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Abstract

The research summarized in this paper addresses the directional instability of finite dimensional systems with uni-

lateral frictional contacts. Conditions for the occurrence of this divergence type instability are discussed, comple-

mentarity formulations are developed, and numerical procedures are proposed for the solution of the corresponding

non-smooth stability eigenproblems. Various examples are analytically or numerically solved and discussed, namely

some finite element examples that have instability modes involving evolution towards slip or stick in different portions

of the contact surface.
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1. Introduction

In continuation of the previous works [19,20], the present paper addresses the directional instability of

equilibrium states of finite-dimensional non-linear elastic systems with unilateral frictional contacts.

The study of instabilities and bifurcations in systems with friction has been motivated by many exper-

imental observations related to technological problems or industrial processes, like the squeal of brakes

[10,11] or rubber/glass contacts [39] and the intermittence of granular flows [9]. Experimental observa-

tions of stress waves [32,40] in a rectangular polyurethane block pressed against an araldite surface
motivated the theoretical and numerical studies in [19,31]. The practical importance of the instability

phenomena in frictional contact systems has led to numerous studies, referenced, for instance, in [6,13,

14]. In the last decades the scientific community has also become progressively aware of the fact that

friction-induced instability phenomena are essential ingredients of the source mechanism of earthquakes

[4,34–36].
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In what concerns divergence type instabilities with classical unilateral contact and Coulomb�s friction
law, the first theoretical results were due to Chateau and Nguyen [5], who established a sufficient condition

for the absence of this type of instability for a continuous elastic body. An important study on the stability

of finite dimensional non-linear elastic systems with unilateral contact but without friction was due to

Klarbring [15]. Klarbring [15,18] and Bj€oorkman [3] studied the occurrence of bifurcations and several

critical points in quasi-static trajectories of discrete systems with frictionless contacts. Mr�ooz and Plaut [23]

studied the stability of elastic structures with friction assuming known normal reactions, which eliminated

the non-associative character of the general problems of contact with friction. Some interesting finite

dimensional examples that do not have that limitation are presented in [24]. The study of flutter instabilities
in frictional contact systems is outside the scope of the present paper and the corresponding references will

not be mentioned here.

The similarities between the mechanics of structures with contact and friction and the mechanics of

elastic–plastic structures furnishes an additional motivation for the study of the stability of frictional

systems. Recent surveys on bifurcation and stability of dissipative solids can be found in [28,30]. Some

aspects of the cross fertilization between that field and the bifurcation and stability of frictional contact

systems are cited in [21].

The main contributions of the present paper to the study of directional instabilities in finite dimensional
frictional contact problems are the following:

• their formulation as non-smooth (complementarity) eigenproblems;

• the transformation of these into mixed complementarity problems (MCPs), and the numerical resolution

of the latter with the PATH Mathematical Programming algorithm;

• the finding and preliminary discussion of modes of directional instability in finite element systems con-

taining portions of the contact surface that evolve towards sliding and others towards stick;

• the establishment of a relation between bifurcation of quasi-static trajectories and directional instability
in frictional contact systems that takes into account the intrinsic non-symmetry of these problems and

thus improves on earlier results.

The organization of the rest of this paper is as follows. The next section deals with the kinematics of

finite dimensional plane mechanical systems in the presence of rigid curved fixed obstacles. Section 3 is

devoted to the governing equations for smooth dynamic motions and static equilibria, and Section 4 to the

relevant sets of the admissible kinematic and static variables. The study of the directional instability of

equilibrium states involves the analysis of the existence of dynamic solutions with initial conditions arbi-
trarily close to such equilibrium states and diverging from them in a non-oscillatory manner. In Section 5,

this kind of instability is studied for non-linear elastic systems by analysing the directionally linearized

system in the neighborhood of such static equilibrium states. This leads to the formulation and resolution

of non-smooth eigenproblems. Section 6 is devoted to their formulation as complementarity eigenproblems,

followed by their transformation into mixed complementarity problems (MCPs) and their numerical

solution with the PATH Mathematical Programming algorithm. Section 7 presents instability modes for

finite element models of, namely, a tribology experiment and the well known single particle example of

Klarbring. Section 8 relates the directional instability problem and the quasi-static first order rate problem,
by using their complementarity formulations.
2. Kinematics

In this study we consider a plane holonomic finite dimensional non-linear elastic system. At each time t
its configuration is described by the vector XðtÞ 2 RN of generalized coordinates, which are independent in



Fig. 1. Sign convention for the obstacle curvature v.
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the absence of unilateral constraints. A finite number of particles of the system may have unilateral Contact
with smooth curved fixed obstacles: the labels p of such particles are grouped in the set PC � N

(#PC ¼ nC). For each particle p candidate to contact, the corresponding obstacle is identified by the set of

vectors X 2 RN such that UpðXÞ ¼ 0, where Up is a smooth scalar function, np and tp denote the unit vectors

that are normal and tangential to the obstacle, respectively; the vector np points towards the interior of the

obstacle. The curvature of the obstacle p is denoted by vp, whose sign is given in Fig. 1. The components of

the velocity and reaction vectors of all contact candidate particles in the local bases ðnp; tpÞ are grouped in

the vectors v and r, which belong to R2nC . The relations between the vectors v and r and their generalized

counterparts V and R are expressed by v ¼ GV and R ¼ GTr [20]. It is assumed that

the lines of the 2nC � N matrix G are linearly independent: ð1Þ
Assumption (1) guarantees that: (i) any contact velocity vector v can be obtained from a vector of gen-

eralized velocities by means of the kinematic transformation v ¼ GV; and (ii) a vanishing vector of gen-

eralized reactions R implies a vanishing vector r of reactions at the contact candidate particles. In these

circumstances the linear map GðXÞ : RN ! R2nC is subjective, has a right inverse, and it is possible to

perform a change of variables [20]

V ¼ TeVV; ð2Þ
where the matrix T 2 RN�N [20] is non-singular, the transformed vector of generalized velocities eVV has the

decomposition eVV ¼ ½VT
F vT �T, the nF generalized velocities in VF (nF ¼ N � 2nC) are Free from any

kinematic unilateral constraint, and v groups the normal and tangential velocities of the contact candidate
particles. Similarly, the transformed vector of generalized reactions eRR has the decompositioneRR ¼ ½ 0T rT �T, where 0 is the null vector of dimension nF . Note that when the displacements normal and

tangential to (flat) obstacles of all the contact candidate particles are taken as generalized coordinates (as in

some finite element discretizations), the matrix G is a boolean matrix.
3. Governing dynamic and static equations

For any contact candidate particle p 2 PC, the classical unilateral contact conditions and the friction law

of Coulomb at some time tP 0 are

UpðXðtÞÞ6 0; rpnðtÞ6 0; UpðXðtÞÞrpnðtÞ ¼ 0 ð3Þ
and

rpt ðtÞ 2 lrpnðtÞr½vpt ðtÞ�; ð4Þ
respectively; lP 0 is the coefficient of friction, r½�� denotes the multi-valued application such that, for each

x 2 R,

r½x� ¼ x=jxj; if x 6¼ 0;
½�1;þ1�; if x ¼ 0:

�
ð5Þ
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The friction law can be alternatively written in the equivalent form of an inequality plus an equality:

jrpt ðtÞj þ lrpnðtÞ6 0

rpt ðtÞvpt ðtÞ � lrpnðtÞjv
p
t ðtÞj ¼ 0:

�
ð6Þ

During the smooth portions of its dynamic evolution the system is governed by the Lagrange equations

MðXðtÞÞ€XXðtÞ ¼ FðXðtÞ; _XXðtÞÞ þGTðXðtÞÞrðtÞ; ð7Þ
where tP 0 is the time variable, M is the N � N symmetric positive definite (PD) mass matrix, F is the

vector of constant external applied forces, internal elastic forces, and, in general mechanical systems,

quadratic terms involving the generalized velocities, (Æ) denotes the time derivative and XðtÞ and rðtÞ are the
vectors of the unknown generalized coordinates and contact reactions at time t. During smooth dynamic

evolutions, Eqs. (7) are satisfied together with the laws (3) and (4) (or (6)) and with the appropriate initial

conditions on the configuration and on the velocity. An equilibrium state of the system is characterized by a
configuration vector X0 and a reaction vector r0 that satisfy (7), (3) and (4) with _XXðtÞ ¼ €XXðtÞ � 0.
4. Some relevant sets of admissible variables

The set of admissible configurations is defined by

KX¼
: fX 2 RN : UpðXÞ6 0 for all p 2 PCg: ð8Þ

For each X 2 RN and each r 2 KrðXÞ the decomposition of the set PC of contact candidate particles is

introduced

PC ¼ Pf ðXÞ [PzðX; rÞ [PdðX; rÞ [PsðX; rÞ;

