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Abstract

This paper addresses a General Linear Complementarity Problem (GLCP) that has found
applications in global optimization. It is shown that a solution of the GLCP can be computed
by finding a stationary point of a differentiable function over a set defined by simple bounds
on the variables.

The application of this result to the solution of bilinear programs and LCPs is discussed.
Some computational evidence of its usefulness is included in the last part of the paper.
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1 Introduction

The General Linear Complementarity Problem (GLCP) consists of finding vectors z ∈ IRn and
y ∈ IRl such that

q + Mz + Ny ≥ 0 (1)

p + Rz + Sy ≥ 0 (2)

z ≥ 0, y ≥ 0, zT (q + Mz + Ny) = 0 (3)

where M, N, R and S are given matrices of orders n× n, n × l, m × n and m× l respectively and
q ∈ IRn, p ∈ IRm are given vectors. The GLCP has been studied by many authors as an ingredient
for solving some optimization problems [16, 17, 18, 21, 22, 23, 24, 30, 32, 37]. This problem is a
generalization of the well-known Linear Complementarity Problem (LCP)

w = q + Mz, z ≥ 0, w ≥ 0, zT w = 0 (4)

as it reduces to this latter problem when the variables yi and the constraints (2) do not exist.
It is known that the LCP can be solved in polynomial-time when M is a positive semi-definite

(PSD) matrix, that is, if M satisfies xT Mx ≥ 0 for all x ∈ IRn [26, 35]. On the other hand, it was
shown in [25] that the GLCP is NP-hard when M is a PSD matrix. However, the GLCP can be
solved in polynomial-time if M is a PSD matrix and R = 0 in its constraint (2) [25, 43]. In this
paper we denote this latter type of problem by PGLCP. This PGLCP is an important tool for
finding global minima of bilinear programming problems (BLP), as any BLP can be cast as the
problem of minimizing a linear function on a PGLCP [21, 24].
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¶Departamento de Matemática, Universidade de Coimbra, 3000 Coimbra, Portugal.

1



Recently, many authors have investigated the solution of linear and nonlinear complementarity
problems by finding stationary points of differentiable and nondifferentiable functions under linear
constraints [8, 9, 11, 12, 15, 31, 34, 41]. Among many results of this type, the following quadratic
program has been associated with the LCP

Min zT (q + Mz)
subject to q + Mz ≥ 0

z ≥ 0
(5)

It has been shown [8] that a solution of the LCP can be found by computing a stationary point
of this quadratic program provided M is a Row Sufficient (RS) matrix, that is, if the following
implication holds

xi(M
T x)i ≤ 0 for all i = 1, . . . , n ⇒ xi(M

T x)i = 0 for all i = 1, . . . , n (6)

This result has been extended to the GLCP under the same hypothesis on the matrix M and R = 0
[25]. It is important to add that any PSD matrix is also RS, whence this result has applications
on the solution of PGLCPs and bilinear programs.

Due to the large variety of efficient algorithms for nonlinear programs with simple bounds,
there has been great effort on finding merit functions for which their stationary points on these
simple sets lead into solutions of the LCP [9, 11, 15, 34]. In this paper we extend these results
and introduce the following merit function for the GLCP with R = 0

φ(z, y, w, v) = ||w − q − Mz − Ny||2 + ||v − p − Sy||2 + (

n
∑

i=1

(ziwi)
g)h (7)

where || || denotes the euclidean norm and g ≥ 1, h ≥ 1 are real numbers such that g > 1 if h = 1.
We show that any stationary point of this function on the set defined by zero lower-bounds on the
variables is a solution of the GLCP provided M is a RS matrix.

As stated before, any bilinear program can be reduced to the minimization of a linear function
on a PGLCP [21, 24]. We denote this problem by MINPGLCP. Hence the result mentioned before
seems to have important applications on the solution of bilinear programs. On the other hand, it
has been shown recently that a LCP can be transformed into a bilinear program [2, 33]. By using
this reduction, we prove that any LCP is equivalent to a PGLCP with a further condition on one
of its variables.

As we explain later in this paper, we believe that these results may have important implications
on the solution of bilinear programs and NP-hard LCPs. It seems possible that the combination
of a local search method for finding a stationary point of the merit function (7) on the set defined
by zero lower bounds on the variables together with some heuristic procedure to move from one
stationary point to other, will be able to compute global minima of the bilinear program and
solutions of the LCP in a reasonable amount of work.

The structure of the paper is as follows. In section 2 we establish our main result that associates
the GLCP with stationary points of the function (7) on a set defined by zero lower bounds on
the variables. The use of this result in bilinear programs and LCPs is discussed in sections 3
and 4. Some numerical experience with PGLCPs associated with bilinear programs and LCPs is
presented in section 5. Finally, some conclusions are drawn in the last section of the paper.

