
J Optim Theory Appl
DOI 10.1007/s10957-010-9783-1

Siting and Sizing of Facilities under Probabilistic
Demands

Luís M. Fernandes · Joaquim J. Júdice ·
Hanif D. Sherali · António P. Antunes

© Springer Science+Business Media, LLC 2011

Abstract In this paper a discrete location model for non-essential service facilities
planning is described, which seeks the number, location, and size of facilities, that
maximizes the total expected demand attracted by the facilities. It is assumed that
the demand for service is sensitive to the distance from facilities and to their size.
It is also assumed that facilities must satisfy a threshold level of demand (facilities
are not economically viable below that level). A Mixed-Integer Nonlinear Program-
ming (MINLP) model is proposed for this problem. A branch-and-bound algorithm is
designed for solving this MINLP and its convergence to a global minimum is estab-
lished. A finite procedure is also introduced to find a feasible solution for the MINLP
that reduces the overall search in the binary tree generated by the branch-and-bound

Communicated by P.M. Pardalos.

This research is supported in part by the National Science Foundation, under Grant Number
CMMI-0969169.

L.M. Fernandes (�)
Instituto Politécnico de Tomar and Instituto de Telecomunicações, Tomar, Portugal
e-mail: lmerca@co.it.pt

J.J. Júdice
Departamento de Matemática, Universidade de Coimbra and Instituto de Telecomunicações,
Coimbra, Portugal
e-mail: joaquim.judice@co.it.pt

H.D. Sherali
Grado Department of Industrial & Systems Engineering, Virginia Polytechnic Institute & State
University, Blacksburg, VA, USA
e-mail: hanifs@vt.edu

A.P. Antunes
Departamento de Engenharia Civil, Universidade de Coimbra, Coimbra, Portugal
e-mail: antunes@dec.uc.pt

mailto:lmerca@co.it.pt
mailto:joaquim.judice@co.it.pt
mailto:hanifs@vt.edu
mailto:antunes@dec.uc.pt

J Optim Theory Appl

algorithm. Some numerical results using a GAMS/MINOS implementation of the
algorithm are reported to illustrate its efficacy and efficiency in practice.

Keywords Facility location models · Mixed-integer nonlinear programming ·
Discrete optimization · Global optimization

1 Introduction

The study of problems involving the siting and sizing of facilities of various types
(schools, post offices, etc.) has been the subject of intense research in the past forty
years. A significant part of these efforts was directed towards the formulation and
resolution of particular types of optimization models, generically known as discrete
location (or location-allocation) models. These models are aimed at determining the
best locations and capacities for a set of facilities, assuming that the demand for
the services they provide arise at a given number of centers and that the facilities
are to be located amongst a given set of sites. The reader is referred to [1] for a
textbook presentation of location models, and recent surveys are available in [2–4]
and [5]. Some particular discrete location models have a very strong presence in the
optimization literature, including, for instance, the plant (or warehouse, or facility)
location model [6] and the p-median model [7]. Both these and other basic location
models, as well as most of their extensions, assume that demand is inelastic with
travel cost (or travel distance, or travel time). Furthermore, they assume that demand
can be assigned to the least-cost facility or is willing to patronize the closest facility.
These assumptions may be plausible, when facilities such as schools or post offices
are involved, but they are unlikely to hold for facilities such as shopping centers or
cinema complexes. For the latter, it seems more reasonable to assume that demand
is stochastic, as users would tend to, but not necessarily, patronize closer and larger
facilities.

In this paper, we introduce a new model for siting and sizing facilities with prob-
abilistic demand in the sense stated above. The model determines the locations and
capacities of facilities, that maximize the (expected) demand attracted or covered
by the facilities, assuming that the larger the facility is, the larger is the demand it
attracts, and where the expected demand received by each facility exceeds a given
threshold. The optimization model combines ingredients from elastic-demand loca-
tion models (see e.g., [8]) and spatial-interaction location models (see e.g., [9]). It is
different from the models described in [10] and [11], which also aim at determining
optimum facility locations and capacities within a spatial-interaction framework, but
ignore elastic-demand issues. The model addressed in [12] considers these types of
issues (the location of a new facility is assumed to expand the market), but do not
determine optimal facility capacities. To the best of our knowledge, the most similar
model to the one dealt with in this paper is due to [13], but this does not consider a
minimum demand threshold.

The proposed model is formulated as a Mixed-Integer Nonlinear Programming
Problem (MINLP), which is quite difficult to tackle. A branch-and-bound algorithm
is designed for finding a global minimum to this MINLP and is proven to converge

J Optim Theory Appl

to such a solution. Furthermore, a finite procedure is developed for computing a first
incumbent solution, which helps to reduce the overall effort of the algorithm. Com-
putational experience, with a GAMS/MINOS implementation of the algorithm, is
reported that reveals the efficacy of the algorithm to solve models having up to 20
centers. Moreover, the algorithm is shown to be efficient and compares favorably
with the well-known MINLP commercial code BARON [14] for the solution of the
same problems.

The remainder of this paper as organized as follows. The problem description and
model formulation are presented in Sect. 2. Section 3 provides an illustrative example,
and Sect. 4 develops the proposed branch-and-bound algorithm. A finite procedure
for determining a good quality incumbent solution is discussed in Sect. 5. Computa-
tional experience is reported in Sect. 6, and, finally, Sect. 7 provides a summary and
conclusions of the paper.

2 Optimization Model

The optimization model to be introduced in this paper represents problems involving
the siting and sizing of facilities under probabilistic demand and is predicated on the
following assumptions:

1. Demand for the services offered by the facilities is concentrated at a finite set, say
J , of centers.

2. The location of facilities is restricted to a set, say N , of candidate sites. At most
one facility can be located at each site.

3. The potential demand (or number of potential users) from each center j ∈ J is
known and denoted by uj . The actual demand from each center for the services
offered at a facility located at site k, k ∈ N , increases with the size, say zk , of the
facility and decreases with the cost, say djk , for traveling to the facility (when a
center j coincides with a facility location, we take djk = ε0 > 0, where ε0 is a
small positive quantity).

4. The size of a facility is proportional to the expected demand it attracts, and must
exceed a given threshold, say zmin.

