MATHEMATICS OF COMPUTATION
Volume 00, Number 0, Pages 000-000
S 0025-5718(XX)0000-0

THE SYMMETRIC EIGENVALUE
COMPLEMENTARITY PROBLEM

MARCELO QUEIROZ, JOAQUIM JUDICE, AND CARLOS HUMES JR.

ABSTRACT. In this paper the Eigenvalue Complementarity Prob-
lem (EiCP) with real symmetric matrices is addressed. It is shown
that the symmetric (EiCP) is equivalent to finding an equilib-
rium solution of a differentiable optimization problem in a com-
pact set. A necessary and sufficient condition for solvability is
obtained which, when verified, gives a convenient starting point
for any gradient-ascent local optimization method to converge to
a solution of the (EiCP). It is further shown that similar results
apply to the Symmetric Generalized Eigenvalue Complementarity
Problem (GEiCP). Computational tests show that these reformu-

lations improve the speed and robustness of the solution methods.

1. INTRODUCTION

The computation of eigenvalues is of crucial importance in a vari-
ety of practical problems in physics and engineering. Eigenvalues are
related to the resonance frequency of structures, and to stability of dy-
namical systems [4]. Real symmetric matrices appear in a large portion

of these practical problems [13].
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A classical approach to solve large-scale eigenvalue problems with
real symmetric matrices is to apply unconstrained optimization tech-
niques to the so-called Rayleigh quotient. This function has the prop-
erty that every equilibrium point is an eigenvector with a corresponding
eigenvalue given by the Rayleigh quotient.

The Eigenvalue Complementarity Problem (EiCP) appears in the
study of static equilibrium states of finite dimensional mechanical sys-

tems with unilateral frictional contact [5] and takes the following form

w
(EiCP): Find A > 0, = # 0 such that -

The reader is referred to [5, 14] for further details.

The purpose of this paper is to study the (EiCP) when A and B are
symmetric matrices and B is positive definite. This particular problem
is shown to be equivalent to finding an equilibrium point of a general-
ized Rayleigh quotient satisfying x > 0 and A > 0, which can be solved
using any gradient ascent method, from a convenient starting point.
This result is akin to a classical result for Nonlinear Complementarity
Problems (NCP) with symmetric jacobians, although the classical re-
sult is not applicable to a NCP reformulation of the (EiCP) (section 4).
The result is extended to a generalization of the symmetric (EiCP) of
practical interest, the symmetric (GEiCP). Computational tests show
that these reformulations improve the speed and robustness of the so-
lution methods. Some preliminary research on the asymmetric case is

also presented.
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The structure of the paper is as follows. In section 2 the classical
eigenvalue problem is discussed, with emphasis to symmetric matrices.
The relationship of this problem with the optimization of the Rayleigh
quotient is established, showing that the eigenpairs can be computed
with gradient related methods.

In section 3 the Eigenvalue Complementarity Problem (EiCP) and
the Generalized Eigenvalue Problem (GEiCP) are introduced. Some
general results concerning the solvability of these problems and the
number of complementary eigenvalues are presented. It is shown that
in general these problems are NP-hard. In this paper the term solv-
ability when applied to the (EiCP) or (GEiCP) means the existence of
a complementary solution.

The symmetric case is studied in section 4. It is shown that in this
case both the (EiCP) and the (GEiCP) are equivalent to finding equi-
librium points of optimization problems, and therefore are relatively
easy to solve. Computational experience is reported in section 5.

Some preliminary work on the asymmetric case is presented in section
6, and the last section (section 7) presents some conclusions and future

work.

2. EIGENVALUE PROBLEMS AND OPTIMIZATION

Given a matrix A € R"™", the classical Eigenvalue Problem (EiP)

is:

(EiP): Find A € R,z # 0 such that Az = Axz.

A necessary and sufficient condition for the existence of a solution
with & # 0 is that the kernel of (A— AI) be non-trivial, and this occurs

if and only if A is a root of the polynomial equation det(A — AI) = 0.
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Such values of A are referred to as the solutions of the (EiP), and
correspond to the eigenvalues of A. Since the polynomial above has
degree n, the (EiP) has at most n distinct solutions.

If A\ is an eigenvalue of A, computing a corresponding eigenvector
amounts to finding a non-trivial solution of the linear system (A —
M)z = 0. Since this system is homogeneous, x is an eigenvector corre-
sponding to A if and only if au is also an eigenvector corresponding to
A, for any o # 0. An extensive treatment of properties and algorithms
for the (EiP) can be found in [13] and [4].

