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Multiple- and single-objective approaches to laminate
optimization with genetic algorithms

L. Costa, L. Fernandes, I. Figueiredo, J. Júdice, R. Leal, P. Oliveira

Abstract In this paper an application of a genetic al-
gorithm to a material- and sizing-optimization problem
of a plate is described. This approach has obvious advan-
tages: it does not require any derivative information and
it does not impose any restriction, in terms of convex-
ity, on the solution space. The plate optimization prob-
lem is firstly formulated as a constrained mixed-integer
programming problem with a single objective function.
An alternative multiobjective formulation of the prob-
lem in which some constraints are included as additional
objectives is also presented. Some numerical results are
included that show the appropriateness of the algorithm
and of the mathematical model for the solution of this
optimization problem, as well as the superiority of the
multiobjective approach.

Key words genetic algorithms, multiple objective opti-
mization, combinatorial optimization

1
Introduction

Sizing or material structural optimization problems are,
in general, formulated as nonlinear continuous problems
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(Haslinger and Neittaanmäki 1998; Bendsøe and Soares
1993; Bendsøe 1995). The numerical solutions are ob-
tained by conventional gradient algorithms that require
derivative as well as convexity properties and that usu-
ally converge to local optimal solutions. However, mod-
eling real-world problems imposes (by both natural and
technological reasons) the consideration of integer vari-
ables, such as different materials and/or different thick-
ness, chosen among a set of integer values. This leads
to mixed-integer nonlinear problems, lacking the prop-
erties of differentiability and convexity. Deb and Goyal
(1998), in the context of mechanical component design,
refer to the problems that can emerge when using clas-
sical optimization techniques, which are designed to use
continuous variables, in dealing with integer variables at
the expense of introducing additional constraints.
Evolutionary algorithms (Goldberg 1989), in contrast

to other descent algorithms, do not require any differen-
tiability or convexity conditions and seem to be appro-
priate for the solution of this type of problem. Moreover,
since these algorithms start from a pool of points, they are
less prone to being trapped in a local optimum and con-
sequently find a global minimum or at least a good solu-
tion to the problem. Several approaches have used genetic
algorithms in structural topology optimization (Hajela
et al. 1992; Kane and Schoenauer 1996). Other reported
approaches to composite laminated optimization using
genetic algorithms have also been published (Le Riche
and Haftka 1993; Le Riche et al. 1999; Costa et al. 1999),
as well as approaches based on multiobjective optimiza-
tion (Hajela and Lin 1992; Grosset et al. 2001). The struc-
tural optimization problem considered here is concerned
with the stiffness of a linearly laminated elastic plate for
which the optimization variables are the thickness and
the material of each lamina. This leads to a combinato-
rial problem since different orders of the materials define
different stiffness of the plate. The material variables as-
sume discrete values, with thickness assuming values in
a continuous set. Furthermore, constraints on this prob-
lem can also be considered, such as upper bounds on the
mass, price, and global thickness of the plate.
The structural model under consideration can be for-

mulated as an optimization problem with a single ob-
jective, the compliance of the structure, and some con-
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straints associated with the thickness, price, and mass in-
volved in the structure (Fernandes et al. 1998; Costa et al.
2000). The use of genetic algorithms to process this op-
timization problem imposes these constraints to become
part of an exact penalty function. It then seems natural to
consider instead a multiobjective formulation (Deb 2001)
of the structural model, with four objective functions as-
sociated with the compliance, thickness, price, and mass
of the structure. Numerical experience reported in this
paper seems to indicate that this latter multiobjective
approach (Costa et al. 2001) is more appropriate for pro-
cessing the structural model.
The organization of this paper is as follows. In Sect. 2,

the general formulation of the plate optimization prob-
lem as a constrained mixed-integer programming prob-
lem is described, together with the single- and multiple-
objective formulations. The application of genetic algo-
rithms to process this problem is discussed in Sect. 3. The
multiobjective genetic algorithm is introduced in Sect. 4.
Computational experience with the genetic algorithm is
reported in Sect. 5, with some conclusions and a few hints
for future research in Sect. 6.

