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Abstract. This paper is devoted to the Eigenvalue Complementarity Problem (EiCP) with

symmetric real matrices. This problem is equivalent to finding a stationary point of a differ-

entiable optimization program involving the Rayleigh quotient on a simplex [22]. We discuss a

logarithmic function and a quadratic programming formulation to find a complementarity eigen-

value by computing a stationary point of an appropriate merit function on a special convex

set. A variant of the spectral projected gradient algorithm with a specially designed line search

is introduced to solve the EiCP. Computational experience shows that the application of this

algorithm to the logarithmic function formulation is a quite efficient way to find a solution to

the symmetric EiCP.

1. Introduction

Given the matrix A ∈ Rn×n and the positive definite (PD) matrix B ∈ Rn×n, the Eigenvalue
Complementarity Problem (EiCP) is a problem of the form

Find λ > 0 and x ∈ Rn \ {0} such that


w = (λB −A)x,

w > 0, x > 0,

xT w = 0.

(1.1)

The EiCP is a particular case of the Mixed Eigenvalue Complementarity Problem
(MEiCPJ) that consists of finding a scalar λ > 0 and a vector x ∈ Rn \ {0} such that

w = (λB −A)x,

wJ > 0, xJ > 0,

wT
J xJ = 0,

wJ̄ = 0,

where xJ ≡ (xj , j ∈ J), wJ ≡ (wj , j ∈ J), J ⊆ {1, . . . , n} and J̄ = {1, . . . n} \ J . Note that
the EiCP is obtained when J = {1, . . . , n}. The MEiCPJ is a generalization of the EiCP, that
appears more frequently in practical problems of engineering and physics where the computation
of eigenvalues is required. Problems involving the resonance frequency of structures and stability
of dynamical systems are among these applications and have been discussed in [9]. Extensions of
these problems to more general cones have been discussed in [24, 25, 26, 28]. We are interested in
the Symmetric EiCP, in which the matrices A and B are both symmetric (i.e., when B is SPD).
As is traditional in complementarity problems, the most important conclusions for the EiCP also
hold for the MEiCPJ .
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Note that if λ is unrestricted and w = 0 (J = ∅), then the variables xi (i = 1, . . . , n) are free and
the solution of the MEiCPJ corresponds to a solution of the Generalized Eigenvalue Problem [15].
For any solution (λ, x) of EiCP (or MEiCPJ), the value of λ is called Complementary Eigenvalue

of the matrices (A,B) and x is the corresponding Complementary Eigenvector.
For each solution (λ, x) of MEiCPJ , there exists a set of indices I satisfying J̄ ⊆ I ⊆ {1, . . . , n},

such that λ is a positive eigenvalue of (AII , BII) and xI is the corresponding eigenvector satisfying
xJ∩I > 0 [24], where CII represents the principal submatrix of order I of the matrix C and xI is the
subvector associated with the index set I. For the EiCP, this theorem means that given a solution
(λ, x), λ is a positive eigenvalue of (AII , BII) and xI is the corresponding non-zero eigenvector.
An immediate corollary of this result is that the number of solutions of the EiCP (and MEiCPJ)
is finite [22, 24].

When at least one of the matrices A or B is asymmetric, the EiCP was studied in [17], where a
branch-and-bound method for the solution of this problem was introduced. The symmetric EiCP,
as defined by (1.1), was discussed in [22], where it was shown that the EiCP can be reduced to the
problem of finding a stationary point of the Rayleigh function on the simplex.

In this paper we start by recalling the optimization formulation that uses the Rayleigh quotient
function. We also consider a logarithmic function applied to the Rayleigh quotient. A quadratic
formulation equivalent to (1.1) is also introduced. The resulting problems are nonlinear programs
that can be solved by an interior-point method such as LOQO [27], and also by a general purpose
optimization solver as MINOS [20]. For the Rayleigh quotient and the logarithmic function, the EiCP
is reduced to nonlinear programs on a simplex. We discuss the solution of these two optimization
problems by a variant of the Spectral Projected Gradient (SPG) [6] algorithm combined with a
specially designed line search, fully described in section 3. The projection, required at each iteration
of this process, is the unique optimal solution of a strictly convex quadratic program solved by
a strongly polynomial block pivotal principal pivoting algorithm [16]. Computational experience
with a set of small and large EiCPs shows that the SPG algorithm is quite efficient for finding a
complementary eigenvalue and compares favorably with the commercial codes LOQO and MINOS in
these instances. Furthermore the logarithmic function formulation seems to lead in general into a
better performance for the SPG algorithm.