Pf ðXÞ¼: fp 2 PC : UpðXÞ < 0g ½particles currently not in contact ðfreeÞ;#Pf ¼ nf �;

PzðX; rÞ¼: fp 2 PC : UpðXÞP 0; rpn ¼ rpt ¼ 0g
½particles in contact with zero reaction ðgrazing contactÞ;#Pz ¼ nz�;

PdðX; rÞ¼
: fp 2 PC : UpðXÞP 0; rpn < 0 and jrpt j < �lrpng
½particles in contact with reaction strictly inside the friction cone

and consequent vanishing ðrightÞ displacement rate;#Pd ¼ nd �;

PsðX; rÞ¼
: fp 2 PC : UpðXÞP 0; rpn < 0 and jrpt j ¼ �lrpng
½particles in contact with non-vanishing reaction on the boundary of the friction cone

and consequent possible slip in the near future;#Ps ¼ ns�:

In what concerns the reaction forces, we define, for each X 2 RN , the (configuration dependent) set of

admissible reaction forces:

KrðXÞ¼
: fr 2 R2nC : rpn ¼ rpt ¼ 0 for all p 2 Pf ðXÞ; rpn 6 0 and jrpt j þ lrpn 6 0 for all p 2 PC

such that UpðXÞP 0g: ð9Þ

For X 2 RN and r 2 KrðXÞ we define the (configuration and reaction dependent) set of admissible right

velocities,

KvðX; rÞ¼
: fv 2 R2nC : vn 6 0; in Pz; vn ¼ 0 and r½rt�vt 6 0; in Ps; vn ¼ vt ¼ 0; in Pdg: ð10Þ
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Having in mind (9), the (configuration and reaction dependent) set of admissible right reaction rates is defined

by

KwðX; rÞ¼: fw 2 R2nC : wn ¼ wt ¼ 0; in Pf ; wn 6 0; jwtj þ lwn 6 0; in Pz; r½rt�wt þ lwn 6 0; in Psg:
ð11Þ

As done in (10) and (11), the dependency of some quantities on the contact particle p is omitted in some

circumstances, i.e. vpn, v
p
t , wp

n and wp
t are sometimes abbreviated to vn, vt, wn and wt, respectively. The def-

initions of the setsKvðX; rÞ andKwðX; rÞ take into account the conditions that involve solely the kinematic

variables v and solely the static variables w. For known configurations and reactions, the right displacement

and reaction rates have to satisfy other conditions than those expressed in the definitions of KvðX; rÞ and
KwðX; rÞ. Such conditions are complementarity conditions: vnwn ¼ 0 and wtvt � lwnjvtj ¼ 0 in Pz and

ðr½rt�vtÞðr½rt�wt þ lwnÞ ¼ 0 in Ps that involve both velocity and reaction rates. These conditions may be

written in the form [19]

w � gðvÞ ¼ 0 ð12Þ
where the map g : R2nC ! R2nC results from the maps gp : R2 ! R2 given, for each contact candidate

particle p, by

gpðvpÞ ¼
vpn � ljvpt j

vpt

� �
for p 2 PzðX; rÞ;

gpðvpÞ ¼
vpn þ lr½rpt �vpt

vpt

� �
for p 2 PsðX; rÞ;

gpðvpÞ ¼
vpn
vpt

� �
for p 2 Pf ðXÞ:

ð13Þ
5. The study of the directionally linearized system

5.1. The directional instability eigenproblems

In the neighborhood of the equilibrium state, and for admissible directions of the increments of the

generalized coordinates and of the contact reactions, respectively dXðtÞ and drðtÞ,

GðX0ÞdXðtÞ 2 KvðX; rÞ; drðtÞ 2 KwðX; rÞ; drðtÞ � gðGðX0ÞdXðtÞÞ ¼ 0; ð14Þ

the equations of motion (7) have the following directionally linearized form

MðX0Þd€XXðtÞ þ KðX0; r0ÞdXðtÞ ¼ GTðX0ÞdrðtÞ: ð15Þ

The tangent stiffness matrix K 2 RN�N has elastic contributions (KUðXÞ), geometric stiffness contributions

due to the constant external applied forces (KXðX;KÞ), and contributions from obstacle curvature and
contact reactions (KCðX; rÞ) [17,20]

K ¼ KU ðXÞ þ KXðX;KÞ þ KCðX; rÞ; ð16Þ
where

KC
ij ¼ �

X
p2Pc

ðrpnnp
�

þ rpt t
pÞ o2xp

oXioXj
� vðrpnG

p
tiG

p
tj � rpt G

p
niG

p
tjÞ
�

ð17Þ

and xpðXÞ is the position vector of particle p in some fixed orthonormal reference frame.
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In [19] it is shown that

Proposition 1 (Directional instability of the linearized system). For t in some right neighborhood of some
instant s (t 2 ½s; sþ Ds½), there exist dynamic solutions of the form

dXðtÞ ¼ aðtÞV 2 RN ; drðtÞ ¼ bðtÞw 2 R2nC ; ð18Þ
where V and w define constant directions in the sets of right admissible displacement and reaction rates at the
equilibrium state ðX0; r0Þ, the function of time a is twice continuously differentiable, a and _aa are non-negative
and non-decreasing in the same interval, the initial values aðsÞP 0, _aaðsÞP 0 are arbitrarily small, the function
b is continuous, non-negative and non-decreasing, if and only if there exists a number kP 0 and two vectors V
in RN , V 6¼ 0 and w in R2nC such that

ðk2Mþ KÞV ¼ GTw; ð19Þ

GV 2 KvðX0; r0Þ; w 2 KwðX0; r0Þ; w � gðGVÞ ¼ 0: ð20Þ
In these circumstances

bðtÞ ¼ aðtÞ ¼ aðsÞ cosh½kðt � sÞ� þ _aaðsÞ
k

h i
sinh½kðt � sÞ�; if k > 0;

aðsÞ þ _aaðsÞðt � sÞ; if k ¼ 0;

(
ð21Þ

and the equilibrium state ðX0; r0Þ of the linearized system is unstable by divergence.

The problem of the directional instability of the linearized system is formulated in (19) and (20) as a

mixed explicit complementarity eigenproblem; inclusion or variational inequality formulations for the same

problem were presented in [19]. Note that when a transformation of variables (2) is assumed to have been

performed, so that the normal and tangential contact velocities are already generalized velocities of the

system, the complementarity eigenproblems (19) and (20) may be equivalently written as

Find kP 0 and ðeVV;fWWÞ 2 RN � RN , with eVV 6¼ 0, such that

ðk2fMM þ eKKÞeVV ¼ fWW; ð22Þ

eVV ¼
eVVF

v

� �
6¼ 0; v 2 KvðX0; r0Þ; fWW ¼ 0

w

� �
; w 2 KwðX0; r0Þ; ð23Þ

w � gðvÞ ¼ 0; ð24Þ

where fMM ¼ TTMT and eKK ¼ TTKT. Moreover, the dimension of the problem can be reduced by elimination

of the two degrees of freedom of the stick particles (Pd) and of the normal degree of freedom of the particles

in contact with non-vanishing reaction on the friction cone (the impending slip particles Ps). Then we

perform the transformation of variables

N¼:
Nf

Nst

Nzn

Nzt

8>><>>:
9>>=>>; ¼

VF

vf

� �
Ssvst
�vzn
vzt

8>>>><>>>>:

9>>>>=>>>>; 2 RN�
; W¼:

Wf

Wst

Wzn

Wzt

8>><>>:
9>>=>>; ¼

0

0

� �
Sswst � lswsn

�wzn

wzt

8>>>><>>>>:

9>>>>=>>>>; 2 RN�
; ð25Þ

where Ss ¼ �diagðr½r0pt �; p 2 PsðX0; r0ÞÞ and N � ¼ nF þ nf þ ns þ 2nz is the number of degrees of freedom

that may be (right) active, which includes all the free degrees of freedom (F ) and those of the contact
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candidate particles that are currently free (f ), plus the tangential degrees of freedom (t) of the particles (s) in
impending slip, as well as both degrees of freedom (n and t) of the particles in contact with zero reaction (z).
The eigenproblem (19) and (20) is then