2
Formulation of the problem

2.1
Single objective formulation

We consider a thin elastic plate, made of several lami-
nas which are symmetric with respect to the middle plane
of the plate defined by the set Ω ⊂ R2. Due to this sym-
metry, the total number of layers composing the plate is
equal to 2k, where k is an integer greater than 1. Each
lamina, with thickness ti, is associated exactly with one
materialmj .
We define the vectors

t= (t1, . . . , tk) and m= (m1, . . . ,mp) , (1)

which correspond to the vectors of thickness and materi-
als, respectively.
The structural optimization problem consists of find-

ing the best material and thickness distribution that
yields the stiffest plate. The discrete formulation of this
model, which is obtained by the finite element method,
corresponds to the following minimization problem:




min
1

2
fT u

(t,m)∈C

subject to K(t,m)u= f .

(2)

The variables appearing in problem (2), that is, the
optimization variables, the vectors u and f , the matrixK,
and the constraint set C, are discussed below.

a) The vectors t ∈ Rk and m ∈ Rp contain the opti-
mization variables ti and mj associated with the thick-
ness and materials of the plate, respectively.
To define the thickness ti of each lamina i= 1, 2, . . . , k,

let hi be the distance from the middle surfaceΩ to the up-
per face of the lamina i. So ti = hi−hi−1 is the thickness
of lamina i and

2
k∑
i=1

ti = 2
k∑
i=1

(hi−hi−1)

is the total thickness of the plate (h0 = 0).
Each materialmj, with j = 1, 2, . . . , p, of the admissi-

ble set of materials, is defined by a set of elastic properties
depending on the material considered. As each lamina i
must have a unique materialmj, chosen among a set of p
materials, the material li in lamina i is given by

li =

p∑
j=1

xijmj , for i ∈ {1, 2, . . . , k} , (3)

where

p∑
j=1

xij = 1, for i= 1, . . . , k , (4)

and

xij ∈ {0, 1} , for i= 1, . . . , k , j = 1, . . . , p . (5)

If repeated materials are not allowed the additional con-
straint

k∑
i=1

xij = 1 , for j = 1, . . . , p , (6)

is also considered. This condition (6) enables a better un-
derstanding of the mechanical results. In what follows, we
denote by x the k×pmatrix with components (xij).
b) The vector u ∈Rq represents the approximation of

the vertical displacement of the plate, at given points of
the middle surface (q is the number of global degrees of
freedom of the finite element mesh).
c) The vector f ∈ Rq is the vertical force that acts on

the plate.
d) The square matrixK(t,m), wherem is related to x

by (3), in what follows denoted by K(t, x), is the global
stiffness matrix (positive semi-definite matrix of order
q) obtained from the element stiffness matrices following
standard displacement finite element procedures. At the
element level (e) the stiffness matrix may be written as

K(e)(t, x) =

∫

Ω(e)

B(e)
T
D(e)(t, x)B(e) , (7)

where

D(e)(t, x) =
k∑
i=1

D
(e)
i (ti, li) . (8)
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The definitions of the elasticity matrix D(e)(t, x) and the
strain displacementmatrixB(e) =LS(e), whereL is a ma-
trix of differential operators and S(e) is the shape function
matrix, are dependent on the choice of the material of
each lamina, the laminate theory, and the finite element.
e) The set C is the set of admissible thickness and ma-

terials, and it includes some constraints, such as upper
and lower bounds on the thickness, as well as an upper
bound for the global thickness, price, and mass of the
plate. Next we introduce these constraints. As far as the
thickness vector t is concerned, the constraints are de-
fined by the expressions



tmini ≤ ti ≤ tmaxi , i= 1, . . . , k ,

tmini and tmaxi known for each i ,

k∑
i=1

tmini ≤
k∑
i=1

ti ≤ T1 <
k∑
i=1

tmaxi ,
(9)

where T1 is a constraint on the total thickness. Further-
more, the total mass should be smaller or equal to a given
constantM1. This can be written as

S

k∑
i=1

ti

p∑
j=1

xij ρj ≤M1 (10)

where S is the area of the middle surface of the plate, ρj
is the density of mass of the material j and xij are defined
in (3)–(5). Finally, the total price must be smaller than
a fixed price P1, whence