2 PGLCP and stationary points of the merit function

Consider again the GLCP defined by (1), (2) and (3) with R = 0. By introducing the slack
variables wi and vi for the linear constraints (1) and (2), we can write the GLCP in the form

w = q + Mz + Ny (8)

v = p + Sy (9)

z ≥ 0, y ≥ 0, w ≥ 0, v ≥ 0 (10)

zT w = 0 (11)
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Let K be the feasible set consisting of the linear constraints (8), (9) and (10). As stated before,
consider the following nonlinear program

(NLP)
Minimize f(z, y, w, v) = ||w − q − Mz − Ny||2 + ||v − p − Sy||2 + (

∑n

i=1
(ziwi)

g)h

subject to z, w, y, v ≥ 0
(12)

where || || denotes the euclidean norm and g, h ≥ 1 are real numbers such that g > 1 if h = 1.
Then we can establish the following property.

Theorem 1 If K 6= ∅ and M is a RS matrix, then any stationary point of NLP is a solution of
the GLCP (8)–(11).

Proof: If (z̄, w̄, ȳ, v̄) is a stationary point of the NLP (12), then there exist Lagrange multipliers
ᾱ ∈ IRn, β̄ ∈ IRn, γ̄ ∈ IRl and µ̄ ∈ IRm such that (z̄, w̄, ȳ, v̄, ᾱ, β̄, γ̄, µ̄) satisfies the following
conditions:

αk = 2[w − q − Mz − Ny]k + gh[

n
∑

i=1

(ziwi)
g]h−1z

g
kw

g−1

k , k = 1, . . . , n (13)

βk = −2[MT (w − q − Mz − Ny)]k + gh[

n
∑

i=1

(ziwi)
g]h−1z

g−1

k w
g
k, k = 1, . . . , n (14)

γ = −2NT (w − q − Mz − Ny) − 2ST (v − p − Sy) (15)

µ = 2(v − p − Sy) (16)

z, w, y, v, α, β, γ, µ ≥ 0 (17)

αkwk = zkβk = 0, k = 1, . . . , n (18)

yT γ = µT v = 0 (19)

Let
θ = w − q − Mz − Ny ∈ IRn

η = gh[

n
∑

i=1

(ziwi)
g]h−1 ∈ IR1

Then by (13) and (14)

θk =
1

2
[αk − ηz

g
kw

g−1

k ]

(MT θ)k = −
1

2
[βk − ηz

g−1

k w
g
k]

for k = 1, . . . , n. Hence for each k = 1, . . . , n we have

θk(MT θ)k = −
1

4
[αkβk + η2(zkwk)2g−1 − ηz

g−1

k w
g−1

k (wkαk + zkβk)] (20)

Now, by (18), wkαk+zkβk = 0 for each k = 1, . . . , n. Furthermore, all the variables are nonnegative
by (17) and this implies

θk(MT θ)k ≤ 0 for all k = 1, . . . , n.

Since M is a RS matrix then

θk(MT θ)k = 0 for all k = 1, . . . , n.

Then by (20), we have
αkβk + η2(zkwk)2g−1 = 0

and
αkβk = zkwk = 0 for all k = 1, . . . , n.
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Since g, h ≥ 1 and g > 1 if h = 1, then zkwk = 0 for all k = 1, . . . , n, implies

[
n

∑

i=1

(ziwi)
g]h−1z

g−1

k w
g−1

k = 0 for all k = 1, . . . , n.

Hence (13) and (14) take the form

αk = 2[w − q − Mz − Ny]k, βk = −2[MT (w − q − Mz − Ny)]k

Therefore the conditions (13)–(19) for a stationary point of the NLP can be rewritten as follows

α = 2(w − q − Mz − Ny)
β = −2MT [w − q − Mz − Ny]
γ = −2NT [w − q − Mz − Ny] − 2ST [v − p − Sy]
µ = 2(v − p − Sy)
z, w, y, v, α, β, γ, µ ≥ 0
αT w = zT β = yT γ = µT v = 0

(21)

But these are the necessary and sufficient optimality conditions for the convex quadratic program

Minimize ||w − q − Mz − Ny||2 + ||v − p − Sy||2

subject to w, y, z, v ≥ 0
(22)

Since the constraint set of the GLCP is nonempty, this quadratic program has an optimal solution
with value zero. Due to the equivalence between the conditions (21) and the optimal solution of
the quadratic program (22), the stationary point (z̄, ȳ, w̄, v̄) of NLP satisfies

w − q − Mz − Ny = 0

v − p − Sy = 0

w, z, y, v ≥ 0

But we have shown before that (z̄, ȳ, w̄, v̄) also satisfies z̄T w̄ = 0. So (z̄, ȳ, w̄, v̄) is a solution of
the GLCP and this proves the theorem. �

It is important to add that the merit function (12) can be seen as an extension of two merit
functions that have been discussed before for the LCP. In fact, by fixing g = 2 and h = 1 we get
the so-called Natural Merit Function

φ1(z, w, y, v) = ||w − q − Mz − Ny||2 + ||v − p − Sy||2 +

n
∑

i=1

z2
i w2

i (23)

This function is an extension for the GLCP of the function

φ1(z, w) = ||w − q − Mz||2 +
n

∑

i=1

z2
i w2

i

that has been used by many authors for the solution of the LCP [34, 40]. Theorem 1 implies that
any stationary point of the program

Minimize φ1(z, w)
subject to z ≥ 0, w ≥ 0

is a solution of the LCP provided the LCP is feasible and M is RS matrix. This property extends
for the RS matrices the results established in [34].