5. The objective is to maximize the total expected demand attracted (covered) by the
facilities.

For the sake of simplicity, we assume without loss of generality that J ≡ N , where a
facility can be explicitly prohibited from being located at a non-viable site, and where
the potential demand can be taken as zero at a non-center. Assumption 3 describes
the spatial choice behavior of facility users. According to this, the probability, say
pjk , of a user (or the proportion of users) from demand center j patronizing a facility
located at site k is given by

pjk = (
1 − αd

β
jk

) zkd
−γ

jk
∑

i∈N zid
−γ

ji

(1)

where α, β , γ > 0 are calibration parameters, which can be estimated from real-world
data using maximum likelihood methods [15] and guarantee that pjk ≥ 0 given the
distance data (e.g., α ≡ D−β , where D ≡ maxj,k{djk}).

J Optim Theory Appl

In the formula (1) the first factor (1 − αd
β
jk) is a demand decay term and the sec-

ond ratio factor is a demand proportionality split term. These expressions are usually
used in the literature [13] and fit empirical data extremely well. Together, they cap-
ture three essential stylized facts about the demand for the services provided by the
facilities: (1) not all potential demand materialize into actual demand; (2) for equally
sized facilities, the closer the facility is the larger is the demand for service; (3) for
equally distant facilities, the larger the facility is the larger is the demand for service.

Assumption 4 asserts that in our model, and unlike the vast majority of the spatial
interaction location models described in the literature, the attractiveness of a facility
is endogenously determined, being related with demand according to:

zk = θ
∑

j∈J

ujpjk, ∀k ∈ N, (2)

where θ is a parameter, that expresses the size per user (e.g., commercial floor space
per person, number of cinema seats per person, etc). Note that (2) requires the size of
the facility to accommodate the expected demand, where (1) implies that the proba-
bility of attracting demand is itself dependent on the size of the facility.

Given the assumptions stated above (recall that J ≡ N), the optimization model
can be formulated as follows:

P1: Maximize
∑

k∈N

zk (3)

subject to zk ≤ Uyk, ∀k ∈ N, (4)

zk ≥ zminyk, ∀k ∈ N, (5)

zk = θ
∑

j∈N

uj

(
1 − αd

β
jk

) zkd
−γ

jk
∑

i∈N zid
−γ

ji

, ∀k ∈ N, (6)

yk ∈ {0,1} and zk ≥ 0, ∀k ∈ N, (7)

where U ≡ ∑
j∈N uj is the total potential demand, and yk is equal to 1, if a facility

is located at site k and is equal to 0 otherwise, ∀k ∈ N .
The objective function (3) of this Mixed-Integer Nonlinear Programming Problem

(MINLP) is concerned with the aggregate size of facilities. Thus the total expected
demand attracted to the facilities is maximized (since the size of a facility is propor-
tional to the expected number of users it attracts). Constraint (4) ensures that users
visit center k only if there is a facility located at that center. Constraint (5) requires
that the size of a facility located at center k exceeds the threshold level zmin. Since
the number of facilities to locate is not pre-defined and no facility costs are explic-
itly stated, (5) (along with (2)) plays an essential role in determining the number and
location of facilities. Constraint (6) combines (1) and (2) and specifies that the size
of a facility is proportional to the total number of users obtaining service from that
facility. This constraint set is nonlinear and poses a principal challenge in solving the
model. Finally, constraint (7) asserts logical restrictions on the decision variables.

J Optim Theory Appl

Center Potential demand

1 72
2 70
3 58
4 34
5 76
6 99
7 63
8 70
9 19
10 16

Total 577

Fig. 1 Example input data

3 An Illustrative Example

This section illustrates the type of results that can be obtained through the application
of the model. Consider a region of 100 × 100 length units and having 10 population
centers as depicted in Fig. 1, where the larger the circle in the figure, the larger is
the potential demand at that center. There is one center (Center 6) that is significantly
larger than all the others and there exist three noticeably small centers (Centers 4,
9, and 10). The total potential demand of the region is 577. Each population center
is assumed to be a candidate site for locating a facility. The model parameters are
given by zmin = 100 and θ = 1, with calibration parameters α = D−β , where D =
maxj,k∈N {djk}, β = 1, and γ = 1. The optimal solution consists of locating facilities
at three centers: 1, 2, and 6 having sizes 199, 117, and 123, respectively (see Table 1).
For every center where a facility is located (djk = ε0 > 0) almost all the potential
demand is attracted to that facility. The users at centers without a coincident facility
split their demand between the available facilities according to their proximity to
facilities and the size of the facilities. The facilities attract a total expected demand
of 439, which corresponds to 76% of the potential demand.

Next, we discuss the interpretation of the optimal solution as displayed in Fig. 2.
Center 4 is at a central location in relation to the facilities. Since the distances between
this center and each of the facilities are very similar, the size of the facility plays the
leading role in demand attraction. Indeed, the largest facility receives 41% of the
potential demand at Center 4 while the other two facilities attract only 15% and 18%,
respectively. Now, consider the example of Center 7, which is located peripherally
with respect to the facilities. The closest facility is the smallest among the three.
However, because the other two facilities are much further away, Facility 2 attracts
29% of the potential demand at Center 7. The effect of the size of the facility is
also noticeable, although Facilities 1 and 6 are almost equally distant from Center 7,
Facility 1 receives 14% of the demand while Facility 6 attracts only 5%. For Center 8,
the relative location of the center is similar to that of Center 7. However, in this case,
the closest facility is the largest one (Facility 1). Therefore, the demand attracted by

J Optim Theory Appl

Table 1 Optimum solution statistics

Center Attracted demand

Facility 1 Facility 2 Facility 6 Total

Users % Users % Users % Users %

1 69 96% 1 1% 0 – 70 97%

2 2 3% 65 93% 1 1% 68 97%

3 42 72% 6 10% 2 3% 50 86%

4 14 41% 5 15% 6 18% 25 74%

5 19 25% 5 7% 14 18% 38 50%

6 1 1% 1 1% 94 95% 96 97%

7 9 14% 18 29% 3 5% 30 48%

8 34 49% 6 9% 2 3% 42 60%

9 4 21% 7 37% 1 5% 12 63%

10 5 31% 3 19% 0 – 8 50%

Total 199 34% 117 20% 123 21% 439 76%

Facility 1 from Center 8 is much larger than that from Center 7. Indeed, Facility 1
attracts more demand from Center 8 than the three facilities do from Center 7. Finally,
we illustrate the case of Center 10. Facilities 1 and 2 are equally distant from this
center while Facility 6 is relatively further away. As a consequence, only Facilities 1
and 2 attract demand from Center 10, with Facility 1 enjoying a larger demand share
(31% versus 19%) because it is the largest facility.