The paper is organized as follows. In section 2 the three formulations are presented. The SPG
method is introduced in section 3 along with all the techniques incorporated in the algorithm
for the computation of the search direction and step length. Numerical experiments and some
conclusions are presented in the last section of this paper.

2. Formulations

Since the set of complementary eigenvectors associated to a certain eigenvalue is a cone, there
is no loss of generality if we consider only the solutions satisfying ‖x‖ = p, where p > 0 and ‖ ‖ is
any vector norm. This constraint ensures that x is a non-zero vector. Since x > 0 in the definition
of the EiCP, this constraint can be replaced by the linear constraint ‖x‖1 = eT x = p, where e is a
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vector of ones. So (1.1) is equivalent to finding λ > 0 such that

w = (λB −A)x,

w > 0, x > 0,

xT w = 0,

eT x = p.

(2.1)

Considering a suitable continuously differentiable merit function φ(x) [22], it is possible to reduce
the EiCP to the following nonlinear program

Minimize φ(x)
subject to eT x = p,

x > 0.

(2.2)

The Karush-Kuhn-Tucker conditions that define a stationary point for this problem constitute the
complementarity problem

∇φ(x) + αe = w,

eT x = p,

xT w = 0,

w > 0, x > 0, α ∈ R,

(2.3)

where α is the Lagrange multiplier associated to the constraint eT x = p.

2.1. Rayleigh quotient formulation.

The first objective function is the generalized Rayleigh quotient that was used in [22]. It is
included in this work for completeness.

The complementarity condition wT x = 0 in (2.1) may be substituted by xT (λBx − Ax) = 0
and, since B is SPD, this equation is equivalent to

λ(x) =
xT Ax

xT Bx
.

This is the generalized Rayleigh quotient.
As discussed in [22], if

φ(x) = −xT Ax

xT Bx
,

then a stationary point of (2.2) gives a solution to the EiCP. The gradient and Hessian for this
function are respectively

∇φ(x) =
2

(xT Bx)2
((xT Ax)Bx− (xT Bx)Ax), (2.4)

and

∇2φ(x) =
2[(xT Ax)B − (xT Bx)A] + 4[(Ax)(Bx)T + (Bx)(Ax)T ]

(xT Bx)2
− 8(xT Ax)(Bx)(Bx)T

(xT Bx)3
. (2.5)
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2.2. Logarithmic formulation.

Inspired by the work of Auchmuty [1], Mongeau & Torki [19] and the behavior of the generalized
Rayleigh quotient, we introduce the following merit function

LAB(x) = ln(xT Bx)− ln(xT Ax),

whose gradient and Hessian are respectively

∇LAB(x) =
2Bx

xT Bx
− 2Ax

xT Ax
, (2.6)

and

∇2LAB(x) =
2B

xT Bx
− 4(Bx)(Bx)T

(xT Bx)2
− 2A

xT Ax
+

4(Ax)(Ax)T

(xT Ax)2
. (2.7)

Note that this function can only be used if xT Ax > 0 for any x 6= 0, that is, if A is strictly
copositive [10]. Moreover, xT Bx > 0 for any x 6= 0, since B is SPD.

Theorem 2.1. If A is strictly copositive, then any stationary point x̄ of LAB(x) in the con-
vex set K = {x ∈ Rn : eT x = p, x > 0} leads to the solution (x̄, λ̄) of the EiCP, where
λ̄ = (x̄T Ax̄)/(x̄T Bx̄).

Proof: Computing the inner product of x ∈ Rn and the gradient vector, we obtain

xT∇LAB(x) = 0. (2.8)

By assuming that (x̄, w̄, ᾱ) ∈ Rn ×Rn ×R satisfy the conditions (2.3) with φ(x) = LAB(x), then

x̄T∇LAB(x̄) + ᾱ(x̄T e) = x̄T w̄ = 0.

