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Abstract

In this paper two enumerative algorithms for the Linear Complementarity Problems
(LCP) are discussed. These procedures exploit the equivalence of the LC'P into
a nonconvex quadratic and a bilinear programs. It is shown that these algorithms
are efficient for processing NP-hard LCPs associated with reformulations of the
Knapsack problem and should be recommended to solve difficult LCPs.

Key Words: mathematical programming, complementarity, global optimization,
enumerative algorithms.

AMS subject classification: 90C33, 65K10.

1 Introduction

The Linear Complementarity Problem (LCP) consists of finding vectors
z € R" and w € R™ such that

w=q+ Mz

z>20, w>0

2Tw=0
for a given matrix M € R™*™ and a vector ¢ € R™. This problem has orig-
inally appeared in the sixties for the solution of bimatrix games and con-
vex quadratic programs. Since then, it has received an increasing interest,
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mainly due to its many applications in several areas of science, economics
and engineering, Cottle et al. (1992) and Murty (1988).

A large number of direct and iterative algorithms has been proposed for
the solution of the LC'P, Cottle et al. (1992) and Murty (1988). The use of
these procedures faces some limitations, as they are only able to process the
LC P when the matrix M belongs to some classes of matrices. The so-called
Positive Semi-Definite (PSD) and P matrices should be distinguished as
the most interesting of these classes. In the first case the LC P has always a
solution provided it is feasible, that is, if the linear constraints are consistent,
Cottle et al. (1992) . On the other hand the LC'P has a unique solution
for each vector ¢ € R™ when M is a P matrix, Cottle et al. (1992) . In
both cases, Lemke’s almost complementary, Cottle et al. (1992) and Murty
(1988), and interior-point methods, Kojima et al. (1991) and Wright (1997),
have proven to be quite successful to process the LCP. In these cases a
solution of the LC'P can also be found as a stationary point of the following
quadratic program, Cottle et al. (1992),

Minimize 27w
subject to w— Mz =q (1.1)

z>0, w>0

As stated in Murty (1988) and Nocedal and Wright (1999), there are a
number of efficient algorithms to perform such a task.

In general, a solution of the LC P requires the computation of a global
minimum of the quadratic program (1.1). Finding such a point is considered
to be a NP-hard problem, Horst et al. (1995). However, the LC'P has a
solution if and only if there is a global minimum of this program with a
value equal to zero. This property is quite important for processing the
LCP by a global optimization technique. An enumerative method for the
LCP that exploits its quadratic programming formulation (1.1) has been
introduced in Al-Khayyal (1987) and subsequently improved, implemented
and tested in Judice and Faustino (1998).

The LCP can also be reformulated as the following bilinear program

Minimize ¢'x +elz+2T(M — 1)z
subject to Mz > —q

z>0

0<z<e

(1.2)
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where [ is the identity matrix of order n and e € R™ is a vector of ones.
There exists a number of techniques for finding a global minimum of such a
program, Floudas (2000), Horst et al. (1995) and Sherali and Adams (1999).
In particular, a sequential enumerative method has been proposed in Judice
and Faustino (1991) for such a goal. Extensive computational experience
reported in Judice and Faustino (1991) has shown that this algorithm is
in general able to find a global minimum in a reasonable amount of time,
but faces difficulties to guarantee that such a point has been achieved. As
before, the LC'P has a solution if and only if a global minimum exists with
value equal to zero. This property should be exploited in the sequential
enumerative procedure in order to process the LCP.

It is still possible to reduce the LC'P into a mixed integer linear pro-
gram by exploiting the bilinear programming formulation presented before
and using the so-called reformulation-linearization technique, Sherali and
Adams (1999) and Sherali et al. (1998). Some computational experience
reported elsewhere, Sherali et al. (1998), indicates that this formulation
may be exploited for processing LCPs with small dimensions. However,
the introduction of O(n?) variables and constraints seems to be a serious
drawback for its application to LC Ps of larger dimensions.

