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Abstract

In this paper, we address the solution of the symmetric eigenvalue comple-

mentarity problem (EiCP) by treating an equivalent reformulation of finding a

stationary point of a fractional quadratic program on the unit simplex. The

spectral projected-gradient (SPG) method has been recommended to this opti-

mization problem when the dimension of the symmetric EiCP is large and the

accuracy of the solution is not a very important issue. We suggest a new algo-

rithm which combines elements from the SPG method and the block active set

method, where the latter was originally designed for box constrained quadratic

programs. In the new algorithm the projection onto the unit simplex in the SPG

method is replaced by the much cheaper projection onto a box. This can be of

particular advantage for large and sparse symmetric EiCPs. Global convergence

to a solution of the symmetric EiCP is established. Computational experience

with medium and large symmetric EiCPs is reported to illustrate the efficacy

and efficiency of the new algorithm.
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1. Introduction

The eigenvalue complementarity problem (EiCP) consists in finding (λ, x) ∈
R× R

n \ {0} satisfying

(λB −A)x ≥ 0, x ≥ 0, x⊤(λB −A)x = 0, (1)

where A,B ∈ R
n×n are given matrices with B being positive definite. Equiva-

lently, we may seek (λ, x) ∈ R× R
n so that

(λB −A)x ≥ 0, x ≥ 0, x⊤(λB −A)x = 0, e⊤x = 1 (2)

holds with e := (1, . . . , 1)⊤ ∈ R
n. If a pair (λ, x) solves EiCP, then λ is

called complementary eigenvalue and x complementary eigenvector associated

to λ. The EiCP has been introduced in [31] as a generalization of the clas-

sical eigenvalue problem to a closed and convex cone. To our knowledge, a

first interesting engineering application of the EiCP was described in [28]. In

recent years, many other papers appeared in the literature describing theoret-

ical results, algorithms, and applications for EiCPs as well as some extensions

[1, 2, 9, 10, 17, 18, 20, 21, 22, 25, 27, 29, 30, 32, 33, 38].

In this paper, we are dealing with symmetric EiCPs [30], i.e., the matrices

A and B are both symmetric. For any x ∈ R
n \ {0}, let

f(x) := −x⊤Ax

x⊤Bx

denote the negative generalized Rayleigh quotient associated to EiCP (1). It

was shown in [30, 34] that any stationary point x∗ of the minimization problem

f(x) → min s.t. x ∈ ∆ := {x ∈ R
n | e⊤x = 1, x ≥ 0} (3)

with λ∗ := −f(x∗) provides a solution of (2), and vice versa. This problem

can also be regarded as a fractional quadratic program over the unit simplex
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∆. Nonlinear programming algorithms [26] may be used to solve the symmetric

EiCP by computing a stationary point of (3). In particular, the use of the

spectral projected-gradient (SPG) method [5, 6] was suggested in [20]. In each

step of the SPG method the direction −η∇f(x) equipped with the spectral

choice line search parameter η [4] is projected onto the simplex ∆. In this way,

a feasible descent direction is obtained and f is minimized along this direction.

This projection onto ∆ has the worst-case complexity of O(n2) per step and

can be done quite efficiently by one of the methods described in [19, 37]. The

SPG method incorporating one of these projection techniques was reported [20]

to perform well for large-scale EiCPs, particularly when the accuracy of the

computed solution is not a very important issue.

In this paper, we introduce a new algorithm which combines ideas from

the SPG method and from the block active set (BAS) method described in

[16]. The new spectral block active set algorithm (Spectral BAS) employs in

each iteration a block active set strategy for forecasting the active set at some

stationary point. Several components of the search direction are determined in

this way. The remaining components of the search direction are computed by

the SPG strategy mentioned before. However, instead of projecting onto ∆,

only a projection onto the nonnegative orthant is needed. An exact line search

and a normalization step complete the algorithm and guarantee that the iterates

stay within the simplex ∆. Hence, the Spectral BAS algorithm only requires

cheap projections of complexity O(n) onto the nonnegative orthant, which can

be of particular interest for large-scale sparse EiCPs. Computational experience

reported in this paper shows that the algorithm seems to be quite efficient for

the solution of symmetric EiCPs associated to the maximum clique problem

[7]. This may have important implications on the design of new algorithms for

this difficult problem which are based on the solution of EiCPs. The algorithm

is also efficient to solve symmetric EiCPs with unstructured sparse matrices

if the accuracy is not too at stake, but may face some difficulties for getting

more accurate solutions. A new preprocessing technique is also introduced that

improves the efficiency of the Spectral BAS algorithm in practice. Furthermore,
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the Spectral BAS algorithm is competitive with the SPG method and seems

to be more efficient for large-scale EiCPs. This is mainly due to the cheaper

projection technique used by the Spectral BAS algorithm.

The paper is organized as follows. We briefly review a characterization of

stationary points of the minimization problem (3) in Section 2. Then, Section

3 provides a detailed description of the new Spectral BAS algorithm including

its well-definedness and important basic properties. Global convergence of this

algorithm is shown in Section 4. Computational experience with the Spectral

BAS algorithm and a comparison with the SPG method are reported in Section

5. Finally, some conclusions are included in the last section of the paper.

Notation. For a vector x ∈ R
n and an index set J ⊂ I := {1, . . . , n}

the vector xJ consists of all components xj of x with j ∈ J . The Euclidean

projection of some z ∈ R
n onto the simplex ∆ is denoted by P∆(z). If y ∈ R

q

is projected onto the nonnegative orthant Rq
+ we simply write y+ to denote the

result of this projection.