By (2.8) and since x̄T e = p > 0 it follows that ᾱ = 0. Now by (2.3) we have

∇LAB(x̄) = w̄ > 0. (2.9)

Since A is strictly copositive and B is SPD, the expressions (2.6) and (2.9) imply that (λ̄B−A)x̄ > 0
with λ̄ = (x̄T Ax̄)/(x̄T Bx̄) and x̄T (λ̄B −A)x̄ = 0. Hence (x̄, λ̄) is a solution of the EiCP. �

2.3. Quadratic formulation.

An equivalent way to formulate the EiCP (1.1) is through the quadratic formulation:

Maximize xT Ax

subject to xT Bx 6 1,

x > 0,

(2.10)

where the matrix A is symmetric and B is SPD.

Theorem 2.2. If A is strictly copositive and x̄ 6= 0 is a stationary point of (2.10), then the pair
x̄, λ̄ = x̄T Ax̄ is a solution of EiCP.

Proof: Since the constraint set is convex, we start by showing that Slater’s constraint qualification
[3] holds, that is, there exists a x > 0 such that xT Bx < 1. Since B is a SPD matrix, then B ∈ S

[10] and there exists a x̄ > 0 such that Bx̄ > 0. Furthermore, x̄T Bx̄ > 0 and there are three
possible cases:
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a) x̄T Bx̄ < 1 and the Slater’s constraint qualification holds;
b) x̄T Bx̄ = 1;
c) x̄T Bx̄ = β > 1.

The third case reduces to the second one, as x̃ = x̄/
√

β satisfies x̃ > 0, Bx̃ > 0 and x̃T Bx̃ = 1.
Consider now that there exists x̄ > 0 such that Bx̄ > 0 and x̄T Bx̄ = 1. We prove that for any

positive real number θ such that

θ < min
{

x̄1,
2(Bx̄)1

b11

}
then x = x̄ − θe1 satisfies x > 0 and xT Bx < 1 (e1 is the first vector of the canonical basis). In
fact x > 0 by construction. Furthermore

xT Bx = (x̄− θe1)T B(x̄− θe1)
= x̄T Bx̄− 2θ(Bx̄)1 + θ2b11,

and xT Bx < 1 if and only if

(x̄T Bx̄− 1) + θ[θb11 − 2(Bx̄)1] < 0,

that is, if and only if, θ < 2(Bx̄)1/b11. This shows that Slater’s constraint qualification is true and
[3] any optimal solution x̄ of (2.10) satisfies the Karush-Kuhn-Tucker (KKT) conditions

w = (λB −A)x,
xiwi = 0, i = 1, . . . , n
x > 0, w > 0, λ > 0,
ν = 1− xT Bx,
νλ = 0,
ν > 0.

Since 0 6= x̄ > 0 and B is a SPD matrix, then x̄T Bx̄ > 0. If x̄T Bx̄ < 1, then λ = 0 and w̄ = −Ax̄.
Therefore

x̄T w̄ = 0 = −x̄T Ax̄,

which is impossible, since A is strictly copositive. Hence x̄T Bx̄ = 1 and λ = x̄T Ax̄ > 0. This
completes the proof. �

3. Spectral Projected Gradient Algorithm

In this section the Spectral Projected Gradient (SPG) method is applied to the two formulations
with linear constraints of the previous section. This method can be viewed as a variant of the
classical projected gradient method.

Projected Gradient (PG) methods provide an interesting option for solving large-scale convex
constrained problems. They are simple and easy to code, and avoid the need for matrix factoriza-
tions. Practical monotone backtracking line search versions have been introduced to the choice of
step length (see e.g., [4]). However, these early PG methods are frequently inefficient since their
performance resembles the optimal gradient method (also known as the steepest descent method),
which is usually very slow. Nevertheless, the effectiveness of PG methods can be greatly improved
by incorporating recently developed choices of step length and globalization strategies.