As the title of this paper indicates, our main motivation is to investigate
how NP-hard LC Ps should be solved in practice. It is known that Knapsack
problems are NP-hard and can be transformed into a LC'Ps by using simple
transformations, Chung (1989), Kojima et al. (1991) and Murty and Judice
(1996). We have tested extensively a number of LCPs associated with
Knaspsack problems by using the enumerative methods that are based on
the quadratic programming and bilinear programming formulations of the
LCP. The results reported in this paper seem to indicate that NP-hard
LCPs can be solved in a reasonable amount of time by these techniques.
Furthermore traditional direct and iterative methods, such as, Lemke’s and
interior-point algorithms are unable to process these NP-hard LCPs. It
should be added that special versions of interior-point algorithms, Conn
et al. (2000), Gay et al. (1998) and Vanderbei and Shanno (1999), and a
modification of Lemke’s method, Murty (1988), have been developed to find
stationary points of nonconvex quadratic programs. These procedures are
then able to find a stationary point of (1.1). As stated before, such a point
does not in general lead to a solution of the LC' P, and even these extended
algorithms are not appropriate to process the LCP in general.
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As expected, the use of a branch-and-bound method to process the in-
teger programming formulation of the LC P is not appropriate, particularly
when the dimension of the LCP increases.

The organization of this paper is as follows. In Section 2 the LCP is
briefly introduced. The formulations of the LC'P mentioned before are dis-
cussed in Section 3. The enumerative algorithms are described in Sections
4 and 5. The LCPs associated with the Knapsack problem are presented
in Section 6. Computational experience with the enumerative methods is
reported in Section 7. Finally some conclusions and hints for future research
are presented in the last section of this paper.

2 Formulations of LC'P as Global Optimization Problems

As stated in the previous section, given a square matrix M of order n
and a vector ¢ € R™, the Linear Complementarity Problem, denoted by
LCP or LCP(q, M), searches for vectors z € R™ and w € R™ such that

w=q+ Mz, 2>0, w>0

2Tw=0 (2.2)
So this problem contains the linear constraints (2.1) that constitute the
so-called feasible set K and the nonlinear complementarity condition (2.2).
A solution (z,w) is said to be feasible if it belongs to the feasible set K. On
the other hand it is called complementary if it satifies

w=q+ Mz

ziw; =0 1=1,2,...,n (2.3)

Due to the nonnegative conditions on the variables z; and w;, (z,w) is a
solution of the LC'P if and only if it is feasible and complementary. Fur-
thermore the LC'P has no solution if it is infeasible (K = ) or if it is
feasible but has no complementary solution in K, that is, 27w > 0 for all
(z,w)e K.
Consider now the quadratic program (1.1) introduced in the last section
Minimize  g¢1(z,w) = 27w
subject to w— Mz =¢q (QP)
z>0, w>0
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As the objective function is bounded from below on its constraint set K,
there are three possible cases:

(i) K =0 and the LCP is infeasible.

(i) g1(z,w) = ( m%nK g1(z,w) = 0 and (z,w) is a solution of the LC'P.
Z,w)e

(ili) min gi(z,w) > 0 and the LCP is feasible but has no solution.

(z,w)eEK

So the LC' P has a solution if and only if it is feasible and there is an optimal
solution of the quadratic program with objective function value equal to
zero. A global quadratic optimization algorithm, Floudas (2000) and Horst
et al. (1995), may become much more efficient for processing LCPs, as
91(z,w) = 0 provides a stopping criterium for the procedure. As discussed
in the next sections, this feature is essential for the good performance of an
enumerative method for solving NP-hard LC Ps.

Another global optimization formulation for the LC'P can be obtained
by introducing an additional vector x € R™ of 0 — 1 variables. Since
zi(q + Mz); = 0 if and only if

zi(q+Mz); =0, (1—x4)z;=0, z; €{0,1} foralli=1,...,n,

then the objective function of the QP above can be written as

n

Zzi w; = Zzi(q + Mz); = Z (1 — )z + xi(g + M=)
=1

i=1 =1

The QP is then equivalent to the following Mixed Integer Bilinear Program

n
Minimize  ga(z, w) = Z (1 — 24)2 + zi(qg + Mz)]
i=1
subject to Mz > —q (MIBLP)

z>0
x; € {0,1}, i=1,2,...,n

Since the objective function ga(z,w) is bilinear and is bounded from below
on its constraint set, there exists an optimal solution (Z,z) such that z is
an extreme point of