2. Properties of the fractional program

The unit simplex ∆ is a nonempty, closed, and convex set. Therefore, x∗ ∈ ∆

is a stationary point of (3) if and only if the first-order necessary optimality

condition for (3) are satisfied at x∗, i.e., if

∇f(x∗)⊤(x− x∗) ≥ 0 for all x ∈ ∆. (4)

By the positive definiteness of B, the function f : Rn \ {0} → R is continuously

differentiable with

∇f(x) =
2

x⊤Bx

(
x⊤Ax

x⊤Bx
Bx−Ax

)

(5)

and it can be easily verified that

x⊤∇f(x) = 0 for all x ∈ R
n \ {0}. (6)

Thus, instead of (4), a stationary point x∗ of (3) can be characterized by x∗ ∈ ∆

and

∇f(x∗)⊤x ≥ 0 for all x ∈ ∆. (7)
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Because all vectors of the canonical basis of R
n belong to ∆, condition (7)

implies ∇f(x∗) ≥ 0. This, x∗ ≥ 0, and (6) yield that x∗ is stationary for (3) if

and only if x∗ belongs to ∆ and satisfies

min{x,∇f(x)} = 0. (8)

With the index sets

L∗ := {i ∈ I | x∗
i = 0} and F ∗ := {i ∈ I | x∗

i > 0},

we therefore see that x∗ is stationary for (3) if and only if x∗ ∈ ∆,

∇if(x
∗) ≥ 0 for all i ∈ L∗, and ∇if(x

∗) = 0 for all i ∈ F ∗. (9)

We conclude this section with an obvious but useful property of the function f .

Proposition 1. For any x ∈ R
n \ {0} and any µ 6= 0,

f(µx) = f(x)

holds.

3. Spectral Block Active Set algorithm

Based on the BAS method [16] for dealing with box constrained quadratic

programs and on the SPGmethod in [6, 20] we first present the ingredients of the

new Spectral BAS algorithm for computing a stationary point of (3). In addition

to combining ideas of both methods, we suggest to normalize the iterates in each

step to stay in the unit simplex ∆. Like the methods in [6, 16, 20], the Spectral

BAS algorithm uses a line search which will be completely described within this

section. Moreover, we also provide some important basic properties of the new

algorithm.

For a given point xk ∈ ∆, the BAS method [16] uses a strategy for forecasting

the indices of active variables at some stationary point. Similarly, according to

(9), the index set L∗ defined above is estimated by the index set

L(xk) := {i ∈ I | xk
i ≤ β∇if(x

k)}, (10)
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where β denotes a given positive number. For xk sufficiently close to x∗ we can

easily see that

{i ∈ I | ∇if(x
∗) > 0} ⊂ L(xk) ⊂ L∗

must be valid. To exploit the forecast L(xk) the corresponding components dkL

of the search direction dk are set as

dkL := −xk
L. (11)

With

L := L(xk) and F := F (xk) := I \ L(xk),

we have

dk =




dkL

dkF



 . (12)

The remaining subvector dkF will guarantee that the new iterate xk + δdk stays

nonnegative for all δ ∈ [0, 1] and that the complete search direction dk is a de-

scent direction of the objective function f at xk. To this end, the BAS method

in [16] allows to exploit some second order information by solving a box con-

strained positive definite quadratic program. Doing similar things for problem

(8) may (regardless of a theoretical foundation) be computationally expensive

for large sparse problems. Therefore, we suggest to apply the technique of the

SPG method and to define dkF by

dkF :=
(
xk
F − ηk∇F f(x

k)
)

+
− xk

F , (13)

where ηk is a positive parameter. The definition of ηk is similar to the SPG

method for symmetric EiCPs in [20] and will be detailed below. Recall that the

search direction in the latter paper is

dkSPG := P∆(x
k − ηk∇f(xk))− xk.

Its computation has the worst-case complexity of O(n2). In contrast to this,

computing dk according to (11) and (13) has complexity O(n). With

yk := xk
F − ηk∇F f(x

k),
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a well-known property of the projection onto a closed convex set provides

(
yk − yk+

)⊤(
z − yk+

)
≤ 0 for all z ∈ R

|F |
+ . (14)

Moreover, the definition of dkF in (13) yields

dki =







−xk
i , if xk

i − ηk∇if(x
k) < 0,

−ηk∇if(x
k), if xk

i − ηk∇if(x
k) ≥ 0,

for all i ∈ F (xk). (15)

Before stating the Spectral BAS algorithm, the choice of the parameter ηk

is described. Its definition stems from the Barzilai and Borwein step length [4]

for the steepest-descent method in unconstrained optimization. The definition

of ηk below follows the way for the SPG method in [5].

Let ηmin ∈ (0, 1) be given, set

ηmax := η−1
min, (16)

and choose

η0 ∈ [1, ηmax]. (17)

Then, for k = 1, 2, 3, . . . and with

sk := xk − xk−1 and wk := ∇f(xk)−∇f(xk−1),

the spectral parameter ηk is defined by

ηk :=







ηmax, if (sk)⊤wk ≤ 0,

min

{

ηmax,max

{

ηmin,
(sk)⊤sk

(sk)⊤wk

}}

, otherwise.
(18)

This definition of the parameter ηk ensures that

0 < ηmin ≤ ηk ≤ ηmax (19)

holds for any k ∈ {0, 1, 2, . . .}. Now, we are in the position to establish the new

method for computing a stationary point of problem (3).

Algorithm 1. (Spectral Block Active Set Algorithm)

S1: Choose x0 ∈ ∆, β > 0, ηmin ∈ (0, 1), ε ≥ 0 and set k := 0.
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S2: Compute ηk by (16)–(18) and dk according to (11)–(13).

S3: If ||dk||2 ≤ ε, then STOP.

S4: Compute a step size δk ∈ [0, 1] (exact line search) so that

f(xk + δkd
k) ≤ f(xk + δdk) for all δ ∈ [0, 1]. (20)

S5: Set x̂k+1 := xk + δkd
k and compute µk := e⊤x̂k+1.

S6: Set xk+1 := 1
µk

x̂k+1, k := k + 1, and goto S2.