There have been many different variations of the early PG methods. They all have the common
property of maintaining feasibility of the iterates by frequently projecting trial steps on the feasible
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convex set. In particular, Birgin et al. [5, 6] combine the projected gradient method with recently
developed ingredients in unconstrained optimization to propose an effective scheme that is known
as the Spectral Projected Gradient (SPG) method. One of the interesting features of the SPG
method is the spectral choice of step length along the gradient direction, originally proposed by
Barzilai and Borwein [2] for unconstrained optimization. In [2], R-superlinear convergence was
established for the minimization of two-dimensional strictly convex quadratics. Recently, though,
Dai and Fletcher [11] established that the method is also asymptotically R-superlinearly convergent
in the three-dimensional case, but not when the dimension is greater than or equal to four. Dai and
Liao [12] refined the global analysis in Raydan [23] for quadratics and proved that the convergence
rate is R-linear in general. Numerical experiments have shown that the spectral gradient method
for unconstrained optimization ([13]) or the SPG method for convex constrained optimization ([5])
are much faster than the steepest descent method or the classical PG methods, respectively.

In the setting of Birgin et al. [5, 6], the SPG algorithm starts with x0 ∈ Ω, and moves at every
iteration k along the internal projected gradient direction

dk = P (xk − ηk∇φ(xk))− xk,

with a parameter ηk > 0. In particular, in the SPG method, the spectral choice is used, which is
given by

ηk =
〈sk−1, sk−1〉
〈sk−1, yk−1〉

,

sk−1 = xk−xk−1, yk−1 = ∇φ(xk)−∇φ(xk−1) whenever the denominator is positive. Furthermore,
P (w) is the projection of w ∈ Rn onto Ω, where for the optimization formulations under study

Ω =
{
x ∈ Rn : x > 0, eT x = p

}
. (3.1)

In the case that the first trial point, xk + dk, is rejected the next ones are computed along the
same direction, i.e., x+ = xk + δdk, using a line search to choose 0 < δ ≤ 1, to be described later,
such that global convergence towards a stationary point of φ is guaranteed.

We now present the algorithm used in this paper. It starts with x0 ∈ Ω, a sufficient decrease
parameter ζ ∈ (0, 1), and a small stopping tolerance ε > 0. Initially, η0 > 0 is arbitrary. Given
xk ∈ Ω and ηk > 0, we describe next an iteration of the SPG algorithm.

Spectral Projected Gradient Algorithm

Step 1: Compute zk = P (xk − ηk∇φ(xk)) and the direction dk ∈ Rn by

dk = zk − xk.

Step 2: If ‖dk‖ < ε then stop: xk is a stationary point of φ in Ω.
Step 3: If φ(zk) 6 φ(xk)− ζdT

k∇φ(xk) then δk = 1.
Else determine the step length δk ∈ ]0; 1] by exact line search.

Step 4: Update the solution

xk+1 ← xk + δkdk.

In the implementation, the value of ε depends on the optimization problem. This value must
guarantee that the algorithm ends after a finite number of iterations and the solution is accurate.
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At each iteration we have to compute the objective function, its gradient and the projection zk.
The gradient is given by (2.4) or (2.6) depending on the merit function to be used. We now discuss
how to obtain the initial solution, the parameter ηk, the step length δk and the projection.

3.1. The initial guess.

As described in [22], the initial solution x0 can be chosen by one of several processes. In
particular if A has at least one diagonal element aii > 0 then the initial solution can be chosen as

x0 = p ei,

where ei is the vector i of the canonical basis. Another possible choice is

x0 =
p

n
e, (3.2)

as long as (x0)T Ax0 > 0. Therefore this initial point can be used if A is strictly copositive.

3.2. The parameter ηk.

The parameter ηk can be fixed or changed at each iteration. A first choice is simply setting
ηk = 10−1 or any other small positive value.

A second choice demands some computational effort and is based on [6]. When calculating the
first projection we begin with

η0 = min(ηmax,max(ηmin, 1/‖P (x0 −∇φ(x0))− x0‖∞)),

where ηmin is a quite small positive number and ηmax = η−1
min. The subsequent values are obtained

by the following procedure:

Compute sk = xk+1 − xk, yk = ∇φ(xk+1)−∇φ(xk) and βk = 〈sk, yk〉.
If βk 6 0 then ηk+1 = ηmax,

else compute ηk+1 = min[ηmax,max(ηmin, 〈sk, sk〉/βk)]

This process is well-defined [6]. In practice, we accept ηk+1 = ηmax provided βk 6 ε with ε a
positive tolerance. Furthermore, we set ηmin = εM , where εM is the machine precision.

