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Abstract. In this paper the solution of a finite element approximation of a linear obstacle plate problem
is investigated. A simple version of an interior point method and a block pivoting algorithm have been
proposed for the solution of this problem. Special purpose implementations of these procedures are
included and have been used in the solution of a set of test problems. The results of these experiences
indicate that these procedures are quite efficient to deal with these instances and compare much favorable
with the path-following PATH and the active-set MINOS codes of the commercial GAMS collection.
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1 Introduction

In this paper we investigate the solution of a contact problem, that describes the equilibrium of a thin
elastic clamped plate, that may come into contact with a rigid obstacle, by the action of forces. The
formulation and the existence of a solution to this problem has been discussed elsewhere (Haslinger et
al., 1996; Kikuchi and Oden, 1988). In this paper we only address the geometrically linear plate, which
corresponds to the hypothesis of small strain and originates a linear model, as described in (Haslinger et
al., 1996).

The linear obstacle plate problem, whose unknown is the deflection of the middle plane of the plate,
has a unique solution, since its variational formulation corresponds to an elliptic variational inequality
(Haslinger et al., 1996). In spite of the knowledge of the existence of solution, its exact analytical
expression is in general impossible to determine, due to the complexity of the model. Therefore there is
a need to use approximate and numerical methods in order to obtain an approximate solution. In this
paper, we use the finite element method to define the discrete optimization model that determines the
approximate solution.

Since the differential operator governing the linear obstacle plate problem is of fourth order, we
choose the Bogner-Fox-Schmit rectangle (Ciarlet, 1991), which is a finite element of class C1, to obtain the
discrete problem. Then, the resulting discrete variational inequality can be reformulated as a minimization
problem with inequality constraints. In the literature, the most commonly used numerical methods chosen
to solve this minimization problem, are penalty or Lagrangian multipliers approach methods (Haslinger
et al., 1996; Kikuchi and Oden, 1988; Ohtake et al., 1980), with the inherent drawbacks of ill conditioning,
penalty sensitivity and lack of robustness. In this work, we investigate the efficiency of other different
solution methods, that are not based in this type of approach.

An interior-point algorithm (Wright, 1997) and a block principal pivoting method (Júdice and Pires,
1994) have been conveniently implemented and investigated on the solution of a set of test problems.
To gain a better idea of their efficiency in these cases, we have also solved these problems by using the
path-following PATH (Dirkse and Ferris, 1995) and the active-set MINOS methods that are available in
the commercial optimization collection GAMS (General Algebraic Modeling System) (Brook et al., 1992).
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These experiences have shown that the interior-point and block-pivoting algorithms are quite efficient
for dealing with the finite-dimensional obstacle problem under study and compare much favorably with
those general-purpose codes of the GAMS collection.

The structure of the paper is as follows. In section 2 the differential and variational formulations
and the finite element discretization are presented. The two complementarity algorithms are described in
section 3. The computational experience is reported in section 4. Finally, some conclusions are presented
in the last section of the paper.

2 Finite Element Approximation

2.1 Differential Formulation

The differential equations, inequalities and boundary conditions governing the nonlinear obstacle problem,
corresponding to a geometrically nonlinear and thin elastic clamped plate, can be stated in the following
form

Find (u1, u2, z) : Ω ⊂ R2 → R3, such that :
Et3

12(1− ν2)
∆2z − t

[
σαβ(u, z)z,β

]
,α

≥ f, in Ω, (1)

z ≥ ψ, in Ω, (2)(
Et3

12(1− ν2)
∆2z − t

[
σαβ(u, z)z,β

]
,α

− f

)
(z − ψ) = 0, in Ω, (3)

σαβ,β(u, z) = 0, in Ω, (4)

u1 = u2 = z =
∂z

∂n
= 0, in ∂Ω. (5)

In (1-5) the set Ω = {x = (x1, x2) ∈ R2} is an open, bounded, connected subset of R2, with Lipschtiz
boundary ∂Ω, and defines the middle plane of the plate. The constant t represents the thickness of the
plate. The scalar functions ψ : Ω→ R and f : Ω→ R denote, respectively, the obstacle and the vertical
force acting on the plate. The unknown (u1, u2)(x1, x2) denotes the horizontal displacement and z(x1, x2)
the vertical displacement at the point (x1, x2) ∈ Ω. We assume that the plate is made of a homogeneous
and isotropic material, so the constants E and ν are respectively Young’s modulus and Poisson’s ratio.
The greek indexes α, β... belong to the set {1, 2}; we also use the Einstein summation convention, that is
aαbα means

∑2
α=1 aαbα; ∆2 is the biharmonic operator, ∆ is the Laplace operator and ∂z

∂n is the normal
derivative of z. The notation .,α means partial derivative with respect to the component α of x and
finally σ = (σαβ) denotes the membrane stress tensor whose definition is

σαβ(u, z) =
E

1− ν2

[
(1− ν)

(
eαβ(u) +

1
2
z,αz,β

)
+ ν

(
eγγ(u) +

1
2
z,γz,γ

)]
(6)

where eαβ(u) are the components of the linear strain tensor defined by

eαβ(u) =
1
2

(
uα,β + uβ,α

)
. (7)

The nonlinearity of (1-5) is present in the definition of the stress tensor (6) and in the nonlinear terms
of (1) and (3).