A classical approach to solve large-scale (EiP) problems with real
symmetric matrices is to apply unconstrained optimization techniques

to the Rayleigh quotient

TA
Aa) = ! Ax

xl'z

This quotient is only defined for & # 0. The gradient of the Rayleigh

quotient is

VA(z) = ——[A— A@)I]z.

alx
Since VA(z) = 0 if and only if [A — A(z)I]x = 0, any equilibrium
point (x, A(z)) of the Rayleigh quotient is a solution of the (EiP). The
expression of the gradient of the Rayleigh quotient above is only valid
when A is symmetric. If A # AT the correct expression is VA(z) =
——[A+ AT —2\(2)I]z, and the relationship between equilibrium points
and solutions of the (EiP) ceases to hold.
The Generalized Eigenvalue Problem (GEiP) is often referred to in
the literature: given A, B € R™*",
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(GEiP): Find A € R,z # 0 such that Ax = ABu.

The A-solutions of this problem are referred to as general eigenvalues
of (A, B). This problem is in general more difficult than the (EiP)
[13]. When B is symmetric positive definite and A is symmetric, a

generalized Rayleigh quotient can be defined as

a' Ax

ANz) = ==

(z) xTBx
and the (GEiP) can also be solved by optimization. The gradient in

this case is

VA(z) = xTZx (4= Az)Bl,

and the equilibrium points of A(z) correspond to general eigenvectors

and eigenvalues of (A, B).
The lemma below presents two fundamental properties of the gener-

alized Rayleigh quotient. Its proof is straightforward.

Lemma 1. For all x # 0 the following equalities hold:
(1) Max) = Az), Va > 0;
(2) 2"’V A(z) =0.

Since the case B = I and B symmetric positive definite are subject
to the same approach with respect to the optimization of the Rayleigh
quotient, all the complementary problems introduced in the next sec-
tion are formulated with two matrices (A, B), where B is required to
be positive definite.

Other functions whose equilibrium points correspond to pairs of
eigenvalues and eigenvectors exist for special classes of matrices. For in-

stance, the functions Sy (z) = 27z —2VaT Az, Py(z) = (z72)? - 227 Ax
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and La(z) = 27z —In(z” Ax), for a symmetric positive definite matrix
A, have their equilibrium points corresponding to eigenvectors of A,
whereas S4(-) and P4(-) also have the origin as an equilibrium point.
The papers [9, 1, 2| present theoretical results and computational ex-
perience comparing these functions to the Rayleigh quotient for sym-
metric positive definite matrices. The present work does not address

these functions in order to keep the framework more general.

3. THE EIGENVALUE COMPLEMENTARITY PROBLEM

As stated in the Introduction, the Eigenvalue Complementarity prob-
lem (EiCP) appeared in the study of static equilibrium states of me-
chanical systems with unilateral friction, in [5]. It may be expressed

as

[(w=(\B— A
w>0

x>0

(EiCP): Find A > 0, = # 0 such that

wlz = 0.

where B is a positive definite matrix. Note that any solution with
w = 0 correspond to a solution of the (GEiP).
The Generalized Eigenvalue Complementarity Problem (GEiCP), is

[(w=(\B - A)z
Wy = 0
(GEiCP),: Find A > 0,  # 0 such that ¢ w, >0

.TJEO

whz,; =0
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where B is a positive definite matrix, J C {1,2,...,n} is given, and
J ={1,2,...,n}\J. The (EiCP) is clearly the particular case of the
(GEiCP), with J = {1,2,...,n}.

For any solution (A, z,w), the value X is called a (general) com-
plementary eigenvalue of (A, B), and z is a corresponding (general)
complementary eigenvector. Since the set of complementary eigenvec-
tors of a given complementary eigenvalue is a cone, there is no loss
of generality in restricting the problem to finding solutions satisfying
|lz||, = 1, which replaces the constraint  # 0. In the case of the
(EiCP) the linear constraint ||z||, = e’ = 1 can be considered instead
of ||z||, = 1, since z > 0.

It is easy to see that any solution of the (EiCP) (or (GEiCP)) with
w = 0 is a positive eigenvalue of (A, B) with a corresponding eigenvec-
tor satisfying some sign constraints. The following two results, origi-
nally by Seeger [14], have been slightly expanded to include the (GE-
ICP) case.