3.3. Projecting onto Ω.

Next, we explain the computation of the projection z = P (xk − ηk∇φ(xk)) onto Ω, given by
(3.1), that is required in every iteration of the algorithm.

I. Find u = xk − ηk∇φ(xk).
II. The vector z is the unique optimal solution of the strictly convex quadratic problem

Minimize
z∈Rn

1
2
‖u− z‖22

subject to

eT z = p,

zi > 0, i = 1, . . . , n.

Since

‖u− z‖22 = (u− z)T (u− z) = uT u− 2uT z + zT z,
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and 1
2uT u is constant, then this program reduces to

Minimize
z∈Rn qT z +

1
2
zT z

subject to

eT z = p,

zi > 0, i = 1, . . . , n.

(3.3)

where q = −u.
Several methods can be used to solve this kind of quadratic programs. Among those methods,

the block pivotal principal pivoting algorithm presented in [16] is chosen because it is strongly
polynomial and very efficient. The steps of this method are presented below.

Block Pivotal Principal Pivoting Algorithm

Step 0: Let F = {1, 2, . . . , n}.

Step 1: Compute ϕ = −

p +
∑
i∈F

qi

|F |
.

Step 2: Let H = {i ∈ F : qi + ϕ > 0}.
If H = ∅ stop and

z = (zi)i=1,...,n, where zi =

 0 if i 6∈ F

−(qi + ϕ) if i ∈ F

is the optimal solution of the quadratic program (3.3).
Otherwise, set F = F −H and return to Step 1.

Note that, in practice, the set H is determined by

H = {i ∈ F : qi + ϕ > ε},

where ε =
√

εM .

3.4. The step length δ.

If the first trial point does not satisfy the condition in Step 3 of the SPG algorithm, then the
value of the step length δ is obtained by exact line search, i.e., it is the solution of the unconstrained
program:

Minimize φ(x + δd) = ϕ(δ),
0 6 δ 6 1

(3.4)

which depends on φ. Next, we explain how δ can be computed for the Rayleigh quotient and
logarithmic functions.

Rayleigh quotient function. In this case,

ϕ(δ) = − (x + δd)T A(x + δd)
(x + δd)T B(x + δd)

.
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Here we ignored any reference (subindex) to the iteration number.

Theorem 3.1. Any solution δ of the equation ϕ′(δ) = 0 associated with the Rayleigh quotient
merit function is a root of the equation of degree two:

a1 + δa2 + δ2a3 = 0,

where

a1 = (dT Ax)(xT Bx)− (dT Bx)(xT Ax),

a2 = (dT Ad)(xT Bx)− (dT Bd)(xT Ax), (3.5)

a3 = (dT Ad)(xT Bd)− (dT Bd)(xT Ad).

Proof: The stationary point of problem (3.4) satisfies

ϕ′(δ) =
2dT B(x + δd)(x + δd)T A(x + δd)− 2dT A(x + δd)(x + δd)T B(x + δd)

[(x + δd)B(x + δd)]2
= 0

⇔ 2dT A(x + δd)(x + δd)T B(x + δd)
[(x + δd)B(x + δd)]2

=
2dT B(x + δd)(x + δd)T A(x + δd)

[(x + δd)B(x + δd)]2
. (3.6)

Since the matrix B is SPD and x 6= 0, then (3.6) is equivalent to:

dT A(x + δd)(x + δd)T B(x + δd) = dT B(x + δd)(x + δd)T A(x + δd). (3.7)

Simplifying the left side of (3.7), we get

dT A(x + δd)(x + δd)T B(x + δd) =

= [dT Ax + δdT Ad][xT Bx + 2δxT Bd + δ2dT Bd]

= (dT Ax)(xT Bx) + 2δ(xT Bd)(dT Ax) + δ2(dT Bd)(dT Ax)+

+ δ(dT Ad)(xT Bx) + 2δ2(dT Ad)(xT Bd) + δ3(dT Ad)(dT Bd). (3.8)

Furthermore, the right side of (3.7) leads to

dT B(x + δd)(x + δd)T A(x + δd) =

= [dT Bx + δdT Bd][xT Ax + 2δxT Ad + δ2dT Ad]