In the remainder of this section we first show basic properties of Algorithm 1

that are important for proving its global convergence in Section 4. Thereafter,

the computation of the Cauchy step size in step S4 of Algorithm 1 is dealt with.

Lemma 1. Suppose that xk ∈ ∆ is determined by Algorithm 1 for some k ∈
{0, 1, 2, . . .}. Then, ∇f(xk) and dk computed according to (11)–(13) are well

defined. Moreover, the following assertions are valid:

(i) ∇f(xk)⊤dk ≤ −γ‖dk‖22 with γ := min{β−1, ηmin},

(ii) xk + δdk ≥ 0 for all δ ∈ [0, 1],

(iii) xk + δdk 6= 0 for all δ ∈ R,

(iv) if dk = 0, then xk is a stationary point of (3), and vice versa,

(v) if ‖dk‖2 > ε, then, for steps S4–S6, it holds that

– the step size δk is well defined,

– µk > 0, xk+1 ∈ ∆, and f(xk+1) = f(x̂k+1).

Proof: By xk ∈ ∆ it follows that 0 ≤ xk 6= 0. Thus, f(xk) and ∇f(xk) are

well defined since B is positive definite. Moreover, dk can be easily determined

by (11)–(13).

(i) Clearly,

dki = 0 implies ∇if(x
k)dki ≤ −γ(dki )

2 for all i ∈ I. (21)
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Suppose now that dki 6= 0 for some i ∈ I. Then, (10), (11), and xk
i ≥ 0 yield

β∇if(x
k) ≥ xk

i = −dki > 0 for all i ∈ L(xk).

Multiplying this by dki < 0 provides

∇Lf(x
k)⊤dkL ≤ − 1

β
‖dkL‖22. (22)

The definition (13) of dkF implies

dkF = yk+ − xk
F .

Taking into account the latter, yk = xk
F −ηk∇F f(x

k), and choosing z := xk
F ≥ 0

within (14), we obtain

(dkF + ηk∇F f(x
k))⊤dkF ≤ 0.

Using (17), (18), and (16), we get

∇F f(x
k)⊤dkF ≤ − 1

ηk
‖dkF ‖22 ≤ − 1

ηmax

‖dkF‖22 = −ηmin‖dkF ‖22. (23)

Thus, in view of (21) and (22), assertion (i) follows with γ := min{β−1, ηmin}.
(ii) The assertion is obviously implied by xk ≥ 0 and xk+dk ≥ 0. The latter

holds by the definition of dk according to (11)–(13).

(iii) Let us suppose the contrary, i.e., there is δ̂ ∈ R so that xk + δ̂dk = 0.

Since xk ∈ ∆ it follows that xk 6= 0 and, in turn, that δ̂ 6= 0 and

dk =
−xk

δ̂
6= 0.

Therefore, assertion (i) implies that

f(xk + δ̄dk) = f

(

xk

(

1− δ̄

δ̂

))

< f(xk)

is valid for some 0 < δ̄ < |δ̂|. Because
(

1− δ̄

δ̂

)

/∈ {0, 1}, the latter contradicts

Proposition 1. Thus, assertion (iii) is valid.

(iv) First, we suppose that dk = 0. Then, (10) and (11) imply

0 = −dki /β = xk
i /β ≤ ∇if(x

k) for all i ∈ L(xk). (24)
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For the remaining indices, (15) and ηk ≥ ηmin > 0 by (19) provide

0 = −dki /ηk = xk
i /ηk < ∇if(x

k), if i ∈ F (xk) with xk
i < ηk∇if(x

k),

0 = −dki /ηk = ∇if(x
k), if i ∈ F (xk) with xk

i ≥ ηk∇if(x
k).

This and (24) yield min{xk,∇f(xk)} = 0. Thus, according to (8), xk ∈ ∆ is a

stationary point of (3).

Conversely, let xk be a stationary point of (3). Then, (8) implies∇f(xk) ≥ 0.

Paying attention to assertion (ii) for δ = 1, (6), and assertion (i), we obtain

0 ≤ ∇f(xk)⊤(xk + dk) = ∇f(xk)⊤dk ≤ −γ‖dk‖22 ≤ 0. (25)

This shows dk = 0.

(v) If ‖dk‖2 > ε, then Algorithm 1 does not stop at step S3 and goes to step

S4. Since f : Rn \ {0} → R is continuously differentiable (see Section 2) we

obtain from assertion (iii) that the function ϕ : R → R with

ϕ(δ) := f(xk + δdk), (26)

is well defined and continuously differentiable as well. Hence, ϕ has (at least)

one minimizer δk (step size) within the compact set [0, 1].

By assertions (ii) and (iii), we see that 0 6= x̂k+1 = xk + δkd
k ≥ 0 and

µk = e⊤x̂k+1 > 0. Thus,

e⊤xk+1 =
1

µk

e⊤x̂k+1 = 1

is valid which, due to assertion (ii), implies xk+1 ∈ ∆. Finally, Proposition 1

ensures that f(xk+1) = f( 1
µk

x̂k+1) = f(x̂k+1). �

Note that Lemma 1 particularly states that dk is a descent direction of the ob-

jective function f at xk if and only if xk is not a stationary point. Furthermore,

the termination rule (step S3) is motivated by assertion (iv) of the lemma. The

next result follows easily by induction and application of Lemma 1. Therefore,

its proof is omitted.

Theorem 1. Algorithm 1 is well defined and generates a sequence {xk} ⊂ ∆.

If ε = 0 and if the sequence {xk} is finite (the algorithms stops in step S3), then

the last element of {xk} solves EiCP.
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Global convergence of Algorithm 1 is the subject of Section 4.

