

[13] M. C. Ferris and J. S. Pang. Engineering and economic applications of

complementarity problems. Siam Review, 39(4):669–713, 1997.

[14] R. Fletcher and S. Leyffer. Solving mathematical programs with comple-485

mentarity constraints as nonlinear programs. Optimization Methods and

Software, 19(1):15–40, 2004.

[15] M. Fukushima, Z. Q. Luo, and J. S. Pang. A globally convergent sequential

quadratic programming algorithm for mathematical programs with linear

complementarity constraints. Computational Optimization and Applica-490

tions, 10(1):5–34, 1998.

[16] M. Fukushima and P. Tseng. An implementable active-set algorithm for

computing a b-stationary point of a mathematical program with linear

complementarity constraints. SIAM Journal on Optimization, 12(3):724–

739, 2002.495

[17] R. Garćıa-Rodenas and D. Verastegui-Rayo. A column generation algo-

rithm for the estimation of origin–destination matrices in congested traffic

networks. European Journal of Operational Research, 184(3):860–878, 2008.

[18] M. S. Gowda. Reducing a monotone horizontal lcp to an lcp. Applied

Mathematics Letters, 8(1):97–100, 1995.500

37

[19] L. Guo, G-H. Lin, D. Zhang, and D. Zhu. An mpec reformulation of an epec

model for electricity markets. Operations Research Letters, 43(3):262–267,

2015.

[20] T. Hoheisel, C. Kanzow, and A. Schwartz. Theoretical and numerical com-

parison of relaxation methods for mathematical programs with complemen-505

tarity constraints. Mathematical Programming, 137(1-2):257–288, 2013.

[21] HSL. A collection of fortran codes for large scale scientific computation.

http://www.hsl.rl.ac.uk, 2013.

[22] X. Hu and D. Ralph. Using epecs to model bilevel games in restructured

electricity markets with locational prices. Operations research, 55(5):809–510

827, 2007.

[23] X. M. Hu and D. Ralph. Convergence of a penalty method for mathematical

programming with complementarity constraints. Journal of Optimization

Theory and Applications, 123(2):365–390, 2004.

[24] H. Jiang and D. Ralph. Extension of quasi-newton methods to mathemati-515

cal programs with complementarity constraints. Computational Optimiza-

tion and Applications, 25(1-3):123–150, 2003.

[25] J. J. Júdice. Optimization with linear complementarity constraints.

Pesquisa Operacional, 34(3):559–584, 2014.

[26] J. J. Júdice, H. D. Sherali, I. M. Ribeiro, and A. M. Faustino. Complemen-520

tarity active-set algorithm for mathematical programming problems with

equilibrium constraints. Journal of Optimization Theory and Applications,

134(3):467–481, 2007.

[27] C. Kanzow, N. Yamashita, and M. Fukushima. Levenberg-marquardt meth-

ods with strong local convergence properties for solving nonlinear equations525

with convex constraints. Journal of Computational and Applied Mathemat-

ics, 173(2):321–343, 2005.

38

[28] R. M. Kovacevic and Ch. G. Pflug. Electricity swing option pricing by

stochastic bilevel optimization: A survey and new approaches. European

Journal of Operational Research, 237(2):389–403, 2014.530

[29] S. Leyffer. Macmpec: Ampl collection of mpecs. Argonne National Labo-

ratory. Available at http://wiki.mcs.anl.gov/leyffer/index.php/MacMPEC,

2000.

[30] S. Leyffer, G. López-Calva, and J. Nocedal. Interior methods for math-

ematical programs with complementarity constraints. SIAM Journal on535

Optimization, 17(1):52–77, 2006.

[31] D. H. Li and M. Fukushima. A derivative-free line search and global con-

vergence of broyden-like method for nonlinear equations. Optimization

Methods and Software, 13(3):181–201, 2000.

[32] G-H. Lin and M. Fukushima. Stochastic equilibrium problems and stochas-540

tic mathematical programs with equilibrium constraints: A survey. Pacific

Journal of Optimization, 6(3):455–482, 2010.

[33] G-H. Lin, D. Zhang, and Y-C Liang. Stochastic multiobjective problems

with complementarity constraints and applications in healthcare. European

Journal of Operational Research, 226(3):461–470, 2013.545

[34] Z. Q. Luo, J. S. Pang, and D. Ralph. Mathematical programs with equilib-

rium constraints. Cambridge University Press, 1996.

[35] K. G. Murty. Linear complementarity. Linear and Nonlinear Programming,

Heldermann, Berlin, 1988.

[36] J. Outrata, M. Kocvara, and J. Zowe. Nonsmooth approach to optimization550

problems with equilibrium constraints: theory, applications and numerical

results, volume 28. Springer Science & Business Media, 1998.

[37] J. S. Pang. Partially b-regular optimization and equilibrium problems.

Mathematics of Operations Research, 32(3):687–699, 2007.

39

[38] D. Ralph. Nonlinear programming advances in mathematical programming555

with complementarity constraints. Royal Society, 2007.

[39] D. Ralph and O. Stein. The c-index: A new stability concept for quadratic

programs with complementarity constraints. Mathematics of Operations

Research, 36(3):504–526, 2011.

[40] H. Scheel and S. Scholtes. Mathematical programs with complementar-560

ity constraints: Stationarity, optimality, and sensitivity. Mathematics of

Operations Research, 25(1):1–22, 2000.

[41] F. Toyasaki, P. Daniele, and T. Wakolbinger. A variational inequality

formulation of equilibrium models for end-of-life products with nonlinear

constraints. European Journal of Operational Research, 236(1):340–350,565

2014.

[42] J. Walpen, M. E. Mancinelli, and P. A. Lotito. A heuristic for the od matrix

adjustment problem in a congested transport network. European Journal

of Operational Research, 242(3):807–819, 2015.

[43] D. Wu, Y. Yin, and S. Lawphongpanich. Pareto-improving congestion570

pricing on multimodal transportation networks. European Journal of Op-

erational Research, 210(3):660–669, 2011.

[44] J. Yao, I. Adler, and S. S. Oren. Modeling and computing two-settlement

oligopolistic equilibrium in a congested electricity network. Operations Re-

search, 56(1):34–47, 2008.575

[45] J. Yao, S. S. Oren, and I. Adler. Two-settlement electricity markets with

price caps and cournot generation firms. European Journal of Operational

Research, 181(3):1279–1296, 2007.

[46] J. J. Ye. Necessary optimality conditions for multiobjective bilevel pro-

grams. Mathematics of Operations Research, 36(1):165–184, 2011.580

40

	Introduction
	Stationary points of the sum of squares
	 Projected gradient underdetermined Newton-like algorithm and global convergence
	Local convergence
	Behaviour of the maximum steplength
	Convergence of the whole sequence
	Superlinear and quadratic convergence

	Computational Experience
	The Projected Levenberg-Marquardt Algorithm
	Implementation issues and test problems
	Experiment 1: Computing a Simple Feasible Solution of MPCC
	Experiment 2: Computing a Target Feasible Solution of MPCC

	Conclusions
	Acknowledgement

