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Instituto de Telecomunicações
Largo D. Dinis, Apartado 3008

3001-454 Coimbra
PORTUGAL

joaquim.judice@co.it.pt

Abstract:The problem of finding the independent number of an undirected graph is formulated as two equivalent
Mathematical Programs with Linear Complementarity Constraints (MPLCC). A multistarting Lemke’s method
is introduced for dealing with the first formulation and is able to find a good approximate of the independent
number in a finite number of iterations. A sequential complementary algorithm is also discussed for the second
formulation and can find the independent number at least in theory. Some computational experience is included to
highlight the efficacy of the complementary approaches for computing the independent number of graphs from the
Dimacs collection.
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1 Introduction

Let G(V,E) be an undirected graph, whereV =
{1, . . . , n} andE are the sets of nodes and edges, re-
spectively. A Maximum Independent Set (MIS) of V
[6] is a setS ⊆ V of nodes of largest cardinality that
are pairwise nonadjacent. The cardinal|S| of such a
set is called the Independent Number ofG and is de-
noted byα(G). As discussed in [3] anMIS can be
obtained by finding a global minimum of a noncon-
vex quadratic program with nonnegative variables [3]
or by processing a nonconvex standard quadratic pro-
gram [3].
Several approaches have been proposed in the litera-
ture for computing anMIS, which search such a set
by solving one of the formulations discussed above
[3, 6, 13]. In particular, a complementary pivoting
approach based on Lemke’s method [12] has been
discussed in [13]. In this paper, we also investigate
the use of complementary techniques for finding an
MIS. To do this, we first introduce two equiva-
lent formulations of the problem as a Mathematical
Programming Problem with Linear Complementarity
Constraints (MPLCC).
A multistarting Lemke’s method and a sequential
complementary (SC) algorithm [11] are then proposed
to solve these twoMPLCC formulations. Computa-
tional experience with some graphs from the Dimacs

collection is reported to highlight the efficiency and
efficacy of these complementary approaches to find
anMIS in practice.
The organization of the paper is as follows. The
MPLCC formulations are introduced in section 2.
The multistarting Lemke’s method and the SC algo-
rithm are discussed in sections 3 and 4. Computa-
tional experience and some conclusions are reported
in the last section.

2 Linear complementarity formula-
tions

As discussed in [3], the problem of finding a Maxi-
mum Independent Set (MIS) of an undirected graph
G = (V,E) and the corresponding Independent Num-
ber α(G) = |S| can be stated as the following
quadratic program (QP )

QP1 : Maximize eT x −
1

2
xT (A + I)x =

α(G)

2
subject to x ≥ 0

whereA is the adjacency matrix associated toG, I is
the identity matrix of ordern ande ∈ R

n is a vector of
ones. The Karush-Kuhn-Tucker (KKT ) conditions
for QP lead to the following Linear Complementarity



Problem (LCP )

w = −e + (A + I)x
x ≥ 0, w ≥ 0
xT w = 0,

(1)

wherew ∈ R
n is the vector Lagrange multipliers as-

sociated to the nonnegative constraintsx ≥ 0. If x is
a solution of thisLCP , then

1

2
α(G) =

1

2
eT x−

1

2
xT (−e + (A + I)x) =

1

2
eT x.

Therefore anMIS and α(G) can be computed as
a global minimum of the following Mathematical
Program with Linear Complementarity Constraints
(MPLCC)

MPLCC1 : Maximize eT x

subject to w = −e + (A + I)x
x ≥ 0, w ≥ 0
xT w = 0.

Furthermore, it is easy to show that each solution of
theLCP (1) satisfiesxi ∈ {0, 1}, i = 1, . . . , n. The
nodes of each independent set ofG are associated with
the positive components of eachLCP solution. So an
MIS is a setS = {i1, . . . , ik} ⊂ {1, . . . , n} such tat
the vector̄x defined by

x̄i =

{

1 if i ∈ S,

0 otherwise
(2)

is a global minimum ofMPLCC1. Furthermore
α(G) = eT x̄.
Another quadratic programming formulation for an
MIS has been proposed in [3] and is given below

QP2 : Minimize
1

2
xT (A + I)x

subject to eT x = 1
x ≥ 0.