S

k∑
i=1

ti

p∑
j=1

xij ρj pj ≤ P1 , (11)

where pj is the relative price of material j, and S and xij
are the same as in (10).
It then follows that the plate optimization problem

can be formulated as the followingmixed-integer program

Minimize g1(t, x) =
1

2
fTu (12)

subject to K(t, x)u= f , (13)

tmini ≤ ti ≤ t
max
i , i= 1, . . . , k , (14)

p∑
j=1

xij = 1 , i= 1, . . . , k , (15)

k∑
i=1

xij = 1 , j = 1, . . . , p , (16)

xij ∈ {0, 1} , i= 1, . . . , k , j = 1, . . . , p ,
(17)

g2(t, x)≤ T1 , (18)

g3(t, x)≤M1 , (19)

g4(t, x)≤ P1 , (20)

where t= (ti) ∈Rk, x= (xij) ∈Rk×p,K(t, x) is the q× q
global stiffness matrix defined before, f ∈Rq, and g2, g3,
and g4 are functions defined as follows:

g2(t, x) =
k∑
i=1

ti , (21)

g3(t, x) = S
k∑
i=1

ti

p∑
j=1

xij ρj , (22)

g4(t, x) = S
k∑
i=1

ti

p∑
j=1

xij ρj pj . (23)

In this mathematical program, the constraints (14)–
(17) should be distinguished, as they are easily satisfied
by fixing a unique variable xij to 1, all the remaining vari-
ables to zero, and forcing each one of the variables ti to
belong to the interval with the corresponding lower and
upper bounds, tmini and tmaxi , respectively. Furthermore,
the value of the objective function for such a solution is
easy to compute by solving the linear system (13) after
previously fixing the values of the variables t and x ac-
cording to (7).

2.2
Multiple-objective formulation

The plate optimization problem can naturally be for-
mulated as a multiobjective problem. To this end, the
difficult constraints (18)–(20) are now considered as ob-
jectives, thus defining a multiobjective model with four
objective functions gr, for r = 1, 2, 3, 4, subject to the set
of the easy constraints (14)–(17), as well as to the sys-
tem (13). Therefore, the multiobjective formulation of the
plate problem is the following:

Minimize
{
gr(t, x), r = 1, 2, 3, 4

}
(24)

subject to K(t, x)u= f , (25)

tmini ≤ ti ≤ t
max
i , i= 1, . . . , k , (26)

p∑
j=1

xij = 1 , i= 1, . . . , k , (27)

k∑
i=1

xij = 1 , j = 1, . . . , p , (28)

xij ∈ {0, 1} , i= 1, . . . , k , j = 1, . . . , p .
(29)

In this case, the search space does not have a complete
order, which requires a different notion of optimality. This
notion demands the definition of Pareto dominance. For
any two decision vectors (t1, x1) and (t2, x2),
i) if gr(t

1, x1) ≤ gr(t2, x2) for all r, and gr(t1, x1) <
gr(t

2, x2) for at least one r, then (t1, x1) dominates
(t2, x2), represented by g(t1, x1)≺ g(t2, x2);
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ii) if g(t1, x1) ⊀ g(t2, x2) and g(t2, x2) ⊀ g(t1, x1),
then (t1, x1) is indifferent to (t2, x2);
iii) a point (t1, x1) is non-dominated in a given subset

of the feasible region if there is no other solution in that
set that dominates it, i.e., �(t2, x2) : g(t2, x2)≺ g(t1, x1).
A point (t1, x1) is said to be a Pareto optimal point if and
only if it is non-dominated in the entire feasible set.
For the case of just two objectives g1 and g2, Fig. 1

shows the dominance relations between four solutions a,
b, c, and d. Dark gray areas signal regions of space domi-
nated by each solution. Similarly, with respect to each so-
lution, light gray areas depict regions of space that might
contain solutions that dominate it. Thus, solution a dom-
inates solutions c and d and is indifferent to b; solution b
dominates solution d and is indifferent to a and c; solution
c dominates solution d and is dominated by solution a and
indifferent to b; solution d is dominated by solutions a, b,
and c.
Unlike the single-objective formulation, the multiob-

jective model produces a set of solutions expressing the
different compromises that can be reached when con-
sidering the different objectives (the trade-offs between
cost, mass, thickness, and compliance). The set of non-
dominated solutions is referred as the Pareto optimal set.
There are some approaches in which a weighted sum of

the objectives is considered (Hajela and Lin 1992; Grosset
et al. 2001), which permits the multiple-objective prob-
lem to be addressed as a single objective. However, for
non-convex Pareto fronts this approach may not find all
the solutions (Zitzler et al. 2000; Deb 2001). Furthermore,
in order to have a definition of the Pareto front, several
sets of weights must be considered, thus demanding sev-
eral runs of the algorithm.
Another possible approach is to use the ε-constraint

method (Miettinen 1999), in which one of the objectives
is selected to be optimized and the other objectives are
converted into constraints by setting an upper bound to