On the other hand, if g = 1, we get the function

φ2(z, w, y, v) = ||w − q − Mz − Ny||2 + ||v − p − Sy||2 + (zT w)h (24)

that has been introduced in [15] for the LCP. Therefore theorem 1 extends for the GLCP the
result presented in [15].

Since any PSD matrix is also a RS matrix, then the result mentioned in this section is also
valid for the PGLCP. In section 4 we report some computational experience on the solution of
PGLCPs with PSD matrices M by finding stationary points of the merit functions φ1 and φ2.
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3 Application to Bilinear Programming

The Bilinear Programming Problem (BLP) is usually stated in the following form

Minimize cT x + dT y + xT Hy

subject to Ax ≥ a By ≥ b

x ≥ 0 y ≥ 0
(25)

where x ∈ IRn1 , y ∈ IRn2 and H ∈ IRn1×n2 is in general a rectangular matrix. It follows from the
definition of the BLP that the variables x and y belong to two disjoint constraint sets

Kx = {x ∈ IRn1 : Ax ≥ a, x ≥ 0}
Ky = {y ∈ IRn2 : By ≥ b, y ≥ 0}

(26)

where a ∈ IRm1 , b ∈ IRm2 , A ∈ IRm1×n1 and B ∈ IRm2×n2 . By this reason this bilinear program
is usually called Disjoint and differs from the so-called Jointly Bilinear Program, in which the xi

and yi variables appear together in at least one constraint [3].
The BLP has been studied by many authors in the past several years [3, 18, 19, 21, 24, 27, 29,

38]. A number of important applications of this problem has appeared in the literature [27] and
many algorithms have been designed for finding a stationary point or a global minimum of the
BLP [18, 19, 21, 24, 29, 38]. Despite its simplicity, even the problem of finding a stationary point
for a BLP is considered to be NP-hard [36].

In this section we discuss the solution of the BLP by exploiting its reduction to a nonconvex
problem consisting of the minimization of a linear function on a PGLCP, that is denoted by
MINPGLCP. In order to get this nonconvex problem, we first rewrite the BLP in the following
equivalent form

Minimizey{d
T y + minx{(c + Hy)T x : x ∈ Kx} : y ∈ Ky}

By applying the duality theory of linear programming to the inner linear program in the variables
x, it is not difficult to show [24] that if the BLP has a global minimum then such a point is also
the global minimum of the following nonconvex program

Minimize dT y + aT u

subject to c − AT u + Hy ≥ 0
−a + Ax ≥ 0
uT (Ax − a) = 0
xT (c − AT u + Hy) = 0
−b + By ≥ 0
x ≥ 0, y ≥ 0, u ≥ 0

By introducing the slack variables for the inequality constraints, we can rewrite this MINPGLCP
in the following form

Minimize

[

0
a

]T [

x

u

]

+ dT y

subject to

[

w1

w2

]

=

[

c

−a

]

+

[

0 −AT

A 0

] [

x

u

]

+

[

H

0

]

y

v = b − By

[

w1

w2

]

≥ 0,

[

x

u

]

≥ 0, y ≥ 0, v ≥ 0

[

w1

w2

]T [

x

u

]

= 0

(27)
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Hence the BLP reduces to the minimization of a linear function on a constraint set consisting of
a PGLCP with a PSD matrix

M =

[

0 −AT

A 0

]

for the complementary variables w = [w1 w2]T and z = [x u]T .
The equivalence between a BLP and the MINPGLCP (27) has suggested a sequential procedure

for finding a global minimum of the BLP by exploiting a finite number of solutions of the PGLCP
in such a way that the value of the linear function always decreases. An algorithm based on this
idea has been designed in [22] and has been applied to BLPs and some others nonconvex problems
with some success [21, 22, 23]. A drawback of this approach is that, apart from the first, all the
GLCPs are NP-hard and there exists no direct or iterative algorithm to process them efficiently.
In fact, the authors have used an enumerative algorithm [1, 20] to compute solutions of all the
GLCPs required by the sequential procedure [21, 22, 23].

A nonenumerative algorithm for finding the global minimum for the MINPGLCP (27) by
exploiting solutions of the PGLCP has still to be designed. By theorem 1 such solutions can be
found by computing stationary points of the nonlinear program discussed in the previous section.
We recall that there exists quite efficient software for finding such stationary points, since the
constraints are simple lower bounds on the variables [4, 5, 6, 7, 10, 14, 34].

As stated before, there are some other important optimization problems that are related with
the BLP. The Concave Quadratic Program (CQP) is certainly one of the most revelant of these
problems. We recall that a CQP is defined as follows

Minimize 2cT x + xT Hx

subject to Ax ≥ b

x ≥ 0
(28)

where c ∈ IRn, b ∈ IRm, A ∈ IRm×n and −H is a PSD matrix of order n × n. As is discussed in
[28], by duplicating the number of variables, it is possible to reduce the CQP into the following
BLP

Minimize cT x + cT y + xT Hy

subject to Ax ≥ b , Ay ≥ b

x ≥ 0 , y ≥ 0
(29)

The Concave Quadratic Programming Problem has found many applications in different areas.
Among them, the problem of finding a feasible solution of a Zero-One Integer Program should be
mentioned. This problem is defined as follows, find x and y such that

