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Abstract

In this paper an optimization thin laminated shallow shell problem is
discussed. The existence of a solution for both the linear and nonlinear
versions of this problem is firstly studied by exploiting their reductions into
variational inequalities. The discretization of these continuous problems
by using appropriate finite elements leads into a Mathematical Program-
ming Problem with Equilibrium Constraints (MPEC) in which some of their
variables assume integer values and the remaining variables are implicitly
defined as the solution of a Mixed Complementarity Problem (MCP). A ge-
netic algorithm incorporating a complementarity path-following technique
is proposed for the solution of this MPEC. It is shown that the efficiency
of this hybrid problem depends on the problem to be linear or nonlinear.
Some computational experience with this algorithm on the solution of spe-
cial cases of this MPEC has been reported elsewhere and is briefly described
to highlight the performance of the proposed methodology.

Key words: Shell Problems, Variational Inequalities, MPEC, Complemen-
tarity Problems, Genetic Algorithms

1 Introduction

Let S be a thin elastic laminated shallow shell, made of 2n laminas which
are symmetrical disposed, both from a material and a geometric properties
standpoint, with respect to the middle surface of the shell. Each lamina i,
for i = 1, ..., n, is supposed to be made of a material mi, having a monoclinic
behaviour through the thickness of the laminate. The thickness ti of lamina
i is defined by ti = hi − hi−1, where hi is the distance, measured along the
direction of the unit normal vector to the middle surface, from the middle
surface to the upper face of lamina i. In addition, the shell is subjected to a
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vertical load, clamped on the boundary, and the vertical displacement of the
middle surface is constrained by an obstacle. Finally, upper bounds on the
global cost, weight and thickness of the laminated shell are also imposed.

Given discrete sets of materials M = {mj : j = 1, 2, 3, ..., q (q > n)}, of
thickness T = {tk : k = 1, 2, 3, ..., p (p > n)} and of functions Φ = {~φl : l =
1, 2, 3, ..., r (r > 2)} defining the middle surface of the shell, the objective
is to select the materials and thickness, mi and ti of each lamina i, and a
function ~φ, in order to minimize the strain energy of the two-dimensional
laminated shallow shell model.

The variational formulation of this problem takes the following form
min
s∈C

F (s, ~us)

subject to:

{
~us ∈ V
Πs( ~us) = min

~v∈V
Πs(~v).

(1)

The vector of optimization variables is defined by s = (sM , sT , sΦ), where
sM is a vector of materials with components inM , sT is a vector of thickness
with components in T and sΦ is a vector with only one component, belonging
to the set Φ. Hence the variables si should assume integer values. The
set V contains the admissible displacements of the middle surface; Πs and
F are, respectively, the total potential energy and the strain energy of the
laminated shell. The set C is a subset ofM×T×Φ, that imposes constraints
as the global cost, weight and thickness of the laminated shell.

The main goal of this paper is to describe and to investigate the prop-
erties of the bilevel problem (1) and its numerical solution. The inner opti-
mization problem in (1) can be reformulated as a variational inequality, that
is more useful for its numerical solution by the finite element method. A
hybrid algorithm is proposed that combines complementarity path-following
techniques [7], [19] for solving the variational inequality, with a genetic al-
gorithm [10] for the minimization of the functional. Two important special
instances of problem (1) have been discussed elsewhere, namely the obstacle
problem for an elastic plate [8] and the compliance minimization of a com-
posite laminated plate [4]. The results of the experiences on the solution of
these two problems by the proposed methodology are also reviewed in this
paper.

The rest of the paper is organized as follows: in section 2 and 3 notations
and hypotheses on the geometry, the material properties of the shell, the
expression of the strain and curvature tensors and the exact definitions
of V , Πs and F are introduced. Equivalent formulations and properties
of problem (1) and its discrete formulation are discussed in the next two
sections. In section 6 the proposed hybrid algorithm for the solution of the
discrete problem is described together with its application for the solution
of some of their special cases. Finally some conclusions are stated in the
last part of the paper.
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2 Notations and Hypotheses

In this section, we introduce some notations and hypotheses that will
prove useful for the definitions of V , Πs and F of problem (1).

As far as the notations are concerned, greek indices or exponents α, β,
µ,... belong to the set {1, 2} and the latin indices or exponents i, j, k,... be-
long to the set {1, 2, 3}. The summation convention with respect to repeated
indices and exponents is used; the euclidean scalar and vector product of
two vectors ~u and ~v in R3 are denoted by ~u · ~v and ~u× ~v respectively, and
‖.‖ denotes the euclidean norm.

The hypotheses of the models are discussed next and are concerned with
the geometry and material properties of the shell, the strain and curvature
tensors of the middle surface.