At the end of the current section, the computation of the step length δk in

step S4 of Algorithm 1 will be dealt with, where we follow the way introduced in

[20]. According to step S4 of the algorithm, δk is a solution of the optimization

problem

ϕ(δ) → min s.t. 0 ≤ δ ≤ 1, (27)

where the function ϕ : R → R is given by (26). Assertion (v) in Lemma 1 tells

us that this problem has at least one solution. Moreover, the proof of assertion

(v) shows that ϕ is continuously differentiable. Hence, to find a solution of (27)

we should consider zeros of ϕ′. To formulate a corresponding result, let the

values a0, a1, and a2 be defined by

a0 := a0(d
k, xk), a1 := a1(d

k, xk), a2 := a2(d
k, xk)

with

a0(d, x) := (d⊤Ax)(x⊤Bx) − (d⊤Bx)(x⊤Ax),

a1(d, x) := (d⊤Ad)(x⊤Bx)− (d⊤Bd)(x⊤Ax),

a2(d, x) := (d⊤Ad)(x⊤Bd)− (d⊤Bd)(x⊤Ad).

Lemma 2. Each solution of ϕ′(δ) = 0 is a root of the quadratic equation

a0 + a1δ + a2δ
2 = 0, (28)

and vice versa.

Proof: Defining

x := xk, d := dk, and b :=
(
(x+ δd)⊤B(x+ δd)

)2
,

we see by the positive definiteness of B and assertion (iii) of Lemma 1 that

b is positive. The continuous differentiability of ϕ and (5) lead to ϕ′(δ) =
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d⊤∇f(x+ δd). Now, simple calculations provide

ϕ′(δ) =
2

b

(
(x+ δd)⊤A(x + δd)d⊤B(x+ δd)

−d⊤A(x+ δd)(x + δd)⊤B(x+ δd)
)

=
2

b

(

(d⊤Bx)(x⊤Ax) − (d⊤Ax)(x⊤Bx)

+δ
(
(d⊤Bd)(x⊤Ax)− (d⊤Ad)(x⊤Bx)

)

+δ2
(
(d⊤Bd)(d⊤Ax)− (d⊤Ad)(d⊤Bx)

) )

= −2

b
(a0 + a1δ + a2δ

2).

Thus, ϕ′(δ) = 0 if and only if δ satisfies (28). �

Lemma 3. Let xk and dk be generated by Algorithm 1. Moreover, if the

quadratic equation (28) has two (possibly equal) solutions, they are denoted by

δ1 and δ2 with δ1 ≤ δ2. Then, if ‖dk‖2 > ε, the step size δk in step S4 can be

determined by

δk :=







1, if there is no solution of (28) in [0, 1],

argmin{ϕ(δ1), ϕ(1)}, otherwise.

Proof: If ‖dk‖2 > 0 we obtain from assertion (i) of Lemma 1 that

ϕ′(0) = ∇f(xk)⊤dk < 0,

i.e., dk is a descent direction of f at xk. Thus, any minimizer δk of problem

(27) belongs to the interval (0, 1] and satisfies ϕ′(δk) = 0 or δk = 1. If there

is no solution of (28) within [0, 1] then, δk = 1 is the only minimizer of prob-

lem (27). Otherwise, if (28) has at least one solution in [0, 1] and if δ1 < δ2,

then ϕ(δ1) < ϕ(δ2). Moreover, in the case when δ1 = δ2 ∈ [0, 1] we have

ϕ(δ1) ≥ ϕ(1). This provides the formula for δk. �

4. Global convergence

In order to prove global convergence the following lemma is helpful.
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Lemma 4. Let {xk} and {dk} be infinite sequences generated by Algorithm 1,

J ⊂ N an infinite subsequence of indices, and x̄ ∈ R
n so that

x̄ = lim
k∈J

xk and lim
k∈J

dk = 0. (29)

Then, x̄ is a stationary point of the minimization problem (3).

Proof: Because I = {1, ..., n} is a finite index set the number of different

subsets, in particular the number of different subsets L(xk) ⊂ I generated for

infinitely many indices k ∈ J , is finite, too. Consequently, there are an infinite

subset J1 ⊂ J ⊂ N and index sets L,F ⊂ I such that

L(xk) = L and F (xk) = F = I \ L(xk) = I \ L for all k ∈ J1.

Since f is continuously differentiable on R
n \ {0}, we obtain from (29), (11),

and (10) that

0 = − lim
k∈J1

dkL = lim
k∈J1

xk
L ≤ β lim

k∈J1

∇Lf(x
k) = ∇Lf(x̄), x̄L = 0. (30)

For the remaining indices i ∈ F , (13) provides

yk+ = (xk
F − ηk∇Ff(x

k))+ = dkF + xk
F for all k ∈ J1. (31)

To show that x̄ is a stationary point of problem (3) let x ∈ ∆ be arbitrarily

chosen. Then, clearly xL ≥ 0, xF ≥ 0. Using (14) with z := xF and (31), we

obtain for all k ∈ J1

(yk − yk+)
⊤(xF − yk+) = −

(
ηk∇Ff(x

k) + dkF
)⊤ (

xF − (dkF + xk
F )

)
≤ 0. (32)

From (19), it follows that there are η̄ ∈ [ηmin, ηmax] and an infinite subset J2 of

J1 so that

lim
k∈J2

ηk = η̄ > 0.

This, (29), and (32) yield

0 ≤ lim
k∈J2

(dkF + ηk∇Ff(x
k))⊤(xF − (xk

F + dkF )) = η̄∇Ff(x̄)
⊤(xF − x̄F ). (33)
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Since, by Theorem 1, xk ∈ ∆ holds for all k ∈ N, it follows from (29) that

x̄ ∈ ∆. Thus, (30) and (33) imply

∇f(x̄)⊤(x−x̄) = ∇Lf(x̄)
⊤(xL− x̄L

︸︷︷︸

=0

)+∇Ff(x̄)
⊤(xF − x̄F )

︸ ︷︷ ︸

≥0

≥ ∇Lf(x̄)
⊤xL ≥ 0.