Proposition 2 (Seeger). For any solution (\,x) of (GEiCP),, there
is a set I satisfying J C I C {1,2,...,n}, such that X is a positive
eigenvalue of (A;r, Byr) and x; is a corresponding eigenvector satisfying

Tynr > 0.

Proof. Set I = {i | w; = 0}. Then I D J, and x; = 0, by complemen-
tarity. Therefore A;;x; = ABrrxy. O

For the (EiCP), this result says that given a solution (A, z), A is a
positive eigenvalue of (A7, Brr) and x; is a corresponding nonnegative

eigenvector. A direct corollary says that the number of A-solutions of

the (EiCP) and (GEiCP) is finite.
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Proposition 3 (Seeger). The (EiCP) has at most n2"~! distinct \-
solutions. The (GEiCP); has at most (2n—|J|)2V71=" distinct A-solutions.

Proof. Consider first the (GEICP);. There are 2| possible subsets
I such that J C I C {1,2,...,n}. For each possible subset I there
are at most |I| distinct A-solutions, namely the eigenvalues of Bj;' A;;.

Therefore the total number of A-solutions is at most

CINP ]| VL[ 1] L)
(| ] =X | XX
=0 [ =0\ 1 i=1k=i \ k
= (n—|J))2VI + g2Vt
= (2n — |J|)2MI-1.

Since the (EiCP) is the particular instance of the (GEiCP), with
J =1{1,2,...,n}, the number of A-solutions of the (EiCP) is at most

(2n — |J])2VI=t = p2n-t,
O

The complete set of solutions of both (EiCP) and (GEiCP) can be

obtained via complete enumeration, as follows.

Complete Set of Solutions of (GEiCP);.

(1) For each subset I such that J C I C {1,2,...,n} compute the
set A(I) of eigenvalues of By A
(2) For each A € A(I) such that A > 0, try to compute x; such that

( —
Ay = AByag

Az > By

ZTing 20

[zl = 1.
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If such a solution exists, then x = (z,0) is a general comple-
mentary eigenvector corresponding to the general complemen-

tary eigenvalue .

The soundness of this method is a direct consequence of proposition
2. This algorithm also provides a necessary and sufficient test for solv-
ability of a given (GEiCP). The following proposition shows that any
necessary and sufficient test for the solvability of a general (GEiCP) is

doomed to be computationally expensive.

Proposition 4. The solvability of the (GEiCP); is a NP-complete

decision problem.
Proof. Any solution (A, z) of the (GEiCP), satisfies x;, > 0 and
2" Ar = 2P (ABr — w) = A" Bz — 2'w = \x" Bz > 0,

since x # 0, A > 0 and B is positive definite. Therefore, deciding if the
(GEiCP), is solvable is at least as difficult as deciding if there exists a
x such that z; > 0 and 27’ Az > 0, for a given matrix A. The latter
problem is NP-complete [11, theorem 2.20]. Since the solvability of the
(GEiCP), is in NP (i.e. one can polynomially check whether a given
pair (A, z) is a solution of the (GEiCP),), the result of the proposition
follows. 0

It follows that solving the (GEiCP) is in general a NP-hard problem.
Despite this fact, for some classes of matrices the solvability of the

corresponding (EiCP) or (GEiCP) can be answered easily.

Lemma 5. If A is negative semi-definite (i.e. ' Az < 0 for all z),

the corresponding (GEiCP) is unsolvable.
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Proof. Since A is negative semi-definite, it follows that A;; is negative
semi-definite for all 7 C {1,2,...,n}. Therefore z} A;;x; < 0, for any

x, and the problem is unsolvable. L]

Lemma 6. If A is positive (A;; > 0, Vi,j), and B = I, then the
(EiCP) has a solution X\ > 0, with a corresponding eigenvector T > 0.

Moreover, if A is symmetric, then the solution \ is unique.

Proof. Since A is positive, any feasible solution  # 0 has to satisfy £ >
0, for otherwise Z; = 0 and  # 0 implies w; = \T; — 4,7 = —A,7 < 0.
By complementarity, @ = 0, and therefore this (EiCP) is equivalent
to the (EiP). The existence of a solution of the (EiP) with a positive
matrix is Perron’s Theorem [12, theorem 6.1.2]. The uniqueness in the
symmetric case is verified as follows. Let A # X, and consider a vector

i such that A% = \i. Then,

~ —

(A= Ni"z = (A2)"z — 2"(Az) = 2" ATz — 2" (A7) = 0,

and since A # X, it follows that 27Z = 0. Since 7 > 0, there is an index

i such that #; < 0, and therefore Z is not a solution of the (EiP). O

Lemma 7. If there is some index j such that Aj; > 0 and A;; <
0, Vi # j, then (\,x) is a solution of the (EiCP), with A = A;; and

r=é.
Proof. Trivial. ]

In particular this property holds for the well-known class of nonsin-
gular M-matrices, which are defined as P-matrices (all principal minors
are positive) with nonpositive off-diagonal elements.