2.1 Geometry of the shell

The middle surface Ω ⊂ R3 of the shell is the image of an open, connected
and bounded subset ω ⊂ R2, by a sufficiently smooth mapping ~φ.

The covariant and the contravariant basis, (~aα) and (~aβ), of the tangent
plane of the middle surface are defined by ~aα = ~φ,α and ~aβ ·~aα = δβα, where
δβα is the Kronecker’s symbol, that is, δβα = 1, if α = β and δβα = 0, if α 6= β
and .,α means the usual derivation with respect to the component ξα of the
variable ξ = (ξ1, ξ2) in ω.

The unit normal vector is ~a3 = ~a3 = ~a1×~a2
‖~a1×~a2‖ and ξ3 denotes the variable

along the vertical axis with the direction of ~a3.
A shell S with middle surface ~φ(ω) and constant thickness t is the set of

points P in R3 defined by

S = { ~OP : ~OP = ~φ(ξ1, ξ2) + ξ3~a3(ξ1, ξ2), − t
2
≤ ξ3 ≤ t

2
} (2)

where O is the origin of the reference system, ~φ(ξ1, ξ2) represents the pro-
jection of ~OP in the middle surface and |ξ3| is the distance from P to its
projection, measured along the direction of the unit normal vector ~a3.

The Christoffel symbols Γαβγ and the covariant components aαβ and bαβ
of the first and second fundamental forms of the middle surface are given
by

Γαβγ = ~aα ·~aγ,β = ~aα ·~aβ,γ = Γαγβ , aαβ = ~aα ·~aβ , bαβ = −~aα ·~a3,β . (3)

Furthermore a = det(aαβ) = a11a22 − a2
12 6= 0. The covariant derivatives of

a vector field ~v defined on the middle surface are denoted by a vertical bar
|, that is,

vα|µ = vα,µ + Γαλµv
λ, vα|µ = vα,µ − Γλαµvλ, v3|α = v3,α,

v3|αβ = v3,αβ − Γλαβv3,λ
(4)
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where vα and vα are the contravariant and the covariant components of the
vector field ~v, respectively.

In particular a shallow shell is a shell which has a weak curvature, that
is, a shell such that bαβ and bαβ|λ are very small when compared to the
unity.

2.2 Material properties of the shell

Each lamina i is supposed to be made of an anisotropic and nonho-
mogeneous material, with elastic symmetry with respect to the surface
ξ3 = constant, that is, a monoclinic material whose elastic coefficients
Cjklmi , for each lamina i, satisfy [11], [17]

Cjklmi = Ckjlmi = Cjkmli = Cmljki ,

Cαβλ3
i = Cα333

i = 0,

∃c > 0 : Cjklmi τjkτlm ≥ c
3∑

j,k=1

|τjk|2, ∀(τjk) symmetric tensor.
(5)

2.3 Strain and curvature tensors of the middle surface

Two thin elastic shallow shell models are adopted. The expressions of the
covariant components γαβ(.) and ραβ(.) of the strain tensor and the change
of curvature tensor of the middle surface are given by

γαβ(~v) =
1
2
(vα|β + vβ|α)− bαβv3, ραβ(~v) = v3|αβ , (6)

for the linear case [2], and by

γαβ(~v) =
1
2
(vα|β + vβ|α)− bαβv3 +

1
2
v3,αv3,β , ραβ(~v) = v3|αβ , (7)

for the nonlinear case [1], [14].

3 Definition of V , Πs and F

The set of admissible displacements ~u of the middle surface of the shell
is defined by

V = {~u ≡ (u1, u2, u3) ≡ (u, u3) ∈ [H1
0 (ω)]2 ×K} (8)

where

K = {z ∈ H2
0 (ω) : z(ξ1, ξ2) ≥ ψ(ξ1, ξ2), a.e. in ω}. (9)

Here ψ ≤ 0 is the function representing the obstacle and H1
0 (ω), H2

0 (ω) are
Sobolev spaces defined by

H1
0 (ω) = {v ∈ H1(ω) : v|∂ω = 0},

H2
0 (ω) = {v ∈ H2(ω) : v|∂ω = ∂v

∂n = 0},
(10)
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with ∂ω the boundary of ω and ∂
∂n the normal derivative.