The linear obstacle plate problem, corresponding to a geometrically linear plate, can be obtained
directly from (1-5), by neglecting the nonlinear terms, and takes the following simple form:

Find z : Ω ⊂ R2 → R, such that :
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Et3

12(1− ν2)
∆2z ≥ f, in Ω, (8)

z ≥ ψ, in Ω, (9)(
Et3

12(1− ν2)
∆2z − f

)
(z − ψ) = 0, in Ω, (10)

z =
∂z

∂n
= 0, in ∂Ω, (11)

where the vertical displacement z is the unknown. This linear problem is the subject of our investigation
and represents the equilibrium position for a geometrically linear and thin elastic clamped plate that is
constrained to the action of a vertical force and touches the obstacle.

2.2 Variational Formulation

In order to describe the finite element approximation, we first define the variational formulation corre-
sponding to problem (8-11). To that end we introduce the Sobolev space

H2
0 (Ω) =

{
z ∈ H2(Ω) : z|∂Ω = 0 =

∂z

∂n |∂Ω

}
(12)

and the constraint set defined by the obstacle

K = {z ∈ H2
0 (Ω) : z ≥ ψ in Ω}. (13)

Then the variational formulation of problem (8-11) takes the following form:

Find z ∈ K :
A(z, w − z) ≥ F (w − z), ∀ω ∈ K. (14)

The forms appearing in (14) are defined by[
A : H2

0 (Ω)×H2
0 (Ω)→ R,

A(z, w) = D̂
∫
Ω
{ν∆z∆ω + (1− ν)∂αβw∂αβz}dΩ,

(15)

[
F : H2

0 (Ω)→ R,
F (w) =

∫
Ω
fwdΩ (16)

where

D̂ =
Et3

12(1− ν2)
. (17)

We recommend (Haslinger et al., 1996; Kikuchi and Oden, 1988) for the justification of the variational
formulation (14), its relation with the differential formulation and the proof of existence and uniqueness
of solution of this model.

2.3 Discrete Problem

We assume that the domain Ω is a rectangular domain and is partitioned into a mesh of m = n1n2

rectangles Ωe = [xe
1, y

e
1] × [xe

2, y
e
2], n1 is the number of sub-intervals in the x1 direction and n2 the

number of sub-intervals in the x2 direction. The amplitudes of [xe
1, y

e
1] and [x

e
2, y

e
2] are he

1 = ye
1 − xe

1 and
he

2 = ye
2 − xe

2, respectively. Moreover we suppose that the mesh {Ωe}e=1,...,m is affine equivalent to the
reference element Ω̂ = [−1,+1]× [−1,+1]. The affine transformations are defined by the mapping

F e : Ωe −→ Ω̂ = [−1,+1]× [−1,+1]
(x1, x2) −→ (ξ, η) =

(
2
he
1
(x1 − xe

c),
2
he
2
(x2 − ye

c)
)
,

(18)
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where xe
c, y

e
c are the middle points of [x

e
1, y

e
1] and [x

e
2, y

e
2], respectively, and (ξ, η) is a generic element of

Ω̂.
The Bogner-Fox-Schmit finite element (Ciarlet, 1991) is used for the approximation of the vertical

displacement z. The 16 degrees of freedom characterizing this element are the values of z, z,1, z,2 and
z,12 at each vertex of Ωe. The analytical expressions of the local shape functions, defined in the reference
element Ω̂, are stated below:

N1
1 (ξ, η) = ψ0

1(ξ)ψ
0
1(η)

N2
1 (ξ, η) = ψ1

1(ξ)ψ
0
1(η)

N3
1 (ξ, η) = ψ0

1(ξ)ψ
1
1(η)

N4
1 (ξ, η) = ψ1

1(ξ)ψ
1
1(η)

N1
2 (ξ, η) = ψ0

2(ξ)ψ
0
1(η)

N2
2 (ξ, η) = ψ1

2(ξ)ψ
0
1(η)

N3
2 (ξ, η) = ψ0

2(ξ)ψ
1
1(η)

N4
2 (ξ, η) = ψ1

2(ξ)ψ
1
1(η)

N1
3 (ξ, η) = ψ0

2(ξ)ψ
0
2(η)

N2
3 (ξ, η) = ψ1

2(ξ)ψ
0
2(η)

N3
3 (ξ, η) = ψ0

2(ξ)ψ
1
2(η)

N4
3 (ξ, η) = ψ1

2(ξ)ψ
1
2(η)

N1
4 (ξ, η) = ψ0

1(ξ)ψ
0
2(η)

N2
4 (ξ, η) = ψ1

1(ξ)ψ
0
2(η)

N3
4 (ξ, η) = ψ0

1(ξ)ψ
1
2(η)

N4
4 (ξ, η) = ψ1

1(ξ)ψ
1
2(η)

(19)

for any (η, ξ) ∈ [−1,+1]2, where ψ0
1 , ψ

1
1 , ψ

0
2 and ψ1

2 are the cubic Hermite polynomials defined on [−1,+1]
by

ψ0
1(ξ) =

1
4 (ξ − 1)2(ξ + 2) ψ0

2(ξ) =
1
4 (ξ + 1)

2(2− ξ)
ψ1

1(ξ) =
1
4 (ξ − 1)2(ξ + 1) ψ1

2(ξ) =
1
4 (ξ + 1)

2(ξ − 1). (20)

At each finite element Ωe the vertical displacement z is approximated by zh, which satisfies

zh(x1, x2) =
4∑

i=1

(
z1
i N

1
i + z2

i

he
1

2
N2

i + z3
i

he
2

2
N3

i + z4
i

he
1h

e
2

4
N4

i

) ◦ F e(x1, x2), (21)

where the unknowns zj
i , for j = 1, ..., 4 are the approximation values of z, z,1, z,2 and z,12, respectively,

at node i of Ωe.
In order to describe the discrete problems, corresponding to (14), we must introduce some notations.