Ax + By ≥ b

y ≥ 0, xi ∈ {0, 1}, i = 1, . . . , n
(30)

where b ∈ IRm, A ∈ IRm×n and B ∈ IRm×l are given vector and matrices. This problem is
obviously equilavent to the following CQP

Minimize xT (e − x)
subject to Ax + By ≥ b

0 ≤ x ≤ e, y ≥ 0
(31)

where e is a vector of ones of order n. The so-called knapsack problem is an important example
of (30) and is defined by

aT x = b0

xi ∈ {0, 1}, i = 1, . . . , n
(32)

where a ∈ IRn and b0 ∈ IR1 are given. This problem can be cast in the form

Minimize eT x − xT x

subject to 0 ≤ x ≤ e

aT x ≥ b0

aT x ≤ b0

(33)
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As stated before, this CQP is equivalent to the following BLP

Minimize eT x + eT y − xT y

subject to 0 ≤ x ≤ e 0 ≤ y ≤ e

aT x ≥ b0 aT y ≥ b0

aT x ≤ b0 aT y ≤ b0

(34)

Then this BLP can be reduced to a MINPGLCP of the form

Minimize cT z + dT y

subject to w = q + Mz + Ny

v = p + Sy

v, w, z, y ≥ 0
zT w = 0

(35)

where M is a PSD matrix.
We have then shown in this section that any bilinear program can be reduced into a MINPGLCP

of the form (35), where M is a PSD matrix. Concave Quadratic Programs and the problem of
finding a feasible zero-one integer solution also reduce to MINPGLCPs by exploiting their equiv-
alences to a BLP. So all these problems can be solved by finding a finite number of solutions of
the PGLCP, which can be done by computing stationary points of the nonlinear program (12). In
section 5 we report some computational experience on solving CQPs and knapsack problems by
using the merit functions mentioned before.

4 Application to the LCP

As stated before, the Linear Complementarity Problem (LCP) consists of finding vectors z ∈ IRn

and w ∈ IRn such that
w = q + Mz, z ≥ 0, w ≥ 0, zT w = 0 (36)

where q ∈ IRn and M ∈ IRn×n are given vector and matrix. It is known that the complexity
of the solution of this problem is related with the class of the matrix M [8, 35]. If M is a RS
matrix, there is a number of direct and iterative algorithms that process efficiently the LCP [8].
Furthermore the LCP can be solved in polynomial time if M is a PSD matrix [26, 35, 42]. In
general the LCP is a NP-hard problem [18, 35] and only an enumerative algorithm is able to find
a solution or to show that none exists [1, 20, 39].

The complexity of the LCP has motivated the search for techniques that exploit its reduction
into a global optimization problem. The easiest of these forms is to put the nonlinear constraint
zT w = 0 in an objective function and get the following Joint Bilinear Program (JBLP)

Minimize zT w

subject to w = q + Mz (37)

z ≥ 0, w ≥ 0

It is then obvious that a LCP has a solution if and only if this JBLP has a global minimum with
zero value. An enumerative algorithm has been proposed in [1, 20] for solving the LCP by finding
a feasible solution of this JBLP with zero objective value. As is reported in [20], the incorporation
of some efficient heuristics and a quadratic solver for finding stationary points of special quadratic
programs has made this enumerative algorithm an interesting technique for processing difficult
LCPs.

Recently a Disjoint Bilinear Programming formulation of the LCP has received some interest
[2, 33]. This formulation is obtained in two stages. First, the LCP is rewritten as the following
Augmented LCP

ALCP :

[

α

β

]

=

[

e

q

]

+

[

0 −I

M 0

] [

z

x

]

[

z

x

]

,

[

α

β

]

≥ 0,

[

z

x

]T [

α

β

]

= 0

(38)
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where I is the identity matrix of order n and e is a vector of ones of order n. Now, moving the
nonlinear constraint zT α + xT β = 0 into an objective function, allows the ALCP to be written as
the following Disjoint BLP

Minimize eT z + qT x + xT (M − I)z
subject to Mz ≥ −q 0 ≤ x ≤ e

z ≥ 0

Furthermore the LCP has a solution if and only if the optimal value of the BLP is zero.
As discussed in the previous section, we can transform this BLP into the following MINPGLCP

Minimize eT z − eT u

subject to

[

w

β

]

=

[

q

e

]

+

[

0 I

−I 0

] [

x

u

]

+

[

M − I

0

]

z

α = q + Mz
[

x

u

]

, z,

[

w

β

]

, α ≥ 0
[

x

u

]T [

w

β

]

= 0

where the matrix corresponding to the complementary variables is PSD. So we can find a solution
to the LCP by computing a solution of the PGLCP with eT z − eT u = 0. We can obviously add
this constraint to the PGLCP but this destroys the structure of the PGLCP and the problem
becomes NP-hard. A simple alternative way is to introduce the constraint

γ0 = eT z − eT u

and a column with a parameter λ0 ≥ 0 that is complementary to γ0. This leads into the following
GLCP





w

β

γ0



 =





q

e

0



 +





0 I 0
−I 0 −e

0 eT 0









x

u

λ0



 +





M − I

0
−eT



 z

α = q + Mz

α, z, w, β, γ0, x, u, λ0 ≥ 0
xT w = uT β = λ0γ0 = 0

(39)