Fig. 1 Dominance relations

each of them. This approach avoids the problem of non-
convex fronts, but the setting of the upper bounds may be
difficult, requiring for each objective several executions.
To understand the connection between single and

multiobjective formulations, notice that if (t, x) is
a Pareto optimal point for the four objective functions
gr, r = 1, 2, 3, 4, then (t, x) is a global minimum for the
single-objective optimization problem, where

T1 = g2(t, x), M1 = g3(t, x), P1 = g4(t, x) . (30)

This easily follows from the definitions of a global mini-
mum and a Pareto optimal solution (Miettinen 1999).
An algorithm solely based on the values of the ob-

jective function seems to be recommended to process
the single-objective mixed-integer program, provided it
incorporates a penalty technique to deal with the diffi-
cult constraints (18)–(20). Moreover, the algorithm can
be modified in order to solve the multiobjectve mixed-
integer program. In the next sections a genetic algorithm
is introduced that uses a penalty or a multiobjective ap-
proach for such a purpose.

3
A single-objective genetic algorithm

3.1
Genetic coding – chromosome representation

The implementation of a genetic algorithm for the mater-
ial- and sizing-optimization problem of a plate requires
the consideration of a two-level approach: the structural
problem solution (which is the solution of the equation
K(t, x)u = f) and the minimization problem (12)–(20).
For a given set of materials, together with the respective
thickness, the solution of the structural problem can be
achieved through the finite element program. Each set
of materials li and thickness ti, can be seen as a point
in the search space for the genetic algorithm. Thus, the
structural solution is the performance measure associated
with each chromosome, a set of materials and thickness.
Each chromosome is evaluated through the finite element
program, thus allowing a ranking of every chromosome
present in the population at a given generation.
In the first instance, a rectangular symmetric plate is

considered with a maximum number of ten layers, and
with no repeated materials. Therefore, due to symme-
try, only five layers are required to be considered, that is,
k = 5. Thus, a plate is described by five continuous vari-
ables, denoting the thickness of each layer; these variables
are coded using a binary representation of 4 bits, thus
leading to a set of 20 bits. Since each layer is made of only
one material, and there are no repeated materials, five in-
teger ordinal variables were used to represent the order
of the materials in the plate. It is possible to have a layer
with zero thickness, which corresponds to a plate with
only eight layers. However, a solution with all laminas of
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Fig. 2 Chromosome coding

zero thickness is not allowed. Thus each chromosome has
a total length of 25 positions (alleles), where 20 alleles
represent the continuous variables and 5 the integer ordi-
nal variables (Fig. 2).

3.2
Genetic operators

The implementation of the various genetic operators does
not create any special difficulties, since each one is ap-
plied independently to the two types of variables in the
chromosome representation. For each kind of variable
(continuous ti or integer mj), different genetic operators
are developed. For the continuous variables ti, a two-
point crossover and uniform mutation are implemented
with different probabilities. An ordinal crossover (uni-
form order-based) with a mask and a scramble sublist
mutation are implemented for the integer ordinal vari-

Fig. 3 Crossover

Fig. 4 Mutation

ables (Figs. 3 and 4). Like the two-point crossover for
binary strings, the ordinal crossover preserves part of the
first parent and incorporates information from the sec-
ond parent, in spite of its implementation being a little
more complex. Next, the process of generating the first
offspring from the two parents (for the second offspring
the complemental process is carried out) is presented:

1. a random binary mask is created;
2. if, at a given position, the bit mask is 1 then the gene
is copied from the first parent;

3. the remaining positions are filled with the genes of
the second parent that are different from the genes
copied previously from the first parent (according to
the order they appear).

The scramble sublist mutation selects randomly a sub-
list of the parent, and then the order of the elements of
the sublist is reversed. These genetic operators were de-
veloped to prevent the generation of illegal solutions.