K,={zeR":0<z;<1, i=1,...,n}
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Z is an extreme point of
K,={z€eR": Mz>—q, z>0}

provided K, # (), Konno (1976). So the 0-1 constraints presented in
MIBLP can be replaced by the continuous constraints that define K. The
MIBLP is then equivalent to the following Bilinear Program, Mangasarian
(1995),

Minimize  go(z,w) = ¢Tox +elz +2T(M — 1)z
subject to Mz > —q
(BLP)
0<z<e

where I is the identity matrix of order n and e € R"™ is a vector of ones. As
before, if K, # ), then (z,z) is a global minimum with a zero value if and
only if (z,w = g+ Mz) is a solution of the LC'P.

The LCP can also be reduced into a Mixed Integer Linear Program.
In order to get this problem, we first introduce in the constraints of the
MIBLP presented before, the complementarity conditions

(1—%’1')21':0, i:1,2,...,n

to obtain the following equivalent problem

n n n
Minimize g qifci—{—g E M T2
=1

i=1 j=1
n
subject to Zmijz]' +4q; >0, i=1,2,...,n (2.4)
j=1
z; >0, i1=1,2,...,n (2.5)
(1 —z4)z =0, i=1,2,...,n (2.6)
x; € {0,1}, 1=1,2,...,n (2.7)

The reformulation-linearization technique discussed in Sherali and Adams
(1999) and Sherali et al. (1998) is then applied to this problem and consists
of the following operations:

(i) Multiply each one of the constraints (2.4) and (2.5) by z; and (1 —xy)
forall k=1,...,n.
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(ii) Replace the products x;z; by the variables y;; for all i = 1,2,...,n
and 7 =1,2,...,n.

Then the following Mixed Integer Linear Programming Problem is obtained

n n n
Minimize  g3(z,z,y) = Z q;T; + Z Z MijYij
=1

i=1 j=1
n
subject to Zmijykj + gz, > 0, ki = 1,2,...,n
7=1
n n
Zmiij +q; > Zmijykj + q;xk, ki = 1,2,...,n
j=1 =1
OSyijSZj, i,j = 1,2,...,n
Yi; = %5, j = 1,2,...,’/2
562‘6{0,1}, 1 = 1,2,....n
(MILP)

As is shown in Sherali et al. (1998), (

Z,Z,y) is an optimal solution of MILP
with g3(z, z,y) = 0 if and only if (z,w = ¢

+ M?Z2) is a solution of the LC'P.

3 An Enumerative Algorithm based on the )P Formulation

This algorithm finds a solution to the LC'P by exploring a tree of the
form:

In each node of the tree a quadratic program is considered that is obtained
from the QP presented in the previous section by adding some constraints
u; = 0, where u; is a complementary z; or w; variable. For instance in node
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5 of the tree above, the quadratic program takes the form

minimize g1(z, w) = 27w

subject to w — Mz =gq
zi; =0
w;, =0
z>0, w>0

A modified reduced-gradient (M RG) algorithm, Al-Khayyal (1987), is ap-
plied in each node in order to find a so-called local star minimum of the
function g; on a set K that contains the linear constraints associated to
this node. We recall that a local star minimum of g; on K is an extreme
point (z,w) of K satisfying

91(27 QD) < 9(27 w)
for all adjacent extreme points (z,w) € K of (2, w).

In order to describe the M RG algorithm, let (Z,w) be an extreme point
of K which corresponds to a basic feasible solution with basis matrix B. If
(z*,w*) is an adjacent extreme point, then

(25, w") = (Z,w) + p(d, dw)

where p is the so-called maximum stepsize used in the simplex method
and d = (d;,d,) is a feasible direction in which d, and d,, are vectors
containing all the components d; of d associated with the variables z; and
w; respectively. This feasible direction can be defined in terms of the basis
matrix B and of the columns of the matrix M or of the identity matrix
I. To show this, let F' and T the index sets of the basic and nonbasic
variables respectively and let s be the index of the entering nonbasic variable
that is increased from zero to generate the adjacent basic feasible solution
associated to (z*,w*). Then the feasible direction d is given by

ds =1

dj=0forall j €T — {s} (3.1)
do — —B7'M, if sis a column of a z variable (3.2)