It is easy to see that the matrix corresponding to the complementary variables





0 I 0
−I 0 −e

0 eT 0



 (40)

is PSD. Hence the problem reduces to a PGLCP of the form discussed in section 2. It is now
important to know when a solution of this PGLCP leads into a solution of the LCP. To do this,
let

K = {z ∈ IRn : q + Mz ≥ 0, z ≥ 0}

be the feasible set of the LCP. Then the following result holds:

Theorem 2 If K 6= ∅ then the PGLCP has solution (x̄, z̄, ū, λ̄0, w̄, β̄, γ̄0, ᾱ) such that λ̄0 ≤ 1.
Furthermore (z̄, w̄) is a solution of the LCP provided λ̄0 < 1.

Proof: Since K 6= ∅, there exists at least a z̄ ≥ 0 such that q + Mz̄ ≥ 0. Let

w̄ = ᾱ = q + Mz̄

ū = z̄, γ̄0 = eT ū − eT z̄ = 0
λ̄0 = 0, β̄ = e, x̄ = 0
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Hence (x̄, z̄, ū, λ̄0, w̄, β̄, γ̄0, ᾱ) belongs to the set K̄ of the linear constraints of the PGLCP (39).
Since the matrix (40) is PSD, any stationary point of

Minimize wT x + βT u + λ0γ0

subject to (x, z, u, λ0, w, β, γ0, α) ∈ K̄

is a solution of the PGLCP [25]. As the objective function of this program is bounded from below
on K̄ and K̄ 6= ∅ such a stationary point exists [4, 35]. Hence the PGLCP has at least a solution.

Now let (x̄, z̄, ū, λ̄0, w̄, β̄, γ̄0, ᾱ) be a solution of the PGLCP (39). It follows from the definition
of this problem that

0 ≤ β̄i + x̄i = 1 − λ̄0

Hence λ̄0 ≤ 1 and this proves the first part of the theorem.
To prove the second part, consider a solution (x̄, z̄, ū, λ̄0, w̄, β̄, γ̄0, ᾱ) of the PGLCP (39) with

λ̄0 < 1. Then there are two possible cases:

i) x̄i > 0. Hence w̄i = 0 and (q + Mz̄)i + (ūi − z̄i) = 0. Then ᾱi + ūi − z̄i = 0 which implies
ūi ≤ z̄i.

ii) x̄i = 0. Then β̄i = 1 − λ̄0 − x̄i = 1 − λ̄0 > 0. Hence ūi = 0 and w̄i = (q + Mz̄)i − z̄i. If z̄i > 0
then eT ū < eT z̄ and γ̄0 = eT ū − eT z̄ < 0, which is impossible. So z̄i = 0.

We have then shown that
{

ūi ≤ z̄i for all i such that x̄i > 0
ūi = z̄i = 0 for all i such that x̄i = 0

Since eT ū ≥ eT z̄, then ū = z̄ and

w̄ = q + ū + (M − I)z̄ = q + Mz̄ = ᾱ

To prove that z̄ is a solution of the LCP, it is sufficient to show that z̄i > 0 implies w̄i = 0. But if
z̄i > 0 then ūi = z̄i > 0 and

β̄i = 0 = 1 − λ̄0 − x̄i

Since λ̄0 < 1, then x̄i > 0 and w̄i = 0. This proves the theorem. �

This theorem enables us to solve the LCP by processing the PGLCP (39). Since the matrix
(40) is PSD, a solution to this PGLCP can be found by computing a stationary point of the
associated nonlinear program with zero lower bounds discussed in section 2. After finding such a
point, there are two possible cases:

i) λ̄0 < 1 and (z̄, w̄) is a solution of the LCP.

ii) λ̄0 = 1 and (z̄, w̄) may be a solution of the LCP or not.

In the first case, the procedure has found a solution of the LCP. If in the second case (z̄, w̄)
is a not solution of the LCP (z̄iw̄i > 0 for at least one i) then another stationary point of the
associated nonlinear program has to be computed.

The computation of stationary points for the nonlinear program (12) associated to the PGLCP
(39) can nowadays be done in a very efficient way, as there exist good algorithms to perform this
task [4, 5, 6, 7, 10, 14, 34]. The main problem is to get an initial point for the algorithm that
leads into a stationary point that is also a solution of the LCP. Recently there has been some work
on the design of procedures that try to find a global minimum for an optimization problem by a
clever choice of initial points. A heuristic procedure of this type has to be designed in order to
fully exploit theorem 1 for the solution of LCPs.
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5 Computational Experience

In this section we report some computational experience on a Digital Alpha Server 5/300, running
Digital Unix 4.0B, with PGLCPs that arise on the solution of bilinear programs and LCPs by
exploiting their reformulations discussed in the two previous sections. These PGLCPs are solved
by computing stationary points of merit functions of the form (12). We have chosen the code
LANCELOT [7] for such a task, since it is nowadays accepted as a robust code for processing
these type of nonlinear programs.