Let n be the number of global nodes of the mesh, and assume the coefficients zj
i , for i = 1, ..., n and

j = 1, ..., 4, have been ordered in a linear numbering, so that {zj
i }(i,j) may be identified with the vector

z ∈ R4n. Moreover, we introduce the following subsets of indices

J1, J2, J3, J4, J = J1 ∪ J2 ∪ J3 ∪ J4 ⊂ {1, 2, ..., 4n},
L1, L2, L3, L = L1 ∪ L2 ∪ L3 ⊂ {1, 2, ..., 4n}, (22)

where Jk, Lk represent the sets of indices related to the type k of global degrees of freedom and attached
to the interior or boundary nodes of the mesh. The subscript k = 1 refers to the displacement, k = 2 to
the first derivative of the displacement with respect to x1, k = 3 to the first derivative of the displacement
with respect to x2 and finally k = 4 refers to the second mixed derivative of the displacement. The subset
L refers to the degrees of freedom related to the boundary conditions (11) of the problem. If R and S
are two sets of indices, z ∈ R4n and W is a matrix, we denote by zR and WRS the subvector of z and
the submatrix of W respectively, whose components have the indices in R and S. We remark that the
submatrix WRS has dimension |R| × |S|, where |R|, |S| are the cardinals of the sets R, S. We also define
the vector ψ of dimension n, which approximates the obstacle ψ(., .) by

ψ = (ψ1, ψ2, ..., ψn) =
(
ψ(x1

1, x
1
2), ψ(x

2
1, x

2
2), ..., ψ(x

n
1 , x

n
2 )
)
, (23)

where (xi
1, x

i
2) are the coordinates of the global node i of the mesh, with i ∈ {1, ..., n}.

The approximate problem is obtained directly from (14) by replacing z by the approximation zh

defined in (21). Based on the choice of the finite elements described before and using the notations
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introduced in (22-23), the discrete problem associated to (14) takes the following form


Find z ∈ R4n such that :
zJ1 ≥ ψ, zL1 = zL2 = zL3 = 0,{
(w − z)T

[
Cz − F

]
≥ 0,

∀w ∈ R4n, wJ1 ≥ ψ, wL1 = wL2 = wL3 = 0,

(24)

where the matrix C is a constant sparse matrix of order 4n, independent of z and F is a vector of dimension
4n, associated to the forces. These matrix and vector are obtained by assembling the corresponding
element matrix and element vector. In order to give the exact expressions of C and F we first define the
vector of local shape functionsNi, associated with the local node i (i = 1, 2, 3, 4) of the Bogner-Fox-Schmit
finite element

Ni =
[
N1

i N2
i N3

i N4
i

]
(25)

and the associated vectors

Ne
i =

[
N1

i

he
1

2
N2

i

he
2

2
N3

i

he
1h

e
2

4
N4

i

]
, Ne =

[
Ne

1 Ne
2 Ne

3 Ne
4

]
(26)

where Ne is a vector of order 16. Then, the definitions of C and F at the element level are discussed
below.

• The element matrix of C, denoted by Ce, is a 16×16 symmetric matrix, and it is the usual stiffness
matrix for linear plate bending :

Ce =
he

1h
e
2

4

[∫
Ω̂

t2

12
Se

i
TDSe

jdΩ̂

]
i,j=1,2,3,4

(27)

with

D =
tE

(1− ν2)


 1 ν 0

ν 1 0
0 0 1−ν

2




3×3

and Se
i =




4
he
1he

1
Ne

i,11
4

he
2he

2
Ne

i,22

2 4
he
1he

2
Ne

i,12




3×4

. (28)

• The element vector of F is a vector of dimension 16 , denoted F e and such that

F e =
he

1h
e
2

4

∫
Ω̂

f̂NeT dΩ̂ (29)

where the scalar function f̂ is the force f defined on Ω̂.

We refer to (Haslinger et al., 1996), for the proof of convergence of the finite element solutions of (24) to
the solution of (14).

3 Algorithms for the Discrete Problem

Consider again the finite-dimensional problem (24). It follows from the bilinear form A(., .) of (15), that
C is a symmetric matrix. By considering the following partitions of the matrix C and vectors F and z

C =
[

CJJ CJL

CLJ CLL

]
, F =

[
FJ

FL

]
, z =

[
zJ

zL

]
(30)

where J = J1 ∪ J2 ∪ J3 ∪ J4 and L = L1 ∪L2 ∪L3, then zL = 0, because of the boundary conditions, and
the problem (24) corresponds to a stationary point of the following quadratic program

min
{

1
2z

T
J CJJzJ − FT

J zJ

}
subject to {z ∈ R|J| : zJ1 ≥ ψ}.

(31)
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Furthermore as
√

A(., .), defined in (15), is a norm in H2
0 (ω), equivalent to the usual norm of H2

0 (ω),
the submatrix CJJ of C is positive definite (PD). This implies that a stationary point zJ is unique and
is exactly the unique global minimum of the quadratic program (31). Moreover, z = (zJ , 0) is the unique
solution of the discrete problem (24).

It follows from this introduction that the solution of the discrete problem reduces to a strictly convex
quadratic problem with |J | = 4(n1 − 1)(n2 − 1) + 2(n1 + n2) variables and |J1| = (n1 − 1)(n2 − 1)
lower bounds, where n1n2 = m is the number of finite elements of the mesh, defined in section 2. It is
well-known that this value of m should be large in order the optimal solution of the quadratic problem
(31) to be a good approximation for the continuous variational problem (14) under consideration.