3.3
Constraints and objective function

Constraint handling in evolutionary algorithms has most-
ly been addressed by penalization techniques (Goldberg
1989; Deb 2000; Michalewicz et al. 1996). Michalewicz
et al. (1996) provide an overview of constraint handling,
referring to the rejection and repair of unfeasible individ-
uals, the use of decoders, special representations, and ge-
netic operators, the penalization of unfeasible solutions,
and the approach to constrained optimization as multi-
objective optimization methods to incorporate constraint
violations.
Several constraints were considered as indicated in

(14)–(20), namely the maximum and minimum thickness
of each layer (14), the total thickness of the plate (18),
the total mass of the plate (19), and the total price of the
plate (20).
In our approach, the genetic operators were chosen

so as to prevent the generation of unfeasible solutions
with respect to the constraints (14)–(16). The difficult
constraints (18)–(20) that restrict the search space are in-
cluded in the objective function through a penalty term,
leading to the following function:

L(t, x, u) =
1

2
fTu+R

3∑
i=1

[
Ci(t, x)

]2
, (31)

where R is the penalty coefficient and the functions
Ci(t, x), i= 1, 2, 3, are defined by




C1(t, x) = min{0, T1− g2(t, x)} ,

C2(t, x) = min{0, M1− g3(t, x)} ,

C3(t, x) = min{0, P1− g4(t, x)} , (32)

with gi the functions given by (21)–(23).
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3.4
Outline of the genetic algorithm

Figure 5 shows the outline of the genetic algorithm.
Firstly, a random population of solutions is generated,
each one evaluated through the finite element code. Selec-
tion of the best solutions takes place by tournament selec-
tion (a solution is selected based on the comparison with
a pre-specified set of solutions, the tournament set (Gold-
berg 1989)), after which the application of the genetic
operators gives rise to a new population. The procedure
is applied until the solutions converge or a pre-specified
number of generations is reached. The GA parameters are
fixed as in Table 2.

Fig. 5 Outline of a genetic algorithm

4
A multiobjective genetic algorithm

Many algorithms exist for multiobjective optimization
with genetic algorithms (Deb 2001). In this work, we
use an approach (Costa et al. 2001) based on the Non-
Dominated Sorting Genetic Algorithm (NSGA) by Srini-
vas and Deb (1994), in which the aim is to approximate
the Pareto front. The main differences with a single-
objective GA lie in fitness evaluation, for which the con-
cept of domination has to be introduced; moreover, in
order to achieve a balanced distribution of the solutions
along the Pareto front, a sharing mechanism (Goldberg
1989) must be introduced by which the fitness of each
solution is degraded in accordance with the number of
solutions that lie in its neighborhood (Euclidean dis-
tance). Thus, convergence to part of the Pareto front is
prevented.
In each generation non-dominance is tested in order

to guide the algorithm in the direction of the Pareto set.
At each generation, the non-dominated solutions n1 in
the gene pool are defined as the first front. It should be
noted that these solutions are indifferent to each other.
Thus, these solutions have a performance measure equal
to P , the size of the population. In order to preserve
diversity, a sharing mechanism is implemented, degrad-
ing the assigned performance of neighboring solutions,
in the hypersphere with radius defined by the param-
eter sigma share. Next, these solutions are temporarily
ignored, and the set of non-dominated points in the re-
maining solutions constitutes the second front. The per-
formance measure attributed to these solutions is equal
to the minimum assigned performance in the previous
front minus 1. Thus, any solution in front k will have

a performance measure below any solution in front k−
1. Sharing is again applied to the solutions in this front.
Sharing can either be implemented on the genotypic dis-
tance (the encoding distance) or in the phenotypic dis-
tance (either the decoded decision variables distance or
the objective function values distance). In what concerns
phenotypic distance, several arguments exist that lead
to one approach (decision variable distance) being pre-
ferred to the other (objective function distance). The
likely existence of multiple solutions on the decision space
with the same objective function value might favor the
first approach if it is considered that diversity on the
decision space is of primary importance; however, the
Pareto set is defined on the objective function values and,
thus, it might be of greater importance to have diver-
sity, i.e., a well-balanced distribution on the objective
function space. We solve the problem considering shar-
ing on the objective domain (phenotypic distance). Fur-
ther details of the algorithm can be found in Costa et al.
(2001).