4 A Branch-and-Bound Algorithm

In this section we design a branch-and-bound algorithm for finding a global minimum
to Problem P1. Since Constraint (5) requires that the size of any open facility located
at center k must exceed the threshold level zmin, then

∑

j∈N

yj ≤ V, (8)

where

V ≡ �U/zmin� (9)

and where �(.)� represents the largest integer smaller than or equal to (.). Since for
each j , k,

zkd
−γ

jk
∑

i∈N zid
−γ

ji

≤ 1,

J Optim Theory Appl

Fig. 2 Illustration of user spatial choice behavior

it follows from (6) that

zk = θ
∑

j∈N

uj

(
1 − αd

β
jk

) zkd
−γ

jk
∑

i∈N zid
−γ

ji

≤ θ
∑

j∈N

uj

(
1 − αd

β
jk

)
, ∀k ∈ N. (10)

Defining

Uk ≡
∑

j∈N

θuj

(
1 − αd

β
jk

)
, ∀k ∈ N, (11)

we can improve the upper bounds in (4) to assert:

zminyk ≤ zk ≤ Ukyk, ∀k ∈ N. (12)

Also, for convenience in notation, denote

aji ≡ d
−γ

ji , ∀i, j ∈ N, and bjk ≡ θuj

(
1 − αd

β
jk

)
d

−γ

jk , ∀j, k ∈ N. (13)

J Optim Theory Appl

Then Problem P1 can be written in the following equivalent form, where we have
introduced certain auxiliary decision variables φj and ψj , ∀j ∈ N , for the sake of
structural convenience:

P2: Maximize
∑

k∈N

zk (14)

subject to zminyk ≤ zk ≤ Ukyk, ∀k ∈ N, (15)

zk

[

1 −
∑

j∈N

bjkφj

]

= 0, ∀k ∈ N, (16)

ψj =
∑

i∈N

ajizi , ∀j ∈ N, (17)

φjψj = 1, ∀j ∈ N, (18)

yk ∈ {0,1} and zk ≥ 0, ∀k ∈ N, (19)
∑

j∈N

yj ≤ V. (20)

In order to reformulate P2 into a more amenable form, we establish the following
results.

Proposition 4.1 Let P ≡ maxk∈N {Uk} = Uk∗ . Then (z, y,φ,ψ) ≡ (ẑ, ŷ, φ̂, ψ̂) with
ẑk∗ = P , ŷk∗ = 1, ẑi = ŷi = 0, ∀i
= k∗, and ψ̂j = ajk∗zk∗ = 1/φ̂j , ∀j ∈ N , is a
feasible solution to Problem P2 with an objective value equal to P .

Proof The feasibility of the given solution to (15) and (17)–(20), as well as to (16)
for k
= k∗ is obvious. Moreover, in (16) for k = k∗, we have using (11) and (13) that,

∑

j∈N

bjk∗ φ̂j = 1

P

∑

j∈N

[
bjk∗

ajk∗

]
= 1

P

∑

j∈N

θuj (1 − αd
β
jk∗) = 1.

Hence, (16) is also satisfied for k = k∗. Moreover, the objective value equals
ẑk∗ = P . �

Proposition 4.2 Let

l
φ
j ≡ 1

∑
i∈N ajiUi

, ∀j ∈ N, and u
φ
j ≡ 1

P mini∈N {aji} , ∀j ∈ N. (21)

Then l
φ
j ≤ φj ≤ u

φ
j , ∀j ∈ N , in any optimal solution to Problem P2.

Proof By (15), (17) and (18), we have φj = [1∑
i∈N ajizi

] ≥ l
φ
j , ∀j ∈ N . Moreover,

since
∑

k∈N zk ≥ P for any optimal solution to Problem P2, by Proposition 4.1,

J Optim Theory Appl

we get

φj ≤ 1

min{∑i∈N ajizi :
∑

i∈N zi ≥ P,z ≥ 0}

= 1

P mini∈N {aji} = u
φ
j , ∀j ∈ N. �

Based on Proposition 4.2, and using (15) and (19), we can linearize Constraint
(16) as follows: Define

L
φ
k ≡ min

{∑

j∈N

bjkφj : lφj ≤ φj ≤ u
φ
j ,∀j ∈ N

}
, ∀k ∈ N, (22)

U
φ
k ≡ max

{∑

j∈N

bjkφj : lφj ≤ φj ≤ u
φ
j ,∀j ∈ N

}
, ∀k ∈ N. (23)

Then we can rewrite (16) as

yk + (1 − yk)L
φ
k ≤

∑

j∈N

bjkφj ≤ yk + (1 − yk)U
φ
k , ∀k ∈ N. (24)

In fact, whenever yk = 0, we have that zk = 0 by (15), and then (16) holds trivially
and (24) is redundant by (22)–(23). On the other hand, when yk = 1, we have that
zk > 0 by (15), and in this case, (24) implies that

∑
j∈N bjkφj = 1, so that (16) again

holds true.
Using the foregoing constructs, we can equivalently write Problem P2 as the

following problem P(Ω), predicated on the bounding hyperrectangle Ω , where the
bounds on the ψ -variables are derived directly from those on the φ-variables, based
on (29).