The functional Πs(~v) is the total potential energy of the shell given by

Πs(~v) =
1
2
bs(~v,~v)− L(~v). (11)

The form L(.) is a linear scalar form in V , related to the vertical force,
acting on the shell, defined by

L(~v) =
∫
ω

f3 v3
√
a dξ1 dξ2, (12)

where f3 ∈ L2(ω) is the given intensity of vertical force. The form 1
2b
s(~v,~v)

is the strain energy of the laminated shallow shell and its expression is
bs(~v,~v) = 2

n∑
i=1

∫
ω

[( ∫ hi

hi−1

Aαβλµi dξ3
)
γαβ(~v) γλµ(~v)+( ∫ hi

hi−1
(ξ3)2Aαβλµi dξ3

)
ραβ(~v) ρλµ(~v)

]
√
a dξ1dξ2,

(13)

where γαβ(.) and ραβ(.) are, respectively, the covariant components of the
strain tensor and the change of curvature tensor of the middle surface, of the
linear or nonlinear model (6) or (7), and Aαβλµi are the reduced elasticity
coefficients, of lamina i, defined by

Aαβλµi = Cαβλµi − Cαβ33
i C33λµ

i

C3333
i

. (14)

An explanation of formula (13) is given in [3], by using the asymptotic
development technique, with the half-thickness of the laminate as a small
parameter. The expression (13) can also be obtained directly from the
formula of the strain energy of the three dimensional shell model, that is,
from the computation of the integral∫

S

σkj εkj (15)

where σkj = Ckjlm εlm are the components of the three dimensional stress
tensor, εlm are the components of the three dimensional strain tensor and
Ckjlm are the elastic coefficients of the laminate, and where it is assumed
that εαβ = γαβ + ξ3ραβ (γαβ , ραβ are given by (6) or (7)), εα3 = 0, σ33 = 0
and Ckjlm = Ckjlmi in lamina i. Moreover, cross products of the type
γαβ(~v) ραβ(~v) do not appear in (13), because the laminas are symmetrical
with respect to the middle surface of the shell.

Finally the objective functional in (1) is defined by

F (s, ~us) =
1
2
bs(~us, ~us). (16)
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4 Variational inequality formulation
of the inner problem

In this section the inner mathematical problem{
~us ∈ V
Πs( ~us) = min

~v∈V
Πs(~v) (17)

is briefly discussed. This problem represents the constraint set of problem
(1) and its function depends on the problem to be linear or nonlinear.

For a fixed s, the solution of (17) is the triple composed by the covari-
ant components (us1, u

s
2, u

s
3) of the displacement

∑3
i=1 u

s
i ~a

i of the points of
the middle surface ~φ(ω) of the shell, when it is subjected to the action of
a vertical force, and the normal displacement us3 ~a

3 is constrained by the
obstacle ψ.

As the function Πs is Gâteaux differentiable in [H1
0 (ω)]2×H2

0 (ω), prob-
lem (17) is equivalent to the following variational inequality [12]{

~us ∈ V
< DΠs( ~us), ~v − ~us >≥ 0, ∀~v ∈ V (18)

where < DΠs( ~us), ~v > is the Gâteaux derivative of Πs at ~us in the direction
~v.

As V = [H1
0 (ω)]2 × K, choosing in (18) ~v = (0, v3) and subsequently

~v = (v + u, 0) and ~v = (−v + u, 0) it is easy to show that the variational
inequality (18) is equivalent to a system composed of another variational
inequality and an equation. The expressions of these systems for the linear
and nonlinear cases are stated below.

• Linear case Find ~us ≡ (u1, u2, u3) ≡ (u, u3) ∈ V, such that
As(u3, v3 − u3) + as(u, v3 − u3)− L(v3 − u3) ≥ 0, ∀v3 ∈ K
Bs(u, v) + cs(u3, v) = 0, ∀v ∈ [H1

0 (ω)]2.
(19)

• Nonlinear case Find ~us ≡ (u1, u2, u3) ≡ (u, u3) ∈ V, such that
As(u3, v3 − u3) + as(u, u3; v3 − u3)− L(v3 − u3) ≥ 0, ∀v3 ∈ K
Bs(u, v) + ds(u3, v) = 0, ∀v ∈ [H1

0 (ω)]2.
(20)

Furthermore the definitions of the forms in these problems are presented
next:

As(u3, v3) = 2
n∑
i=1

∫
ω

[( ∫ hi

hi−1

Aαβλµi dξ3
)
bαβu3 bλµv3+( ∫ hi

hi−1
(ξ3)2Aαβλµi dξ3

)
u3|αβ v3|λµ

]
√
a dξ1dξ2,

(21)
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Bs(u, v) = 2

n∑
i=1

∫
ω

[( ∫ hi

hi−1

Aαβλµi dξ3
)
.