F= B~ les  if sis a column of w; variable '
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where M ¢ and e® are the sth column of the matrices M and I respectively.
The value of the quadratic function g;(z,w) = 2T
point (z*,w*) is then

w at the new extreme

g1(z%,w*) = T + ,u(Zwa + wTdZ) + /ﬂdZdw

Therefore there is a decrease on a movement to a new adjacent extreme
point (u > 0) if and only if

dy +w'd, + pdtd, <0 (3.3)

In each iteration of the M RG algorithm, let (z,w) be the current extreme
point. The algorithm searches for a feasible descent direction d and a posi-
tive stepsize u satisfying (3.3). If such d and p exist, the algorithm moves to
the new adjacent extreme point with a decrease of the objective function g;.
Otherwise the algorithm terminates with a local star minimum provided all
the stepsizes p are positive. Degenerate cases where p = 0 can be handled
by the so-called Bland’s rule, Judice and Faustino (1988b).

Let
o(z,w) = 0wz + 21w+ w’ 2
the linear approximation of g;(z,w) at the extreme point (Z,w). Then it
is easy to show. Judice and Faustino (1988). that z7d, + w’d, is the
reduced-cost coefficient ¢s of ¢(z,w) associated to the nonbasic entering

variable zs or wg that is increased to generate the new adjacent extreme
point. So, if dfd,, < 0 then & < 0 implies that

q1(z%,w*) < g(Z,w) + Esp < g(Z,w)

provided g > 0. So, as in the simplex method for linear programming a
negative reduced-cost coefficient means a descent feasible direction. There-
fore if there is a guarantee that d’d, < 0 always holds, then the M RG
reduces to the usual simplex method.

The steps of the enumerative method are presented below.
Enumerative QP Algorithm

Step 0 Let L = {1} be the initial list of open nodes and QP(1) be the
quadratic program QP introduced in the previous section.

Step 1 If L = (), stop: LCP has no solution. Otherwise choose a node
te L.
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Step 2 Remove ¢ from L. Apply the M RG algorithm to the quadratic
program QP(t) associated to the node ¢. If QP(t) is infeasible, go to
Step 1. Otherwise compute a local star minimum (Z,w) for QP(t).

Step 3 If g1(2,w) = z'w = 0, stop: (Z,w) is a solution of the LCP.
Otherwise let (z,,w,) be a pair of positive basic variables in the local
star minimum (z, ).

Step 4 Add two new nodes k and (k + 1) to the list L, with quadratic
programs QP (k) and QP(k + 1) defined by:

QP(k) : QP(t) and constraint z, =0
QP(k+1): QP(t) and constraint w, =0

Go to Step 1.

It follows from the description of the algorithm that only basic solutions
of the LC'P are used throughout the algorithm. Hence the enumerative
method can be implemented for large-scale LC'Ps by exploiting reinversion
and updating schemes for sparse LU factorization of the basis matrices,
Murty (1983). Such an implementation should also contain some heuristics
techniques for choosing the pair of variables for searching in Step 3 and the
node of the list L in Step 1. We suggest Judice and Faustino (1988a) for a
detailed description of this implementation.

4 An Enumerative Sequential Algorithm based on the BLP
Formulation

Consider again the BLP formulation of the LC'P introduced in Sec-
tion 3. We can write this problem in the form

Minimize ¢’ +min {(e + (M”" = Dz)"2: Mz > —q, 2> 0}
0<x<e
The dual of the inner linear program takes the form:
Minimize —qTu
subject to MTu<e+ (MT —I)x
u>0
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By using the complementarity slackness property, Murty (1983), it is then
possible to reduce the BLP into the following Mathematical Programming
with Equilibrium (or Complementarity) Constraints

Minimize ¢7z — ¢ u

e [2]- ][5

Y, v,2,u >0
0<z<e (MPEC)