P(Ω): Maximize
∑

k∈N

zk (25)

subject to zminyk ≤ zk ≤ Ukyk, ∀k ∈ N, (26)

yk + (1 − yk)L
φ
k ≤

∑

j∈N

bjkφj ≤ yk + (1 − yk)U
φ
k ,

∀k ∈ N, (27)

ψj =
∑

i∈N

ajizi , ∀j ∈ N, (28)

φjψj = 1, ∀j ∈ N, (29)

(y,φ) ∈ Ω ≡ {
(y,φ):y ∈ {0,1}n, lφj ≤ φj ≤ u

φ
j ,∀j ∈ N

}
,

(30)

J Optim Theory Appl

(
1/u

φ
j

) ≤ ψj ≤ (
1/l

φ
j

)
, ∀j ∈ N, z ≥ 0, (31)

∑

j∈N

yj ≤ V. (32)

We now design a branch-and-bound algorithm for finding a global minimum to Prob-
lem P(Ω) given by (25)–(32). This procedure is based on partitioning Ω by branching
on the binary y-variables as well as by splitting the intervals for the φ-variables as de-
tailed below. Any node problem in this methodology, indexed by r , say, is predicated
on the set Ωr (in lieu of Ω) in (25)–(32), which is defined as follows:

Ωr ≡ {
(y,φ):yk ≡ 0,∀k ∈ J r

0 ;yk ≡ 1,∀k ∈ J r
1 ;

yk ∈ {0,1},∀k ∈ Nr ≡ N − (
J r

0 ∪ J r
1

); lrj ≤ φj ≤ ur
j ,∀j ∈ N

}
, (33)

where J r
0 and J r

1 are the index sets for the y-variables that are currently fixed at zero

and one, respectively, with the remaining y-variables being free, and where lrj ≥ l
φ
j

and ur
j ≤ u

φ
j ,∀j ∈ N . At the initial node, or root node, we have r = 1 with Ω1 ≡ Ω .

For any other node r , the corresponding node problem is denoted by P(Ωr), and is
given as follows:

P(Ωr): Maximize
∑

k∈N

zk (34)

subject to zk = 0,∀k ∈ J r
0 , and zmin ≤ zk ≤ Uk, ∀k ∈ J r

1 ,(35)

zminyk ≤ zk ≤ Ukyk, ∀k ∈ Nr, (36)
∑

j∈N

bjkφj = 1, ∀k ∈ J r
1 , (37)

yk + (1 − yk)L
r
k ≤

∑

j∈N

bjkφj ≤ yk + (1 − yk)U
r
k ,

∀k ∈ Nr, (38)

ψj =
∑

i∈N

ajizi , ∀j ∈ N, (39)

φjψj = 1, ∀j ∈ N, (40)

(y,φ) ∈ Ωr, (41)
(
1/ur

j

) ≤ ψj ≤ (
1/lrj

)
, ∀j ∈ N, z ≥ 0, (42)

∑

j∈N

yj ≤ V, (43)

where Lr
k and Ur

k , ∀k ∈ Nr are derived below based on Ωr . Toward this end, for any
node r , we first tighten Ωr as possible based on the valid restrictions

ν∗ ≤
∑

k∈N

zk ≤ νr , (44)

J Optim Theory Appl

where ν∗ is the current best-known objective value, and νr is a known (initial) up-
per bound on the objective value of P(Ωr). To begin with, for r = 1, we have by
Proposition 4.1 that

ν∗ = P and νr = U ≡
∑

j∈N

uj . (45)

In general, we can take νr as the upper bound computed by solving the upper-
bounding linear programming relaxation LP(.) defined in the sequel for the parent
node of the current node r , and ν∗ is, as always, the current overall incumbent solu-
tion value. Accordingly, based on the definitions of ψj in (39) and Ωr in (33), and
using (35), (36) and (40), we compute

l̂rj = 1

max{∑i∈N ajizi :
∑

k∈N zk ≤ νr , (35),0 ≤ zk ≤ Uk,∀k ∈ Nr} , (46)

ûr
j = 1

min{∑i∈N ajizi :
∑

k∈N zk ≥ ν∗, (35),0 ≤ zk ≤ Uk,∀k ∈ Nr} (47)

and then we replace the bounds on the φ-variables within Ωr by

lrj ← max
{
lrj , l̂

r
j

}
, ∀j ∈ N, and ur

j ← min
{
ur

j , û
r
j

}
, ∀j ∈ N. (48)

In case lrj > ur
j for any j ∈ N , i.e., the resulting Ωr = ∅, we fathom node r . Other-

wise, similar to (22)–(23), we compute

Lr
k ≡ min

{∑

j∈N

bjkφj : lrj ≤ φj ≤ ur
j ,∀j ∈ N

}
, ∀k ∈ N, (49)

Ur
k ≡ max

{∑

j∈N

bjkφj : lrj ≤ φj ≤ ur
j ,∀j ∈ N

}
, ∀k ∈ N. (50)

Using the values given by (46)–(48) and (49)–(50) in (34)–(43), produces the pre-
processed node problem P(Ωr).

Next, we compute an upper-bounding linear programming relaxation for P(Ωr),
denoted by LP(Ωr), by constructing a polyhedral outer-approximation for the hyper-
bolic constraints (40) and relaxing the binary restrictions on the free y-variables as
explained next.

Consider the relationship φjψj = 1 in (40) for any j ∈ N over the interval lrj ≤
φj ≤ ur

j . Figure 3 depicts this relevant segment of the hyperbolic curve. In lieu of this
nonlinear equation, we use a polyhedral outer-approximation to this curve segment
by examining the concave envelope chord (see Fig. 3) along with some three tangents,

constructed at the end-points lrj and ur
j , and at the geometric mean φ =

√
lrj u

r
j , the

last of which yields a tangent that is parallel to the chord (see Fig. 3). This polyhedral
approximation is defined as follows:

φj + (lrj u
r
j)ψj ≤ lrj + ur

j , ∀j ∈ N, (51)

J Optim Theory Appl

Fig. 3 Polyhedral
outer-approximation

φj + (lrj)
2ψj ≥ 2lrj , ∀j ∈ N, (52)

φj + (lrj u
r
j)ψj ≥ 2

√
lrj u

r
j , ∀j ∈ N, (53)

φj + (ur
j)

2ψj ≥ 2ur
j , ∀j ∈ N. (54)

Then the linear programming relaxation is given by

LP(Ωr): Maximize

{ ∑

k∈N

zk : (35,36,37,38,39,

42,43), (51,52,53,54), (y,φ) ∈ Ω̄r

}
(55)

where Ω̄r is the continuous relaxation of Ωr defined by

Ω̄r ≡ {
(y,φ):yk = 0,∀k ∈ J r

0 ;yk = 1,∀k ∈ J r
1 ;

0 ≤ yk ≤ 1,∀k ∈ Nr ; lrj ≤ φj ≤ ur
j ,∀j ∈ N

}
. (56)

Remark 1 Note that the solution to LP(Ωr) gives a tighter upper bound for Problem
P(Ωr) than νr , which could be further used in (46) to possibly tighten the bounds on
the φ-variables, and hence the subsequent relaxation LP(.). Although this looping is
possible (which could be continued so long as the bounds improve by at least some
percentage tolerance), we do not perform this for the sake of algorithmic simplicity.