TheKKT conditions forQP2 constitute the follow-
ing MixedLCP

w = (A + I)x − ue

eT x = 1
x ≥ 0, w ≥ 0
xT w = 0,

(3)

wherew ∈ R
n andu ∈ R are the Lagrange multipli-

ers associated to the constraintsx ≥ 0 andeT x = 1
respectively. For each solution of the MixedLCP (3)

1

2
xT (A + I)x =

1

2
xT (w + ue) =

u

2

andQP2 is equivalent to the followingMPLCC

MPLCC2 : Minimize u

subject to w = (A + I)x − ue

eT x = 1
x ≥ 0, w ≥ 0, u ≥ 0
xT w = 0.

Next, we establish an interesting relationship between
the constraints sets of these twoMPLCCs.

Theorem 1 The vectorx̄ is a solution ofLCP (1)

if and only if

(

x̃ =
x̄

eT x̄
, ũ =

1

eT x̄

)

is a solution of

MixedLCP (3).

Proof: If x̄ is a solution ofLCP (1), then0 6= x̄ ≥ 0
andeT x̄ > 0. Furthermore

w̄

eT x̄
= −

e

eT x̄
+ (A + I)

( x̄

eT x̄

)

and

(

w̃ =
w̄

eT x̄
, x̃ =

x̄

eT x̄
, ũ =

1

eT x̄

)

is a solution of

Mixed LCP (3). On the other hand if(x̃, ũ, w̃) is a
solution of MixedLCP (3), then

ũ = ũ(x̃T e) = x̃T (A + I)x̃ − x̃T w̃ > 0

since (A + I) is a strictly copositive matrix. Then
(

x̄ =
x̃

ũ
, w̄ =

w̃

ũ

)

is a solution ofLCP (1). ⊓⊔

3 Lemke’s algorithm for finding an
approximate MIS

Since (A + I) is a strictly copositive matrix, then
LCP (1) has at least a solution which can be found
by Lemke’s method [12]. This procedure is a pivotal
algorithm that uses basic feasible solutions of the fol-
lowing GeneralLCP (GLCP )

w = −e + x0 d + (A + I)x
x ≥ 0, w ≥ 0, x0 ≥ 0
xT w = 0

(4)

whered ∈ R
n is a positive vector (usuallyd = e).

To guarantee such a property the algorithm starts with
a basic solution ofGLCP (4) given by

x̄ = 0, x̄0 =
1

dr

, w = e + x̄0d, (5)

wheredr = min{di : i = 1, . . . , n} > 0. All the
variablesxi and the variablewr are nonbasic and the



remaining variables are basic. Hence there exists ex-
actly a complementary pair(wr, xr) of nonbasic vari-
ables. In the next iteration the algorithm choosesxr

(complementary of the previous leaving variable) as
the entering variable which interchanges with a leav-
ing basic variable (found by the common minimum
quotient rule) [5, 16]. A new basic solution of the
GLCP (4) is obtained and eitherx0 = 0 and a so-
lution of theLCP (1) is at hand or the procedure is
repeated.
In order to describe the steps of the algorithm, we
rewrite the linear constraints ofGLCP (ū) in the form

Az = q, z ≥ 0 (6)

whereA = [I − M − d ], z = [ w x x0 ]T and
q = −e ∈ R

n. We recall [15] that a basic feasible
solution for the system (6) is defined by two setsJ =
{k1, . . . , kn} andL = {1, . . . , 2n + 1} \ J of basic
and nonbasic variables respectively, such that

zki
= q̄i −

∑

j∈L

āij zj , i = 1, . . . , n (7)

This solution is given byzki
= q̄i, i = 1, . . . , n, zj =

0, j ∈ L and is called a basic feasible solution of the
GLCP (4). The steps of Lemke’s method for solving
LCP (1) can now be presented as follows.

LEMKE’ S METHOD

Initial Step

Let dr = min{di, i = 1, . . . , n} and start with a
basic feasible solution ofGLCP (4), where thexi

variables andwr are nonbasic and the remaining
variables are basic.

General Step

Let zs, s ∈ L be the nonbasic variable that is comple-
mentary of the variable that has become nonbasic in
the previous iteration.

(i) If āis ≤ 0 for all i = 1, . . . , n, stop the algorithm
with the termination in an unbounded ray.

(ii) Computet ∈ {1, . . . , n} such that

t = min

{

r :
q̄r

ārs

= min

{

q̄i

āis

: āis > 0

}}

.

(8)
Perform a pivotal operation which interchanges
the nonbasic variablezs with the basic variable
zkt

associated with linet in (8). If x0 = 0
after such an operation, stop the algorithm with
a solution of theLCP . Otherwise, repeat the
general step.