In our first experience, we have solved some GLCPs that are the constraint sets of MINPGLCPs
associated with Concave Quadratic Programs (CQP), according to the developments described in
section 3. We start by describing the test problems PQ10, . . . , PQ18 that have been used in our
experiences.

i) PQ10 – These are knapsack problems of the form

Minimize eT x − xT x

subject to aT x ≤ b

aT x ≥ b

0 ≤ x ≤ e

where e ∈ IRn is a vector of ones, a ∈ IRn is a vector whose components are random numbers
belonging to the interval [1, 50] and b is a positive real number satisfying

b =
∑

i∈I

ai

Here I is a subset of {1, . . . , n} with cardinal n
4

[PQ10(n
4
)], n

2
[PQ10(n

2
)] and 3n

4
[PQ10( 3n

4
)].

These knapsack problems are transformed into MINPGLCPs according to the process ex-
plained in section 3. The constraint set of this nonconvex program was the PGLCP to be
solved in this experience.

ii) PQ11, . . . , PQ18 – These are the CQP test problems described in [13]. As before these CQPs
are transformed into MINPGLCPs and the PGLCPs to be tested in our experiences are the
constraint sets of these nonconvex programs.

The results of the solution of the GLCPs by using the merit functions (23) and (24) are
displayed in Table 1 under the headings OPT1 and OPT2 respectively. In this Table, IT and
CPU represent the number of iterations and CPU time taken by LANCELOT to get a stationary
point for these functions. Furthermore V ALUEF gives the value of the corresponding merit
function at this stationary point. We recall that in theory this value should be equal to zero. By
looking to the figures presented in Table 1, we come to the conclusion that LANCELOT is able
to find a stationary point for both the merit functions in a reasonable amount of iterations and
CPU time. In fact, only three problems require more than 30 iterations to get a stationary point
for the merit function (23). Furthermore LANCELOT usually requires more iterations for finding
a stationary point to the merit function (24), but the gap is not large. It is, however, interesting

to note that the ratio CPUtime
IT

is usually smaller for this latter function.
In our second experience we have considered some LCPs taken from known sources and their

equivalent PGLCPs that are obtained according to the process explained in section 4. As before,
these PGLCPs are solved by computing stationary points of the merit functions (23) and (24).
We start by describing the test problems used in this second experience.

PROB1 – This is the LCP discussed in [35], where q ∈ IRn is a vector with all components equal
to −1 and M is a lower triangular P–matrix defined by

mii = 1, i = 1, . . . , n
mij = 2 for i > j

mij = 0 for i < j

10



Table 1: Solution of PGLCPs associated with Concave Quadratic Programs.
OPT1 OPT2

N IT CPU V ALUEF IT CPU V ALUEF

PQ10(n
4
) 20 6 1.33 1.54e-10 6 1.00 1.86e-14

50 6 5.77 1.64e-10 11 7.58 2.57e-11
100 7 25.33 2.47e-09 13 17.39 2.51e-11
150 5 65.16 3.31e-11 14 36.45 4.01e-11

PQ10(n
2
) 20 6 1.43 1.89e-11 6 1.02 1.82e-11

50 6 6.62 1.68e-10 7 4.21 1.97e-11
100 6 27.15 2.48e-10 7 12.95 1.18e-10
150 6 66.79 3.39e-10 7 32.02 4.17e-11

PQ10( 3n
4

) 20 6 1.62 8.20e-12 6 1.06 1.07e-11
50 6 7.76 1.46e-09 7 3.92 1.30e-10

100 7 33.89 4.71e-10 7 10.88 7.86e-11
150 7 89.20 1.90e-08 7 31.93 1.53e-10

PQ11 7 0.11 5.03e-15 7 0.11 2.99e-14
PQ12 7 0.13 1.77e-27 9 0.15 2.16e-11
PQ13 7 0.50 1.47e-10 13 0.63 8.70e-11
PQ14 10 0.18 2.17e-09 7 0.13 1.56e-13
PQ15 33 4.79 2.79e-02 34 3.68 2.79e-02
PQ16 10 0.77 1.05e-11 14 0.65 3.64e-03

PQ17.1 14 1.68 6.14e-11 22 2.01 6.75e-12
PQ17.2 17 1.97 2.63e-11 39 2.83 4.18e-12
PQ17.3 52 8.56 2.89e-14 53 4.05 1.81e-12
PQ17.4 19 1.36 4.83e-10 16 1.04 3.36e-13
PQ17.5 40 4.78 2.92e-12 53 4.19 4.09e-02
PQ18 20 3.10 9.65e-11 13 2.47 2.41e-09
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PROB2 – This LCP also appears in [35] and is defined by qi = −1 for all i = 1, . . . , n and
M = LT L, where L is the matrix of PROB1. Hence M is a symmetric positive definite
matrix.

PROB3 – This LCP has been introduced by Chadrasekaran, Pang and Stone and is also presented
in [35]. The vector q also satisfies qi = −1 for all i = 1, . . . , n and the matrix M is defined
as follows:

mii = 1, i = 1, . . . , n
mij = 2 if j > i and i + j is odd
mij = −1 if j > i and i + j is even
mij = −1 if j < i and i + j is odd
mij = 2 if j < i and i + j is even

It is possible to show that M is a positive semi–definite matrix.