Let ν[.] denote the optimal objective function value of any problem [.]. If
ν[LP(Ωr)] ≤ ν∗(1 + ε), for some tolerance ε ≥ 0, then we fathom node r . Further-
more, in case the optimal solution obtained for LP(Ωr) satisfies the relaxed con-
straints (40) and the binary restrictions on the y-variables in Problem P(Ωr), then

J Optim Theory Appl

this solution is also optimal to the latter problem, and so, we update the incumbent
solution if necessary and fathom node r . Otherwise, node r is declared active, in that
ν[LP(Ωr)] > ν∗(1 + ε), and then we partition this node problem using the following
Branching Rule.

Branching Rule

Given: Active node r , with optimal solution (zr , yr , φr ,ψr) to Problem LP(Ωr). Let
R denote the current total number of nodes generated.

Partitioning of Ωr :

Step 1 If yr is binary, go to Step 2. Otherwise, find

k∗ ∈ arg min
k∈N

|yr
k − 0.5|

and partition Ωr into two subsets ΩR+1 and ΩR+2 based on restricting yk∗
equal to 0 and 1, respectively, within each subset. Exit this rule.

Step 2 Find

j∗ ∈ arg max
j∈N

|φr
kψ

r
k − 1.0|

and partition Ωr into two subsets ΩR+1 and ΩR+2 based on bounding φj∗
within the intervals [lrj∗ , φr

j∗] and [φr
j∗ , ur

j∗] respectively. Exit this rule.

The steps of the proposed branch-and-bound algorithm are presented next. Let

k: the index for the current upper bounding problem under analysis;
ν∗: the best known lower-bound;
L: the queue of indices of active subproblems;
R: the number of nodes generated besides the root node;
LP(Ωr): the upper bounding problem for node r ;
ε: the specified optimality tolerance (ε ≥ 0);
ν(.): the optimal value of Problem (.).

Branch-and-Bound Algorithm (B&B)

Step 0 (Initialization): Let R = 1, k = 0, L = {1}, and ε ≥ 0. Let ν∗ = P be the value
obtained by Proposition 4.1 or computed via the procedure described in Section 5.

Step 1 (Choice of node): If L = ∅ then stop; otherwise find k

k ∈ arg max
r∈L

{ν[LP(Ωr)]}.

Set L ← L − {k}.
Step 2 (Branching rule): Partition Ωk into two subnodes ΩR+1 and ΩR+2 based on

the Branching Rule.
Step 3 (Solve, Update, and Queue): Set i = 1.

(i) Solve Problem LP(ΩR+i).

J Optim Theory Appl

(ii) If ν[LP(ΩR+i)] > ν∗(1+ε) then set L ← L∪{R+ i} and go to (iii); otherwise
go to (iv).

(iii) If the optimal solution to LP(ΩR+i) is feasible to P(ΩR+i), update ν∗ accord-
ing to

ν∗ ← max{ν∗, ν[LP(ΩR+i)]}.
If ν∗ changes remove all indices t ∈ L for which ν[LP(Ωt)] ≤ ν∗(1 + ε).

(iv) If i = 2 then set R ← R + 2 and go to Step 1; otherwise, let i = 2 and go to (i).

The following result establishes the convergence of the algorithm.

Proposition 4.3 Consider Algorithm B&B run with ε = 0. Then either this algo-
rithm terminates finitely with the incumbent solution being optimal to Problem P(Ω),
or else, an infinite branch-and-bound tree is generated such that along any infinite
branch of the tree, any accumulation point of the sequence of solutions generated for
the corresponding relaxations LP(.) solves P(Ωr).

Proof The case of finite convergence is obvious by the validity of the upper and lower
bounding strategies. Hence, suppose that an infinite branch-and-bound tree is gener-
ated, and consider any infinite branch. Define each step of selecting a node to partition
(following the greatest upper bound rule) as a stage, and index the stages consecu-
tively as s = 1,2, In particular, denote the sequence of nested Ω-sets along the
identified infinite branch as {Ωr(s)} for s ∈ S, and let ξ r(s) ≡ (zr(s), yr(s), φr(s),ψr(s))

be the optimal solution obtained for Problem LP(Ωr(s)), ∀s ∈ S, with [lr(s), ur(s)]
defining the vector of bounds on the φ-variables within the corresponding set Ωr(s),
∀s ∈ S. By taking any convergent subsequence if necessary (by the boundedness of
the sequences generated), assume without loss of generality that

{
ξ r(s), lr(s), ur(s)

}
S

→ (
ξ∗, l∗, u∗). (57)

We need to prove that ξ∗ solves Problem P(Ω).
First, by the greatest upper-bound node selection rule, we have that

ν[P(Ω)] ≤ ν[LP(Ωr(s))] =
∑

k∈N

z
r(s)
k , ∀s ∈ S. (58)

Next, observe that over the infinite sequence of partitions {Ωr(s)}S , we could have
branched on the y-variables only finitely often, and that by the preference given to
branching first on a fractional y-variable if necessary in the Branching Rule, we must
have yr(s) binary for s ∈ S large enough, so that by (57), we get that

y∗ is binary-valued. (59)

Furthermore, there exists some φp , p ∈ N , which is branched on infinitely often for

s ∈ S1 ⊆ S, say, by splitting its interval at the corresponding solution value φ
r(s)
p for

such s ∈ S1. As a result of this process, in the limit, we must have φ∗
p = l∗p or φ∗

p = u∗
p .