HEEE

The constraints of this M PEC constitute a General Linear Complemen-
tarity Problem (GLCP) in which the matrix associated with the comple-
mentary variables (z,u) is PSD. As stated in Fernandes et al. (2001) and
Judice and Vicente (1994), this GLC'P can be processed by a number of
techniques. Among them, the M RG algorithm described in the previous
section can be easily modified to process this problem. Furthermore it is
possible to show that each feasible direction

d= (dza dua dza dya dv)

satisfies

dld, +dld, =0
So the M RG reduces into a simplex type method and terminates with a
stationary point of the complementarity function

h(z,u,y,v) = 2y +ulv

on the set of the linear constraints of the GLCP. As is shown in Fernandes
et al. (2001), this stationary point is a solution of the GLCP. We have
then shown that the M RG algorithm is an efficient procedure for finding a
solution of this GLCP.

it may be possible to reduce further the value of the objective function by the
Basis Restricted Simplex (BRS) method described in Bialas and Karwan
(1984) and Judice and Faustino (1991). This algorithm terminates in a new

two cases may occur and are stated below.
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(i) If ¢T7 — ¢'u = 0, then (Z,w = q + M%) is a solution of the LC'P.
(ii) If ¢77 — ¢T% > 0, then set

A=¢"7 - ¢"u—e(d"7 - ") (4.1)

where € is a small positive number. Consider the GLCP(\) obtained by
the previous GLCP by adding the constraint

¢’z —qtu< )

Then (z,u, y, v, ) is infeasible for this GLC'P()\). The enumerative method
described in the previous section can easily be adapted to solve this new
GLCP()) and one of the three following cases should occur:

(i) GLCP(A) has no solution and the same happens to the LCP.

(ii) GLCP(\) has a solution (Z,u,7,7,2) with ¢’zZ — ¢"a = 0 and

¢'%—q¢"u=0and (Z,w = g+ MZ) is a solution of the LCP or a new
GLCP()) has to be solved, where X is previously updated by (4.1).

It follows from the description of this algorithm, that a finite sequence of
GLCPs has to be solved in order to find a solution of the LC'P or to show
that none exists. The enumerative method described in the previous section
is easily generalized to process all these GLC'Ps and can be implemented
along the same lines for dealing with large-scale LC'Ps. A drawback of
this approach lies on the fact that the dimension of the GLCPs is twice
that of the LCP. However, the GLCPs possess a quite nice structure, the
matrix of the (z,u) variables is PSD and the M RG algorithm can in many
cases reduce to simplex type method. As is reported in the last section
of this paper, the enumerative BLP algorithm requires in some cases a
small number of pivot steps to process the LC'P than the enumerative QP
method.



On the Solution of NP-hard Linear Complementarity Problems 137

5 Reduction of the Knapsack Problem into a LC'P

Given a positive real number b and a positive vector a € R", The Knap-
sack Problem consists of finding a vector z € R™ such that

atz=b

x; €{0,1}, i=1,2,...,n (5.1)

In this section three different formulations of the Knapsack problem as an
LCP are introduced. These formulations rely on the fact that for each
i=1,2,...,n, z; € {0,1} is equivalent to

wi=1—-x; x>0, w; >0, zw =0

Based on this reduction, it is easy to show Chung (1989) that the Knapsack
problem is equivalent to the following LC'P of dimension (n + 2):

w = e—x

W41 = —b+a'r—ar,

Wpio = b—alx —BTni2

xz; >0, w; > 0, zaw; =0, 1=12,....,n+2

where e € R" is a vector of ones and «, 3 are two positive real numbers.
The matrix M of this LC'P takes then the form:

—-I 0 0
M = (IT —a 0 c R(n+2)><(n+2)
- 0 -8

where I is the identity matrix of order n. Hence this matrix is negative
semi-definite(N.SD), that is, —M € PSD, if « and (3 are chosen to satisfy
the following inequalities

T T
ala ala
a >0 — >0 ————
4’ B 4o — aTa

for # > 1 a fixed number. On the other hand M is an indefinite (IND)
matrix, that is, M € PSD and M ¢ NSD provided

T T
ala a ala
a>0— <= —
4’ b 0 da—aTla
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where @ > 1 as before.