The following section is devoted to the special case of the Eigenvalue
Complementarity Problems with symmetric matrices. Some additional

properties of the general (GEiCP) are presented in section 6.
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4. THE SYMMETRIC EIGENVALUE COMPLEMENTARITY PROBLEM

In this section the symmetric versions of (EiCP) and (GEiCP) are
studied. Some properties of these problems are derived, including a
necessary and sufficient condition for solvability. When this condition is
verified, the problem can be solved by a variety of well-known methods
in differentiable nonlinear programming.

For clarity of exposition, the results are presented for the (EiCP)
and the (GEiCP) separately.

The Symmetric (EiCP). An interesting known property of the sym-
metric (EiCP) regards the number of A-solutions; in this case a smaller
upper bound than the one presented in the general case can be found.

The proof of this result can be found in [14].

Proposition 8 (Seeger). The number of A-solutions of the symmetric

(EiCP) is at most 2" — 1.

The symmetric (EiCP) is closely related to the classical eigenvalue
problem. Since x # 0 for any solution, the complementarity condition

w’z = 0 may be rewritten as z' (ABx — Az) = 0, or equivalently,

AMz) = .
(z) ' Bx

This is again the generalized Rayleigh quotient. Analogously to the
classical case, equilibrium points of the Rayleigh quotient in the non-
negative orthant with A(z) > 0 are solutions of the (EiCP). This is the

main result concerning the practical solution of the symmetric (EiCP).
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Proposition 9. The symmetric (EiCP) is equivalent to

[ max  A(x)
(OEiCP) 1 st. x>0
L ele =1,

in the sense that every equilibrium solution x of (OEiCP) with A(z) > 0
is a solution of the (EiCP).

Proof. The optimization problem (OEiCP) is equivalent to

T
X X
oo tu'r+a(elr—1).
zeR" u Xz T

Any equilibrium solution of this problem satisfies the Kuhn-Tucker

conditions
[ w+ae = —5= [Ma)B — Al z
u >0
x>0
ul'z =0
Lefr=1

By performing the scalar product of the first equation with x and notic-

ing that v’z = 0, e’z = 1, and \(z) = ;ﬁgg, it follows that o = 0.

The resulting system of equations corresponds closely to the (EiCP),

with w = “”T%u. Since B is positive definite and A(z) > 0, it follows

that (A, z,w) is a solution of the (EiCP), and the result follows. O

The conclusion that o = 0 in the proof of proposition 9, though
apparently nonintuitive, may be motivated by the homogeneity of A(-)
and the orthogonality between x and VA(z) (lemma 1). Consider,
for instance, an equilibrium point of the (OEiCP) satisfying z > 0.
By the homogeneity of A(-), the projection of VA(z) on the half-line
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{axz | @ > 0} vanishes. By the equilibrium property with respect to
the constraint e’z = 1, the projection of VA(z) on the affine manifold
{z | e’z = 1} also vanishes. Therefore, VA(x) = 0, and so the Lagrange
multiplier v in the Kuhn-Tucker conditions becomes superfluous.
Proposition 9 resembles a classical result for nonlinear complemen-

tarity problems of the form

with VF(z) symmetric for all z. In fact, such problems can be solved
as optimization problems because F'(x) is shown to correspond to the
gradient of a primitive function f(z), whose equilibrium points are
solutions of the NCP [7]. In the present case the constraint e’z = 1
(or © # 0) breaks the symmetry of the enlarged NCP, obtained by

considering an additional complementary variable « satisfying

( w=(B— puA)x
a=-1+ex
z,w >0

iya >0

L w'r =ap =0,
where p = % with respect to the original problem. In this setting, the
hypothesis of the symmetric jacobians do not hold. Therefore, it is not
possible to use the classical theorem to conclude that the NCP above
is solvable as an optimization problem.

From the reformulation of the (EiCP) as a nonlinear programming

problem several conclusions are drawn. The first one is a characteriza-

tion of solvability of the (EiCP).
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Proposition 10. (EiCP) is solvable if and only if there exists some
x >0 such that x* Az > 0.