Since x ∈ ∆ was arbitrarily chosen, x̄ ∈ ∆ fulfills condition (4) and, hence, is a

stationary point of problem (3). �

Now, it is possible to prove global convergence of the Spectral BAS Algo-

rithm.

Theorem 2. Let {xk} be an infinite sequence generated by Algorithm 1. Then,

the sequence {xk} has at least one accumulation point. Moreover, if ε = 0, then

each accumulation point of this sequence is a stationary point of problem (3)

and, thus, solves EiCP.

Proof: Due to Theorem 1, the infinite sequence {xk} generated by Algorithm

1 belongs to the compact set ∆. Therefore, {xk} has at least one accumulation

point in ∆. Let x̄ denote such an accumulation point. Then, an infinite set

J ⊂ N exists so that

lim
k∈J

xk = x̄. (34)

In order to apply Lemma 4, we show that {dk} converges to 0. To this end,

we first verify that {dk} is bounded. From the definition (11) of the search

direction dkL and by {xk} ⊂ ∆ it is clear that

‖dkL‖2 ≤ ‖dkL‖1 = ‖xk
L‖1 ≤ ‖xk‖1 = 1 for all k ∈ N. (35)

For the remaining indices in F (xk) = I \ L(xk), (15) and ηk ∈ [ηmin, ηmax] by

(19) yield

‖dkF ‖2 ≤ max{‖xk
F ‖2, ‖ηk∇F f(x

k)‖2} ≤ M for all k ∈ N,

where M := ηmaxmax{‖∇f(x)‖2 |x ∈ ∆}+ 1 is well defined since f is continu-

ously differentiable on some open set containing the compact set ∆. Therefore,
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using (35), we have

‖dk‖2 ≤ M + 1 for all k ∈ N. (36)

For proving that limk→∞ dk = 0 let us first choose a constant σ ∈ (0, 1). Then,

the compact set

C :=

{

x ∈ R
n | (1− σ)

1√
n
≤ ‖x‖2 ≤ M + 2

}

does not contain the origin so that f is continuously differentiable on some open

set containing C. We now show that

xk + δdk ∈ C for all k ∈ N and all δ ∈ [0, σ]. (37)

Since assertion (ii) of Lemma 1 yields −xk ≤ dk, we obtain

0 ≤ (1− σ)xk = xk − σxk ≤ xk + δdk for all δ ∈ [0, σ].

Taking into account xk ∈ ∆ and (36),

(1 − σ)
1√
n
≤ (1− σ)‖xk‖2 ≤ ‖xk + δdk‖2

and

‖xk + δdk‖2 ≤ ‖xk‖2 + ‖dk‖2 ≤ ‖xk‖1 + ‖dk‖2 ≤ M + 2

follow for all k ∈ N and all δ ∈ [0, σ]. Hence, (37) is valid. Because f : Rn \ {0}
is also twice continuously differentiable the compactness of C and 0 /∈ C ensure

that

θ := max
{
‖∇2f(x)‖2 |x ∈ C

}
+ 1

is well defined. Therefore, Taylor’s formula (with (37) in mind) and assertion

(i) of Lemma 1 yield

f(xk + δdk) ≤ f(xk) + δ∇f(xk)⊤dk + 1
2
δ2θ‖dk‖22

≤ f(xk) + δ(−γ + 1
2
δθ)‖dk‖22

for all δ ∈ [0, σ] and all k ∈ N. With δmin := min
{
γ
θ
, σ

}
∈ (0, σ] ⊂ [0, 1], we

have

−γ +
1

2
δminθ ≤ −1

2
γ

15



and

f(xk + δmind
k) ≤ f(xk)− 1

2
γδmin‖dk‖22 for all k ∈ N. (38)

Therefore, taking into account assertion (v) of Lemma 1, the exact line search

(20), and (38), it follows that

f(xk+1) = f(x̂k+1)

= f(xk + δkd
k)

≤ f(xk + δmind
k)

≤ f(xk)− 1
2
γδmin‖dk‖22

for all k ∈ N. (39)

Since f is continuous on the compact set C and {xk} ⊂ C due to (37), the

sequence {f(xk)} is bounded below. Hence, (39) implies

lim
k→∞

dk = 0.

Thus, Lemma 4 shows that x̄ is a stationary point of problem (3) and, with

this, a solution of EiCP. �

5. Numerical results

In this section we report some computational experience with the Spectral

BAS algorithm on several sets of test problems from the literature. All experi-

ments have been performed on a Pentium IntelR© CoreTM i7, 2.7 GHz, 16 GBytes

of RAM memory and 64-bit operating system WindowsR©. The algorithm has

been implemented in MATLABR© [23] environment (version 7.11, R2010b). The

running times are always given in CPU seconds.

5.1. Test problems and implementation issues

We use five sets of test problems. In the first set, B is the identity matrix

and A ∈ R
n×n is a symmetric copositive matrix [12] related to the maximum

clique problem [7]. For a simple and undirected graph G = (V,E) with node set

V = {1, . . . , n} and edge set E, a clique C is a subset of V such that every pair
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of nodes in C is connected by an edge in E. A maximum clique C is a clique

with the maximum number of edges and its size ω(G) is called the (maximum)

clique number [7]. Consider the symmetric matrix

A(κ) = κ(En −AG)− En (40)

where En is a matrix of order n whose elements are all equal to one and AG =

(aij) is the (symmetric) adjacency matrix of the graph G (i.e., aij = 1 if {i, j} ∈
E, and aij = 0 else, i, j ∈ {1, . . . , n}). Then A(κ) is copositive if κ ≥ ω(G)

[8, 36]. So, the maximum clique number problem is related with the problem of

verifying whether a matrix of the form (40) is copositive. It is easy to see that

a (symmetric or not) matrix A is copositive if and only if all complementary

eigenvalues of EiCP (1), with B being the identity matrix, are nonnegative [3].