1
4 (uα|β + uβ|α) (vλ|µ + vµ|λ)

]
√
a dξ1dξ2,

(22)

cs(u3, v) = −2
n∑
i=1

∫
ω

[( ∫ hi

hi−1

Aαβλµi dξ3
)
bαβu3

1
2

(vλ|µ + vµ|λ)

]
√
a dξ1dξ2,

(23)


ds(u3, v) = 2

n∑
i=1

∫
ω

[( ∫ hi

hi−1

Aαβλµi dξ3
)

(−bαβu3+

1
2u3,αu3,β) 1

2 (vλ|µ + vµ|λ)

]
√
a dξ1dξ2,

(24)


as(u, u3; v3) = 2

n∑
i=1

∫
ω

[( ∫ hi

hi−1

Aαβλµi dξ3
) (

− bαβu3 u3,µ v3,λ+

1
2 [uα|β + uβ|α + u3,αu3,β ][u3,µv3,λ − bλµv3]

)]
√
a dξ1dξ2,

(25)

as(u, v3) = cs(v3, u), (26)

L(v3) =
∫
ω

f3 v3
√
a dξ1dξ2. (27)

It is also worthwhile to mention that for the linear model

< DΠs( ~us), ~v >= bs( ~us, ~v)− L(~v), (28)

so the variational inequality (18) or the system (19) are equivalent to{
~us ∈ V
bs( ~us, ~v − ~us)− L(~v − ~us) ≥ 0, ∀~v ∈ V. (29)

The existence of a solution to the problem (17) depends on the properties
of the operators and forms defining the systems (19) and (20). For the case
where the laminate has only one ply and the material is homogeneous and
isotropic, it is possible to establish two important existence results that are
shown below.
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• If the problem (17) is linear it is equivalent to the variational inequality
(29). The bilinear form of (29) is elliptic if the mixed components bβα
of the second form of the surface satisfy |bβα| ≤ ε and |bβα|λ| ≤ ε,
where ε > 0 is some small real and positive number [2]. Hence by
the Lions-Stampacchia theorem [15] the variational inequality has a
unique solution and the same happens to problem (17).

• For the nonlinear case, the problem reduces to the variational inequal-
ity of (20) whose operator is nonlinear, pseudo-monotone and coercive,
if the mixed components bβα of the second form of the surface satisfy
|bβα| ≤ ε and |bβα|λ| ≤ ε, where ε > 0 is some small real and positive
number [1]. Hence it also has at least a solution [15].

For the laminated linear or nonlinear shell problems (19) and (20), with
more than one material, the same properties and results hold [9], using
arguments similar to [1] and [2], because the reduced elastic coefficients
Aαβγµi are smooth enough and satisfy the following symmetric and ellipticity
conditions [9]

Aαβγµi = Aαβµγi = Aµγαβi = Aγµαβi ,

∃c > 0 : Aαβγµi ταβτγµ ≥ c
2∑

α,β=1

|ταβ |2, ∀(ταβ) symmetric tensor. (30)

5 Discrete Formulation

As is usual in the solution of these type of variational models, the finite
element method is used to get a discrete problem that approximates the
original continuous problem (1); see for instance [2], for the details of the
use of this method in shell models. Due to the constraints involved in the
continuous problem (1), the discrete problem takes the form of a Mathemat-
ical Program with Equilibrium Constraints (MPEC) [16]. In this section the
definiton of the resulting MPEC is introduced.

Consider a finite element mesh of the domain ω, with m global degrees of
freedom. Let L1, L, H and I be four subsets of the index set {1, 2, 3, ..,m}
such that:

• L1 represents the indices of the degrees of freedom related to the
vertical displacement u3, at the nodes belonging to the interior of the
mesh;

• L is a subset of L1, corresponding to the degrees of freedom that
represent the approximation of the vertical displacement u3, at the
interior nodes;

• I contains the indices of the degrees of freedom of the displacement ~u
at the boundary nodes;
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• H is the complement in {1, 2, 3, ..,m} of the set L1 ∪ I, that is, H =
{1, 2, 3, ..,m} \ (I ∪ L1).

Let v be a vector inRm, and denote by vL, vI , vL1 or vH the subvectors of
v, whose components have indices belonging to L, I, L1 or H respectively.
Let ψL = (ψi)i∈L be the vector whose components are the values of the
obstacle ψ at the nodes belonging to the set L, and K be the set that
approximates the original set (9), that is

K = {z ∈ Rm : zi ≥ ψi, i ∈ L}. (31)

Then, the discrete problem corresponding to (19) or (20) takes the following
form 

Find u ∈ Rm, such that
uI = 0, uL ≥ ψL
(zL1 − uL1)

TGsL1
(u) ≥ 0

z ∈ Rm, zL ≥ ψL
GsH(u) = 0,

(32)

where u is the finite element approximation of ~us, depending on s, and
GsL1

(u) = (Gsi (u))i∈L1 and GsH(u) = (Gsj(u))j∈H are the functions obtained
from the finite element discretization of the variational inequality and the
equation, respectively, of systems (19) or (20). These functions are affine or
nonlinear, depending on the continuous problem to be linear or nonlinear.