As explained in Murty and Judice (1996), the Knapsack problem can
also be reduced into the LC'P(q, M), where q = [a, —b,b]T € R"*? and

I e —e
M = eT —92n 0 c R(n+2)><(n+2)
—eT 0 —2n

where [ is the identity matrix of order n and e € R™ is a vector of ones.
The matrix M is in this case symmetric NSD.

Finally in Kojima et al. (1991), the Knapsack problem has shown to be
equivalent to a LC'P(q, M), where

(i) the vector ¢ takes the form
g=pp ... p —b b]TER4n+2
withp=[0 0 —1 1]T e R%

(ii) the matrix M is given by

B 0 --- 0 0 0
O B --- 0 00
M= - 11| c RUn+2)x(n+2)
o 0o --- B 0O
al
where
0O 0 0 O
— 1 000 4x4
B=11 100k
-1 0 0 O

and the components a; of a € R*"*2 satisfy

a -4 % if 1=45 -3, 7=1,2,...,n
e 0, otherwise
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As discussed in Kojima et al. (1991), the matrix M of the LCP belongs to
the class Py of matrices with nonnegative principal minors.

We denote by FORM?2 and FORM3 those LC'P formulations of the
Knapsack problem in which the associated matrix is symmetric NSD and
Py respectively. Furthermore the first formulation of the Knapsack problem
is denoted by FORM1NSD or FORM1IN D, depending on the associ-
ated matrix M to be NSD or IND respectively.

It is important to add that all these formulations of the Knapsack prob-
lem as LCPs have been established in order to study the computational
complexity of the LC'P. Since the Knapsack problem is NP-hard, then the
same happens to the LC'P when its matrix M is symmetric or unsymmet-
ric NSD, IND or Py. Furthermore it is known that a LC'P with a PSD
matrix can be solved in polynomial time, Kojima et al. (1991) and Murty
(1988), and the complexity of the solution of a LC'P with a P matrix is still
an open question.

6 Computational Experience

In this section we report some computational experiences with the enu-
merative methods discussed in Sections 4 and 5 on the solution of
NP-hard LCPs associated with Knapsack problems. These experiences
have been performed on a Pentium II 350 MHz with 256 MB of RAM. The
test problems have been generated from a Knapsack problems in which all
the components a; of the vector ¢ € R™ have been randomly generated in
the interval [1,50]. The real number b has been set equal to

b:Zai

iel

where I is a subset of {1,...,n} corresponding to the variables x; that are
equal to one in a solution of the Knapsack problem. Three different sets I
have been considered in our experiences that differ on its cardinal to be 7,
5 and %T”, that is, on the percentage of variables equal to one to be 25%,

50% and 75% respectively.

Table 1 displays the results of the performances of the two enumerative
methods that are based on the QP (ENQP) and BLP (ENBLP) formu-
lations of the LC'P. In this table FORM1NSD, FORM1IND, FORM?2
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and FORM3 represent the LCP formulations of the Knapsack problem
discussed in the previous section. Furthermore N denotes the dimension
of the LCP, NI, ND are the total number of pivot steps, iterations and
nodes required by the enumerative algorithms and 7T is the total C PU time
in seconds for solving the LC'P. Finally NGLCP corresponds to the num-
ber of GLCPs (including the first that does not contain the constraint in
A) that have been processed by the algorithm ENBLP.

The results displayed in Table 1 show that the enumerative algorithm
ENQ@P based on the QP formulation has been able to process all the
NP-hard LCPs in a reasonable amount of time. Furthermore this algo-
rithm performs in general better than the alternative enumerative algorithm
ENBLP that is based on the BLP formulation. However, this latter pro-
cedure also performs well in general. A nice feature of the performance of
this latter technique EN BLP is the consistently small number of GLC' Ps
that have to be processed in order to solve the LC'P.