4.1
An elitist multiobjective genetic algorithm

In spite of the success of the application of multiobjective
genetic algorithms, some authors (Zitzler et al. 2000) sug-
gest that elitism can speed up its performance and also
prevent the loss of good solutions found during the search
process. Thus, the previous algorithm incorporates an eli-
tist technique based on a separate secondary population
(SP) that contains all (or a part of) potential Pareto op-
timal solutions found so far during the search process.
In this sense, SP is completely independent of the main
population, as all its solutions do not participate in the
search process. A specified number, θ, of these elite so-
lutions (indifferent Pareto solutions) is introduced in the
main population.
In its simplest form, the new potential Pareto opti-

mal solutions that are found are stored in the SP, in all
generations. The SP update implies the determination of
Pareto optimality of all solutions stored so far, in order
to eliminate those that become dominated. As the size of
the SP grows, the time to complete this operationmay be-
come significant. In order to prevent this increase, a max-
imum size for the SP is imposed. For all generations,
a potential Pareto optimal solution xnd found in the main
population is stored if

1. all solutions in the SP are different from xnd;
2. none of the solutions in the SP dominates xnd.

In order to control the size of the SP, a new parameter
d > 0 is introduced that represents the minimum desir-
able Euclidean distance on the objective space between
potential Pareto optimal solutions in the SP. The previ-
ous Step 2 of the algorithm is modified as follows:

2. none of the solutions in the SP dominates xnd and the
distance from xnd to any of the solutions in the SP
which are not dominated by xnd is greater than d.
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This elitist strategy (Costa et al. 2001) has several ad-
vantages when compared with the results solely from the
main population:

– the set of all non-dominated solutions in the SP con-
stitutes a far better approach to the optimal Pareto
set;
– the solutions in the SP clearly present a balanced dis-
tribution along the Pareto front;
– parameter d allows the definition of the concentration
of points all along the Pareto front;
– the size of the SP is small when compared with other
approaches;
– the additional computational time required is negligi-
ble, considering the quality of the results when com-
pared with just one main population; moreover, the
computational time and effort is much lower than that
required to maintain all non-dominated points in the
SP.

It should be added that the bookkeeping of the non-
dominated solutions in the SP requires efficient algo-
rithms in order to reduce the computational effort.
Figure 6 presents a schematic representation of the
algorithm.

Fig. 6 Outline of the multiobjective elitist genetic algorithm

5
Numerical results

The main objectives of our experiences are to verify if
the solutions obtained by the genetic algorithms have
physical meaning and to compare the single-objective and
the multiobjective approaches discussed in this paper. In
order to have a problem instance which allows a clear and
simple interpretation of the results, the list of materials
considered in Table 1 was chosen accordingly. Further-
more, we define the problem as a mixed-integer program-
ming problem and we impose some artificial constraints
by fixing the number of layers, by imposing maximum
limits for the layer thickness, mass, and price. Some ad-
ditional constraints are also introduced in order to avoid
repeated materials in the plate.
Each material is characterized by a Young’s modulus,

a Poisson’s ratio, a specific mass, and a relative price. For

a given chromosome, specifying a set of materials with the
respective thickness, the CALFEM package (10) is used
to evaluate the solution u of the equation K(t, x)u = f .
The Kirchhoff plate finite element “platre” of the code
CALFEM (LTH 1997, cf.p.5.7-1) is used to compute the
stiffness matrix Ki of each lamina i. This finite element
“plate” is a rectangle, suited for a linear elastic isotropic
material, with twelve degrees of freedom (the four dis-
placements and the two derivatives of the vertical dis-
placement, at the vertices of the rectangle). The solution
u is then incorporated together with the thickness, mass,
and price constraints (18), (19), and (20), in the objective
function defined by (31).
It should be noted that the problem that we have

constructed to be processed by the algorithms is not
really a real-world structural optimization problem be-
cause, with a good choice of materials, an experienced
engineer can decide the optimum laminate configuration
in almost every case, without the use of any optimization
algorithm. It is obvious that in a plate subjected to bend-
ing loads, the maximum stresses are on the faces while
the minimum stresses are on the middle plane. Thus, the
materials should be arranged in increasing order of their
stiffness starting from the middle plane. Moreover, the set
of materials listed in Table 1 is not applicable in a real-
world structural optimization problem. In fact, copper,
bronze, glass, lead, and rubber exhibit poor mechan-
ical characteristics and are expensive when compared
with steel (the reference material), and nickel is much
more expensive than steel for almost similar mechanical
properties.
If we consider a real-world combinatorial optimization

problem like a similar problemwith reinforced epoxy with
carbon or glass with variable material, discrete thickness,
and discrete angle in each lamina, the results will be much
more difficult to analyze (Costa et al. 2001).
Several preliminary experiments were carried out in