Proof. First suppose that the (EiCP) is solvable. If (A, z) is any solu-
tion of the (EiCP), then z > 0 and z' Az = Az’ Bz > 0, since x # 0
and B is positive definite.

Suppose, on the other hand, that there is a £ > 0 such that 27 Az >
0. Since A(z) is a continuous function (for x # 0) and the set X =
{z > 0] ez = 1} is compact, there exists a T € X such that \(Z) >
A(z), Vo € X. This is an equilibrium point for the (OEiCP), and
in particular, A() > A(Z) > 0. Therefore, T is a solution of the
(EiCP). O

For the practical solution of the symmetric (EiCP), any ascent gra-
dient method, with an initial solution # € X such that £7 A% > 0,
obtains an equilibrium point which is a solution of the problem. The
nonconvexity of the objective function is actually not a problem, since
the global optimization problem (OEiCP) need not be solved. However,
finding such an initial point is a NP-complete problem (proposition 4).
But for a very large class of matrices this problem is trivial, as the next
proposition shows. For these matrices, an initial point can be found by

inspection, and a solution of the (EiCP) is thereafter easily obtained.

Proposition 11. Suppose that the matriz A satisfies one of the fol-

lowing conditions

1) Ji: Ay > 0;

2) di,j: Ay =0, Aj; <0 and Aijj > 0;
3) A>0, A#0;
)

4) A is a S-matriz (3x > 0: Az > 0);

(
(
(
(
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Then a point & € X such that 31 Az > 0 can be easily obtained and the

corresponding (EiCP) is solvable.

Proof. (1) Let & = ¢; then 27 Az = A;; = 1.
(2) Let &, = 1, &; = %& and &, = 0, Vk # 4, j; then 27A% =
Aja% 4 241,35 = 1.
(3) If A >0, A#0, then Z = e is such that 27 Az > 0.
(4) If A is a S-matrix, then there exists a £ > 0 such that Az > 0.
It follows that 27 A2 > 0. Such a & can be found by solving the

following linear program:

(
max Yy

st. Ar—ye>0
(LP) el'r =1
x>0

y € R.

\
This problem is always feasible, and since the variable z lies in
a compact set and y < min{(Az);}, an optimal solution exists.
Now since A is a S-matrix, the optimal solution (Z,y) satisfies
§>0,2>0and so 27 Az > gite =9 > 0.

O

Note that condition 1 of the previous result (A has at least one
positive diagonal entry) defines a very large class of matrices, that
includes non-trivial positive semi-definite matrices (i.e. 7 Az > 0 for
all z) and strictly copositive matrices (i.e. 7 Az > 0 forall0 # z > 0).
Condition 2 includes non-trivial copositive matrices (i.e. 2’ Az > 0 for
all z > 0).

For the design of an initialization algorithm, besides applying the

tests indicated above, additional heuristics may be implemented. One
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of these is to find local maxima of the nonconvex quadratic problem

[ max ! Az
(@P) 1 st. elo=1
l x>0
from a few random starting points. Other tests are given by lemmas

5, 6 and 7 in the previous section. A general algorithmic approach is

to solve a GLCP (Generalized LCP, see [8]) as below.

Proposition 12. Giwen a matriz A, there exists a vector x > 0 such

that el'x = 1 and ¥ Ax > £ > 0 if and only if the system

(

u+ae+ Ar =0
—a > €

u>0

>0

ul'z =0

ele=1

15 solvable.

Proof. This system corresponds to the Kuhn-Tucker conditions of the
(QP) and the additional constraint —a > e. This additional constraint
is equivalent to 27 Ax > e, which can be seen by taking the inner
product of the first equation with x, and noticing that u’z = 0 and
ez = 1. Since the feasible set of the (QP) is compact, the existence
of a x > 0 such that e’z = 1 and 7 Axz > ¢ > 0 is equivalent to
the existence of an equilibrium point of the (QP) satisfying the same

conditions, which is equivalent to the GLCP above. ]

Computational methods for this problem, such as the SLCP method,

can be found in [8].
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The symmetric (GEiCP). The main results from this section can
be rephrased in the context of the symmetric (GEiCP). Once again
the complementarity constraint 27w = 0 allows A to be expressed as a

function of x,

Az) =

2" Bz’
Since x is not necessarily nonnegative (only z, is nonnegative), the
condition  # 0 cannot be replaced by e’z = 1. The cumbersome

constraint ||z||, = 1 is adopted for the sake of theory only. It is later

[
dropped from the computational model, which is able to handle this
constraint implicitly. The symbol ||-|| without sub-index is used to

denote the euclidean norm.