There are a number of algorithms for solving strictly convex quadratic programs with simple lower
bounds (Bertsekas, 1995; Nocedal and Wrigth, 1999). Among them, the so-called active-set method
(Nocedal and Wrigth, 1999) is a robust technique that searches the unique global minimum by performing
changes in a working active-set associated with each iterate. This algorithm possesses finite termination
under a nondegeneracy primal assumption and can be implemented for large-scale quadratic programs by
exploiting efficient techniques for updating LDLT decompositions in the sparse case. The code MINOS
of the GAMS collection (Brook et al., 1992) is considered to be an efficient implementation and has been
used in the experiences reported in section 4 of the paper. The finiteness of the algorithm is only assured
if the working set changes in exactly one element in each iteration. This characteristic of the active-set
method is a drawback in practice, as the algorithm may take too many iterations for problems where
the initial and the optimal active sets are quite different. This was the reason of our recommendation
for another algorithms that are based on different philosophies. As discussed in (Fernandes et al., 1996),
block pivoting and interior-point algorithms have been shown to process convex quadratic programs with
a structure similar to that of the discrete problem (31). In this paper we investigate the efficiency of
these algorithms in this case.

Both the interior-point and block pivoting algorithms search the global minimum of the strictly convex
quadratic program in a primal-dual way, by solving the following mixed linear complementarity problem
(MLCP)

Find (z, ω) ∈ R|J| ×R|J|

wJ = CJJzJ − FJ (32)
wJ2 = wJ3 = wJ4 = 0 (33)
(zJ1 − ψ)TwJ1 = 0 (34)
zJ1 ≥ ψ, wJ1 ≥ 0, (35)

that corresponds to the Kuhn-Tucker necessary and sufficient optimality conditions (Nocedal and Wrigth,
1999) of the quadratic program (31). In this section we describe in some detail these two algorithms and
their implementations for large scale quadratic programs. In this extent, we introduce the set Jf as the
set of indices of the unrestricted variables

Jf = J2 ∪ J3 ∪ J4 = J \ J1. (36)

3.1 Interior-Point Algorithm

In order to describe this method, we rewrite the MLCP (32-35) in the following equivalent form

Find (z, ω) ∈ R|J| ×R|J|

CJJzJ − wJ − FJ = 0 (37)
(Z|J1| −Ψ)W|J1|e = 0 (38)
wJf

= 0 (39)
zJ1 ≥ ψ, wJ1 ≥ 0, (40)
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where e ∈ R|J1| is a vector of ones, Z|J1|, Ψ and W|J1| are diagonal matrices whose diagonal elements are
zi, ψi and wi, i ∈ J1. The interior-point algorithm is an iterative procedure that seeks a solution of the
system (37-40) by maintaining (39-40) in each iteration. Furthermore, each iterate (zk, wk) satisfies the
inequalities (40) strictly. This is one of the special features of this type of method. Another one is the
introduction in each iteration of a central path defined by

(zi − ψi)wi = µk, for all i ∈ J1 (41)

such that the new iterate should be forced to follow. The so-called central parameter µk tends to zero as
the algorithm proceeds and is usually defined by

µk = δ

∑
i∈J1

(zk
i − ψi)wk

i

|J1| (42)

with 0 < δ < 1 a fixed constant. To define the new iterate, a search direction is first found as the
Newton’s direction of the following system of nonlinear equations consisting of the linear equation and
the central path nonlinear equations

Find (z, ω) ∈ R|J| ×R|J|

CJJzJ − wJ − FJ = 0 (43)
(Z|J1| −Ψ)W|J1|e = µke (44)
wJf

= 0. (45)

Since wk
Jf
= 0, then this search direction (u, v) satisfies




CJ1J1 CJ1Jf
−I|J1| 0

CJf J1 CJf Jf
0 0

W k
|J1| 0 Zk

|J1| −Ψ 0
0 0 0 I|Jf |






uJ1

uJf

vJ1

vJf


 =




wk
J1
+ FJ1 − CJ1z

k

FJf
− CJf

zk

µke− (Zk
|J1| −Ψ)W k

|J1|e
0


 (46)

where I|J1| and I|Jf | are the identity matrices of order |J1| and |Jf |, W k
|J1| and Zk

|J1| are diagonal matrices
with diagonal elements wk

i and zk
i , with i ∈ J1, respectively, and CJ1 and CJf

contain the rows of C
corresponding to the sets of indices J1 and Jf , respectively.

Simple linear algebra manipulations lead to the following expressions for calculating the search direc-
tion (u, v):[

CJ1J1 + (Z
k
|J1| −Ψ)−1W k

|J1| CJ1Jf

CJf J1 CJf Jf

] [
uJ1

uJf

]
=
[

wk
J1
+ FJ1 − CJ1z

k + µk(Zk
|J1| −Ψ)−1e

FJf
− CJf

zk

]

vi = µk

zk
i
−ψi

− wk
i

(
1 + ui

zk
i
−ψi

)
, i ∈ J1

vj = 0, j ∈ Jf .