Find kP 0 and ðN;WÞ 2 RN� � RN�
, with N 6¼ 0, such that

ðk2M� þ K�ÞN ¼ W; ð26Þ

Wf ¼ 0; 06Nst ? Wst P 0; 06Nzn ? Wzn P 0; ð27Þ

wp
zt 2 �lzw

p
znr½Np

zt�; p 2 Pz: ð28Þ

The matrices M� and K� are linear pencils of matrices in the coefficient of friction at the particles in

impending slip,

M� ¼ M�ðlsÞ ¼ M0 � lsM1; K� ¼ K�ðlsÞ ¼ K0 � lsK1: ð29Þ

The structure of the above non-symmetric pencils of matrices is the same and is illustrated below for the

mass matrix

M0 ¼

fMMf ;f
fMMf ;stSs �fMMf ;zn

fMMf ;zt

Ss
fMMst;f Ss

fMMst;stSs �Ss
fMMst;zn Ss

fMMst;zt

�fMMzn;f �fMMzn;stSs
fMMzn;zn �fMMzn;ztfMMzt;f

fMMzt;stSs �fMMzt;zn
fMMzt;zt

2666664

3777775; ð30Þ

M1 ¼

0 0 0 0fMMsn;f
fMMsn;stSs �fMMsn;zn

fMMsn;zt

0 0 0 0

0 0 0 0

26664
37775: ð31Þ
5.2. Equivalence to a set of generalized linear eigenproblems together with some inequalities

It is important to observe that the resolution of the eigenproblem (19) and (20) or (26)–(28) is equivalent

to the resolution of a set of classical generalized linear eigenproblems, together with the verification of some

inequalities. These various linear eigenproblems are obtained by considering all possible combinations of

near future states of the contact candidate particles. Actually, since the particles in Pf ðX0Þ (currently free)

and in PdðX0; r0Þ (currently stuck) will remain so in the near future, only the combinations of possible near

future states of the particles inPzðX0; r0Þ andPsðX0; r0Þ need to be considered. The total number of classical

generalized linear eigenproblems that may be constructed in this manner is thus 2ns � 4nz , because a contact
particle in Ps has two possible near future evolutions (stick and positive or negative slip, opposite to the

static tangential reaction), while a particle in Pz has four possible near future evolutions (free, positive slip,

negative slip and stick). Assuming now that one combination of the above near future evolutions holds, the

transformations of variables

eVV ¼ VF

v

� �
¼

vfree
vslip t
vslip n
vstick

8>><>>:
9>>=>>; ¼

Nfree

SslipNslip t

0

0

8>><>>:
9>>=>>;;

Nfree

Nslip t

� �
¼ N 2 RN 0

; ð32Þ
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0

0

� �
¼ W ¼ Wfree

Wslip t

� �
¼ 0

Sslipwslip t � lslipwslip n

� �
¼ I 0 0 0

0 Sslip �lslipI 0

� � 0
wslip t

wslip n

wstick

8>><>>:
9>>=>>; 2 RN 0 ð33Þ

are applied. In this manner, both degrees of freedom of the particles in contact with reaction strictly inside

the friction cone (the stick particles), as well as the normal (n) degrees of freedom of the slip particles are

eliminated, and the generalized linear eigenproblem

ðk2M0 þ K0ÞN ¼ 0 ð34Þ
is obtained, where M0 and K0 have the structure

M0 ¼
fMMfree;free

fMMfree;slip tSslip

Sslip
fMMslip t;free Sslip

fMMslip t;slip tSslip

" #
� lslip

0 0fMMslip n;free
fMMslip n;slip tSslip

� �
: ð35Þ

Matrices M0 and K0 are, respectively, the effective mass matrix and the effective stiffness matrix corre-

sponding to the assumed combination of the near future evolutions of the contact particles. The p diagonal

component sp of the diagonal matrix Sslip, refers now to a particle that is assumed to slip: sp has necessarily
the value �r½r0pt � if p 2 PsðX0; r0Þ, and has one of the values +1 or )1, if p 2 PzðX0; r0Þ. In order that the

solutions of (34) do solve the original eigenproblem (19) and (20), or (22)–(24), or (26)–(28), the following

inequalities must be satisfied, in addition to the equalities taken into account by the construction (32) and
(33) [recall the inequalities in the admissible sets (10) and (11)]:

for the particles p in Pz that were assumed to become

free : �vpn P 0; ð36Þ

slip : spvpt P 0; �wp
n P 0; ð37Þ

stick : �jwp
t j � lwp

n P 0; ð38Þ
for the particles p in Ps that were assumed to become

slip : spvpt P 0; ð39Þ

stick : spwp
t � lwp

n P 0: ð40Þ
5.3. The occurrence of directional instabilities: sufficient conditions and necessary conditions

The set of (homogeneous) equations and conditions (22)–(24) or (26)–(28) has always the trivial solution.

In what conditions is that trivial solution unique? To study this it is convenient to rewrite (28) in the form

Wzt ¼ wzt ¼ lzSzwzn ¼ �lzSzWzn;

Sz ¼ diagðspÞ; sp 2 ½�1;þ1�; p 2 Pz;

Np
zt > 0 ) sp ¼ þ1; Np

zt < 0 ) sp ¼ �1; p 2 Pz;

ð41Þ

and the governing equation (26) in the form

ðk2M� þ K�Þ

Nf

Nst

Nzn

Nzt

8>><>>:
9>>=>>; ¼

I 0 0 0

0 I 0 0

0 0 I 0

0 0 �lzSz I

2664
3775

0

Wst

Wzn

0

8>><>>:
9>>=>>;: ð42Þ
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The coefficient matrix of the right-hand side is non-singular, so that the previous algebraic equation is

equivalent to

0

Wst

Wzn

0

8>><>>:
9>>=>>; ¼

I 0 0 0

0 I 0 0

0 0 I 0

0 0 lzSz I

2664
3775ðk2M� þ K�Þ

Nf

Nst

Nzn

Nzt

8>><>>:
9>>=>>;; ð43Þ

where the components of the vectors involved satisfy

Np
stw

p
st ¼ 0;

Np
znw

p
zn ¼ 0:

Then, if all the pencils of matrices constructed from k2M� þ K� with kP 0 as indicated in the next prop-

osition are of class P [7,25], the only solution is ðN;WÞ ¼ ð0; 0Þ. The next proposition gives then a sufficient

condition for the linearized system not to be directionally unstable.

Proposition 2 (Uniqueness). A sufficient condition for the set of equations and conditions of the directional
instability problem (26)–(28) to have only the trivial solution is that, for kP 0 and for any
Sz ¼ diagðspÞ; sp 2 ½�1;þ1�; p 2 Pz, the non-symmetric matrix below is a P matrix:

I 0 0 0

0 I 0 0

0 0 I 0

0 0 lzSz I

2664
3775½k2M�ðlsÞ þ K�ðlsÞ�: ð44Þ

In the linear elasticity case this holds if ls and lz are sufficiently small and the obstacle curvature v is suf-
ficiently small when positive.

An interval matrix is a matrix whose components are intervals (for further details see [22,26]). When
this definition is used, the usual matrices, whose components are real numbers, are called point matrices.

Since each of the real numbers sp; p 2 Pz, may assume an arbitrary value in the interval ½�1;þ1�, the set

of all matrices obtained from (44) when all sp run over all their admissible values may be considered

an interval matrix, in which the generic point matrix Sz ¼ diagðsp; p 2 PzÞ; sp 2 ½�1;þ1� gives rise to a

nz � nz diagonal interval matrix Sz, whose diagonal components are the intervals ½�1;þ1�ðSz ¼
diagð½�1;þ1�ÞÞ. With these definitions the uniqueness condition in Proposition 2 can be re-phrased as:

the directional instability problem (26)–(28) has only the trivial solution if, for any kP 0, the interval matrix

pencil

IzðlzÞðk2M�ðlsÞ þ K�ðlsÞÞ ð45Þ
is of class P , where

IzðlzÞ ¼

I 0 0 0
0 I 0 0

0 0 I 0

0 0 lzSz I

2664
3775: ð46Þ

Of course that an interval matrix is said to be of class P if and only if all the point matrices in the interval

matrix are of class P . We can also say that the directional instability problem (26)–(28) has only the trivial

solution if, for any kP 0, the matrix pencil k2M�ðlsÞ þ K�ðlsÞ is of class P and lz is sufficiently small. We

observe that, for the pencil k2M�ðlsÞ þ K�ðlsÞ to be of class P it is not sufficient that the matricesM� and K�
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be of class P , because the sum of two matrices of class P is not, in general, a matrix of class P . However, if

the mass matrix fMM is a diagonal (necessarily PD) matrix then the matrix M�ðlsÞ is also diagonal and PD,

and its sum with K� is also P if the latter matrix is P . A matrix A is positive definite (PD) if and only if

xTAx > 0 for any x different from 0. We conclude that when the matrix fMM is diagonal, the matrix K� is P ,
and lz is sufficiently small, then the linearized system is not directionally unstable.