Proposition 13. The symmetric (GEiCP) is equivalent to

[ max A(z)
(OGEZ'C’P)! st. x;>0

| lel=1,

in the sense that every equilibrium solution x of (OGEiCP) with \(x) >
0 is a solution to the (GEiCP).

Proof. The proof is analogous to that of proposition 9. ]

The difficulty of the optimization problem (OGEiCP) is revealed
by the nonconcavity of the objective function (maximization problem)
and by the nonconvex constraint ||z|| = 1. The nonconvexity of the
objective function is not really a problem, since one looks after equi-
librium solutions, and not globally optimal solutions, exactly as in the

(EiCP) case. The feasible region of (OGEICP) is a spherical surface
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with sign constraints, and therefore projection methods can be eas-
ily implemented via renormalization of iterates. See, for instance, the
projected steepest ascent method below, and proposition 15.

The solvability condition for the (GEiCP) is analogous to the one
for the (EiCP).

Proposition 14. (GEiCP); is solvable if and only if there exists some
x € R" such that x; > 0 and x7 Az > 0.

It is clear that if the (EiCP) is solvable, then the (GEiCP), is solv-
able. But the solvability of the (GEiCP), holds for a larger class of
matrices. For instance, the (GEiCP); withn =2, J = {1}, B = I and

is solvable, since z = (2, —1)7 is such that z;, = 2 > 0 and " Az =
1 > 0. A solution is obtained with z = (0.8844,—0.3663) and \ =
0.2071. However, the corresponding (EiCP) is unsolvable, since —A is
copositive.

For the practical solution of the symmetric (GEiCP),, a starting
point satisfying z; > 0 and 27 Az > 0 is needed, as well as an ascent
gradient method for the optimization problem (OGEiCP).

The initialization for the solution of the (GEiCP), is akin to the
(EiCP) case. The heuristics of lemmas 11, 5, 6 and 7 are applicable in
this framework as well, and a general method for the initialization is

to solve the GLCP below [8].
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(

u+ae+ Ar =0
—a > €

uy >0

z; >0

ulbz; =0
uy=20

e

Txy, =1.

In this problem x # 0 is replaced by efx, = 1. This is not done
in the optimization problem (OGEiICP) to ensure compactness of the
feasible region, which is needed in the convergence proof of the method
presented below.

Given a good starting point, a gradient-ascent method can be easily
adapted to handle the constraint ||z|| = 1 implicitly, by renormalizing
every iterate of the sequence. As an example, the canonic steepest
ascent method is slightly rewritten to solve the symmetric (GEiCP),

using Armijo’s step-length choice.

Projected Steepest Ascent Method for the Symmetric (GEiCP),.

(0) Let € € (0,1).
Let 20 satisfy 2% > 0, ||2°]] = 1 and (z°) Az° > 0.

Let k «+— 0.
(1) Compute VA(zF) = W[A — MaF)B]z*, and dF as
dk_{o if j € J, 2% =0 and VA(z4); <0
b=

| VA(2%); otherwise.
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(2) Let

Th = min{T €N | (2% + £d¥); >0 and A (xk + Z%dk) — Mab) > =

1

'},

HE = 570,

Yyt = ot 4 pdt,
k+1 _ yk-‘rl

ST T

(3) Set k «— k + 1 and go back to step 1.

Proposition 15. The Projected Steepest Ascent Method converges to
a solution of the symmetric (GEiCP).

Proof. First notice that the direction d* computed in step 2 is either an
ascent direction or zero. This happens since VA(zF)Td¥ = (d¥)TdF >
0 > d"#£0.

The renormalization in step 3 can be done, since y**! # 0. This fol-

lows from the fact that (z%)Td* = (2*)TV(a*) = W[(xk)TAxk —
AMF)(2*)T B2*] = 0. Furthermore, the renormalization preserves the

value of the objective function,
k+1

ey <2 (27 e,

as well the constraint z% > 0. Therefore the sequence {z*} is well-

defined and belongs to the compact set {z | 2, >0, ||z|| = 1}.
For any convergent subsequence z¥ — x*, it is clear that VA(2%) —

VA(z*) and d¥ — d* where

di =

J

{0 if j € J, 27 =0 and VA(z"); < 0
| VA(z*); otherwise.