(47)

After finding the search direction (u, v) a stepsize is computed, to guarantee that a move along this
search direction shows some progress to reach the solution of the MLCP. Two measures are important in
this process of computing this stepsize, namely the complementarity gap

(zJ1 − ψ)TwJ1 =
∑
i∈J1

(zi − ψi)wi (48)

and the norm of the linear infeasibility

‖CJJzJ − FJ − wJ‖2, (49)
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where ‖.‖2 is the well-known euclidean norm in R|J|.
In theory, the stepsize should be chosen to ensure proximity to the central path and that these two

quantities (48-49) reduce in a proportional way (Wright, 1996). In practice the stepsize αk satisfies

αk = min{1, βαmax} (50)

where 0 < β < 1 is a fixed constant and

αmax = min
{
min

{zk
i − ψi

−ui
: ui < 0

}
, min

{ wk
i

−vi
: vi < 0

}
, i ∈ J1

}
. (51)

To understand why this choice of the stepsize is recommended in practice we consider the following merit
function associated with the conditions (37-38)

g(z, w) = ‖CJJzJ − wJ − FJ‖2
2 + ‖(Z|J1| −Ψ)W|J1|e‖2

2. (52)

Then it is possible to show (Simantiraki and Shanno, 1995) that if αmax > 0 then there exists a 0 < β < 1
such that

g(zk + αku,w
k + αkv) < g(zk, wk). (53)

Furthermore this result usually holds for the largest possible values of β.
After the computation of the stepsize αk, the new iterate is given by

zk+1 = zk + αku, wk+1 = wk + αkv (54)

and satisfies the conditions (39) and (40) strictly. The algorithm terminates with an approximate solution
zk and wk satisfying

‖CJJz
k
J − FJ − wk

J‖2 ≤ ε1 (55)

and ∑
i∈J1

(zk
i − ψi)wk

i ≤ ε2. (56)

for some tolerances ε1 > 0 and ε2 > 0.
It is now possible to state the steps of the algorithm.

Interior-Point Algorithm

1. Let ε1 > 0 and ε2 > 0 be two positive tolerances, k = 0 and zk, wk be vectors satisfying wk
Jf
= 0,

wk
J1

> 0 and zk
J1

> ψ.

2. For k = 0, 1, ...

• Compute µk by (42).
• Find (u, v) by (47).
• Compute αk by (50) and (51) with β = 0.99995.
• Update zk+1 = zk + αku, wk+1 = wk + αkv.
• Terminate if (55) and (56) holds.

It follows from the description of the algorithm that the main effort of each iteration is concerned with
the solution of the linear system (47). Since CJJ is a symmetric definite matrix the same holds for all the
matrices C

k

JJ of the system (47). Furthermore CJJ and C
k

JJ have the same sparsity pattern. These two
properties of the working matrix C

k

JJ are quite important for the design of an efficient implementation of
the algorithm capable of processing large-scale quadratic programs of the form (31). In order to briefly
describe this implementation, we recall that the solution of a large-scale linear system with a symmetric
positive definite matrix CJJ or C

k

JJ consists of the following phases (Duff et al., 1986; George and Liu,
1981):
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• Analyse, where the so-called minimum degree algorithm or one of its variants is applied to find a
suitable ordering for the rows and columns of CJJ (and C

k

JJ) that leads into small fill-in during the
factorization.

• Factorization, which computes the LDLT decomposition of a principal permutation of the matrix
CJJ (or C

k

JJ) according to the ordering achieved in the Analyse phase.

• Solution, which computes the solution of the linear system by processing the easy systems with the
matrices L, D and LT .

It is important to add that these three phases are performed separately and Analyse is the most costly
procedure, as it usually takes 70% of the effort required for finding the solution of the system. Since C

k

JJ

has the same sparsity partten of CJJ , then this Analyse phase is only processed once during the whole
application of the interior-point method. This substantial saving in the computation makes the effort of
each iteration of the interior-point quite small and enables the solution of quite large convex quadratic
programs. The implementation of the interior-point method exploits the ideas presented above and uses
the subroutines MA27 from Harwell collection (Duff et al., 1986) for these Analyse, Factorization and
Solution phases.

As is discussed in the last section of this paper, machine memory limitations may unable the solution
of quite large, strictly convex quadratic programs by using this type of implementation. In this case a
preconditioned conjugate-gradient algorithm (Ortega, 1988) should be used to find the search direction
in each iteration. An implementation of an interior-point method for a linear network problem based
in this latter methodology has been described and fully tested in (Portugal et al., 2000). An important
feature of this implementation is that the tolerances used in the stopping criterium of the conjugate-
gradient method can be chosen to be monotone decreasing with the iteration count of the interior-point
algorithm. This implies substantial savings in the process of finding the search direction for each iteration
of the procedure. We believe that an implementation of the same type with different preconditionings
can process efficiently all these large strictly convex quadratic programs.

As is discussed by many authors (Nocedal and Wright, 1999; Wright, 1997) the so-called predictor-
corrector interior-point algorithm is a valid alternative technique for processing the strictly convex
quadratic program (31). Each iteration of this algorithm essentially differs from one of the previous
interior-point method on the existence of a predictor step that finds a new point (zk, wk) that is used to
compute the central parameter µk. This implies that each iteration requires the solution of two linear
systems with the same matrix C

k

JJ . It is interesting to note that this only duplicates the computation
in the Solution phase, which is almost meaningless when the implementation is based on direct solvers.
However, the situation is different when an iterative solver is used to find the search direction. Further-
more, as is shown in the last section of this paper, the number of iterations of the simple interior-point
algorithm is constantly small even for very large values of |J |. Finally, the descent property for the merit
function of (52) does not hold any longer for the predictor-corrector algorithm. These considerations have
lead to our decision of using the simple interior-point algorithm to process the strictly convex quadratic
programming discrete problem.