Table 1 also includes the results of the performance of the branch-and-
bound method ENMILP (OSL code, IBM Corporation (1992)) for pro-
cessing the M ILP formulation of the LC'P discussed in Section 3. In this
experience we have set a limit of 50000 pivot steps and 14400 C PU seconds
for the execution of this program. We have written > 50000 and > 14400 in
the columns NI and T whenever the corresponding limit has been achieved
without terminating the execution of the program. The numerical results
clearly indicate that a branch-and-bound methodology is not appropriate
for processing the M ILP associated with the LC P, particularly when the
dimension of the LCP increases. This fact seems to have been noticed by
the authors of the MILP formulation of the LC' P, as they recommend a
subgradient optimization algorithm for processing this MILP, Sherali et
al. (1998).

It is also important to add that we have been trying to process all the
LCPs by two well-known direct and iterative methods, namely Lemke’s
method and an interior-point algorithm using the codes described in Judice
and Faustino (1988a) and Judice et al. (1996) respectively. These two al-
gorithms have never been able to solve these LC'Ps. The same conclusions
should be achieved for the extensions of these algorithms to find stationary
points of noncovex programs discussed in Conn et al. (2000), Gay et al.
(1998), Murty (1988) and Vanderbei and Shanno (1999).

This interesting conclusion indicates that there exists a clear gap be-
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PROBLEMS | N ENQP ENBLP ENMILP

NI [ T [ND|vetcp[ NI | T [ND|| NI | T

22 || 17 [0,06] 5 4 338 [ 0,56 | 99 || 3430 9,61
FORMI-NSD | 52 || 237 |0,50| 55 7 848 | 1,44 | 370 || 4391 71,90
25% 102 38 |0,16] 4 7 | 2481 | 3,73 | 554 || 13971 | 1028,87
152 (| 113 (0,45 | 23 4 |1231 291 | 317 || 22043 | 3372,81

22 |[ 21 [0,05] 5 5 60 | 005 12 || 626 3,52
FORMI-NSD | 52 || 150 |0,43| 35 5 659 | 0,94 | 135 || 7583 | 156,43
50% 102 104 [0,38] 16 4 133 | 0,50 | 14 || 29056 | 3607,67
152 || 174 0,61 32 5 | 3221|688 | 764 || 43960 | 7164,21

22 || 140 0,22 31 1 343 | 0,6 | 89 || 631 3,34
FORMI-NSD | 52 || 98 |0,16| 14 6 | 3765 | 4,09 [1117| 3236 70,30
75% 102 (| 272 0,72 66 5 | 1058 | 1,92 | 275 || 20209 | 3036,23
152 570 [1,49| 156 || 5 | 1711 | 3,88 | 455 || >50000 | 10965,49

22 |[ 17 [0,00] 5 4 336 | 0,55 | 99 || 1363 4,06
FORMI-IND | 52 || 237 |0,50 | 55 7 848 | 1,31 | 370 || 2065 31,26
25% 102 38 [011] 4 7 | 2479 | 3,90 | 554 || 26546 | 2080,25
152 (| 113 0,50 | 23 4 | 1231|268 | 317 || 21519 | 432845

22 |[ 21 [0,00] 5 5 59 | 0,11 | 12 || 984 2,47
FORMI-IND | 52 || 150 0,44 | 35 5 659 | 0,89 | 135 || 2841 33,45
50% 102 || 104 0,33 | 16 4 133 | 0,38 | 14 || 8870 | 745,40
152 || 174 0,67 32 5 | 3119 | 6,86 | 764 || 24338 | 13896,48

22 || 140 0,16 31 1 343 [ 0,6 | 89 || 1918 5,27

FORMI-IND | 52 || 98 [0,17]| 14 6 | 3765 | 4,22 [1117]| 4702 87,61
75% 102 (| 272 0,54 66 5 | 1058 | 1,57 | 275 || 9741 | 1029,75
152 570 [1,37]156 || 5 | 1711 | 4,00 | 455 || >50000| 13330,47

22 |[ 35 [0,06] 5 5 | 1230 | 0,99 | 369 || 780 4,78

FORM2 |52 || 39 |0,00] 5 4 | 1236 | 1,26 | 155 || 9916 | 462,69
25% 102 37 |0,17] 2 3 773 | 1,32 | 102 || 37648 | 9127,08
152 56 [0,22] 2 3 | 1898 | 4,57 | 420 || >50000 | >14400,00