In either case, by (51)–(54), we therefore obtain

φ∗
pψ∗

p = 1. (60)

J Optim Theory Appl

But Step 2 of the Branching Rule asserts that

∣∣φr(s)
p ψr(s)

p − 1
∣∣ ≥ ∣∣φr(s)

j ψ
r(s)
j − 1

∣∣ ≥ 0, ∀j ∈ N, for each s ∈ S1. (61)

Taking limits in (61) as s → ∞ for s ∈ S1, and using (57) and (60), we get

φ∗
j ψ∗

j = 1, ∀j ∈ N. (62)

Therefore, by (59) and (62), we get that ξ∗ is feasible to P(Ω∗), and hence to P(Ω)

because Ω∗ ⊆ Ω . Consequently,

∑

k∈N

z∗
k ≤ ν[P(Ω)]. (63)

Finally, taking limits in (58) as s → ∞, s ∈ S, we get

ν[P(Ω)] ≤
∑

k∈N

z∗
k,

which in concert with (63) asserts that ν[P(Ω)] = ∑
k∈N z∗

k . Since ξ∗ is feasible to
P(Ω) from above, we have that ξ∗ solves P(Ω). �

5 A Finite Procedure for Computing Lower-Bounds

The efficiency of the branch-and-bound algorithm strongly depends on its ability to
find good lower and upper bounds. In this section we introduce an effective procedure
for computing an initial lower-bound for the MINLP Problem P1 given by (3)–(7).
This procedure can also be useful in the implementation of the branching rule of
the branch-and-bound algorithm discussed in the previous section. To describe this
method, we first introduce the following Nonlinear Programming Problem:

NLP(I): Maximize
∑

k∈I

zk (64)

subject to 0 ≤ zk ≤ Uk, ∀k ∈ I, (65)

zk = θ
∑

j∈N

uj

(
1 − αd

β
jk

) zkd
−γ

jk
∑

i∈I zid
−γ

ji

, ∀k ∈ I, (66)

where initially, we have I ≡ N . Let z̄ be a KKT point [16] for this nonlinear program.
If

z̄k ≥ zmin or z̄k = 0 for all k ∈ N, (67)

then consider the set of variables ȳk given by

ȳk =
{

1 if z̄k ≥ zmin,

0 if z̄k = 0, ∀k ∈ N .
(68)

J Optim Theory Appl

Hence (z̄, ȳ) is a feasible solution to Problem P1 and provides a lower bound∑
k∈N z̄k for the branch-and-bound algorithm. If z̄ does not satisfy (67), consider

the set of violations

IV = {k ∈ I : 0 < z̄k < zmin}. (69)

Note that for each I ⊆ N , |IV | = 0 if and only if z̄ = (z̄I ,0) and ȳ is a feasible
solution for Problem P1, where z̄I is a KKT point for Problem NLP(I) and ȳ is given
by (68). The idea of the procedure is to compute a finite number of KKT points of
Problems NLP(I) such that |I | strictly reduces each time until we attain |IV | = 0. To
accomplish this, we update the set I at each iteration by a simple formula related to
the values of the variables in the KKT solution computed for the previous iteration.
The steps of this procedure are stated below:

Finite Lower Bounding Procedure (LB)

Initial Step: Set I = N and compute a KKT point for NLP(I). If z̄ satisfies Condition
(67), go to Exit. Otherwise, reset I as the set of indices of the most positive V

components of z̄, where V is defined by (9).
General Step: Find a KKT point for NLP(I). If z̄ = (z̄I ,0) satisfies Condition (67),

go to Exit. Otherwise, update I ← I − {k∗}, where k∗ ∈ arg mink∈I z̄k . Repeat.
Exit: z̄ = (z̄I ,0) and ȳ given by (68) is a feasible solution to Problem P1 and pro-

vides the lower bound
∑

k∈N z̄k .

This procedure has two updating rules for the set I , which we have found efficient
in practice, although other updating rules may be used as well. Each iteration of the
method requires the computation of a KKT point for the nonlinear program NLP(I),
for which we have utilized the well-known code MINOS [17].

This technique can also be used to find new incumbent solutions and respective
lower bounds within Algorithm B&B. Consider an active node r , with optimal so-
lution (zr , yr , φr ,ψr) to Problem LP(Ωr). If this solution is feasible to Problem P2
then the node is fathomed and the lower bound is updated. In practice, the feasibil-
ity check is implemented by using some tolerances, and rounding errors may fail
to recognize that a feasible solution for the MINLP is at hand. We therefore applied
Procedure LB to alleviate this impediment. The implementation of the branching rule
with tolerance checks and using Procedure LB is described next.

Implementation of the Branching Rule

Given: Active node r , with optimal solution (zr , yr , φr ,ψr) to Problem LP(Ωr).
Let L denote the current total number of nodes generated and ν∗ the current lower
bound.

Partitioning of Ωr :

Step 1 (Branching on the Binary Variables):
If |yr

k | < 10−3 or |yr − 1| < 10−3 for all k ∈ N , then yr is declared binary
(rounded if necessary); go to Step 2. Otherwise, find

k∗ ∈ arg min
k∈N

|yr
k − 0.5|

J Optim Theory Appl

and partition Ωr into two subsets ΩR+1 and ΩR+2 based on restricting yk∗ equal
to 0 and 1, respectively, within each subset. Exit this rule.

Step 2 (Feasible Solution):
(i) If |φr

kψ
r
k − 1.0| ≤ 10−3 for all k ∈ N , then (zr , yr) is declared as feasible

solution for the MINLP and we set ν∗ ← max{ν∗,
∑

k∈N zr
k}. Exit this rule.

(ii) If |φr
kψ

r
k − 1.0| ≤ 10−1 for all k ∈ N , then apply Procedure LB to obtain a

feasible solution (z̄r , ȳr) for the MINLP and set ν∗ ← max{ν∗,
∑

k∈N zr
k}.

Exit this rule. Otherwise, go to Step 3 with the previous solution
(zr , yr , φr ,ψr).

Step 3 (Branching on the Continuous Variables):
Let

j∗ ∈ arg max
j∈N

|φr
kψ

r
k − 1.0|,

and partition Ωr into two subsets ΩR+1 and ΩR+2 based on bounding φj∗
within the intervals [lrj∗ , φr

j∗] and [φr
j∗ , ur

j∗], respectively, within each subset.
Exit this rule.