3.2 A Block Principal Pivoting Algorithm

Principal pivoting algorithms are direct methods that find in a finite number of iterations the unique
global minimum of the strictly convex quadratic program (31) by processing its equivalent MLCP (32-
35). These algorithms use in each iteration a complementary basis solution of the MLCP. If R and S are
subsets of J such that R∪S = J , R∩S = ∅ and CRR is nonsingular, such a solution satisfies zi = ψi, for
all i ∈ S and wi = 0, for all i ∈ R, and, this implies that the remaining components are uniquely given
by

CRRzR = FR − CRSψS

wS = −FS + CSRzR + CSSψS .
(57)
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It is important to add that if CJJ is a symmetric positive definite matrix there is a complementary
basic solution for each possible partition {R,S} of J . Since wJf

= 0 in any solution of the MLCP (32-35),
then we force Jf to be always included in the set R of any complementary basic solution that is used by
the algorithm. If such a solution z, w satisfies

zR∩J1 ≥ ψR∩J1 and wS ≥ 0 (58)

then it is said to be feasible and is a solution of the MLCP (32-35). Otherwise, the so-called set of
infeasibilities is considered :

H = {i ∈ R ∩ J1 : zi < ψi} ∪ {i ∈ S : wi < 0}. (59)

The number of elements of this set H is called the infeasibility count of the complementary basic solution.
We note that 0 ≤ |H| ≤ |J1| and |H| = 0 if and only if (zR, ψS) is the unique solution of the MLCP.

Each iteration of a principal pivoting algorithm simply consists of replacing the sets R and S associated
with a complementary basic infeasible solution (H �= ∅) to another sets R and S corresponding to another
solution of the same type. This is done by using the following formulas

R = R \ (R ∩H1) ∪ (S ∩H1)
S = J \R

(60)

where H1 ⊆ H. The algorithms differ on the choice of the set H1. As is discussed in (Fernandes et al.,
1996), the use of

H1 =
{
min{i ∈ H}} (61)

in each iteration guarantees finite termination to the algorithm. However, as for the active-set methods,
these modifications of one element usually lead to too many iterations for large-scale quadratic programs,
where the initial and final partitions {R,S} are quite different. On the other hand, the all-change
modification H1 = H usually leads to small number of iterations in practice (Fernandes et al., 1996).
However, there is no theoretical guarantee that an algorithm solely based on these latter changes possesses
finite termination. As is discussed in (Fernandes et al., 1996; Júdice and Pires, 1994), it is possible to
design a principal pivoting method algorithm that combines these two features presented before. The
resulting method performs all-changes modifications (60) with H1 = H in general, and one-element
changes (61) are only included for assuring finite termination. The switch from one form of iterations to
the other one, is done by controlling the infeasibility count, that is, the number of elements |H| of the
set H given by (59).

The steps of the algorithm are presented below.

Block Principal Pivoting Algorithm

1. Let R = Jf , S = J \R, p > 0, ninf = |J |+ 1 and nit = 0.

2. Compute zR and wS by (57) and the infeasibility set H by (59). Let |H| be the number of elements
of H. Then

• If |H| = 0, terminate with z = (zR, ψS) the unique solution of the MLCP.
• If ninf > |H|, set ninf = |H| and nit = 0. Go to 3.
• If ninf ≤ |H| and nit ≤ p, go to 3. (if nit = 1 set R = R and H = H).
• If ninf ≤ |H| and nit ≥ p+ 1, go to 4 (if nit = p+ 1 set R = R and H = H).

3. Set R = R \ (R ∩H) ∪ (S ∩H), S = J \R, nit = nit+ 1 and go to 2.

4. Let t = min{i ∈ H}. Set nit = nit+ 1,

R =
{

R \ {t}, if t ∈ R
R ∪ {t}, if t ∈ S

(62)

and S = J \R and go to 2.
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It follows from the description of the steps of the algorithm that the integer constant p plays an
important role on the efficiency of the algorithm. This value represents the maximum number of block
iterations (H1 = H) that are allowed to be performed without an improvement of the infeasibility
count. It is obvious that this value should be small. However, too small values for p may lead to
the performance of one-element modifications too often with an increase on the number of iterations.
Extensive computational experience reported in (Fernandes et al., 1996) has shown that p = 10 is usually
a good choice in practice.

The algorithm can also be implemented according to a scheme similar to the interior-point method.
As before, an Analyse phase is performed only once for the matrix CJJ . In each iteration, the matrix
CRR is constructed from CJJ . Once more the rows and columns with indices i ∈ R are considered in the
ordering established in the Analyse phase. This construction may be time consuming if the set R is quite
large. After this step is finished, the Factorization and Solution phases are performed in order to get the
vector zR. As before the subroutines MA27 are used to perform all the tasks.

The vector wS is computed as follows

wi = −Fi + Ci.

[
zR

ψS

]
, i ∈ S (63)

where Ci. represents the row i of the matrix CJJ .
As is discussed in the last section of this paper, this type of implementation is quite efficient for

processing reasonable large strictly convex quadratic programs. It is also possible to derive an implemen-
tation of this algorithm based on the preconditioned conjugate-gradient algorithm for processing the linear
systems CRRzR = FR that are required in each iteration of the principal pivoting algorithm. However,
the computation of the infeasibilities according to (59) prevents the use of variable monotone decreasing
tolerances and this makes an iterative based implementation less attractive for the block pivoting method.

4 Computational Experience

In this section we report some numerical experiments with the algorithms on the solutions of discrete
problems associated with a thin, elastic and clamped plate, whose middle plane is a square with side
length l = 100mm and thickness t = 2mm. For this plate geometry, several numerical tests have been
performed with different obstacles, materials and forces. The following obstacles have been considered:

ψ1(x, y) = −2,
ψ2(x, y) = −0.1− ( x

50 − 1)2( y
100 − 0.5)2,

ψ3(x, y) = −0.5( x
50 − 1)2 − 0.02( x

50 − 1)− 0.5
1+30( x

50−1)2

(64)

for x, y in [0, 100]. The obstacle ψ1 represents a plane and the obstacles ψ2 and ψ3 are surfaces, whose
three dimensional-plots are displayed in figures 1 and 2.