Proposition 2 and subsequent statements are expressed in terms of the property P , which takes into

account the non-symmetry of the matrices involved. Other conditions that do not take into account that

non-symmetric (i.e. non-associative) character of the Coulomb friction law may be deduced [5,19,29]: doing
the inner product of (26) with N, it is easy to conclude that a necessary condition for the occurrence of a

directional instability of the linearized system is that

the matrix M�ðlsÞ is not PD or the matrix K�ðlsÞ is not PD: ð47Þ
However, the conditions expressed in terms of the property P are sharper, in the sense that they yield less
conservative (higher) estimates for the coefficient of friction of the transition to directional instability.

On the other hand, a sufficient condition for the occurrence of a directional instability for the linearized

system is the following [19]

If there is a kP 0 and N 2 RN�
, with N 6¼ 0, such that

ðk2M� þ K�ÞN ¼ 0; ð48Þ

Nst P 0; ð49Þ

Nzn P 0; ð50Þ

then the linearized system is directionally unstable.

Note that conditions (48)–(50) are a particular case of (26)–(28) that results from a priori assuming that

the solution satisfies: (i) Wst ¼ 0, i.e. the reactions of the contact particles in impending slip (the s particles)
remain on the boundary of the friction cone, which means that those particles remain in impending slip

or do initiate sliding and (ii) Wzn ¼ 0, i.e. the reactions of the contact particles in contact with zero reac-
tion (the z particles) will remain equal to 0, which means that those particles remain in contact with zero

reaction or loose contact. Whenever they exist, the solutions of (48)–(50) will be called all-slip solutions.

Note that (26)–(28) is a mixed complementarity-inclusion eigenproblem while (48)–(50) is a much simpler

problem: a classical generalized linear eigenproblem with a set of inequalities (49) and (50) to be verified

a posteriori.

In numerical computations of quasi-static evolutions it is observed that the necessary condition (47) is

satisfied (significantly) earlier than the sufficient condition (48)–(50) [19]. The reason that motivates the

computational study of the original problem (19) and (20) (or (26)–(28)) is the existence of examples, like
the one presented in the next subsection, in which the necessary condition (47) is satisfied, the sufficient

condition (48)–(50) is never satisfied, and there are solutions to the problem (19) and (20) or (26)–(28) that

do not involve the slip of all the contact particles in impending slip, i.e., solutions that do not satisfy the

sufficient condition (48)–(50).

5.4. An example of a non-all-slip instability mode

The model schematically represented in Fig. 2 consists of a four node bilinear finite element made of a
linear elastic isotropic material in a plane stress state. The two relevant non-dimensional parameters are the

aspect ratio b ¼ b=a and the Poisson ratio of the material m. We assume that, at the equilibrium configu-

ration, both nodes C and D are in impending slip to the left (Pz ¼ ;). The eigenproblem (26)–(28) at the

transition value k ¼ 0 is governed by



Fig. 2. Bilinear finite element with two nodes in impending slip to the left.
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37775 NC

st

ND
st
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( )
; ð51Þ

06
NC

st

ND
st

( )
? wC

st

wD
st

( )
P 0: ð52Þ

where ððNC
st;N

D
stÞ; ðw

C
st;w

D
stÞÞ 2 R2 � R2, ðNC

st;N
D
stÞ 6¼ ð0; 0Þ, and the friction coefficient lP 0 at that transition

is also an unknown. Fig. 3 represents the regions, in the parameter plane ðb; mÞ, for the occurrence of the

two possible instability modes that solve (51) and (52): SLIP–STICK (left slip of node C and stick of node

D) and SLIP–SLIP (left slip of both the contact nodes C and D). These two regions are separated by a curve

defined by the equation 5m2 � 8ð1þ 2b2Þmþ 3 ¼ 0. For ðb; mÞ on this curve limb!þ1 m ¼ 0, which means that

the horizontal coordinate axis is an asymptote. For ðb; mÞ in the region of Fig. 3 below the curve, the onset
of SLIP–STICK directional instability occurs for the coefficient of friction

l ¼
2bþ 1�m

b
3
4
ð1þ mÞ ; ð53Þ
SLIP-SLIP

transition to
Possible

SLIP-STICK

transition to
Possible

0
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Fig. 3. Regions of the space of parameters m–b for the occurrence of SLIP–SLIP or SLIP–STICK instability modes.
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and there is no possibility of transition to the SLIP–SLIP kind of instability. For ðb; mÞ in the region of Fig.

3 above the curve, the onset of SLIP–SLIP directional instability occurs for the coefficient of friction

l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8þ 1�m

b2

6m

s
; ð54Þ

and the STICK–SLIP kind of directional instability is not possible. For parameters ðb; mÞ on the curve of

Fig. 3, the two instability modes of the neighboring regions coalesce in a degenerate mode with

ND
st ¼ wD

st ¼ 0. But the main conclusion to extract from this example is that in the parameter region ðb; mÞ
below the curve of Fig. 3 there is no all-slip (SLIP–SLIP) solution satisfying the sufficient condition (48)–(50),

but the instability eigenproblem (26)–(28) does have a SLIP–STICK solution of the type represented in Fig. 2,

for values of l greater than the one given in (53).
6. Two mixed complementarity eigenproblems and their numerical solution

6.1. The problems MCEIP-k2 and MCEIP-l

In the case of Pz ¼ ; the problem (26)–(28) leads to the mixed complementarity eigenproblem in k2

(MCEIP-k2)
Find kP 0 and ðN;WÞ 2 RN� � RN�

, with N 6¼ 0, such that

ðk2M� þ K�ÞN ¼ W; ð55Þ

Wf ¼ 0; 06Nst ? Wst P 0; ð56Þ
where now the vectors and matrices N, W, M� and K� have no contributions from the empty set Pz. Hence

K� ¼
eKKf ;f

eKKf ;stSs

Ss
eKKst;f Ss

eKKst;stSs

" #
� l

0 0eKKsn;f
eKKsn;stSs

� �
; ð57Þ

M� has a similar structure and l ¼ ls.

A problem related to the above MCEIP-k2 (55) and (56) consists of computing the coefficient of friction

and the associated mode shapes that correspond to the transition eigenvalue k ¼ 0, for a given equilibrium

state ðX0; r0Þ. Substituting this condition in (55), leads to a mixed complementarity eigenproblem in l
(MCEIP-l):

Find lP 0 and ðN;WÞ 2 RN� � RN�
, with N 6¼ 0, such that

ðK0 � lK1ÞN ¼ W; ð58Þ

Wf ¼ 0; 06Nst ? Wst P 0; ð59Þ
where l ¼ ls.
6.2. Numerical solution as mixed complementarity problems

It is possible to rewrite the non-linear eigenproblems MCEIP-k2 and MCEIP-l as mixed non-linear

complementarity problems (MCPs), which are then solved with the algorithm PATH [8]. This algorithm is

based on a non-classic Newton method that builds a piecewise linear path and does a line search along that

path. The transformation into a MCP is achieved by taking the eigenvalue (k2 or l) as an additional non-

negative variable, which is complementary to another non-negative variable (c), used in a normalizing
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constraint equation that involves the eigenvector N. As in the previous subsection, only the case ofPz ¼ ; is
considered.

In this manner the eigenproblemMCEIP-l defined in (58) and (59) is transformed in the following mixed

complementarity problem (MCP-l):
Find ðN; lÞ 2 RN�þ1 and ðW; cÞ 2 RN�þ1, such that

ðK0 � lK1ÞN ¼ W; ð60Þ

eTNst ¼ cþ c; ð61Þ

Wf ¼ 0; ð62Þ

06
Nst

l

� �
? Wst

c

� �
P 0; ð63Þ

where the coefficient matrix is (57), e is a vector of dimension ns with all components equal to 1, c is an

arbitrary positive real number that normalizes the mode shape and N � ¼ nF þ nf þ nsðnz ¼ 0Þ.
Note that if ðN; lÞ and ðW; cÞ solve the MCP-l (60)–(63), then eTNst ¼ cþ c for some c > 0, so that

eTNst > 0, Nst 6¼ 0, N 6¼ 0, and N, W and l solve the MCEIP-l (58) and (59). The proof that any solution to

MCEIP-l (58) and (59) also solves MCP-l (60)–(63) with c ¼ 0 can be found in [31], where the analogous

transformation of MCEIP-k2 into a MCP is also discussed.
7. Numerical examples by the finite element method

7.1. Finite element discretizations of a tribology experiment

The first example is a model of tribology experiments done by Progri, Villechaise and Zeghloul [32,40] on

rectangular polyurethane blocks sliding on an araldite base which may be considered a rigid obstacle. The
elastic block is discretized with non-uniform meshes of 530, 776 and 1890 linear P1 finite elements that

have, respectively 41, 65 and 161 contact candidate nodes. The block is assumed to be in a state of plane

stress. Its elastic properties are: modulus of elasticity¼ 5 MPa, Poisson�s ratio¼ 0.48. The geometric

parameters are the length L ¼ 80 mm and the height H ¼ 40 mm of the blocks. The density of the material

is 1.2 kg/dm3. The block is submitted to a quasi-static loading consisting first of prescribed displacements

on the side CD (see Fig. 4), which is symmetrically pressed against the obstacle until the resultant of the
Fig. 4. An instability mode at the onset of instability for a mesh of 530 elements and l ¼ 57:653929 (solution of MCEIP-l).
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normal reactions on side AB is )55 N. Then the loading proceeds by prescribing an horizontal motion of the
side CD towards the left [32,40]. In this tangential loading phase, the successive equilibrium states have a

growing region of nodes in impending slip spreading from right to left.