order to tune the genetic algorithm parameters. These ex-
periments included the variation of the crossover and mu-
tation probabilities. The crossover probability was cho-
sen among the values 0.6, 0.7, and 0.8, and the mutation
probability from 0.0005, 0.001, and 0.005. After the tun-
ing phase, the parameters were fixed as in Table 2.
The runs were executed on a personal computer with

a Pentium III processor. It should be noted that 95% of
the total execution time was devoted to the execution
of the subroutine CALFEM that finds the displacement
vector u (mostly due to the interface with MATLAB).
Thus, for the problems considered in our experiments,
the objective function evaluation had a high computa-
tional cost. On average, each function evaluation took 1.6
seconds. Furthermore, for the single-objective formula-
tion, during the search process, the same solutions are
often evaluated, especially when the population is about
to converge. Thus, a scheme that minimizes the repetition
of the same calculations seems to be very useful for this
kind of problem. The implemented scheme maintained
a list containing the objective function values more of-
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Table 1 List of materials

Young’s Poisson’s Specific Price

Material Modulus Ratio Mass (Relative

(kg/cm2) (kg/cm3) Price/kg)

Steel (S) 21×105 0.28 7.8×10−3 1

Nickel (N) 20.7×105 0.29 7.75×10−3 6.25

Iron (I) 20×105 0.28 7.4×10−3 0.65

Copper (C) 11×105 0.34 8.9×10−3 6.25

Bronze (B) 10×105 0.31 8.25×10−3 4.5

Aluminium (A) 7×105 0.34 2.6×10−3 5

Glass (G) 5.5×105 0.25 2.7×10−3 3.75

Lead (L) 1.8×105 0.44 11.34×10−3 3

Rubber (R) 0.037×105 0.485 1.8×10−3 5

Table 2 The GA parameters

Parameter Single objective Multiobjective

Number of experiments 4 1

Maximum number of 1000 250
generations

Population size 100 200

Two-point crossover 0.7 0.7
probability

Uniform mutation 0.001 0.01
probability

Uniform order-based 0.7 0.7
crossover probability

Scramble sublist mutation 0.001 0.1
probability

Penalty coefficient 1000 –

Sigma share – 0.01

Minimal distance between – 0.01
potential solutions

ten used along the successive generations. This scheme
allowed the reduction, on average, of 15% of the total ob-
jective function evaluations (the execution time was also
reduced proportionally).

Table 4 Best solutions

Probl. Materials Layer’s Thickness (mm) #Gen #Eval

#0 S N I C B 0.20 0.20 0.20 0.20 0.20 29 1693
#1 S N I A G 0.20 0.16 0.20 0.11 0.13 70 4824
#2 N S I A G 0.13 0.20 0.13 0.16 0.17 69 4622
#3 I S A G R 0.08 0.07 0.19 0.20 0.20 72 4787
#4 S N I G R 0.19 0.08 0.15 0.01 0.07 70 4642
#5 S N I A R 0.04 0.05 0.05 0.20 0.20 79 4810
#6 S I 0.20 0.19 0.00 0.00 0.00 65 4415

Table 3 Problem instances

Layer’s Total Total Total

Problem Thickness Thickness Mass Relative

(mm) (mm) (kg) Price

#0 ≤ 0.2 – – –

#1 ≤ 0.2 ≤ 0.8 ≤ 2 ≤ 10
#2 ≤ 0.2 ≤ 0.8 ≤ 2 ≤ 5
#3 ≤ 0.2 ≤ 0.8 ≤ 1 ≤ 5
#4 ≤ 0.2 ≤ 0.5 ≤ 2 ≤ 5
#5 ≤ 0.2 ≤ 0.8 ≤ 0.8 ≤ 5
#6 ≤ 0.2 ≤ 0.8 ≤ 2 ≤ 1

Several experiments (listed in Table 3) were per-
formed with the single-objective formulation in order to
test whether the model could produce results with phys-
ical meaning. For every experiment, a restriction on the
maximum thickness of each layer (0.2mm) was consid-
ered. Problem #0 depicts the experiment with no restric-
tions except on the thickness of each layer. Problems #1
to #6 present the conjunction of different restrictions on
the total mass, total thickness, and relative price.
Table 4 presents the best solutions obtained, with the

list of materials from the outer to the inner layer, together
with the respective thickness. In this table, #Gen and
#Eval are the mean number of generations and objective
function evaluations observed, respectively.