If J = {1, 2, 3, ..,m} \ (I ∪ L) and n = m − |I|, where |I| denotes the
number of elements of the set I, then the variational inequality (32) is
equivalent [5] to the following Mixed Complementarity Problem (MCP):

Find u = (uJ , uL) ∈ Rn, such that
GsJ(u) = 0,
GsL(u) ≥ 0,
uL ≥ ψL,
(ui − ψi)Gsi (u) = 0, ∀i ∈ L.

(33)

Note that the vector uI = 0 has been eliminated from further consideration
as its components should be equal to zero in any solution of the variational
inequality (32).

If F (s, u) is the finite element approximation of (16), then the discrete
formulation of (1) is reduced to the following Mathematical Programming
Problem with Equilibrium Constraints (MPEC): min F (s, u)

subject to:
{
s ∈ C
u = u(s) is a solution of MCP (33).

(34)

It is also important to add that all the variables si should assume integer
values for the vector s to belong to the set C.
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6 An Algorithm for the MPEC problem

It follows from the definition of the MPEC introduced in the previous sec-
tion that the variables si should take integer values and the inner variables
ui depend implicitly on the outer variables si by means of a complemen-
tarity problem. These two features of the MPEC recommend the use of a
genetic algorithm for its solution. This procedure works solely on the inte-
ger variables si. In order to compute the value of the objective function for
a particular value s̄ of s, the MCP (33) with s = s̄ is first solved to get the
variable ū = u(s̄). Then the value is given by F (s̄, ū).

Before describing the genetic algorithm for the solution of the MPEC
(34), it is necessary to explain how the MCP (33) can be processed. Next,
two path-following algorithms are discussed for this purpose, namely an
interior-point method [13], [19] and the so-called PATH algorithm [7], [18].

6.1 An Interior Point Algorithm

The MCP (33) can be written as follows

Gs(u)− w = 0 (35)
(UL −ΨL)WL eL = 0 (36)
wJ = 0 (37)
uL ≥ ψL, wL ≥ 0 (38)

where u, w ∈ Rn, UL, ΨL and WL are diagonal matrices with diagonal
elements equal to ui, ψi and wi, i ∈ L, repectively, eL is a vector with |L|
components equal to one and Gs(u) = (GsJ(u), GsL(u)).

The interior-point algorithm is an iterative procedure that seeks a so-
lution of the system of nonlinear equations (35)-(36), by maintaining the
requirements (37)-(38) in each iteration. The search for such a solution is
done in the interior of the set defined by the constraints (38). To describe
an iteration of this algorithm, let (uk, wk) be the current iterate satisfying

ukL > ψL, wkL > 0, wkJ = 0. (39)

As is discussed in [19], the so-called central parameter µk is firstly
computed. This parameter is used to define a central path that the al-
gorithm should move closely in order to avoid premature approximation to
the boundary of the set defined by the constraints (38). The value of µk is
given by

µk =
ν

|L|
∑
i∈L

(uki − ψi)wki (40)

where 0 < ν < 1 is a fixed real number and |L| is the number of elements
of the set L.

The search direction ∆k is then found as the Newton’s direction for the
nonlinear system defined by the equations (35) and (37) and the central
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path equation
(UL −ΨL)WL eL = µk eL. (41)

Hence ∆k = (∆uk,∆wk) should satisfy the following system of linear equa-
tions:

 ∇JJG
s(uk) ∇JLG

s(uk) 0
∇LJG

s(uk) ∇LLG
s(uk) −IL

0 W k
L UkL −ΨL

  ∆ukJ
∆ukL
∆wkL

 =

 wkJ −GsJ(uk)
wkL −GsL(uk)

µkeL − (UkL −ΨL)W k
LeL


∆wkJ = 0

(42)

where IL is the identity matrix of order |L|, UkL and W k
L are diagonal ma-

trices with diagonal elements equal to uki and wki , i ∈ L, respectively and

∇Gs(uk) =
[
∇JJG

s(uk) ∇JLG
s(uk)

∇LJG
s(uk) ∇LLG

s(uk)

]
(43)

is the jacobian of Gs at uk.
After computing the search direction ∆k = (∆uk,∆wk), a stepsize αk

is found in such a way that the new iterate

uk+1 = uk + αk ∆uk, wk+1 = wk + αk ∆wk (44)

satisfies the constraints (39) with k = k + 1. It is easy to see that the
following expression for αk is sufficient for this purpose:

αk = δk min{θk1 , θk2} (45)

where
θk1 = min

{
uk

i −ψi

−(∆uk)i
: (∆uk)i < 0, i ∈ L

}
,

θk2 = min
{

wk
i

−(∆wk)i
: (∆wk)i < 0, i ∈ L

}
,

(46)

for some 0 < δk < 1.
The next step to be performed is to check whether the new iterate

(uk+1, wk+1) given by (44) is an approximate solution of the MCP. This
is done by simply verifying if the two following conditions hold:

‖wk+1 −Gs(uk+1)‖ < ε1,
∑
i∈L

(uk+1
i − ψi)wk+1

i < ε2 (47)

for some positive tolerances ε1 and ε2. If this is not the case, a new iteration
is performed with the new iterate (uk+1, wk+1).
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It follows from this description, that the algorithm only works if the
linear system (42) has a solution. A sufficient condition for this property to
hold is the jacobian ∇Gs(uk) to be Positive Semi-Definite and its principal
submatrix ∇JJG

s(uk) to be Positive Definite for each iterate uk [13], [19].
As is discussed in [13] a simple modification of this interior-point algorithm
possesses global convergence to the solution of the MCP (33) under this
property of ∇Gs(uk). Special care must be taken for the choice of the
stepsize in order the new iterate not to move far from the central path. This
implies the need of a more involved line-search procedure for computing the
step size αk [13], [19].

Unfortunately, for the nonlinear version of the shell problem the MCP
under consideration does not satisfy this requirement concerning the positive
semi-definitness of the jacobian ∇Gs(uk). So the possible application of
the interior-point algorithm for solving the MCP (33) should be studied
experimentally. As reported in [8], the performance of the algorithm for a
particular case of the nonlinear shell problem, that is the plate problem,
has been quite disappointing. The algorithm has been unable to solve any
one of the problems tested in this experience.

In case of the linear version, Gs(u) is affine in u and its jacobian is a
constant matrix Ms, that does not depend on the vector u. Furthermore,
as the bilinear form of the shallow shell problem is symmetric and elliptic,
this matrix is symmetric positive definite. As is discussed in [19], simple
care on the computation of the stepsize αk is sufficient to guarantee global
convergence to the interior-point algorithm in this case. The use of the
simple procedure defined by (45) and (46) with δk = 0.9995 is usually
recommended in practice. As reported in [8], this simple version of the
interior-point algorithm has proven quite efficient for solving all the MCP
test problems associated to the plate problem, that is a special case of the
linear version of the shell problem.

6.2 The PATH Algorithm

As discussed in [7], [18] the MCP (33) can be reformulated as the following
system of nonsmooth equations

GsB(x) = 0 (48)

where GsB is the so-called normal map. This function is defined by

GsB(x) = Gs(π(x)) + x− π(x) (49)

where π(x) is the projection of x on the set

B = {x ∈ Rn : xi ≥ ψi, i ∈ L}, (50)

that is, πi(x) satisfies

πi(x) =
{
xi, if i ∈ J
max{xi, ψi}, if i ∈ L. (51)
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The equivalence between the MCP (33) and the system of normal equa-
tions (48) is stated below.

Property 1 -

1. If x̄ is a solution of the system (48), then

w̄ = Gs(π(x̄)), ū = π(x̄) (52)

is a solution of MCP (35)-(38).

2. If (ū, w̄) is a solution of the MCP (35)-(38), then

x̄ = ū− w̄ (53)

is a solution of the system (48).•

The PATH algorithm [7], [18] aims to find a solution of the system
of normal map equations (48) by using a strategy similar to the so-called
Damped Newton’s method [6]. As the equation has a nonsmooth feature,
the computation of the Newton’s direction and the implementation of the
damping strategy to find the new iterate become more complicated. Next,
we describe how these two steps are performed. As in the differentiable case,
the Newton’s iterate xkN is found as a root of the first order approximation
A(xk) of GsB at xk. For each x ∈ Rn

A(xk)(x) = Gs(π(xk)) +∇Gs(π(xk))(π(x)− π(xk)) + x− π(x) (54)

and xkN should satisfy
A(xk)(xkN ) = 0. (55)

The definition (54) of the first-order approximation and the property 1
relating systems of normal map equations and complementarity problems,
imply that xkN can be found by the following procedure:

• let
M = ∇Gs(π(xk))
q = Gs(π(xk))−Mπ(xk), (56)

• solve the Mixed Linear Complementarity Problem (MLCP)

y = q +Mv
vi ≥ ψi, yi ≥ 0, yi(vi − ψi) = 0, i ∈ L
yj = 0, j ∈ J,

(57)

• if (yk, vk) is a solution of this MLCP, then

xkN = vk − yk. (58)
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As is usual in a damped Newton’s method, the new iterate xk+1 should
be a point in the path joining xk and xkN that guarantees a sufficient de-
crease for a certain merit function associated with the system of normal
map equations. By choosing the natural merit function

‖GsB(x)‖2 (59)

then the computation of xk+1 reduces to find a value t belonging to the
interval [0, 1] such that xk+1 = x(t) satisfies the property

‖GsB(x(t))‖ ≤ (1− νt)‖GsB(xk)‖ (60)

for some fixed value 0 < ν < 1. Note that x(0) = xk and x(1) = xkN .
In order to compute this value of t and the corresponding vector x(t) the
following condition