= (dT Bx)(xT Ax) + 2δ(xT Ad)(dT Bx) + δ2(dT Ad)(dT Bx)+

+ δ(dT Bd)(xT Ax) + 2δ2(dT Bd)(xT Ad) + δ3(dT Bd)(dT Ad). (3.9)

From (3.8), (3.9) and recalling that A and B are symmetric matrices, we obtain

a1 + δa2 + δ2a3 = 0, (3.10)

for a1, a2 and a3 as in (3.5). �

Now let s1 and s2 be the solutions of equation (3.10). Since 0 6 δ 6 1, then the step length δ

in the SPG algorithm is computed as follows:

i) s1, s2 6∈ [0, 1]⇒ δ = 1
ii) there exists only one si ∈ [0, 1], i ∈ {1, 2} ⇒ δ = si
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iii) s1, s2 ∈ [0, 1].

Then, δ =

s1, if ϕ(s1) 6 ϕ(s2)

s2, otherwise.

Logarithmic function. In this case,

ϕ(δ) = φ(x + δd) = log((x + δd)T B(x + δd))− log((x + δd)T A(x + δd)).

and the following result holds.

Theorem 3.2. Any solution δ of the equation ϕ′(α) = 0 satisfies the polynomial equation of second
degree (3.10).

The proof is identical to the previous case and the step length δ is obtained following the same
steps.

4. Numerical results

The computational experience presented in this section was done on a personal computer with
3.0 GHz Pentium IV processor and 2 GBytes of RAM memory, running Linux 2.6.22. The MINOS

code of GAMS [7] and LOQO code of AMPL [14] collections were used to solve the three nonlinear formu-
lations. Moreover, the SPG algorithm was used for the first two formulations and implemented in
FORTRAN 90 [8], using the Intel compiler, version 10.0. Running times presented in this section
are always given in CPU seconds. The times reported for the SPG algorithm were measured using
the system clock intrinsic subroutine.

For our initial test problems, the matrix B is, by default, the identity matrix and the matrix
A ∈ Rn×n is SPD and sparse (pentadiagonal [21, page 380]) or dense (Fathy [21, page 311]). It
is interesting to note that matrices A of Fathy class are all positive. This means that each one of
these matrices has exactly one positive complementarity eigenvalue, which is its Perron root [24].
On the other hand this uniqueness property no longer holds for the matrices of the pentadiagonal
class. The parameter p in the constraint eT x = p has the fixed value p = 1. In our experiments,
we fix the parameters ε = 10−6 and ζ = 10−4.

The test problems are scaled according to the procedure described in [17, Section 5]. The scaling
is important because the matrices that we are using are badly conditioned, and without this tool
some of the problems cannot be solved.

Table 1 contains the results of the SPG algorithm for solving symmetric EiCPs with the initial
solution (3.2), the Rayleigh quotient and the Logarithmic objective functions. In our tests with
these matrices the algorithm had better results with this initial solution. In the referred Table,
‘Rayleigh’ means ‘Rayleigh quotient function’, ‘Logarithmic’ means ‘Logarithmic function’, ‘λ’
is the complementarity eigenvalue found for the EiCP, ‘T’ is the total CPU time performed by the
method and ‘It’ is the number of iterations needed to solve each problem. This notation is also
used in the remaining tables.

Table 1 shows that usually the Logarithmic function makes the SPG method slightly more effi-
cient when A is the pentadiagonal matrix. We also observe that the algorithm has an identical
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Rayleigh Logarithmic
A Order It T λ It T λ

100 7 0.0012 40.8331 8 0.0015 40.8331
200 7 0.0051 81.3612 8 0.0053 81.3612
300 7 0.0231 121.8896 8 0.0111 121.8896
400 7 0.1343 162.4180 8 0.0197 162.4180

F
a
t
h
y

500 7 0.0272 202.9465 7 0.0271 202.9465
700 7 0.0536 284.0034 7 0.0536 284.0034

1000 7 0.1103 405.5888 7 0.1098 405.5888

100 355 0.0106 1.3309 224 0.0059 1.3309
200 692 0.0387 1.3327 1004 0.0544 1.3327
300 1976 0.1867 1.3330 1378 0.1130 1.3330
400 2811 0.3157 1.3332 2901 0.3084 1.3332
500 3857 0.5451 1.3332 3146 0.4256 1.3332
700 5073 1.1542 1.3333 6638 1.2813 1.3333