It is proved in the sequel that d* = 0. In fact, by the Armijo step-
length choice there exists a constant C' > 0 such that \(y*+1)— \(z*) >
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2
C’HdkH . This is a canonical proof [3, theorem 8.6.3] that uses the Mean-
Value Theorem, the Cauchy-Schwarz inequality and the Lipschitz-con-
tinuity of VA(-). Since ka“ - ka — 0, it follows that 6% — 0,

where 6% is the angle between 2**! and x*.

Therefore

k1 _ ok
yr - at|
cos OF = H = Hy'!“rl — ka — 0.
"]

2
Since A(-) is continuous, A(y*™1)—\(z*) — 0. Since HdkH < E(A Y-
A(zF)), it follows that HdkH2 — 0, that is, d* = 0.

Since VA(z*); = d% = 0 and VA(2*),; < 0, it follows that v = 7,

a = 0 and u = —VA(z*) solve the Kuhn-Tucker conditions for the
(OGEICP),, and since A(z*) > A(z°) > 0, this is a solution of the
(GEiCP),. O

The above algorithm has been chosen for clarity of exposition. Other
line search strategies may be used, as well as other ascent directions
d* (such that VA(z%)T'd* > 0). It must be added that the line search
in step 2 can be solved by exact maximization, since the derivative of
the function A(p) = A(@* 4 pd*) is zero if and only if p is a root of

a polynomial of order 3, as can easily be seen. Therefore at most 4
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evaluations of the function 5\() are needed, namely the 3 roots men-
tioned above, and the point a* + fid* corresponding to the maximal

step-length i such that (z* + fd®); > 0.

5. COMPUTATIONAL EXPERIENCE

In order to compare the original formulation of the (GEiCP) as a
mixed NCP, and its reformulation as a nonlinear programming prob-
lem (OGEiCP), with respect to the relative difficulty of solution, two
commercial packages have been chosen within the GAMS 2.5E system:
GAMS/PATH 4.3 for mixed NCPs, and GAMS/MINOS 5.5 for NLPs.

The test problems were given by 80 randomly generated matrices
A € IR, grouped in small-sized matrices (n = 10,20, 30,40) and
medium to large-sized matrices (n = 100,200,300, 400). For each
such value of n, 10 matrices have been generated. Each matrix was
forced to satisfy A;; > 0, which gives a convenient starting solution
% = (1,0,...,0)" > 0 such that A(z°) > 0. The corresponding prob-
lems, taking B = I and J = {1,2,...,n}, were given as input for
both software packages. The tests were run in a Pentium II 333 MHz,
running MS-Windows 98.

The PATH algorithm is an implementation of a Nonsmooth Damped
Newton Method [6]. This method is applied to a reformulation of the
mixed NCP as a generalized equation. The MINOS algorithm is loosely
related to the Projected Steepest Ascent Method presented above, and
combines a Reduced-Gradient Method with a Quasi-Newton Method
[10].

The computational experience is summarized by the following table.
The measures for the number of iterations and running time are average

measures over the 10 problems in the corresponding dimension. For the
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PATH algorithm, major iterations correspond to Newton steps, and
minor iterations are pivot steps in Lemke’s Method used to construct
a piecewise-linear path from an iterate to the corresponding Newton
point. Columns 4,5 and 6 are the number of problems solved without
restarts, the number of problems solved using up to 3 restarts from
distinct initial points, and the number of problems not solved by the
PATH algorithm, respectively. Note that the convergence of the PATH
method is only established under the hypothesis of local inversibility of
the jacobians defining the NCP, which does not hold for the (GEiCP).

PATH MINOS
=
[
=
+
. . 3
g ST T 2% 8 3 B
% o o SR~ B . )
g g & g2 g3 2 8 o
g = = »n n & g = g
A 3 HF OH H H H 3 =
10 336 16565 7 2 1 0.30 16.8 0.04
20 479 5H8.7 7 3 - 0.39 35.6 0.05
30 771 9588 4 6 - 0.71 52.5 0.09
40 939 24187 3 6 1 1.30 67.8 0.15
100 - - - - 10 - 162.4 3.63
200 - - - - 10 - 324.0 23.96
300 - - - - 10 - 451.8 62.61
400 - - - - 10 - 619.9 120.43

Note that the PATH algorithm, without restarts, fails in 30% to
70% of the small-sized tests. Thanks to the restart mechanism and the
heuristics employed, a considerable portion of these problems has been

eventually solved. None of the medium and large-sized tests have been
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solved by the PATH algorithm. The MINOS algorithm, on the other
hand, has always found a solution, with running times ranging from
7.5 to 8.7 times faster for the small tests. The number of iterations
for the MINOS algorithm is roughly linear as a function of n (ranging
from 1.5n to 1.8n).