So, algorithms for dealing with the maximum clique problem may be based on

the efficient computation of complementary eigenvalues of symmetric matrices

of the form (40) for a finite number of real values κ. Due to this property, we

decided to investigate whether the Spectral BAS algorithm is efficient for the

solution of the EiCP with this class of matrices.

In Table 1, we list the characteristics of the graphs from the DIMACS [14]

collection and the generated graphs (cf. [39]), where the number n of nodes gives

the order of the examined matrices. In all of these test problems the copositive

matrix A = A(κ) is obtained by (40) with κ = ω(G).

In our second and third set of test problems, B is the identity matrix and

A is a matrix from the Harwell-Boeing collection available at Matrix Market

[24], where A is symmetric positive definite (SPD) and indefinite (IND), respec-

tively. The fourth set of test problems uses nondiagonal SPD matrices A and

B and the fifth test set contains problems with a nondiagonal SPD matrix B

and an indefinite matrix A. In the last two test sets, A is a matrix from the

Harwell-Boeing collection and B is a symmetric matrix (B = In+CC⊤), where

In is the identity matrix and the elements of C are randomly drawn from a uni-

form distribution in the interval [0, 1]. Test problems were scaled according to

the procedure described in [21], which improves the efficacy of the algorithms,
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particularly when they are applied to EiCPs with ill-conditioned matrices A or

B. The characteristics of SPD and indefinite matrices from the Harwell-Boeing

collection are presented in Table 2.

5.2. Preprocessing and initial point

In this section, we focus our attention on the initial point that should be

chosen in order to improve the efficiency and efficacy of the Spectral BAS algo-

rithm. As discussed in [20], the barycenter of the simplex is usually the most

common initial point to be used by the SPG algorithm. Our experiments not

reported in this paper show that the Spectral BAS algorithm fails for some in-

stances when the barycenter is used as initial point. A vector of the canonical

basis ei, i = 1, . . . , n, can be a valid alternative for such an initial point. It

is very easy to see whether a canonical vector ei is a solution of EiCP, as the

following property holds.

Proposition 2. The vector ei of the canonical basis is a solution of the EiCP

if and only if ri := min{aiibji − ajibii | j = 1, . . . , n} ≥ 0.

Based on this property, we designed a preprocessing technique which first

checks whether one of the canonical vectors ei, i = 1, . . . , n, is a solution of

EiCP. If none of these n vectors is a solution of EiCP, then the initial point is

the canonical vector es, where

s = argmax{ri | i = 1, . . . , n}. (41)

The motivation of this preprocessing technique is twofold. First, for some in-

stances a solution of EiCP can be easily found without using an algorithm.

Furthermore, if this is not the case the technique gives a rule (41) for choosing

an initial canonical vector that seems to work well in practice. For example,

for the test problems in Table 3, the preprocessing technique reduced failures of

achieving a tolerance of ε = 10−6 from 4 to 2 for the Spectral BAS algorithm

and from 7 to 4 for the SPG algorithm.
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5.3. Performance of Spectral BAS algorithm

Tests for the the Spectral BAS (SBAS in the tables) algorithm have been

performed for β = 10−i, with i = 0, . . . , 6. Our experiments showed an improve-

ment in the performance of the Spectral BAS algorithm with the reduction of

the parameter β. The algorithm has usually the best performance for β = 10−5

as it solves most of the test instances with the smallest number of iterations.

So, we used β = 10−5 for obtaining the numerical results of the Spectral BAS

algorithm presented in the paper. For all of the test problems the values of ηmin

and ηmax have been fixed to 10−6 and 106, respectively. Furthermore, we set

η0 = 1. The tolerance ε in the stopping criterion of the algorithms has been

chosen as 10−6 and a more relaxed tolerance (ε = 10−4) was tested when the

algorithm fails to attain a stationary point within the limit of 1000 iterations.

We use the notation (*) when the algorithm Spectral BAS (and also SPG) was

only able to terminate satisfying the stopping criterion with the more relaxed

tolerance ε = 10−4.

As discussed in [20], the symmetric EiCP can be efficiently solved by using

the SPG algorithm applied to the fractional quadratic program on the simplex

(3). In order to have a better idea of the efficiency of the Spectral BAS algo-

rithm, we also solved all the test problems by this SPG algorithm. In Table 1,

we present results of algorithms Spectral BAS and SPG, to solve the problems in

test set 1 with the initial point defined by the preprocessing technique, where It

is the total number of iterations, λ is the complementary eigenvalue computed,

and T/It is the CPU time (in seconds) required per iteration by the algorithms

(the value “0” means that the time per iteration is below 10−5 seconds). None

of these test problems was solved in the preprocessing phase. This means that

none of the n canonical vectors is a solution of the EiCP. Computational results

indicate that the Spectral BAS algorithm solved very efficiently and got accurate

solutions for all the test problems of the first set (matrices from the maximum

clique collection). As stated before, this very good performance of the Spec-

tral BAS algorithm for solving the EiCP with this class of matrices may have

important implications on the design of new algorithms for the computation of
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the maximum clique number by solving a finite number of EiCPs.