We suggest [5, 16] for a detailed explanation of
Lemke’s method, its termination in a finite number of
iterations and its implementation for solving medium
and large scaleLCPs. Since(A+I) is strictly copos-
itive [5, 16], then termination in an unbounded ray can
not occur [5, 16] and the algorithm terminates with a
solution of theLCP .
The choice of the auxiliary vectord ∈ R

n has an im-
portant impact on the efficiency of the algorithm. We
used = e in order to work with integer basicGLCP
solutions. Hence these solutions are highly degene-
rate and Bland’s rule [5, 16] has to be employed for
the algorithm to converge. This rule (8) requires an
ordering of the rows for its application. In this paper
we suggest to apply Lemke’s algorithm with Bland’s
rulen times, where the row orderings are given as fol-
lows:

(1, 2, . . . , n−1, n), (2, . . . , n−1, n, 1), . . . , (n, 1, 2, . . . , n−1).

Lemke’s algorithm with the Bland’s rule is able to
compute in general different solutions for theLCP
(1). It is also interesting to add that the algorithm
requires exactlyp iterations to find an independent
set of cardinalp [13]. So the multistarting Lemke’s
algorithm findsn independent setsSi associated to
each one of theLCP solutions (some of them may

be equal) in
n

∑

i=1

|Si| iterations, where|Si| denotes the

cardinal ofSi. Since each one of these|Si| is usually
small, then the multistarting algorithm finds these in-
dependent sets in a relatively small amount of effort.
An approximate independent set of anMIS is given
as the one with the largest cardinal.

4 A Sequential complementary algo-
rithm for finding an MIS

There are a number of algorithms for finding a global
minimum for theMPLCC2 [2, 4, 7, 8]. A Sequential
Complementary (SC) algorithm has been introduced
in [11] and searches such a global minimum by
solving a parametricGLCP , where the parameter
strictly reduces in each iteration. By exploiting
Theorem 1, it is possible to state the steps of theSC
algorithm for solving theMPLCC2 in the following
form.

SC ALGORITHM

Initial Step

Find an initial independent setS of G.



General Step

Setū =
1

1 + |S|
and solveGLCP (ū):

w = (A + I)x − ue

eT x = 1
x ≥ 0, w ≥ 0
u ≤ ū

xT w = 0.

If this GLCP (ū) has no solution, thenS and|S| are
anMIS andα(G) respectively. Otherwise, let̄x be a
solution of thisGLCP (ū). Let S = {i : x̄i > 0} and
repeat general step.

It is important to add that the multistarting
Lemke’s method can be applied to find an initial in-
dependent setS. The existence of the constraintu ≤
ū prevents the use of the Lemke’s method to solve
GLCP (ū). Instead, an enumerative method [1, 10]
can be useful in this case.
This algorithm finds a solution of the MixedLCP (3)
by exploring a binary tree of the form

1

2 3

4 5

· ·
· ··
·

· ·
· ··
·

· ·
· ··
·

xi1
= 0 wi1

= 0

xi2
= 0 wi2

= 0

In each nodek of the tree, a quadratic program
(QP ) is considered which consists of minimizing the
complementary functionxT w on a convex set defined
by the linear constraints of theGLCP (ū) and some
constraintszi = 0, wherezi is a complementaryxi or
wi variable that has been fixed to zero in the edges of
the path linking the root to the nodek. For instance,
theQP associated with node 5 of figure above is de-
fined as follows

QP (5) : Minimize xT w

subject to w = −e + (A + I)x − ue

eT x = 1

x ≥ 0, w ≥ 0, u ≤ ū

xi1 = wi2 = 0

(9)

A local QP algorithm can be used to find a stationary
point (x̃, w̃, ũ) for eachQP (t). If x̃T w̃ = 0 then
the algorithm stops with a solution ofGLCP (ū).

Otherwise there must exist at least a complementary
pair (xi, wi) of positive variables, and two further
nodes should be added to the list of open nodes in the
tree. The steps of the algorithm are stated below.

ENUMERATIVE ALGORITHM

Step 0

LetL = {1} be the initial list of open nodes.

Step 1

If L = ∅, stop:GLCP (ū) has no solution. Otherwise
choose a nodet ∈ L.

Step 2

Remove nodet from the list L and consider the
quadratic programQP (t) associated with nodet. If
QP (t) is infeasible, go to Step 1. Otherwise find a
stationary point(x̃, w̃, ũ) for QP (t).

Step 3

If x̃T w̃ = 0, stop the algorithm with a solution
(x̃, w̃, ũ) of GLCP (ū). Otherwise let(xr, wr) a pair
of complementary positive variables of this stationary
point.