(1− t)GsB(xk) = A(xk)(x(t)) (61)

is enforced. By exploiting once more the property 1, it is possible to show
that the values (t, x(t)) correspond to solutions of the following Parametric
MLCP

y = (q − r) + tr +Mv
vi ≥ ψi, yi ≥ 0, yi(vi − ψi) = 0, i ∈ L
yj = 0, j ∈ J

(62)

where r = GsB(xk). Since x(0) = xk and x(1) = xkN then the computation
of xk+1 = x(t) consists of solving the Parametric MLCP and finding t and
the corresponding solution x(t) = v(t) − y(t) that satisfies the sufficient
decrease condition (60).

If xk and xkN correspond to Basic Feasible Solutions (BFS) of the Para-
metric MLCP then the computation of these pairs (t, x(t)) simply amounts
to perform pivot steps similar to those of the well-known Lemke’s method [5]
for linear complementarity problems with t and r the cover variable and vec-
tor. Each BFS corresponds to a breaking point of the piecewise line joining
the current iterate xk and the Newton’s iterate xkN . The algorithm chooses
one of these breaking points (BFS of the Parametric MLCP) satisfying the
sufficient decrease condition (60).

There are two main difficulties in the implementation of this procedure,
that are stated below:

• The iterates xk and xkN may not correspond to BFS of the Parametric
MLCP.

• An unbounded ray may occur during the generation of such a path.

As is fully discussed in [7], [18] the algorithm PATH provides remedies
that work in many cases, as well as efficient procedures to find the values
(t, x(t)) according to monotone or nonmonotone line search schemes. The
algorithm possesses global convergence to a root of the system of normal
map equations under some restrictive hypotheses [7], [18].
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Unfortunately it does not seem easy to verify whether these hypotheses
hold or not for the MCP associated with the nonlinear version of the shal-
low shell problem. So there is no guarantee that the algorithm converges
to a solution of this MCP. As for the interior-point method, some special
instances of this problem have been solved by the PATH algorithm. The
results of these experiences are reported in [8] and show that the PATH
algorithm has been able to solve some of these test problems but not all.

As before, the linear version of the shallow shell problem leads into
a Mixed Linear Complementarity Problem with a Positive Definite Matrix.
Hence this problem is solved by finding the Newton’s iterate of the PATH al-
gorithm. Therefore this last algorithm reduces to a modification of Lemke’s
method and converges to the unique solution of the MLCP in a finite num-
ber of pivot steps. As is reported in [8] the algorithm performs quite well in
practice and usually finds the unique solution of the MLCP in a reasonable
number of pivot steps for all the test problems that have been considered
in the experiments [8].

6.3 The Genetic Algorithm

Genetic algorithms are search and optimization algorithms that model the
process of natural evolution. Their main disadvantage is that they require
a great number of evaluations, although they do not request any derivative
information.

A genetic algorithm for the MPEC problem requires five main steps that
are discussed below:

Step 1 A coding technique, that assigns to each variable s a binary string,
referred to as a chromosome.

To exemplify this coding technique, consider, for instance, that the
laminated shell has 2×3 laminas, and there are 7 admissible materials
M = {1, 2, 3, ..., 7}, 15 admissible thickness T = {1, 2, 3, ..., 15} and 3
admissible functions, defining the middle surface of the shell, Φ =
{1, 2, 3}. A possible distribution of materials and thickness and a
possible choice for the function ~φ, indicated by the vector s in (1), is

s = (sM , sT , sΦ) = ( 4, 1, 7︸ ︷︷ ︸
materials

, 3, 11, 15︸ ︷︷ ︸
thickness

, 2︸︷︷︸
function

) (63)

Note that component i (i = 1, 2, 3) of subvectors sM and sT coincide
with the number of the lamina, that is, laminas 1, 2, 3 correspond to
the materials 4, 1, 7 and the thickness 3, 11, 15, respectively.

By expressing these numbers (4,1,..) in the binary system, the follow-
ing binary string represents the vector s

100 001 111︸ ︷︷ ︸
materials

0011 1011 1111︸ ︷︷ ︸
thickness

10︸︷︷︸
function

(64)
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This is called a chromosome. Thus, with this coding, each chromosome
has a total of 23 bits, being 3 bits for each material, 4 bits for each
thickness and 2 bits for the function.

Step 2 An initialization procedure, that is, a random set of initial points
s (generated from the admissible cartesian set M × T × Φ), which is
the initial population of chromosomes.

This population of chromosomes is the set where the search for the
mininum is performed, using the so-called genetic operators to be
discussed in step 4.

Step 3 An evaluation objective function, which is the discretized strain
energy function F (s, u) of the shell with a penalized function, corre-
sponding to the constraints defined in the set C of (1).