We assume that the forces acting on the plate are constants with intensities

f1(x, y) = −1, f2(x, y) = −5, f3(x, y) = −10, (65)

(in the unit kg/mm2). Moreover the material of the plate may be steel, bronze or lead, with Young’s
modulus E and Poisson’s ratio ν given below

Material E (kg/mm2) ν
Steel 21× 103 0.28
Bronze 11× 103 0.31
Lead 1.8× 103 0.44

As already mentioned in section 2, the discretization of the infinite dimensional problems is based in the
finite element method. We have chosen the Bogner-Fox-Schmit rectangle with 16 degrees of freedom in
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Figure 1: Obstacle ψ2
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Figure 2: Obstacle ψ3

this approximation. The square [0, 100]2 is discretized successively by 4× 4, 10× 10, 20× 20 and 30× 30
finite elements in our first experiments. Refined meshes for this approximation with 50× 50, 70× 70 and
90× 90 finite elements are also considered in the second experiences.

All the experiences have been performed on a gateway G520 (256Mb RAM, Pentium II processor
350Mhz).

It follows from the description of the steps of the interior-point method that there is the need of
choosing the initial point (z0, w0) and the tolerances ε1, ε2 that are required in the stopping criterium
(55-56). After some experiments and based on previous computational work with similar problems
(Fernandes et al., 1996), we have made the following choices

z0
i = 0, i ∈ J1 ∪ Jf

w0
i = max{10,−Fi}, i ∈ J1

w0
i = 0, i ∈ Jf

(66)

and ε1 = 10−10, ε2 = 10−8. These values usually guarantee at least seven decimal digits of accuracy in
the unique solution of the MLCP found by the interior-point algorithm.

Tolerances are also needed in the block pivoting method for choosing the set of infeasibilities H. In
our implementation of this algorithm the following definition of H has been used

H = {i ∈ R : zi < ψi − ε} ∪ {i ∈ S : wi < −ε} (67)

where ε = 10−6. A scaled free version of this definition should be probably more recommended, partic-
ularly for bad scaling MLCPs that arise when the mesh size is quite small. However, in our experiences
the definiton (67) has proven to work quite well, as the accuracy of the solution of the MLCP found by
this method is usually the same of that computed by the interior-point algorithm.

The tables 1, 2, 3, 4, 5 and 6 report the results of solving the test problems by the interior-point
method (IP) and the block pivoting (BP) algorithms. In these tables, ele represents the number of finite
elements that have been considered in the mesh, |J | the corresponding number of variables of the problem
(31) and |J1| the number of lower bounds. Furthermore cn denotes the number of variables zi, i ∈ J1,
that attain the lower bound ψi at the optimal solution of the quadratic program, that is, the number of
nodes at which there is contact between the plate and the obstacle. Finally, the performance of each one
of the algorithms has been reported in terms of the number of iterations (it) and CPU time in seconds
(CPU).
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ele |J | Algorithms force f1 = −1 force f2 = −5 force f3 = −10
cn it CPU cn it CPU cn it CPU

IP 23 1.75E − 2 23 1.75E − 2 24 1.95E − 2
16 52 PATH 5 7 0.03 9 11 0.03 9 11 0.03

BP 2 0.01E − 2 1 0.01E − 2 1 0.01E − 2
MINOS 95 0.30 78 0.22 72 0.31

IP 13 0.17 14 0.18 13 0.17
100 364 PATH 9 11 0.83 45 128 7.91 49 52 0.98

BP 8 0.17 3 0.05 2 0.03
MINOS 550 2.98 551 2.96 541 3.01

IP 12 1.73 12 1.74 12 1.75
400 1524 PATH 33 52 21.21 121 157 42.01 165 201 43.35

BP 11 2.82 8 1.74 6 1.20
MINOS 1992 35.36 1968 35.46 1955 35.37

Table 1: Plate of Steel and Obstacle ψ1

In order to gain a better indication of the efficiency of these methodologies, we have also solved some
problems by the active-set MINOS (version 5) and the path-following PATH (version 4.4a) codes that
are available in the GAMS collection. It is important to add that for the PATH algorithm it represents
the sum of the so-called inner and crash iterations. The results are displayed in the following tables 1, 2
and 3.

ele |J | Algorithms force f1 = −1 force f2 = −5 force f3 = −10
cn it CPU cn it CPU cn it CPU

IP 20 1.66E − 2 21 1.75E − 2 22 1.75E − 2
16 52 PATH 9 11 0.03 9 11 0.03 9 11 0.03

BP 1 0.01E − 2 1 0.01E − 2 1 0.01E − 2
MINOS 74 0.23 73 0.28 75 0.26

IP 11 0.15 12 0.16 12 0.16
100 364 PATH 42 44 0.98 75 77 1.23 81 77 1.22

BP 4 0.07 2 0.03 1 0.01
MINOS 522 2.90 487 2.90 412 2.94

IP 11 1.52 11 1.55 12 1.62
400 1524 PATH 142 192 48.27 230 279 55.28 283 333 62.14

BP 7 1.51 5 0.93 3 0.50
MINOS 1952 35.32 1943 35.41 1946 35.37

Table 2: Plate of Bronze and Obstacle ψ3

It follows from the results displayed in tables 1, 2 and 3 that both the interior-point and block pivoting
algorithms are quite efficient for the solution of all the test problems. Moreover, these two algorithms
have proven to perform much better in terms of iterations and CPU time than the other two GAMS
general purpose algorithms, and the gap increases much with an increase on the number of elements.
It is interesting to note that the number of iterations of the interior-point method does not indicate
an increase with the number of elements, and consequently the dimension |J | of the problem. On the
other hand, there is a slight increase on the number of iterations for the block pivoting method. These
conclusions become more evident with the results displayed in the table 4.
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ele |J | Algorithms force f1 = −1 force f2 = −5 force f3 = −10
cn it CPU cn it CPU cn it CPU