6 Computational Experience

In this section we report some computational experience with the proposed algorithm
discussed in Sects. 4 and 5. All the tests have been performed on a Pentium IV (In-
tel) with Hyperthreading, 3.0 GHz CPU, 2 GB RAM computer, using the operating
system Linux. The branch-and-bound method was implemented in the General Al-
gebraic Modeling System (GAMS) language (Rev 118 Linux/Intel) [18] and the LP
solver CPLEX (Version 9.1) [19] has been used to compute the upper bounds required
at each node. The Procedure LB described in Sect. 5 was implemented by using the
solver MINOS (Version 5.51) [17]. Both Procedure LB and the branch-and-bound
algorithm B&B were tested using a set of instances. The instances refer to a region
of 100 by 100 length units, and differ with respect to the number of centers (we as-
sume that centers coincide with candidate sites), the location of the centers, and the
number of potential users at each center. We consider two sets of problems, one with
10-center instances and the other with 20-center instances (abbreviated Prob10c# and
Prob20c#, for # = 1, . . . ,10). The center coordinates were determinated by generat-
ing random numbers uniformly over the interval [0, 100]. The number of potential
users at each center was generated uniformly over the discrete interval [10, 100]. The
minimum level of demand (zmin) that a facility must satisfy was assumed to be 100
for the 10-center instances and 200 for the 20-center instances, and the size of fa-
cility per user (θ) was assumed to be 1. The following calibration parameters were
considered: α = 1

max{dij :∀i,j∈N} , β = 1 and γ = 1. These values are within the range
generally identified for such parameters. Furthermore, the optimality tolerance ε in
the branch-and-bound algorithm was set to 10−2.

For the sake of comparison we also solved all the problems using the well-known
commercial code BARON [14] (version 22.7.2) with its default options. We note that
this latter procedure was developed for determining global optima of nonlinear and
mixed-integer nonlinear programs.

J Optim Theory Appl

Table 2 Computational results for Procedure LB

Problem Init IT LB Opt

Prob10c1 284.000 4 284.1923 300.1812

Prob10c2 325.000 4 342.8279 383.0505

Prob10c3 231.000 4 231.000 250.1113

Prob10c4 250.000 4 294.6108 294.6108

Prob10c5 384.000 4 405.4829 405.4829

Prob10c6 307.000 5 338.6385 341.2855

Prob10c7 440.000 4 504.9324 504.9324

Prob10c8 454.000 6 504.5034 515.7262

Prob10c9 252.000 3 329.0000 329.0000

Prob10c10 428.000 4 541.6011 541.6011

Prob20c1 717.000 4 790.3244 790.3244

Prob20c2 681.000 4 699.8012 702.1358

Prob20c3 823.000 3 922.6824 922.6824

Prob20c4 702.000 5 730.2478 744.9917

Prob20c5 737.000 5 763.6925 783.2329

Prob20c6 815.000 4 878.5657 888.5200

Prob20c7 947.000 5 986.3995 996.2900

Prob20c8 773.000 4 848.6399 860.1542

Prob20c9 786.000 4 843.2991 853.9300

Prob20c10 755.000 4 839.8316 839.8316

The computational results of the performances of the Procedure LB, Algorithm
B&B, and BARON (with default options) are displayed in Tables 2, 3, and 4, respec-
tively. In these tables, Init, LB, and Opt denote the value of the objective function at
the feasible solutions given by Proposition 4.1, Procedure LB, and the branch-and-
bound algorithm B&B (global maximum). Furthermore, IT is the number of iterations
required by the Procedure LB, and Nodes and CPU represent the number of nodes
enumerated and the CPU time consumed by Algorithm B&B and BARON up to ter-
mination. Finally, BestNode expresses the number of the node where the solution of
value Opt was found, and ITpivot represents the total number of pivotal operations
performed by Algorithm B&B.

Table 2 reports the experiments with Procedure LB. The numerical results show
that this method is always able to find a good lower bound with a small effort. In fact,
the procedure found a global optimum in 40% of the tests and always provided an
initial lower bound that is close to the global optimum (with 98.2% of optimality).
Furthermore, it required a few (≤6 and typically 4) number of iterations to find an
initial lower bound (recall that each iteration of the algorithm essentially amounts to
finding a KKT point by using MINOS).

The numerical results with the proposed branch-and-bound algorithm B&B are
displayed in Table 3. This algorithm always found a global optimum in a reasonable
amount of effort. The incorporation of Procedure LB improved the efficiency of the

J Optim Theory Appl

Table 3 Computational results for the branch-and-bound algorithm

Problem Opt Nodes BestNode ITpivot CPU zmin V

Prob10c1 300.1812 320 320 8312 27.0 100 439

Prob10c2 383.0505 368 368 9519 30.4 100 489

Prob10c3 250.1113 158 158 3225 10.6 100 367

Prob10c4 294.6108 112 0 2452 8.0 100 419

Prob10c5 405.4829 202 0 4717 14.4 100 521

Prob10c6 341.2855 246 0 5903 18.2 100 512

Prob10c7 504.9324 406 0 11447 30.6 100 613

Prob10c8 515.7262 1179 1179 37130 93.1 100 700

Prob10c9 329.0000 152 0 3684 11.1 100 423

Prob10c10 541.3822 598 0 15634 45.9 100 655

Prob20c1 790.3244 3790 0 128150 199.2 200 1090

Prob20c2 702.1358 990 826 40142 48.4 200 926

Prob20c3 922.6824 4370 0 140102 219.6 200 1184

Prob20c4 744.9917 908 768 38113 44.8 200 1027

Prob20c5 783.2329 2748 2248 113805 136.4 200 1076

Prob20c6 888.5200 3944 3174 158050 193.2 200 1094

Prob20c7 996.2900 4156 3218 177294 207.2 200 1333

Prob20c8 860.1542 3292 2498 129225 162.4 200 1111

Prob20c9 853.9300 4192 3708 166612 205.2 200 1121

Prob20c10 839.8316 2698 0 107029 132.8 200 1152

branch-and-bound method significantly. As stated before, the Procedure LB usually
finds a good quality lower bound that allows to prune the enumerative tree effectively.
Furthermore, the use of this procedure in the branching rule, as explained in Sect. 5,
enabled the algorithm to detect new lower bounds that would not otherwise have
been found readily. It is also interesting to note that whenever the initial lower bound
was smaller than the optimal value, the branch-and-bound algorithm usually detected
the optimal solution toward the end of the tree search (see the columns Nodes and
BestNode).