As stated before, in order to evaluate the objective function, for each
chromosome s, it is first necessary to use the complementarity algo-
rithm, to obtain the solution u of MCP (33). The computation of
F (s, u) is done by using these two quantities s and u.

Step 4 Genetic operators act on the chromosomes and generate succes-
sively new populations of chromosomes, from the original one, based
on probabilistic rules. The most usual operators are crossover, muta-
tion and reproduction [10], that are briefly explained below.

1. The crossover operator starts by randomly selecting two chro-
mosomes s1 and s2, see (63)-(64), from the population; next, the
bits between two randomly selected positions, along their com-
mon length, are swapped, and define two new chromosomes s3
and s4 in the search set. For example, if the bits between posi-
tions 6 and 18 in s1 and s2 are swapped, the new chromosomes
s3 and s4 are defined by

s1 = 100 001

positions 7−17 of s1︷ ︸︸ ︷
111 0011 1011 1111 10 = (

materials︷ ︸︸ ︷
4, 1, 7 ,

thickness︷ ︸︸ ︷
3, 11, 15,

function︷︸︸︷
2 )

s2 = 001 011 101 0001 0011︸ ︷︷ ︸
positions 7−17 of s2

1110 01 = ( 1, 3, 5︸ ︷︷ ︸
materials

, 1, 3, 14︸ ︷︷ ︸
thickness

, 1︸︷︷︸
function

)

s3 = 100 001

positions 7−17 of s2︷ ︸︸ ︷
101 0001 0011 1111 10 = (

materials︷ ︸︸ ︷
4, 1, 5 ,

thickness︷ ︸︸ ︷
1, 3, 15 ,

function︷︸︸︷
2 )

s4 = 001 011 111 0011 1011︸ ︷︷ ︸
positions 7−17 of s1

1110 01 = ( 1, 3, 7︸ ︷︷ ︸
materials

, 3, 11, 14︸ ︷︷ ︸
thickness

, 1︸︷︷︸
function

)

which means that the material of lamina 3 and the thickness of
laminas 1 and 2 also change.
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2. The mutation operator randomly selects a position in the chro-
mosome s1 and changes the corresponding bit with a given prob-
ability, thus defining a new chromosome s5. For example, if the
position 11 in s1 is selected, the bit 0 changes to 1, and the thick-
ness of lamina 1 changes from 3 to 7. The new chromosome s5
is

s1 = 100 001 111 0011 1011 1111 10 = (

materials︷ ︸︸ ︷
4, 1, 7 ,

thickness︷ ︸︸ ︷
3, 11, 15,

function︷︸︸︷
2 )

s5 = 100 001 111 0111 1011 1111 10 = ( 4, 1, 7︸ ︷︷ ︸
materials

, 7, 11, 15︸ ︷︷ ︸
thickness

, 2︸︷︷︸
function

)

3. The reproduction operator defines the process by which the new
generation is created from the previous one. The chromosomes
in one generation are transferred into the next generation, with
a probability according to the value of their objective function;
thus, a higher proportion of the chromosomes with the best ob-
jective function values will be present in the next generation.

Step 5 A stopping criterium, that can be, for instance, a maximum number
of generations of chromosomes.

The steps 1-5 present a summary of a genetic algorithm for the discrete
optimization problem (1). For the details of implementation of this type of
genetic algorithms see [10].

It is worthwhile to mention that this genetic algorithm has been applied
to a special case of the linear version of problem (1) consisting of the com-
pliance minimization of a linear, composite, laminated plate. The discrete
optimization variables are the materials and the angle of orientation of the
fibers, in each ply of the plate. The thickness of each ply is constant and a
constraint on the global cost of the materials is imposed. In this special case
the vertical displacement of the plate is not constrained by any obstacle. In
mathematical terms this means that in the definition of the MCP (33) the
set L is empty. Hence the MCP reduces to a system of linear equations and
it is not necessary to apply any complementarity algorithm to get values for
the objective function. For this plate problem the genetic algorithm has suc-
cessfully identified, in each ply, the materials and the angles of orientation,
corresponding to the minimum compliance of the plate. We recommend [4]
for a report of some experiences with the genetic algorithm in this special
case.

7 Conclusions

In this paper a linear and a nonlinear optimization laminated shallow
shell models have been described and analysed. A hybrid genetic algorithm
incorporating a complementarity path-following method has been proposed
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for the numerical solution of the resulting MPEC discrete problem. It has
been shown that this type of procedure is successful for the linear version of
the problem. However, the application of this methodology for the nonlinear
version of the problem, when an obstacle is included in its definition seems
to be more difficult and requires further research on the design of a more
efficient technique for processing the inner complementarity problem of the
MPEC problem.
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