This example was studied earlier in [19], also by the finite element method, but using only the necessary

(47) and the sufficient (48)–(50) conditions for directional instability. For a coefficient of friction l ¼ 1:1
close to the experimentally observed value, the numerical results showed that the necessary condition (47)

was satisfied very early along the tangential loading process; however, for all the successive equilibrium

configurations of the block along that tangential loading, the sufficient condition (48)–(50), that involves

slip of all nodes in impending slip, could never be satisfied. Our objective is thus to check if, after the
necessary condition is satisfied, there exist instability modes of a type different from the all-slipmodes of the

sufficient condition (48)–(50).

With this purpose, we search first for solutions to the MCEIP-l at the equilibrium states obtained with

l ¼ 1:1, along the tangential loading of the block, i.e. we search for the values of the coefficient of friction

corresponding to the onset (k ¼ 0) of instability in that equilibrium configuration. It is found that the

values of l that solve the MCEIP-l are very large and decrease with the increase of the number of nodes in

impending slip in the successive equilibrium configurations. Moreover, the eigenvectors of the MCEIP-l
associated with higher values of l correspond to modes having, on average, a larger number of impending
slip nodes that get stuck.

For instance, for a mesh of 530 elements (41 contact candidate nodes) and for an equilibrium state

having the 2 left nodes stuck, the 32 intermediate nodes in impending slip to the left and the 7 nodes on the

right free, the algorithm PATH converges to a solution of the MCEIP-l that has an unreasonably large

value of l (57.653929) and a mode represented in Fig. 4, where an impending slip node (the fourth from the

left) becomes stuck. The numerical values at the contact nodes of the eigenmode represented in Fig. 4 are

shown in Table 1. For the same equilibrium configuration, the solution of the classical eigenproblem

corresponding to the sufficient condition (48)–(50) shows that no positive l exists that corresponds to an
admissible non-trivial solution with all impending slip nodes (s) in impending slip or in slip [the sufficient

condition (48)–(50) could not be satisfied].

For the final equilibrium state of the loading process, for which the 33 nodes on the left are in impending

slip and the 8 nodes on the right are free, a non-trivial eigenvector is found for a much lower coefficient of

friction (l ¼ 1:709967). The corresponding eigenmode is represented in Fig. 5. Since all the nodes in

impending slip do slide, this mode satisfies also the sufficient condition (48)–(50) with k ¼ 0. For the mesh

of 776 elements, in the final steady sliding configuration, the 52 nodes on the left are in impending slip to the

left and the 13 nodes on the right are free. A non-trivial eigenvector is found for a coefficient of friction
l ¼ 1:707375 which is represented in Fig. 6. For the mesh of 1890 elements, in the final steady sliding

configuration, the 129 nodes on the left are in impending slip to the left and the 32 nodes on the right are

free. A non-trivial eigenvector is found for a coefficient of friction l ¼ 1:705864, which is represented in

Fig. 7.

For other meshes and other aspect ratios H=L, the same trends are observed in the behavior of this

system. Additional studies are needed for a better comprehension of the instability modes (Fig. 4) that

cannot be detected by the sufficient condition (48)–(50) and of the circumstances at which they may arise for

lower values of the friction coefficient.

7.2. Continuation of the study of the example of Section 5.4

In order to initiate the study of the circumstances at which all-slip and non-all-slip modes of instability

may arise, we consider the block of Section 5.4 uniformly refined with rectangular bilinear finite elements

with an aspect ratio height

length
¼ 1

2
and with 2, 3, 4, 5, 9, 17 and 33 contact nodes. In order to get solutions that

may be compared with those of the single finite element in Section 5.4 (where both contact candidate nodes



Table 1

Values at the contact nodes of the solution of the MCEIP-l (l ¼ 57:653929) represented in Fig. 4

Node Nst Wst

1 7.029992 0

2 0 257.419724

3 1.425031 0

4 1.660202 0

5 0.557874 0

6 1.376425 0

7 0.793989 0

8 0.903294 0

9 0.876847 0

10 0.746456 0

11 0.789053 0

12 0.702387 0

13 0.687086 0

14 0.653370 0

15 0.614355 0

16 0.585934 0

17 0.549948 0

18 0.519051 0

19 0.488578 0

20 0.455087 0

21 0.426626 0

22 0.396458 0

23 0.369891 0

24 0.341483 0

25 0.317338 0

26 0.293616 0

27 0.273702 0

28 0.254264 0

29 0.239737 0

30 0.227570 0

31 0.222595 0

32 0.221762 0

Node 1 is the third node counted from point A to the right and node 32 is the 34th one. The solution is normalized such that the sum of

the components of Nst is equal to 25 (constant c in (61)).

Fig. 5. An instability mode at the onset of instability for a mesh of 530 elements and l ¼ 1:709967 (solution of MCEIP-l).
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are in impending slip to the left at the equilibrium state), we impose that all the contact candidate nodes are

in a state of impending slip to the left.



Fig. 7. An instability mode at the onset of instability for a mesh of 1890 elements and l ¼ 1:705864 (solution of MCEIP-l).

Fig. 6. An instability mode at the onset of instability for a mesh of 776 elements and l ¼ 1:707375 (solution of MCEIP-l).
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For a Poisson ratio of m ¼ 0:48, the algorithm PATH converges always to an instability mode where all
the contact nodes slide to the left (an all-slipmode) (see Fig. 8). Solving all the 2ns classical generalized linear

eigenproblems (34) and inequalities (36)–(40) that are equivalent to the problemMCEIP-l for ns ¼ 2, 3 and

4 contact nodes, it is also observed that only a transition to an all-slip type of directional instability is

possible in those cases.

For a Poisson ratio m ¼ 0:1 and for meshes with ns ¼ 2, 3, 4, 5, 9, 17 and 33 contact nodes, the algorithm

PATH converges always to instability modes where all nodes slide to the left except the second node from C
that blocks (see Fig. 9). Solving all the 2ns classical generalized linear eigenproblems (35) and inequalities

(36)–(40) that are equivalent to the problemMCEIP-l for ns ¼ 2, 3 and 4 contact nodes, it is observed that,
Fig. 8. An instability mode at the onset of instability (solution of MCEIP-l) for l ¼ 1:7179983 and m ¼ 0:48. All the contact nodes

slide.



Fig. 9. Instability mode at the onset of instability (solution ofMCEIP-l) for l ¼ 3:46964934 and m ¼ 0:1. All the nodes slide except the

second one from the left.

Table 2

Values of Nst for the solutions of the MCEIP-l at the contact nodes for different values of the Poisson ratio

Node m ¼ 0:1 m ¼ 0:13 m ¼ 0:14 m ¼ 0:48

1 � A 12.471171 12.129381 11.632991 3.410215

2 0 0 0.242968 2.008466

3 2.696330 2.581900 2.479040 1.611994

4 0.954403 1.000953 1.072382 1.398868

5 1.160757 1.138356 1.134683 1.229909

6 0.804426 0.830034 0.857567 1.105762

7 0.732580 0.743465 0.757901 1.007071

8 0.609406 0.631130 0.649571 0.926832

9 0.538288 0.558066 0.573943 0.860133

10 0.472357 0.494334 0.510049 0.803677

11 0.421753 0.443481 0.458197 0.755107

12 0.378518 0.400407 0.414455 0.712676

13 0.342399 0.363891 0.377200 0.675050

14 0.311288 0.332301 0.344937 0.641202

15 0.284324 0.304670 0.316648 0.610329

16 0.260626 0.280210 0.291560 0.581802

17 0.239622 0.258357 0.269099 0.555131

18 0.220854 0.238684 0.248839 0.529930

19 0.203991 0.220876 0.230461 0.505902

20 0.188785 0.204702 0.213735 0.482816

21 0.175059 0.189999 0.198495 0.460501

22 0.162693 0.176659 0.184634 0.438835

23 0.151613 0.164623 0.172094 0.417747

24 0.141792 0.153877 0.160862 0.397216

25 0.133248 0.144454 0.150975 0.377285

26 0.126043 0.136433 0.142517 0.358077

27 0.120284 0.129945 0.135628 0.339834

28 0.116124 0.125170 0.130500 0.322955

29 0.113751 0.122333 0.127372 0.308079

30 0.113351 0.121659 0.126498 0.296186

31 0.114998 0.123268 0.128024 0.288748

32 0.118325 0.126812 0.131636 0.287913

33 � B 0.120841 0.129573 0.134539 0.293751

Node 1 is the leftmost contact node and node 33 is the rightmost contact node. The solution is normalized such that the sum of the

components of Nst is equal to 25 (constant c in (61)).
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in those cases, the transition to instability does occur with a mode of the same kind, i.e. all nodes slide to the
left except the second one from C that blocks, and no transition to an all-slip solution is possible.