63

Fig. 7 Non-dominated solutions at 250th generation – total thickness vs compliance (sharing on the variable domain)

Fig. 8 Non-dominated solutions at 250th generation – total mass vs compliance (sharing on the variable domain)

The results agree with the physical analysis of the
problem. Thus, in the absence of constraints (Prob-
lem #0) the maximum allowable thickness is obtained
and the materials are set in increasing order of stiff-

ness from the middle plane to the exterior. On the other
hand, in the cases where price is more constrained (Prob-
lems #2 to #6) the most expensive materials contribu-
tion is reduced or eliminated from the stacking, with the
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Fig. 9 Non-dominated solutions at 250th generation – total relative price vs compliance (sharing on the variable domain)

remaining materials keeping the increasing order of the
mechanical properties; in the limit, when the price is ex-
tremely low (Problem#6), the total thickness of the plate
is reduced and the materials which are selected are the
ones that exhibit the best relation between mechanical
properties and price.
Figures 7, 8, and 9 show the non-dominated solutions

in the SP (potential Pareto solutions) at the end of 250
generations with sharing on the variable domain. The 2D
plots are presented as a function of the most important
objective (the compliance).
It can be observed that the algorithm produced a well-

defined non-dominated front. The single-objective solu-
tions generated from problems #1 to #6 are included
in the two-dimensional plots of the front. It can be seen
that these points are in the non-dominated set, in spite of
the fact that some of them are located at extreme values
of the feasible set. Moreover, the several projections of
the front, together with a look-up table with the non-
dominated points, permits the decision maker to choose
an operating point, defining, for instance, a limit on the
compliance which should not be overcome and achieving
the compromises corresponding to the other objectives.

6
Conclusions

In this paper, a plate optimization problem has been for-
mulated as a mixed-integer nonlinear-programming prob-
lem. Due to the lack of differentiability and convexity of
the problem, a genetic algorithm has been proposed for

its solution, in which the constraints are incorporated in
the objective function through a penalty scheme. It has
been shown that this problem can also be formulated as
a multiobjective problem in which the further objectives
are concerned with the restrictions on the mass, thick-
ness, and price of the single-objective optimization.
In the multiobjective formulation, there is no single

optimum. A set of points is instead constructed represent-
ing trade-offs between the different objectives. This set of
points constitutes the Pareto optimal set and any multi-
objective algorithmmust be able to approximate this set.
As genetic algorithms are based on the generation of pop-
ulations, they seem to be quite suited to approximating
the Pareto front.
Different sets of approximations to the Pareto opti-

mal set are generated along the successive generations
produced by the genetic algorithm. A scheme has been
implemented which keeps a subset of representative non-
dominated solutions produced by the algorithm as a sec-
ondary population. This secondary population is clearly
a major contribution for well-defined non-dominated
fronts. Numerical results included in this paper show that
the proposed implementation is quite recommended for
the job, since the increase in the computational effort is
compensated by the clear definition of the fronts.
Several single-objective minimizations have been car-

ried out in order to evaluate the approximation to the
Pareto set. In these problem instances, the restrictions
have been set at extreme values of the feasible set. The
difficulties in obtaining a set of non-dominated solutions
containing all the generated single-objective optimal so-
lutions has shown the importance of the independent ap-
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plication of the genetic operators to the continuous and
ordinal parts of the chromosomes. Moreover, the impor-
tance of having high mutation rates on the ordinal vari-
ables has also been noticed. In fact, the non-dominated
set may not contain the single-objective optimal solu-
tions, in case this process does not come into operation.
The use of extreme points of the feasible set ensures that
the generated non-dominated fronts are good approxima-
tions to the Pareto optimal set.
The evaluation of the Pareto approximation can be vi-

sualized by the graphic representation of the solutions.
However, the graphic representation may not be clear for
more than two objectives. It should be pointed out that all
the points on the 2D plots are non-dominated. The rela-
tive position for some points may seem to contradict the
previous statement, but this is the result of the projec-
tion of a four-dimensional figure on the two-dimensional
plots.Moreover, thedecisionmakermayobserve the trade-
off that must be considered when choosing a particular
point (solution) in the Pareto set. Finally the multiobjec-
tive genetic approach is quite interesting in this particular
application, as all the efficient solutions of the restricted
problem can be obtained in one run. All these considera-
tions lead to our final conclusion that the multiobjective
approach is clearly superior to the single-objective one for
the structural problem discussed in this paper.
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