1000 9344 2.7180 1.3333 8239 2.3036 1.3333

p
e
n
t
a
d
i
a
g
o
n
a
l

2000 17655 10.8075 1.3333 12579 7.3733 1.3333
5000 16272 27.7868 1.3333 13063 18.8608 1.3333

10000 13259 45.2588 1.3333 13063 37.3628 1.3333
20000 12881 83.2591 1.3333 14867 92.6165 1.3333

Table 1. EiCPs solutions with the SPG algorithm

performance for both objective functions for matrices of Fathy class. For the pentadiagonal matri-
ces, the number of iterations increases much with the dimension of the EiCP. However, it is noticed
that the SPG method can perform many iterations in little CPU time for this class of matrices.

Rayleigh Logarithmic
A Order It T λ It T λ

bcsstk01 48 28 0.0005 2.5920 22 0.0004 2.5920
bcsstk02 66 164 0.0297 16.5555 82 0.0068 16.5555
nos1 237 6 0.0004 118.5386 10 0.0006 118.5386
nos2 957 3 0.0008 478.5097 7 0.0017 478.5097
nos3 960 97 0.0427 210.4494 129 0.0564 210.4494
nos4 100 26 0.0012 50.8760 2 0.0001 25.0000
nos5 468 2918 0.4766 81.1665 2809 0.4550 81.1665
nos6 675 12 0.0020 2.3356 2 0.0003 0.3827

Table 2. EiCPs solutions for Matrix Market matrices with the SPG algorithm

In order to have a clearer idea about the performance of the SPG in practice, we tested it on
a set of matrices A taken from the Matrix Market repository [18]. The matrix B was considered
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Rayleigh Logarithmic
ε It λ ε It λ ε It λ ε It λ

10−5 1753 81.1639 10−4 832 80.9779 10−5 1807 81.1645 10−4 771 80.9532

Table 3. EiCP solutions for nos5 matrix with SPG method

diagonal with diagonal elements Bii = i, i = 1, . . . , n. The numerical results of this experience
for a stopping tolerance of ε = 10−6 are displayed in Table 2 and show that, as before, the
SPG algorithm has been able to find a solution of the EiCP in a very fast way. Furthermore, in
general the algorithm has required few iterations to terminate. The performance of the method
is the worst for the test problem nos5, where, as for the pentadiagonal matrices, the number of
iterations required by the algorithm to get an accurate solution of the EiCP is large. These results
are not surprising, as the SPG algorithm only uses first order derivative information and may have
slow progress in the last iterations. To illustrate this type of behavior, we display the numerical
results of the performance of the SPG algorithm for ε = 10−5 and ε = 10−4 in Table 3. Note that
for ε = 10−4 the algorithm requires a quarter of the number of iterations that have been performed
to get the most accurate solution associated with ε = 10−6. It is also interesting to note that the
SPG algorithm has found different stationary points for the two merit functions in two examples
(nos4 and nos6). This may be explained by the fact that the gradient of the two functions involve
different calculations, and the line search combines two different procedures to move in the same
direction.

MINOS/GAMS LOQO/AMPL

Rayleigh Logarithmic Rayleigh Logarithmic
A Order It T λ It T λ It T λ It T λ

100 193 1.21 40.8331 192 1.21 40.8331 23 0.25 40.8331 17 0.03 40.8331
200 390 9.46 81.3612 389 9.42 81.3612 21 1.49 81.3612 17 0.16 81.3612
300 583 31.02 121.8896 583 30.84 121.8896 20 4.95 121.8896 17 0.46 121.8896

F
a
t
h
y

400 778 72.91 162.4180 782 73.48 162.4180 28 18.46 162.4180 17 1.00 162.4180
500 972 140.62 202.9465 971 142.36 202.9465 26 35.21 202.9464 19 2.00 202.9464