Step 4

Add two new nodesk and k + 1 to the listL with
quadratic programsQP (k) and QP (k + 1) defined
by
QP (k) : QP (t) with constraintxr = 0
QP (k + 1) : QP (t) with constraintwr = 0
Go to Step 1.

The algorithm possesses finite convergence to a
solution of GLCP (ū) or provides a certificate that
such a solution does not exist. An implementation
of this algorithm can be designed by using the well-
known MINOS code [14] to solve all theQP (t) in-
troduced during the whole procedure. Such an im-
plementation also requires efficient heuristic rules for
choosing nodet in Step 1 and the pair of complemen-
tary variables(xr, wr) in Step 3. We suggest [10] for
a detailed explanation of these heuristic techniques.

It follows from the description of its steps that
the enumerative algorithm searches a finite number of
stationary points of quadratic programsQP (t) until
computing a solution of theGLCP (ū) or showing
that no solution exists. The zero value of the com-
plementary functionxT w is a stopping criterion when
GLCP (ū) has a solution. However, this criterion is
never satisfied whenGLCP (ū) has no solution and
the algorithm requires much more effort to terminate



in Step 1 with an empty listL. So, the SC algorithm
incorporating this enumerative method can in general
find a global minimum of anMPLCC in a reason-
able amount of effort but may face too many difficul-
ties to give a certificate that such a global minimum
has been achieved.

5 Computational experience
The test problems used in our experiences are graphs
from the Dimacs collection [9]. The number of nodes
n, edges|E| and the independent numberα(G) of
these graphs are included in Table 1. For each value of
n, |E| represents the number of edges of the comple-
ment of the graph withn nodes given in the Dimacs
data set. Table 2 reports the results of the experiences
for finding α(G) by the complementary approaches
discussed in the previous sections on a Pentium IV
2.4 GHz machine with 512 MB of RAM.
The notations INLEM and INSC represent the cardi-

Table 1:

PROBLEM n |E| α(G)

matrixj1 28 168 4
matrixj2 70 560 14
matrixj3 120 1680 8
matrixj4 496 14880 16
matrixm1 45 72 16
matrixm2 378 702 126
matrixh1 64 192 32
matrixh2 64 1312 4
matrixh3 256 1024 128
matrixh4 256 11776 16
matrixb1 200 5066 21
matrixk4 171 5100 11
matrixf21 200 18366 12
matrixf22 200 16665 24
matrixf25 200 11427 58
matrixp2 300 22922 25
matrixsr27 200 6032 18
matrixsr29 200 2037 42

nal of the independent sets found by the multistarting
Lemke’s method and theSC algorithm with the pre-
vious method in the initial step respectively. Further-
more NIS and NIT denote the number of pivotal oper-
ations required by theSC algorithm to find anMIS
(NIS= 0 when the multistarting Lemke’s method pro-
vides such a set) and to terminate the algorithm (show
that the lastGLCP (ū) has no solution) respectively.
Finally T is the total CPU time in seconds spent by
theSC algorithm.

The numerical results reported in Table 2 show
that the multistarting Lemke’s method gives in general

Table 2:

PROBLEM INLEM INSC NIS NIT T
matrixj1 4 4 0 4812 1.02
matrixj2 14 14 0 * 13.70
matrixj3 8 8 0 * 19.95
matrixj4 16 16 0 * 71.15
matrixm1 16 16 0 * 19.85
matrixm2 125 126 33249 * 173.26
matrixh1 32 32 0 * 10.46
matrixh2 4 4 0 17828 6.29
matrixh3 128 128 0 * 79.18
matrixh4 16 16 0 * 44.41
matrixb1 18 21 3518 * 66.70
matrixk4 9 11 221 * 45.29
matrixf21 12 12 0 * 102.31
matrixf22 24 24 0 * 108.15
matrixf25 58 58 0 * 73.21
matrixp2 22 25 261 * 80.90
matrixsr27 16 18 558 * 40.22
matrixsr29 35 42 9019 * 38.64

a very good approximate forα(G). The algorithm is
even able to findα(G) in many cases. Furthermore the
SC algorithm with the multistarting Lemke’s method
in its initial step has computedα(G) for all the test
problems in a reasonable amount of effort. However,
the algorithm is in general unable to give a certificate
that anMIS has been achieved in less than 50000 piv-
otal operations (an asterisk is included in Table 2 for
these cases). We believe that the enumerative algo-
rithm employed by theSC method can be improved
not only to reduce the computational effort to find an
MIS but also to provide the required certificate. This
is a topic of our current research.
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