Table 1: Performance of SBAS and SPG algorithms for generated small instances [39] and

larger instances from DIMACS collection [14].
SBAS SPG

Graph n |E| ω(G) It λ T/It It λ T/It

c-fat14-1 14 52 6 19 5.14E+00 0 21 5.14E+00 0

Brock14 14 51 5 24 5.65E+00 0 25 5.65E+00 0

Brock16 16 59 5 19 7.48E+00 8.68E-04 20 7.48E+00 0

Brock18 18 78 5 19 8.20E+00 0 19 8.20E+00 0

Brock20 20 95 5 16 8.82E+00 0 18 8.82E+00 0

Morgen14 14 50 5 16 5.73E+00 0 18 5.73E+00 0

Morgen16 16 59 5 16 8.61E+00 1.04E-03 13 8.61E+00 0

Morgen18 18 60 5 12 1.09E+01 0 13 1.09E+01 0

Morgen20 20 67 5 12 1.24E+01 0 13 1.24E+01 0

Morgen22 22 68 5 11 1.55E+01 0 12 1.55E+01 0

Johnson6-2-4 15 45 3 10 6.00E+00 0 11 6.00E+00 0

Johnson6-4-4 15 45 3 10 6.00E+00 0 11 6.00E+00 0

Johnson7-2-4 21 105 3 2 6.00E+00 0 2 6.00E+00 0

Jagota14 14 31 6 11 9.83E+00 0 12 9.83E+00 0

Jagota16 16 57 8 11 1.04E+01 0 12 1.04E+01 0

Jagota18 18 84 10 12 1.09E+01 0 12 1.09E+01 0

sanchis14 14 50 5 20 5.65E+00 0 25 5.65E+00 0

sanchis16 16 50 5 15 8.68E+00 0 17 8.68E+00 0

sanchis18 18 50 5 14 1.07E+01 0 16 1.07E+01 0

sanchis20 20 50 5 15 1.17E+01 0 12 1.17E+01 0

sanchis22 22 50 5 12 1.33E+01 0 13 1.33E+01 0

Brock200-1 200 14834 21 11 4.51E+01 0 12 4.51E+01 0

Brock200-2 200 9876 12 9 9.28E+01 1.95E-03 11 9.28E+01 0

Brock200-3 200 12048 15 9 7.16E+01 0 10 7.16E+01 0

Brock200-4 200 13089 17 9 6.17E+01 1.95E-03 11 6.17E+01 0

c-fat200-1 200 1534 12 6 1.83E+02 3.13E-03 7 1.83E+02 0

c-fat200-2 200 3235 24 7 1.66E+02 2.60E-03 8 1.66E+02 0

c-fat200-5 200 8473 58 10 1.14E+02 0 12 1.14E+02 1.42E-03

Hamming6-2 64 1824 32 50 5.16E+00 0 27 5.16E+00 0

Hamming6-4 64 704 4 13 3.47E+01 0 12 3.47E+01 0

Hamming8-2 256 31616 128 40 7.06E+00 4.01E-04 87 7.06E+00 1.09E-03

Hamming8-4 256 20864 16 12 8.21E+01 1.42E-03 13 8.21E+01 1.30E-03

Johnson8-2-4 28 210 4 13 1.43E+01 0 15 1.43E+01 1.12E-03

Johnson8-4-4 70 1855 14 17 1.29E+01 9.77E-04 18 1.29E+01 0

Johnson16-2-4 120 5460 8 12 1.60E+01 0 13 1.60E+01 0

Johnson32-2-4 496 107880 16 11 3.20E+01 1.56E-03 23 3.20E+01 2.13E-03

Keller4 171 9435 11 13 5.13E+01 1.30E-03 15 5.13E+01 0

Mann-a9 45 918 16 15 3.20E+00 0 11 3.20E+00 1.56E-03

Mann-a27 378 70551 126 24 4.82E+00 6.79E-04 16 4.82E+00 2.08E-03

In contrast to the previous results, for the sets 2–5 of test problems, the

preprocessing technique is able to find a solution of the EiCP in 89% of the

instances (among them all instances of test set 4). In Table 3, we report the

results obtained by the Spectral BAS and SPG algorithms for those instances of

the test sets 2, 3 and 5, where the preprocessing technique was not able to find
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Table 2: Characteristics of matrices from Harwell-Boeing collection.

SPD matrix n SPD Matrix n Indefinite Matrix n

662 bus 662 bcsstm11 1473 494 bus 494

685 bus 685 bcsstm19 817 bcsstk19 817

1138 bus 1138 bcsstm20 485 bcsstk20 485

bcsstk01 48 bcsstm21 3600 bcsstk21 3600

bcsstk02 66 bcsstm22 138 bcsstk22 138

bcsstk03 112 bcsstm23 3134 bcsstk23 3134

bcsstk04 132 bcsstm24 3562 bcsstk24 3562

bcsstk05 153 bcsstm25 15439 bcsstk25 15439

bcsstk06 420 bcsstm26 1922 bcsstk26 1922

bcsstk07 420 gr 30 30 900 bcsstk28 4410

bcsstk08 1074 nos1 237 bcsstm27 1224

bcsstk09 1083 nos2 957 bfw398b 398

bcsstk10 1086 nos3 960 bfw62b 62

bcsstk11 1473 nos4 100 bfw782b 782

bcsstk12 1473 nos5 468 lund a 147

bcsstk13 2003 nos6 675 lund b 147

bcsstk14 1806 nos7 729 mhd3200b 3200

bcsstk15 3948 s1rmq4m1 5489 mhd4800b 4800

bcsstk17 10974 s1rmt3m1 5489 odep400b 400

bcsstk18 11948 s2rmq4m1 5489 plat1919 1919

bcsstk27 1224 s2rmt3m1 5489 plat362 362

bcsstm02 66 s3rmq4m1 5489 zenios 2873

bcsstm06 420 s3rmt3m1 5489

bcsstm08 1074 s3rmt3m3 5357

bcsstm09 1083

Table 3: Performance of SBAS and SPG algorithms for test sets 2, 3, and 5.
SBAS SPG