PROB4 – This problem is also discussed in [35] and considers the vector q such that qi = −1 for
all i = 1, . . . , n and M to be the well–known Hilbert matrix defined by

mij =
1

i + j − 1

for all i, j = 1, . . . , n. Again M is a positive semi-definite matrix.

PROB5, 6, 7 – Consider again the knapsack problem

aT z = b, zi ∈ {0, 1}, i = 1, . . . , n

where, as before, the components of the vector a are random numbers belonging to the
interval [1, 50] and b is the positive real number

b =

n

2
∑

i=1

ai

The LCPs of PROB5, 6 and 7 are LCP formulations of this problem that appeared in the
literature [26, 35, 36]. To get PROB5, we consider the LCP defined by

q =





e

−b

b



 , M =





−In 0 0
aT −α 0
−aT 0 −β





where In is the identity matrix of order n and e ∈ IRn is a vector of ones. The constants
α and β are chosen in order M to be negative semi–definite (NSD) or indefinite (IND). For
the first case α and β should satisfy

α > k
aT a

4
, β > k

αaT a

4α − aT a

where k is a real number greater than one. This leads into PROB5(NSD). On the other
hand, M is IND if α and β satisfy

α > k
aT a

4
, β <

1

k

αaT a

4α − aT a

These choices of α and β lead into PROB5(IND).

PROB6 is the LCP formulation of the knapsack problem discussed in [36] and is given by

q =















a1

...
an

−b

b















, M =





−In e −e

eT −2n 0
−eT 0 −2n
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where, as before, e is a vector of ones and In is the identity matrix of order n. As is discussed
in [36] the matrix M is symmetric negative semi–definite.

Finally PROB7 is the LCP formulation discussed in [26] and considers

q =



















p

p
...
p

−b

b



















, M =



















B 0 · · · 0 0 0
0 B · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · B 0 0

āT

−āT



















where

p =









0
0
−1
1









, B =









0 0 0 0
1 0 0 0
1 1 0 0
−1 0 0 0









, ā = (ā1, . . . , ā4n+2)
T ∈ IR4n+2

with

āi =

{

ai if i = 4j − 3 , j = 1, . . . , n
0 otherwise

As dicussed in [26] the matrix M has nonnegative principal minors (that is, M ∈ P0), but
it is not positive semi–definite.

PROB8, 9 – These are structured LCPs that are formulations of nonzero–sum bimatrix games
[8, 35]. The LCP of PROB8 takes the form

q =

[

−em

−er

]

, M =

[

0 A

B 0

]

where ej is a vector of ones of order j and A, B are positive matrices whose elements are
random numbers belonging to the interval [1, 50]. On the other hand the vector q and the
matrix M of the LCP corresponding to PROB9 are given by

q =

[

−em

er

]

, M =

[

0 A

−B 0

]

For each one of these LCPs, we have generated four problems differing on its dimension n.
The results of the solution of these LCP test problems by processing their equivalent PGLCPs

are displayed in Table 2. We recall that the LCP is equivalent to a PGLCP with a parameter λ0. If
λ0 < 1 in a solution of this PGLCP, then a solution of the LCP is at hand. Otherwise (λ0 = 1) no
conclusion can be drawn about the existence of a solution to the LCP, but usually the solution of
the PGLCP does not lead to a solution of the LCP. As before, the PGLCP is solved by computing
the stationary point of the associated merit functions (23) or (24). The computational effort for
performing such a task is displayed under the headings OPT1 and OPT2 respectively, by stating
the number of iterations (IT ) and the CPU time (CPU) that LANCELOT has required to get a
stationary point in each one of the cases. In this Table, V ALUEF continues to represent the value
of the merit function at this stationary point and LAMBDA gives the value of the variable λ0 at
this solution. So LAMBDA < 1 means that a solution of the LCP has been found. Furthermore
we write an asterisk when a solution of the LCP has been found in the case of LAMBDA = 1.

The results displayed in Table 2 lead to conclusions similar to the case of CQPs about the ability
of LANCELOT to get stationary points that are solutions of the PGLCP in a small amount of
effort. As before, the natural function (23) seems to be a better choice in terms of the number of
iterations that LANCELOT requires to get a stationary point that solves the PGLCP. The results
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Table 2: Solution of PGLCPs associated with LCPs.
OPT1 OPT2

N IT CPU V ALUEF LAMBDA IT CPU V ALUEF LAMBDA

PROB1 20 6 0.08 1.28e-21 5.01e-01 9 0.16 1.84e-15 4.18e-01
50 6 0.36 5.44e-19 5.83e-01 10 0.72 3.91e-20 1.00e+00

100 8 2.27 5.48e-14 5.12e-01 9 2.18 2.15e-27 1.00e+00*
150 9 5.59 2.06e-25 5.87e-01 10 4.82 6.78e-14 6.83e-01

PROB2 20 7 0.11 2.19e-20 0.00e+00 9 0.15 2.70e-27 0.00e+00
50 10 0.71 2.07e-14 1.00e+00* 5 0.47 1.16e-28 1.00e+00*

100 7 1.98 2.88e-28 1.00e+00* 6 1.67 7.01e-28 1.00e+00*
150 9 4.83 7.64e-15 1.00e+00 7 5.05 5.44e-27 1.00e+00*