Table 2 illustrates, for the problem MCEIP-l with the refined mesh of Figs. 8 and 9, the transition from

an all-slip mode to a non-all-slip mode that has a very localized region of left slip on the left part of the

contact surface, as the Poisson ratio varies between 0.48 and 0.1. The corresponding values of l are the

following: l ¼ 1:71799829 for m ¼ 0:48, l ¼ 3:32850023 for m ¼ 0:14, l ¼ 3:42430381 for m ¼ 0:13, and
l ¼ 3:46964934, for m ¼ 0:10.

7.3. A finite element version of the single particle example of Klarbring

The model problem treated in this subsection consists of a finite element version of the single particle

example of Klarbring [16]. The plane domain has the geometry indicated in Fig. 10. The boundary segments

CD and EF are fixed.

The nodes in segment AB may have contact with an horizontal rigid flat obstacle. This structure is as-

sumed to be in a state of plane stress and have linear elastic behavior. The elastic properties are: modulus of

elasticity E ¼ 5 MPa and Poisson�s ratio m ¼ 0:48. The weight of the structure is neglected. The equilibrium
configuration is the undeformed configuration represented in Fig. 10 that corresponds to a state of
impending slip to the left of all the contact nodes in segment AB. This state of impending slip is obtained by

applying on AB a uniformly distributed inclined load that makes an angle with the vertical equal to the

friction angle arctanðlÞ.
Fig. 11 represents all-slip instability modes that solve (58) and (59) corresponding to the onset (k ¼ 0) of

instability for three different meshes: (a) 547 linear P1 finite elements (11 contact nodes); (b) 997 (14); (c)

1997 (19). The numerical values of the components at the contact nodes of the eigenmode represented in

Fig. 11(c) are shown in Table 3.
45°

Fig. 10. Dimensions of the finite element version of the example of Klarbring [16].



Fig. 11. Instability mode at the onset of instability for (a) l ¼ 1:461772, (b) l ¼ 1:456015 and (c) l ¼ 1:452312 (solutions ofMCEIP-l).

Table 3

Values at the contact nodes of the solution of problem MCEIP-l (l ¼ 1:452312) represented in Fig. 11(c)

Node Nst Wst

1 � A 0.022538 0

2 0.019384 0

3 0.017517 0

4 0.016155 0

5 0.014967 0

6 0.014097 0

7 0.013443 0

8 0.012870 0

9 0.012367 0

10 0.011939 0

11 0.011573 0

12 0.011231 0

13 0.010935 0

14 0.010674 0

15 0.010444 0

16 0.010226 0

17 0.010037 0

18 0.009873 0

19 � B 0.009733 0

Equilibrium state of impending slip to the left of the 19 contact nodes. The solution is normalized such that the sum of the components

of Nst is equal to 0.25 (constant c in (61)).

A. Pinto da Costa et al. / Comput. Methods Appl. Mech. Engrg. 193 (2004) 357–384 375
The solution of the MCEIP-k2 for l ¼ 5 is discussed next. For that coefficient of friction the classical
eigenproblem corresponding to the sufficient condition (48)–(50) does not have any solution satisfying

the inequalities (49) and (50) (all-slip solutions). However the solutions of the non-linear eigenproblem (55)

and (56) to which the PATH algorithm converges have one or more nodes that become blocked while

others continue in impending slip without slip (degenerated states); as the mesh is refined the solutions

successively obtained involve progressive localization of the left slip zone near the left contact node, and

the corresponding positive eigenvalues k (1328.28833, 3336.23641 and 4643.97534) reveal an increased

instability of those increasingly localized modes; for the meshes of Fig. 11(a)–(c) see Tables 4–6, respec-

tively.



Table 4

Values at the contact nodes of the solution of problem MCEIP-k2 (k ¼ 1328:28833) for l ¼ 5

Node Nst Wst

1 � A 0.19772995 0

2 0.02984346 0

3 0.02048800 0

4 0.00192999 0

5 0 0.01602962

6 0.00000845 0

7 0 0.00000145

8 0 0

9 0 0

10 0 0

11 � B 0 0

Equilibrium state of impending slip to the left of the 11 contact nodes. The solution is normalized such that the sum of the components

of Nst is equal to 0.25.

Table 5

Values at the contact nodes of the solution of problem MCEIP-k2 (k ¼ 3336:23641) for l ¼ 5

Node Nst Wst

1 � A 0.24999569 0

2 0 0.92685590

3 0 0.03493371

4 0 0.00050009

5 0 0.00016016

6 0.00000403 0

7 0 0

8 0 0

9 0 0.00000011

10 0 0.00000109

11 0 0

12 0 0

13 0 0

14 � B 0 0

Equilibrium state of impending slip to the left of the 14 contact nodes. The solution is normalized such that the sum of the components

of Nst is equal to 0.25.
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8. The relation between the directional instability and the rate problem

8.1. A result that takes into consideration the non-symmetry of the problem

In this section we study the relation between (i) the problem of directional instability (divergence from an

equilibrium state ðX0; r0Þ due to smooth solutions with perturbed initial conditions) and (ii) the quasi-static

rate problem formulated at the same equilibrium state ðX0; r0Þ. At some given instant and load, at which the

equilibrium state is known, the quasi-static rate problem comprises the computation of the first order right

rates of change of displacements and reactions, for a given external loading rate at the same instant

[1,16,28]. Problem (i) involves the combined effects of mass, stiffness and friction, while problem (ii) in-

volves the combined effects of stiffness and friction only. It is then natural to relate the above two problems

on the basis of the combined effects of stiffness and friction. An angular bifurcation may occur at an
equilibrium state that is not directionally unstable. This phenomenon is observed for example in the



Table 6

Values at the contact nodes of the solution of problem MCEIP-k2 (k ¼ 4643:97534) for l ¼ 5

Node Nst Wst

1 � A 0.24985631 0

2 0 0.48831049

3 0 0.01143208

4 0.00013863 0

5 0.00000436 0

6 0 0

7 0 0.00000388

8 0 0

9 0 0

10 0 0

11 0 0

12 0 0

13 0 0

14 0 0

15 0 0

16 0 0

17 0 0

18 0 0

19 � B 0 0

Equilibrium state of impending slip to the left of the 19 contact nodes. The solution is normalized such that the sum of the components

of Nst is equal to 0.25.
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classical (associated) Shanley column [37,38] and in a non-associated (Coulomb friction) version of Shanley

column [20]. In the field of associated plasticity Hill [12] and Petryk [29] and in the field of non-associated

plasticity Raniecki and Bruhns [33] and Bigoni [2] discussed earlier the relation between multiplicity of

solution of the quasi-static rate problem and directional instability. Nguyen [27] and Chateau and Nguyen

[5] studied the same relation in the broader domain of the materials with non-associated constitutive laws
and the dry friction problems. As pointed out very clearly by Bigoni [2, p. 15] the essential limitation of

previous results is that they do not state that absence of bifurcation) absence of directional instability, but

they state that a sufficient condition for absence of bifurcation) absence of directional instability. In this

section we improve on these results by using properties of non-symmetric matrices that are sensitive to that

non-symmetry.