100 176 0.08 1.3327 181 0.09 1.3327 22 0.13 1.3309 42 0.16 1.3309
200 409 0.40 1.3332 411 0.41 1.3332 57 1.71 1.3327 72 1.61 1.3327
300 631 0.98 1.3333 662 0.99 1.3333 67 5.80 1.3330 84 5.81 1.3330
400 884 1.86 1.3333 888 1.87 1.3333 69 12.94 1.3332 262 38.83 1.3332

p
e
n
t
a
d
i
a
g
o
n
a
l

500 1181 3.66 1.3333 1170 3.26 1.3333 108 36.61 1.3332 350 73.56 1.3333

Table 4. Symmetric EiCPs solutions with commercial codes

In Table 4 we report the behavior of the well-known packages MINOS/GAMS and LOQO/AMPL for
the solution of the same EiCPs. For these experiments we use the initial solution (3.2). These
codes use the same initial solution because it produces the best results for both. These codes were
applied to the first and second formulations. For matrices of order greater than 500, MINOS/GAMS



ON THE SOLUTION OF THE SYMMETRIC EICP BY THE SPG ALGORITHM 13

was unable to solve them and LOQO/AMPL requires too much time to solve these problems. These
methods required much more time to achieve a solution than the SPG algorithm. Furthermore,
MINOS/GAMS seems to be a better choice for solving EiCP with both formulations, when A is
pentadiagonal, while LOQO/AMPL is a better choice for processing EiCP with the Logarithmic
formulation, when A belongs to the Fathy collection.

MINOS/GAMS LOQO/AMPL

A Order M m T λ It T λ

100 9 166 2.03 40.8331 20 0.06 40.8331
200 10 276 16.68 81.3612 23 0.33 81.3612
300 13 398 43.69 121.8896 27 1.14 121.8896

F
a
t
h
y

400 16 519 101.81 162.4180 27 2.51 162.4180
500 19 640 197.14 202.9465 20 3.04 202.9465

100 16 331 0.16 1.3327 770 0.42 1.3327
200 22 554 0.56 1.3332 150 0.16 1.3332
300 28 739 1.12 1.3333 ***
400 32 916 2.24 1.3333 105 0.21 1.3333

p
e
n
t
a
d
i
a
g
o
n
a
l

500 36 1112 3.23 1.3333 ***

Table 5. Quadratic formulation program solutions

For solving the Quadratic formulation by MINOS we use the following initial solution:

x0 =
1

2
√

B11

e1,

where e1 is the first vector of canonical basis and B11 is the element of matrix B that is in the
first line and first column. For LOQO, the initial guess is chosen internally. The results of the
experiments obtained with this formulation are presented in Table 5, where (***) is used when the
algorithm was unable to solve the EiCP, ‘M’ is the number of major iterations and ‘m’ the number of
minor iterations in MINOS/GAMS. As before, MINOS/GAMS and LOQO/AMPL could not solve problems of
dimensions greater than 500. The LOQO/AMPL is clearly better than MINOS/GAMS to solve problems
with Fathy matrices. The later code was able to solve all the problems with pentadiagonal

matrices, while LOQO/AMPL was unable to solve two problems.
These results show that the quadratic formulation has some potential for processing the EiCP.

However, traditional algorithms, such as MINOS and LOQO, for solving this convex programs, are not
competitive with the SPG algorithm for the two remaining formulations. The possible use of an
SPG algorithm for solving the quadratic formulation requires an efficient technique to compute the
projection on a convex set defined by the intersection of an ellipsoid with the nonnegative orthant.
This is a subject for future research.

Based on these experiments, we claim that the SPG algorithm is a very efficient procedure
and compares favorably with commercial codes such as LOQO/AMPL and MINOS/GAMS for processing
Symmetric Eigenvalue Complementarity Problems by exploiting its reduction to stationary points
of suitable merit functions. The algorithm is in general able to find a solution of the EiCP with
good precision with a quite small computational effort. For some difficult problems, the algorithm
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can easily compute a solution with low precision, but may require a large amount of calculations to
get an accurate solution. We believe that preconditioning techniques could be designed to improve
the quality of the solutions for these difficult problems. This should also be a topic for future
investigation.

As far as the formulations are concerned, the Logarithmic merit function seems to lead into
a better performance for the SPG algorithm. Furthermore, the expression of the Hessian for
this function is simpler than for the Rayleigh function and this could be another reason to use
the logarithmic function for processing the EiCP by a preconditioned spectral projected gradient
algorithm.
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E-mail address: rosa@mat.ubi.pt
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