PROB3 20 8 0.45 2.46e-09 0.00e+00 11 0.55 7.72e-12 1.00e+00
50 7 5.70 3.39e-09 2.43e-03 17 8.27 2.85e-12 1.00e+00

100 7 29.93 7.52e-09 4.90e-01 21 71.98 8.82e-10 6.65e-01
150 8 85.28 3.30e-08 5.05e-01 20 176.98 1.82e-10 5.18e-01

PROB4 20 10 0.24 1.25e-10 1.00e+00 14 0.40 9.20e-13 1.00e+00
50 11 1.23 1.80e-11 1.00e+00 12 1.87 5.07e-14 1.00e+00

100 12 7.65 5.02e-12 1.00e+00 16 14.53 1.17e-14 1.00e+00
150 12 24.41 2.15e-10 1.00e+00 21 65.04 2.59e-15 1.00e+00

PROB5 20 12 0.16 1.34e-12 1.00e+00 8 0.23 2.09e-13 1.00e+00
(NSD) 50 8 0.57 1.29e-07 1.00e+00 14 1.10 1.00e-14 1.00e+00

100 12 4.32 2.91e-11 1.00e+00 8 2.95 2.14e-12 1.00e+00
150 10 3.08 1.02e-11 1.00e+00 10 7.52 3.12e-15 1.00e+00

PROB5 20 12 0.16 1.34e-12 1.00e+00 8 0.23 2.09e-13 1.00e+00
(IND) 50 8 0.57 1.29e-07 1.00e+00 14 1.10 1.00e-14 1.00e+00

100 12 4.27 2.91e-11 1.00e+00 8 2.94 2.14e-12 1.00e+00
150 10 3.06 1.02e-11 1.00e+00 10 7.49 3.12e-15 1.00e+00

PROB6 20 13 0.18 1.74e-12 1.00e+00 11 0.33 2.77e-14 1.00e+00
50 13 0.75 7.97e-13 1.00e+00 12 1.29 1.30e-13 1.00e+00

100 14 1.77 9.96e-11 1.00e+00 32 7.51 1.89e-12 1.00e+00
150 14 4.37 9.36e-11 1.00e+00 34 10.70 6.68e-16 1.00e+00

PROB7 20 7 0.18 6.75e-11 1.00e+00 14 0.49 1.88e-14 1.00e+00
50 8 0.43 1.53e-11 1.00e+00 8 0.66 2.31e-14 1.00e+00

100 7 1.67 1.02e-10 1.00e+00 8 1.70 1.56e-14 1.00e+00
150 8 4.72 2.46e-11 1.00e+00 11 12.66 5.72e-13 1.00e+00

PROB8 20 17 3.06 1.13e-07 8.35e-01 13 0.46 2.14e-13 1.00e+00
50 9 8.97 3.45e-15 1.00e+00* 22 11.60 2.67e-14 1.00e+00*

100 20 198.73 6.88e-08 8.06e-01 27 75.29 1.36e-06 5.23e-01
150 14 397.49 3.61e-08 8.56e-01 30 646.96 1.61e-06 5.96e-01

PROB9 20 10 1.40 8.69e-15 1.00e+00* 12 0.76 2.06e-14 1.00e+00*
50 17 27.92 1.32e-08 9.56e-01 18 22.77 5.17e-14 1.00e+00*

100 15 171.00 5.09e-09 9.64e-01 27 103.27 1.57e-06 5.42e-01
150 13 282.05 5.05e-08 8.58e-01 18 464.32 2.55e-14 1.00e+00*
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also show that in general the solution of the PGLCP is not a solution of the LCP. However, we
have only presented the numerical results that have been achieved by using LANCELOT with
its recommended starting point. A heuristic procedure to get a good initial point for the local
solver (LANCELOT or other) that leads into a stationary point of the merit function that is also
a solution of the LCP will certainly be an important topic for future research. This will enable
solving NP–hard LCPs and bilinear programs by nonenumerative techniques.

6 Conclusions

In this paper we have showed that a solution of a polynomial General Linear Complementarity
Problem (PGLCP) can be found by computing a stationary point of an appropriate merit function.
This result has important implications on the solution of bilinear and concave quadratic programs
and zero–one integer programming problems. We have also showed that any Linear Complemen-
tarity Problem (LCP) can be reduced into a PGLCP. Hence, under certain conditions, a solution
of the LCP can be found by computing a stationary point of an appropriate merit function.

Some computational experience with concave quadratic programs, knapsack problems and
LCPs was included and showed the appropriateness of solving the associated PGLCPs by com-
puting stationary points of the corresponding merit functions. We believe that these conclusions
will have an important effect on the solution of these difficult nonconvex problems, particularly if
we can design heuristic procedures capable of providing good starting points for the local search
techniques that are employed to solve the PGLCP. This is a topic that deserves research in the
future.
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[34] J. Moré, Global methods for nonlinear complementarity problems, technical Report, Mathe-
matics and Computer Science Division, Argonne National Laboratory, Argonne, USA, 1994.

[35] K. Murty, Linear Complementarity, Linear and Nonlinear Programming, Heldermann Ver-
lag, Berlin, 1988.
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