We begin by reformulating the quasi-static first order rate problem with the purpose of comparing the

properties of its stiffness matrix with the properties of the stiffness matrix of the problem of directional

instability. After the transformation of variables (2) the rate problem is
Find ðeVV;fWWÞ 2 RN � RN , such that

eKK eVV ¼ _KKeLL þ fWW; ð64Þ

eVV ¼
eVVF

v

� �
; v 2 KvðX0; r0Þ; fWW ¼ 0

w

� �
; w 2 KwðX0; r0Þ; ð65Þ

w � gðvÞ ¼ 0; ð66Þ

where eLL is the load rate direction vector and _KK denotes the rate of change of the load parameter. Restricting
ourselves to the case of Pz ¼ ; and performing the transformation of variables (25), the rate problem

becomes a mixed linear complementarity problem:
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Find ðN;WÞ 2 RN� � RN�
, such that

K�N ¼ _KKL� þW; ð67Þ

Wf ¼ 0; 06Nst ? Wst P 0; ð68Þ
where K� ¼ K�ðlsÞ is the effective stiffness matrix in (29) and (31) for the directional instability problem and

L� ¼ eLLT
f ðSs

eLLst � ls
eLLsnÞT

n oT

: ð69Þ

If the principal sub-matrix K�
f ;f ¼ eKKf ;f is invertible, it is possible to eliminate the velocities of the free

degrees of freedom from problem (67) and (68): by using the definition �KK of the Schur complement of K�
f ;f

in K� [7] the problem (67) and (68) is rewritten in the form

Find ðNst;WstÞ 2 Rns � Rns , such that

�KK�Nst ¼ _KK�LL� þWst; ð70Þ

06Nst ? Wst P 0: ð71Þ
In the limit situation corresponding to k ¼ 0, and performing the same condensation on the contact degrees

of freedom, the problem (26)–(28) may be formulated as an homogeneous Linear Complementarity
Problem (LCP):

Find ðNst;WstÞ 2 Rns � Rns , with Nst 6¼ 0, such that

�KK�Nst ¼ Wst; ð72Þ

06Nst ? Wst P 0: ð73Þ

The coefficient matrix �KK� is the same as the one in the rate problem (70) and (71). Then, the absence of (non-

trivial) solution for the directional instability eigenproblem (26)–(28) for a vanishing eigenvalue k occurs

when the previous problem has no solution, which corresponds to the case where the homogeneous LCP

(72) and (73) has the trivial solution ðNst;WstÞ ¼ ð0; 0Þ as its unique solution. By definition, an homogeneous

LCP has the trivial solution as its unique solution if and only if its coefficient matrix is of class R0 [7]. A

matrix is of class R0 if and only if its corresponding homogeneous LCP has only the trivial solution [7].

Since a P matrix is also a R0 matrix and K� 2 P implies �KK� 2 P then we may state the following proposition
that relates the two kinds of problems under consideration in this section.
Proposition 3. Assume that, at the current equilibrium state, there are no particles in contact with zero
reaction (Pz ¼ ;). If the first order quasi-static rate problem has a unique solution for any loading rate, then
the transition of the linearized system to directional instability by vanishing of an eigenvalue k cannot occur.

Using the same kind of words as the ones of Bigoni [2], the above statement says that absence of bifurcation
implies no transition to directional instability through the vanishing of an eigenvalue k.
8.2. A column with Coulomb friction (a non-associative Shanley column) revisited

This example deals with a column that has elastic supports connected to frictional sliders, as represented

in Fig. 12 (see Section 4.4 of [20]). The model consists of a rigid homogeneous bar AB of length L and mass

M rigidly connected at point B to a rigid massless bar orthogonal to AB. Point B has no horizontal dis-

placement. The column is supported by four springs of stiffness K each. The rigid bars are connected to the

four vertical springs by frictionless sliders E and F . These four springs remain vertical. The particles C and



Fig. 12. On the left: a column with elastic supports attached to masses (C and D) in frictional contact with fixed obstacles. On the right:

bifurcation diagram indicating rate solutions leading to STICK–SLIP or SLIP–STICK frictional contact states.
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D of massMp are attached to the upper extremities of the upper vertical springs and may establish unilateral

frictional contact with horizontal obstacles. The coefficient of friction is l. Particles C and D are also at-

tached to horizontal springs of stiffness K. The initial distance of the vertical springs to the axis of symmetry

is Lh. A downward vertical prescribed displacement U v is applied to both the horizontal obstacles: U v is
measured from the equilibrium position of the particles C and D when they are acted only by gravity. The

extremities of the horizontal springs opposite to particles C and D have both an initial prescribed horizontal

displacement Uh, which corresponds to an initial compression of those springs.

This mechanical system has six degrees of freedom. We choose for generalized coordinates the vertical

displacement (d) of point B, the angle (h) between bar AB and the horizontal ðuCt ; uDt Þ and vertical ðuCn ; uDn Þ
components of the displacements of particles C and D. The displacements are measured from the reference

configuration that coincides with the symmetric equilibrium configuration of the system under the simul-

taneous action of gravity and vertical prescribed displacements U v. The vector of non-dimensional gen-
eralized coordinates is X ¼ f d h uCn uDn uCt uDt g

T
. The generalized coordinates with dimension of

length are non-dimensionalized by dividing them by L. The non-dimensional prescribed displacements are

uv ¼ U v=L and uh ¼ Uh=L. The non-dimensional external force K and the non-dimensional reaction forces

r ¼ f rCn rDn rCt rDt g
T
are obtained from the dimensional ones by dividing them by KL. Time is non-

dimensionalized by multiplication by the factor
ffiffiffiffiffiffiffiffiffiffiffi
K=M

p
. The fundamental trajectory of the system is

represented in Fig. 12 and satisfies:

d ¼ K
4
; h ¼ uCn ¼ uDn ¼ uCt ¼ uDt ¼ 0 for K 2 ½0;KA½;

d ¼ K
4
; h ¼ uCn ¼ uDn ¼ 0; uDt ¼ �uCt ¼ uh �

l
2

uv

�
� K

2

�
for K 2 ½KA;KB½;

d ¼ K
2
; h ¼ 0; uCn ¼ uDn ¼ �K

2
; uDt ¼ �uCt ¼ uh for KPKB;
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where KA ¼ 2ðuv � 2uh
l Þ is the load at which impending slip at C and D is first attained and KB ¼ 2uv is the

load at which the reactions at C and D vanish. The near future frictional contact states of the two particles

C and D is indicated by the words FREE, SLIP or STICK: for instance, a near future evolution involving

slip of C and stick of D is indicated by SLIP–STICK.

The non-dimensional parameters that govern the behavior of the system are m ¼ Mp=M , l ¼ Lh=L,
w ¼ Mg=2KL as well as uv, uh and l defined before. We denote by a and b the following non-dimensional

quantities evaluated along the fundamental trajectory: a ¼ aðuDt ;KÞ ¼ 4ðl� uDt Þ
2 � w� K, b ¼ bðuDt ;KÞ ¼

K
2
þ lðl� uDt Þ. It is also convenient to define the three external loads corresponding to the following con-

ditions that involve the quantities a and b: K ¼ K1½a ¼ bK� is the load at which the SLIP–SLIP effective

stiffness is singular; K ¼ K2½a ¼ bK
2
� is the load at which the STICK–SLIP effective stiffness is singular;

K ¼ K3½a ¼ 0� is the load at which the STICK–STICK effective stiffness is singular. The bifurcation dia-

gram depends qualitatively on the relative position of the two sets of loads KA;KB and K1;K2;K3. Here we

only consider the case in which the governing parameters satisfy KA < K2 < K3 < KB. In this case, and for

the particular type of loading considered, the only bifurcations from the fundamental path occur for

K 2 ½KA;KB½. The analytical study in [20] on this non-associative Shanley column concluded that, for the

values of the external load K corresponding to fundamental equilibrium states of impending slip of the
particles C and D (KA 6K < KB) there are not directional instability modes involving the sliding of both

particles C and D (the sufficient condition (48)–(50) for directional instability is not satisfied) (see Fig. 12).

This means that the linearized system is still directionally stable after the rate problem ceases to have a

unique solution. However, when K > K2 (the effective stiffness matrices corresponding to the slip of one

contact particle and to the stick of the other contact particle are not positive definite), there exist two modes

of instability that solve problem (26)–(28) and involve the slip of one particle and the stick of the other

particle.

The statement of Proposition 3 is consistent with the results in [20]. In the case illustrated in Fig. 12, both
the contact particles C and D belong to PsðPz ¼ ;Þ for load parameters between KA and K1ða > bKÞ, and
the rate problem (70) and (71) can be written in the equivalent complementarity form

1 0 � 1� bK
2a

� �
� bK

2a

0 1 � bK
2a

� 1� bK
2a

� �
2664

3775
wC

st

wD
st

NC
st

ND
st

8>>><>>>:
9>>>=>>>; ¼ _KK

�l=4
�l=4

� �
; ð74Þ

06
NC

st

ND
st

� �
? wC

st

wD
st

� �
P 0: ð75Þ

In the above range of equilibrium states (K 2 ½KA;K1½) of the fundamental trajectory, the directional
instability problem MCEIP-l (72) and (73) is the homogeneous particular case ( _KK ¼ 0) of (74) and (75).