Matrix A It T/It It T/It

SPD B = In

bcsstk02 62 2.56E-04 48 3.32E-04

bcsstk04 97 1.63E-04 91 6.94E-04

bcsstk05 20 8.22E-04 836 6.18E-04

bcsstk10 449 2.79E-04 525* 4.32E-03

bcsstk27 192 2.44E-04 31* 5.21E-03

s1rmq4m1 403 4.00E-03 484 5.06E-02

s1rmt3m1 61* 4.43E-03 379 5.03E-02

s2rmq4m1 388 2.10E-03 98* 5.36E-02

IND B = In

bcsstk28 33 3.96E-02 227 6.77E-02

bcsstm27 460 2.42E-03 198* 7.46E-03

lund a 80 1.98E-04 112 5.63E-04

lund b 39* 4.11E-04 137 6.89E-04

IND B = In + CC
⊤

bfw398b 32 1.01E-03 35 1.84E-03

bfw62b 38 1.69E-03 39 1.64E-03

bfw782b 30 2.16E-03 33 4.88E-03

a solution of the EiCP. The Spectral BAS algorithm solved efficiently the test

problems of the set 5, where A is a matrix from the Harwell-Boeing collection
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and B is a SPD matrix different from the identity. It seems that the Spectral

BAS algorithm faces more difficulties to find a solution when A is still a matrix

of the same collection and B is the identity matrix. For these instances, the

Spectral BAS algorithm was able to solve all the problems for a relaxed stopping

criterion (ε = 10−4), but fails to terminate twice when a more accurate solution

is needed (ε = 10−6). The results show that the Spectral BAS algorithm is

competitive in general with the SPG method, as this latter algorithm was able

to solve efficiently all the test problems of the sets 1 and 5 and of the sets

2 and 3 when the accuracy of the solution is not too demanding (ε = 10−4).

However, SPG algorithm has four failures if a higher accuracy of the solution

is required (ε = 10−6). Furthermore, time per iteration T/It is smaller for the

Spectral BAS algorithm and this gap tends to increase with the dimension of

the EiCP. This is mainly due to the fact that the Spectral BAS algorithm uses

in each iteration a projection on R
n
+ while a projection on the simplex has to

be performed in each iteration of the SPG algorithm.

To give a more illustrative comparison of the performances of Spectral BAS

and SPG algorithms we report in Figures 1 and 2 the Dolan–Moré performance

profiles [15] of the two algorithms based respectively, on the number of itera-

tions and the total CPU time for test problems of sets 1 to 5 for which the

preprocessing technique was not able to find a solution of EiCP. We see that

the Spectral BAS algorithm performs better on the test set than SPG, in terms

of both efficiency and robustness. In fact, reading the values of the curves of

Figure 1 for a factor τ = 1, we can observe that Spectral BAS is able to attain

the best metric value for about 80% of the problems. In terms of robustness,

and reading the same curves for large values of τ , we observe that Spectral BAS

successfully solved more than 90% of the problems. For the performance profile

based on CPU time (Figure 2) we left out those examples for which both the

Spectral BAS and the SPG algorithm needed less than 10−3 seconds since the

differences of times are meaningless.

In addition, we investigated the impact of the parameter β used in the

construction of the active and inactive sets of Spectral BAS algorithm. For

22



1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

 

 

SBAS
SPG

Figure 1: Comparing SBAS and SPG based on performance profiles of the iterations.
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Figure 2: Comparing SBAS and SPG based on performance profiles of the total CPU time.

instance, for β = 10−3 the Spectral BAS algorithm with the initial point given

by the preprocessing technique (41) needs 263 iterations to find a solution of the

EiCP for problem s1rmt3m1 and 80 iterations to find a solution of problem lund b

if β = 7 × 10−1. Since the Spectral BAS algorithm is very fast, we recommend

to use β = 10−5 initially and use a different set of values for β whenever the

Spectral BAS algorithm faces difficulties to terminate in a reasonable number

of iterations.

In recent years much attention has been given to techniques for forecasting
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active sets in the context of (quadratic) l1-regularized optimization (see e.g.

[35, 13]) or convex quadratic problems with nonnegativity constraints [11]. The

design of a more elaborated strategy based on some of these ideas or others for

the choice of β is surely an important issue for future research.

6. Conclusions

In this paper, a new Spectral Block Active Set algorithm is proposed to deal

with the symmetric Eigenvalue Complementarity Problem (EiCP). The algo-

rithm seeks a stationary point of an equivalent fractional quadratic program on

the simplex and seems particularly recommended for large-scale EiCPs. Global

convergence for the algorithm is established. Numerical experience is reported

illustrating that the algorithm is quite efficient for the solution of the EiCP (1)

when B is the identity matrix and A is a modification of the adjacency matrix

of a graph associated to the maximum clique problem. This performance may

have important implications on the solution of this difficult problem. When A

is a general matrix and B is still the identity matrix, the Spectral BAS algo-

rithm is very efficient to find a solution that is not very accurate but may have

difficulties when a more accurate solution is needed. The same problem was

observed for the SPG method, but in more cases. The Spectral BAS algorithm

seems to be competitive to the SPG method that was proposed in [20] for the

solution of the symmetric EiCP by dealing with the same fractional quadratic

program. However, the computational effort per iteration is usually smaller for

the Spectral BAS algorithm as this last method employs simpler projections.

Numerical experiments also indicate that the constant β used in the technique

for forecasting the active-set in each iteration and the choice of the initial point

are two important issues for the Spectral BAS to be more efficient. These points

were discussed in some detail in this paper and should be investigated in the

near future. The use of ideas similar to those of the Spectral BAS algorithm

for the solution of the Quadratic Eigenvalue Complementarity Problem [10, 32]

and the Second-Order Complementarity Eigenvalue Problem [1, 17, 33] should
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also deserve attention in our future research.
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[9] C.P. Brás, M. Fukushima, J.J. Júdice, S.S. Rosa, Variational inequality

formulation of the asymmetric eigenvalue complementarity problem and

its solution by means of gap functions, Pac. J. Optim. 8 (2012) 197–215.
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[18] L.M. Fernandes, J.J. Júdice, H.D. Sherali, M. Fukushima, On the compu-

tation of all eigenvalues for the eigenvalue complementarity problems, J.

Global Optim. 59 (2014) 307–326.
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