Table 4 reports the experimental results for solving the same test problems with
BARON. The results show that the proposed branch-and-bound algorithm is more
efficient than BARON, particularly for the 20-center instances proposed. The average
CPU time consumed by BARON for the 10 and 20 centers problems were 41.32
and 17709.98, respectively, as compared with 28.91 and 154.92 for the branch-and-
bound algorithm B&B. It is important to note, however, that BARON is a general
purpose code, although it implements several sophisticated preprocessing and model
tightening strategies.

J Optim Theory Appl

Table 4 Computational results for BARON

Problem Opt Nodes BestNode CPU zmin V

Prob10c1 300.1812 906 361 9.3 100 439

Prob10c2 383.0505 1975 19 20.5 100 489

Prob10c3 250.1113 874 739 7.9 100 367

Prob10c4 294.6108 770 631 8.8 100 419

Prob10c5 405.4829 2367 388 30.7 100 521

Prob10c6 341.2855 1682 514 21.0 100 512

Prob10c7 504.9324 3556 3106 49.5 100 613

Prob10c8 515.7262 9741 3034 161.3 100 700

Prob10c9 329.0000 1360 1036 14.6 100 423

Prob10c10 541.3822 5849 5347 89.7 100 655

Prob20c1 790.3244 187579 134785 11922.6 200 1090

Prob20c2 702.1358 62537 57997 3531.7 200 926

Prob20c3 922.6824 203342 26722 14520.2 200 1184

Prob20c4 744.9917 72503 67213 4869.2 200 1027

Prob20c5 783.2329 135395 1 7523.3 200 1076

Prob20c6 888.5200 367025 364564 20104.4 200 1094

Prob20c7 996.2900 879006 49726 64080.3 200 1333

Prob20c8 860.1542 334286 317224 17713.0 200 1111

Prob20c9 853.9300 331976 141382 19586.2 200 1121

Prob20c10 839.8316 188816 87967 13249.1 200 1152

7 Conclusions

In this paper, we have introduced a facility location model with distance-sensitive
and size-sensitive demands. The purpose of the model is to determine the optimal
number, location, and size of facilities so as to maximize the total expected demand
attracted to the facilities. The model assumes that the demand for service increases
as the distance to the facility decreases, and it increases with the size of the facility.
The size of a facility is endogenously determined and is proportional to the number of
users visiting the facility. This feature makes the model nonlinear (in addition to being
mixed-integer) and, hence, difficult to solve. The model also considers that facilities
must satisfy a minimal level of demand (facilities are not economically viable below
this level).

A branch-and-bound algorithm has been designed for finding a global minimum to
this optimization problem. This procedure is based on a reformulation and polyhedral
outer approximation of the nonlinear constraints of the problem. The tree search pro-
cedure is based on partitioning the domain of the original variables and incorporates
effective techniques for obtaining upper bounds at each node of the enumeration tree.
Theoretical convergence of the proposed branch-and-bound algorithm has been estab-
lished. An efficient procedure for computing lower bounds has also been integrated
within the algorithm, while recognizing finite precision computations, and has been

J Optim Theory Appl

demonstrated to significantly reduce the total search in the tree for the computation
of a global minimum. Computational experience was reported, which demonstrates
that the algorithm is efficient and performs in general better than the well-known
commercial code BARON in practice, reducing the effort required by 30.03% and
99.13% on average, for the 10 and 20 center problems, respectively.

References

1. Daskin, M.: Network and Discrete Location: Models, Algorithms and Applications. Wiley, New York
(1995)

2. Current, J.D.M., Schilling, D.: Discrete network location models. Facility Location: Applications and
Theory, pp. 81–118 (2002)

3. Holmberg, K.: Facility location problems with spatial interaction. In: Floudas, Pardalos (eds.) Ency-
clopedia of Optimization, 2nd edn., pp. 982–989. Springer, Berlin (2009)

4. ReVelle, C., Eiselt, H.: Location analysis: a synthesis and survey. Eur. J. Oper. Res. 165(1), 1–19
(2005)

5. Tuy, H.: Global optimization in location problems. In: Floudas, Pardalos (eds.) Encyclopedia of Op-
timization, 2nd edn., pp. 1354–1359. Springer, Berlin (2009),

6. Krarup, J., Pruzan, P.M.: Simple plant location problem: survey and synthesis. Eur. J. Oper. Res. 12(1),
36–81 (1983)

7. Mirchandani, P.: The p-median problem and generalizations. Discrete Location Theory 1, 55–117
(1990)

8. Perl, J., Ho, P.: Public facilities location under elastic demand. Transp. Sci. 24(2), 117–136 (1990)
9. OKelly, M.: Spatial interaction based location-allocation models. Spatial analysis and location-

allocation models, pp. 302–326 (1987)
10. Eiselt, H., Laporte, G.: The maximum capture problem in a weighted network. J. Reg. Sci. 29(3),

433–439 (1989)
11. Plastria, F., Carrizosa, E.: Optimal location and design of a competitive facility. Math. Program.

100(2), 247–265 (2004)
12. Berman, O., Krass, D.: Locating multiple competitive facilities: spatial interaction models with vari-

able expenditures. Ann. Oper. Res. 111(1), 197–225 (2002)
13. Aboolian, R., Berman, O., Krass, D.: Competitive facility location and design problem. Eur. J. Oper.

Res. 182(1), 40–62 (2007)
14. Sahinidis, N., Tawarmalani, M.: BARON: The GAMS Solver Manual. GAMS Development Corpo-

ration, Washington, DC, pp. 9–20 (2004)
15. Cascetta, E.: Transportation Systems Analysis: Models and Applications, 2nd edn. Springer, Berlin

(2009)
16. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms, 3rd

edn. Wiley-Interscience New York (2006)
17. Murtagh, B., Saunders, M., Murray, W., Gill, P., Raman, R., Kalvelagen, E.: MINOS-NLP. Systems

Optimization Laboratory, Stanford University, Palo Alto, CA
18. Brooke, A., Kendrick, D., Meeraus, A., Raman, R.: GAMS—a user’s guide. GAMS Development

Corporation (1998)
19. CPLEX, I.: 11.0 Users Manual. ILOG SA, Gentilly, France (2008)

	Siting and Sizing of Facilities under Probabilistic Demands
	Abstract
	Introduction
	Optimization Model
	An Illustrative Example
	A Branch-and-Bound Algorithm
	A Finite Procedure for Computing Lower-Bounds
	Computational Experience
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