Then Proposition 3 guarantees that in that range of K the transition to directional instability of the line-

arized system cannot occur for a vanishing eigenvalue k, which is consistent with the results in Section 4.4 of

[20].

The study of a LCP with two pairs of variables can be interpreted graphically in R2. The problem (74)

and (75) can be expressed as a non-negative linear combination of the four columns of the coefficient

matrix, with two complementarity conditions:

wC
stI�1 þ wD

stI�2 þ NC
stð��KK�

�1Þ þ ND
stð��KK�

�2Þ ¼ _KK
�l=4
�l=4

� �
; ð76Þ

NC
st;N

D
st ;w

C
st;w

D
st P 0; ð77Þ



A. Pinto da Costa et al. / Comput. Methods Appl. Mech. Engrg. 193 (2004) 357–384 381
NC
stw

C
st ¼ ND

stw
D
st ¼ 0; ð78Þ

where I�1 and �KK�
�1 denote column vectors containing the first columns of matrices I and �KK�, respectively, and

I�2 and �KK�
�2 denote column vectors containing the second columns of matrices I and �KK�, respectively,

I�1 ¼
1

0

� �
; I�2 ¼

0

1

� �
; �KK�

�1 ¼
1� bK

2a
bK
2a

8><>:
9>=>;; �KK�

�2 ¼

bK
2a

1� bK
2a

8><>:
9>=>;: ð79Þ

In each pair of variables ðNC
st;w

C
stÞ and ðND

st ;w
D
stÞ, only one variable may be non-zero, due to the comple-

mentarity conditions (78). Consequently, the left-hand side of (76) is the non-negative linear combination of

only two column vectors: I�1 with I�2 or ��KK�
�1 with ��KK�

�2 or I�1 with ��KK�
�2 or ��KK�

�1 with I�2. Each of these four

possible non-negative combinations correspond to a complementarity cone [25]

PosðI�1; I�2Þ; Posð��KK�
�1;��KK�

�2Þ; PosðI�1;��KK�
�2Þ; Posð��KK�

�1; I�2Þ; ð80Þ
Fig. 13. Complementary cones of the rate problem (74) and (75) for the system schematically represented in Fig. 12: (a) K ¼ 0;

(b) 0 < K < K1ða > bK > 0Þ; (c) K ¼ K1ða ¼ bKÞ; (d) K1 < K < K2ðb K
2
< a < bKÞ; (e) K ¼ K2ða ¼ b K

2
Þ.
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where Posða1; a2Þ ¼ fx 2 R2 : x ¼ a1a1 þ a2a2; a1; a2 P 0g is the cone associated with the extreme vectors a1
and a2. The LCP (74) and (75) corresponding to the rate problem is equivalent to the problem of finding the

complementarity cone(s) that contains(n) the point _KKð� l
4
;� l

4
Þ [25]. The homogeneous LCP ( _KK ¼ 0) cor-

responding to the onset (k ¼ 0) of directional instability (MCEIP-l) is equivalent to the problem of finding

the non-negative linear combinations of the column vectors I�1; I�2;��KK�
�1;��KK�

�2 that are admissible by the

complementarity conditions and equal to the null vector. Non-trivial solutions of an homogeneous LCP

can only occur if and only if its coefficient matrix is not a R0 matrix, that is, if at least one of the com-

plementary cones is strongly degenerated [25]. A cone Posða1; a2Þ is strongly degenerate if and only if its
extreme vectors a1 and a2 have the same direction and opposite senses.

Fig. 13 illustrates the complementary cones of the problem (74) and (75) for several values of the loading

parameter K. Each complementary cone Posða1; a2Þ is indicated by an arc of circumference connecting its

two extreme vectors a1 and a2. For 06K < K1, i.e., for a > bKP 0 (Fig. 13(a) and (b)) the matrix �KK� is of

class P and of class R0 which means that both the non-homogeneous and the homogeneous LCP (74) and

(75) corresponding to the rate problem and to the MCEIP-l have unique solutions; in this case the

complementary cones are a partition of R2 and none of them is degenerate. For K ¼ K1, i.e., for a ¼ bK
(Fig. 13(c)), Posð��KK�

�1;��KK�
�2Þ is weakly degenerate. A cone Posða1; a2Þ is weakly degenerate if it is an half-

line. For that load the matrix �KK� is degenerate, hence it is not of class P but it is of class P0 (all its principal
minors are non-negative) and of class R0. Assuming a unit positive load rate _KK ¼ þ1 the vector of inde-

pendent terms ð� l
4
;� l

4
Þ is on the degenerate cone Posð��KK�

�1;��KK�
�2Þ which corresponds to the existence of

an infinity (fan) of first order rate solutions for K ¼ K1 (see Fig. 9 in Section 4.4 of [20]). Since the matrix �KK�

is of class R0, the linearized system is still directionally stable. For K1 < K < K2, i.e., for b K
2
< a < bK

(Fig. 13(d)) the matrix �KK� is not of class P . For the assumed positive load rate the quasi-static rate problem

has three solutions: STICK–SLIP (associated with PosðI�1;��KK�
�2Þ), SLIP–STICK (associated with

Posð��KK�
�1; I�2Þ) and the symmetric SLIP–SLIP evolution along the fundamental trajectory (associated with

Posð��KK�
�1;��KK�

�2Þ). For the same load range the matrix is �KK� is of class R0 which guarantees the directional

stability of the linearized system. For K ¼ K2, i.e., for a ¼ b K
2
(Fig. 13(e)) the matrix �KK� is neither of class P

nor of class R0; the complementary cones PosðI�1;��KK�
�2Þ and Posð��KK�

�1; I�2Þ are strongly degenerate. That

point of the fundamental trajectory corresponds to the onset (k ¼ 0) of directional instability.
9. Conclusions

In this paper we have presented a study on the directional instability of plane finite dimensional systems

in unilateral frictional contact with curved obstacles, and on its relation with the first order quasi-static rate

problem. The study of the directional instability involves the solution of a mixed explicit complementarity

eigenproblem (19) and (20) which is equivalent to a mixed complementarity-inclusion eigenproblem (26)–

(28), and also to a set of classical generalized linear eigenproblems (34) plus some inequalities (36)–(40). For

computational purposes, those non-smooth eigenproblems are transformed into mixed complementarity

problems (MCPs) that are solved with the PATH Mathematical Programming algorithm.

The sufficient condition for absence of directional instability given in Proposition 2 is that the non-
symmetric interval matrix IzðlzÞðk2M�ðlsÞ þ K�ðlsÞÞ (45) has the property P for all kP 0; in the linear

elasticity case this holds if the friction coefficients ls and lz are sufficiently small and the obstacle curvature

v is sufficiently small when positive. When, at the equilibrium state, there is no particle in contact with zero

reaction, the absence of directional instability holds when the pencil of effective mass and stiffness matrices

k2M�ðlsÞ þ K�ðlsÞ is P for all kP 0. The P property captures the non-associated (non-symmetric) character

of the problem and the above conditions give values for the coefficient of friction at which directional

instability initiates that are less conservative (that are higher) than those given by other conditions (47) that

involve the positive definiteness property.
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In the finite element simulations with the block of Progri, Villechaise and Zeghloul [32,40], it has been
observed that: (i) whenever solutions were known to exist [the all-slip solutions of the sufficient condition

(48)–(50)] the PATH algorithm always converged to one such all-slip solution; (ii) in some cases where all-

slip solutions did not exist [the sufficient condition (48)–(50) could not be satisfied] other solutions with both

slip and stick were obtained, but only for very large values of l; (iii) for reasonably small values of l, no
solutions different from the all-slip solutions provided by the sufficient condition (48)–(50) were found; (iv)

in all cases, the values obtained for the coefficient of friction at which directional instability could occur

were larger than the experimentally observed ones.

In all the studied numerical examples, the convergence of the PATH algorithm to an all-slip solution
(48)–(50) has been always observed whenever such kind of solution exists. When that is not the case, it has

been frequently observed that the converged results given by that algorithm had some very localized regions

of slip on the contact surface, which might localize even further as the mesh is refined. The geometry of the

body and the Poisson ratio play an important role on the type of directional instability mode (all-slip or

non-all-slip) that may occur for sufficiently large values of the coefficient of friction.

For a given equilibrium state of a system in which there are no particles in contact with zero reaction, we

show that the uniqueness of solution of the rate problem for every loading rate direction excludes the onset

(k ¼ 0) of directional instability (Proposition 3). The relation between the directional instability problem
and the rate problem was illustrated with a six degree of freedom system that is a non-associated version of

Shanley�s column. The verification or not of the properties P , P0 and R0 by an effective stiffness matrix,

along the fundamental equilibrium path of that system, has been related to the loss of uniqueness and the

onset of directional instability along that path.
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