It is possible to conclude from the above experience that the MINOS
algorithm applied to the (OGEiCP) performs better than the PATH
algorithm applied to the original formulation of the (GEiCP), with
respect to running time and robustness (in finding a solution). It is
important to add that the PATH algorithm is considered to be the most
robust procedure for solving mixed complementarity problems. So the
numerical results of this experience clearly indicate the relevance of the
optimization formulation for finding a solution of the (GEiCP) in the

symmetric case.

6. THE ASYMMETRIC CASE FOR n = 2

In this section the (EiCP) with B = I is considered, without the
symmetry assumption on the matrix A. It is shown that the existence
of a solution when all the diagonal elements of A are positive and the
number of A-solutions established for symmetric matrices also hold for

asymmetric matrices of order 2.

Proposition 16. If A is a 2 X 2-matriz, then the (EiCP) has at most

3 A-solutions.

Proof. The upper bound given by proposition 3 is 4. If A4;; < 0 for some
1, or if a column of A is positive, then the solutions corresponding to

I = {i} or I = {j} are infeasible, and so the result follows.
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On the other hand, if A4; > 0 and A;; < 0, for all ¢ # 7, then
the solutions corresponding to I = {i} or I = {j} are feasible. The
remaining case is I = {1,2}, for which it is shown next that at most
one solution is feasible.

The characteristic polynomial of A

A — All _AIZ
f()\) = det = )\2—(A11+A22))\+[A11A22—A12A21]
_AZI A — AZZ

has at most 2 positive roots. Furthermore,

f(Au) = f(Azz) = —ApAy <0;

If Aj5A9; = 0, then either A;; or Ay is an eigenvalue of A, with the
same solution of the cases I = {i} or I = {j}. Therefore the (EiCP)
has at most 3 A-solutions.

Now suppose that Az, Ay; < 0. Then f(Ay;) = f(Az) < 0, and
there is an eigenvalue A > max{A, A»»} > 0. The corresponding

eigenvector x must satisfy
()\ - A11)$1 = ATy
T+ T9 =1
Xy, w9 > 0.
This is impossible, since A5 < 0 and A > Aj;. Therefore this A is

not a solution of the (EiCP), and the maximal number of A-solutions

is 3. [l

Proposition 17. If A is a matriz of order 2 with positive diagonal

elements, then the (EiCP) is solvable.

Proof. If there is some j # 7 such that A;; <0, then the result follows.
Otherwise, A;; > 0,V4, 7, and f(A11) = f(Axw) = —A1242 <0, where,
as before, f(A) is the characteristic polynomial of A. Then there is
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some eigenvalue A > max{ A1, A2} > 0. Since Aj2 > 0, the following

system has a solution (z1,x2),

()\ - A11)$1 = Ajo79
Ty +x9=1

Xy, w9 > 0.

This solution satisfy Ay;x; = (A — Age)xe, since A is an eigenvalue of

A. Therefore, the (EiCP) is solvable. O

This result implies that the (EiCP) is solvable when A is a strictly
copositive or a P-matrix (in particular, when A is positive definite) of
order 2. Notice that all these classes of matrices satisfy the necessary

condition for the solvability of the (EiCP)
Jx > 0 such that 27 Az > 0

stated before. Furthermore they are sufficient for the symmetric case.
More research is required to investigate whether these classes of ma-
trices are sufficient for the solvability of the (EiCP) in the case of a

general asymmetric matrix.

7. CONCLUSIONS AND FUTURE WORK

In this paper the Eigenvalue Complementarity Problems introduced
in [5] have been considered. It has been shown that the symmetric
cases are solvable with optimization techniques applied to the Rayleigh
quotient subject to linear constraints. The initialization for the opti-
mization process is a NP-complete problem, but for the majority of
practical cases the initial point can be found by inspection.

Some preliminary work on the general case with asymmetric matrices

of order 2 concerning the characterization of solvability and the number
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of A-solutions has been presented. The generalization of these results

for asymmetric matrices of any order is the subject of ongoing research.

10.
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