IP 19 1.56E − 2 20 1.66E − 2 21 1.66E − 2
16 52 PATH 9 11 0.02 9 11 0.02 9 11 0.02

BP 1 0.01E − 2 1 0.01E − 2 1 0.01E − 2
MINOS 65 0.31 58 0.28 59 0.25

IP 10 0.13 11 0.14 11 0.15
100 364 PATH 81 84 1.12 81 84 1.11 81 84 0.26

BP 1 0.01 1 0.01 1 0.01
MINOS 373 2.96 361 2.96 362 2.85

IP 9 1.40 11 1.61 9 1.28
400 1524 PATH 285 320 57.09 341 376 60.72 357 392 61.29

BP 3 0.50 3 0.47 2 0.30
MINOS 1884 35.44 1750 35.46 1522 35.34

Table 3: Plate of Lead and Obstacle ψ2

Table 4 shows the performance of the interior-point and block pivoting algorithms for a particular choice
of the material, force and obstacle, when the number of elements increases. The importance of the
increase on the number of elements is the accuracy of the approximate solution as illustrated in figure 3.

Ele |J | |J1| Alg. force f1 = −1 force f2 = −5 force f3 = −10
cn it CPU cn it CPU cn it CPU

IP 20 1.66E − 2 21 1.66E − 2 22 1.85E − 2
16 52 9 BP 9 1 0.01E − 2 9 1 0.01E − 2 9 1 0.01E − 2

IP 12 0.16 13 0.17 13 0.17
100 364 81 BP 38 4 0.07 61 3 0.05 75 2 0.03

IP 13 1.77 12 1.62 11 1.47
400 1524 361 BP 89 9 2.19 204 5 0.97 230 5 0.92

IP 16 11.38 12 8.31 14 9.69
900 3484 841 BP 135 14 18.23 406 8 7.72 518 9 7.89

IP 19 104.92 16 86.43 17 91.38
2500 9804 2401 BP 362 22 238.49 1014 15 133.63 1248 13 107.22

IP 21 336.10 18 285.74 17 268.23
4900 19324 4761 BP 666 31 1236.72 1920 22 711.62 2370 18 540.48

IP 24 1127.97 20 933.32 20 933.21
8100 32044 7921 BP 1037 43 2679.86 3039 35 2180.55 3850 29 1815.73

Table 4: Plate of Steel and Obstacle ψ3
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So we recommend the use of the interior-point algorithm when the number of elements used to
construct the discrete problem is quite large. It is important to add that memory machine limitations
unable the solution of a discrete problem with even larger number of elements. As stated in section 3,
an implementation based on a preconditioned conjugate-gradient method should be employed to process
the discrete model in these cases.
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Figure 3: Solution for plate of steel, with obstacle ψ3, and 16, 100, 400 and 900 finite elements.

In the next experience we have tested the influence of the intensity of the force on the contact with the
obstacle. To do this, we have fixed a particular material (bronze), the number of finite elements (ele =
400) and the obstacle ψ1. Then for these particular instances, we have processed three convex quadratic
programs that differ on the intensity of the force, namely f1 = −1, f2 = −5 and f3 = −10. The results
are displayed in figures 4-6 and table 5, and confirm the physical belief that an increase of the intensity
of the force augments the contact.

15



5

10

15

20

5

10

15

20

-2

-1.5

-1

-0.5

0

5

10

15

20

Figure 4: Solution for force f1

5

10

15

20

5

10

15

20

-2

-1.5

-1

-0.5

0

5

10

15

20

Figure 5: Solution for force f2
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Algorithms force f1 = −1 force f2 = −5 force f3 = −10
cn it CPU cn it CPU cn it CPU

IP 77 12 1.68 165 12 1.78 221 12 1.78
BP 9 2.15 6 1.20 5 0.94

Table 5: Plate of Bronze, Obstacle ψ1, |J | = 1524

In the last experience, we have tested the influence of the material on the contact with the obstacle.
To do this, we have fixed this time the intensity of the force f1 = −1, the number of elements (ele=400)
and the obstacle ψ2. We have considered three instances that differ from each other on the choice of the
material (steel, bronze and lead). The results are illustrated in figures 7-9 and table 6, and confirm that
the contact increases with an augment of the Young’s modulus.
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Material Interior-Point Block Pivoting
cn it CPU it CPU

Steel 181 11 1.56 7 1.40

Bronze 221 10 1.37 5 0.92

Lead 285 9 1.40 3 0.50

Table 6: Force f1 = −1, Obstacle ψ2, |J | = 1524

5 Conclusion

In this paper we have introduced an obstacle plate model. The linear version of this problem has been
studied. The discrete problem that arises by using an appropriate finite element discretization reduces
to a strictly convex quadratic program that has a unique global solution. An interior-point and a block
principal pivoting primal-dual algorithms have been shown to be quite efficient to process this quadratic
program and perform much better than two general purpose codes MINOS and PATH of the GAMS
collection. Unfortunately the two primal-dual techniques discussed in this paper can no longer be useful
for processing the nonlinear version of this model (corresponding to a geometrically nonlinear plate), as
the resulting discrete problem can be shown to be a nonconvex nonlinear optimization problem (Kikuchi
and Oden, 1988), that is quite difficult to tackle. Some experiments with the PATH algorithm have
shown that this latter method has been able to process some special instances of this model, but it fails
in general. The study of this discrete nonlinear problem is a subject of our current investigation.
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