22 |[ 343 [0,39| 46 6 634 | 0,71 | 125 || 506 3,19

FORM2 |52 || 78 |0,16] 8 3 431 | 0,71 | 74 || 12366 | 455,72
50% 102 51 [0,00] 1 4 178 | 0,66 | 11 ||>50000| 11811,39
152|| 83 [0,33] 1 7 | 1347 | 3,02 | 203 || >50000 | >14400,00

22 [ 23 [0,00] 2 2 106 | 0,11 | 20 || 1249 9,34

FORM2 |52 || 58 |0,05| 3 2 232 | 027 | 46 || 25875 | 885,62
75% 102 81 [050] 1 3 861 | 1,70 | 184 || >50000 | 7571,64
152 || 117 [0,39| 2 6 | 1530 | 5,34 | 551 || 11000 |>14400,00

22 [ 11 [0,00] 1 1 35 0,00 1 12 0,17

FORM3 | 50 || 20 |0,00| 1 1 73 1000 1 | 2688 24,33
25% 102 153 [022] 7 2 177 [ 061 | 8 || 220964 | 1082,20
150 || 666 |0,82| 24 3 |11614 (16,30 | 1494 || >50000 | 6570,74

22 [ 25 [0,00] 4 3 155 | 017 | 34 || 404 0,66

FORM3 | 50 || 122 |0,00| 8 3 | 4678 | 3,35 [1092 || 3506 33,17
50% 102 || 897 (0,70 | 89 3 | 1762 | 1,82 | 143 || 5935 | 219,15
150 || 763 0,72 | 37 4 876 | 1,42 | 48 | >50000| 9788,54

22 |[ 40 [0,00] 5 2 277 [ 0,49 | 57 || 615 1,15

FORM3 | 50 || 212 0,28 17 7 | 1138 | 1,04 | 170 || 4356 42,13
75% 102 (| 687 0,71 19 3 428 | 0,82 | 28 || 27381 | 1444,32
150 || 1996 | 1,98 | 33 4 | 1824 | 2,25 | 90 || >50000| 6875,35

Table 1: Performance
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tween the complexity of these LC'Ps and of LC'Ps with P and PSD ma-
trices.

7 Conclusions

In this paper we have investigated the solution of NP-hard LCPs as-
sociated with Knapsack problems. This study has indicated that direct
and iterative methods such as interior-point or Lemke’s methods are not
appropriate to process these LC'Ps. Special versions of these algorithms,
Conn et al. (2000), Gay et al. (1998), Murty (1988) and Vanderbei and
Shanno (1999), can successfully be used for computing stationary points of
the quadratic program (1.1) that has been associated to the LC'P. However
such points are not in general solutions of the LCP. On the other hand, two
enumerative methods based on quadratic and bilinear programming formu-
lations of the LC P have shown to perform well and should be recommended
to process difficult linear complementarity problems taken from Knapsack
problems or any other source.

We believe that both the enumerative techniques discussed in this paper
can still be improved in order to process more efficiently NP-hard LCPs.
An implementation of the enumerative QP algorithm based on an active-
set methodology may become more efficient than the one discussed in this
paper that relies on simplex pivot steps. On the other hand active-set
and augmented lagrangian techniques may be appropriate to process the
GLCPs(\) that are required by the enumerative BLP algorithm. These
two topics will certainly deserve our attention in the next future.

Appendix - List of Abbreviations

Classes of Matrices:

PSD (Positive Semi-Definite): A € PSD < z7 Az > 0 for all x.
NSD (Negative Semi-Definite): A € NSD < —A € PSD.
IND (Indefinite): A € IND < A ¢ PSD and A ¢ NSD.

P(Py) A€ P(Py) < all principal minors of A are positive (nonnegative).
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Optimization Problems:

LCP: Linear Complementarity Problem.

GLCP: General Linear Complementarity Problem.
QP: Quadratic Programming.

BLP: Bilinear Programming.

MIBLP: Mixed Integer Bilinear Programming.
MILP: Mixed Integer Linear Programming.

MPEC: Mathematical Programming with Equilibrium Constraints.
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