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Summary. In this paper, a bilevel formulation of a structural optimization problem
with discrete variables is investigated. The bilevel programming problem is trans-
formed into a Mathematical Program with Equilibrium {or Complementarity) Con-
straints (MPEC) by exploiting the Karush-Kuhn-Tucker conditions of the follower’s
problem.

A complementarity active-set algorithm for finding a stationary point of the
corresponding MPEC and a sequential complementarity algorithm for computing a
global minimum for the MPEC are analyzed. Numerical results with a number of
structural problems indicate that the active-set method provides in general a struc-
ture that is quite close to the optimal one in a small amount of effort. Furthermore
the sequential complementarity method is able to find optimal structures in all the
instances and compares favorably with a commercial integer program code for the
same purpose.

Key Words: Structural optimization, mixed integer programming, global
optimization, complementarity.

1 Introduction

In the last few decades, Structural Optimization has become an area of in-
creasing interest and intense research [1, 3, 5, 10, 9, 12, 20, 22, 23, 25]. These
models are formulated as challenging optimization problems representing the
elastoplastic laws of mechanics and searching for a structure with the least
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volume. A quite general structural optimization model has been introduced
in [8] whose formulation leads into a bilinear program with linear and bilinear
constraints. The variables of this optimization problem are associated to the
coordinates at each node of the structure and the cross sectional areas. The
latter should belong to a fixed set of admissible values. Furthermore each fea-
sible solution is characterized by a vector x, whose components are 1 or 0,
depending on the corresponding bar to be or not to be included in the optimal
structure.

As discussed in {8], this bilinear program with discrete variables can be
reduced into a mixed integer zero-one linear program. Computational experi-
ence reported in {8] shows that the model is quite appropriate for finding a
structure that requires small amount of material. A commercial code, such as
OsL (18], can in general find an optimal solution for the optimization problem
when the number of nodes and pre-fixed values for the cross-sectional areas
are small. However, the algorithm faces difficulties in finding such a solution
when the dimension of the problem increases.

A mixed integer zero-one linear program can be shown to be equivalent to
a Linear Bilevel Programming Problem [2]. By exploiting the Karush-Kuhn-
Tucker conditions of the follower’s problem it is possible to reduce this bilevel
program into a Mathematical Programming Problem with Equilibrium (or
Complementarity) Constraints of the following form

MPEC: Minimize c¢'z +dTy
subject to Ew=q+ Mz+ Ny

220, w=>0 (1)
y € K,
2Tw=0

where g € R?, ¢, z € R", d, y € R™, M, E € RP*", N € RP*™ and
K,={yeR™: Cy=b, y>0)

with C € R”*™ and b € R'.

Due to its structure, an active-set methodology seems to be quite appropri-
ate to process this MPEC. A complementarity active-set (CASET) algorithm
has been introduced in [16] to find a stationary point for the MPEC. The
procedure maintains complementarity during the entire process and has been
shown to converge to a stationary point under reasonable hypotheses. Com-
putational experience reported in [16] has shown that the proposed algorithm
is in general quite efficient to process moderate and even large MPECs.

A Sequential Linear Complementarity (SLCP) algorithm has been intro-
duced in [14] to find a global minimum for a linear MPEC. The algorithm finds
a sequence of stationary points of the MPEC with strictly decreasing value.
The last stationary point of this sequence is shown to be a global minimum of
the MPEC. Computational experience reported in [13, 14, 15] indicates that
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the algorithm is quite efficient to find a stationary point that is a global min-
imum of the MPEC, but faces difficulties in establishing that such a global
minimum has been achieved.

In practice, engineers search for a structure that serves their purposes, that
is, a feasible solution of the mixed integer program with a small objective func-
tion value is requested. As each stationary point of the MPEC corresponds
to a feasible solution of its equivalent zero-one integer program, then both
the CASET and SLCP algorithms seem to be valid approaches to find a good
structure for the structural model. In this paper we investigate how these two
algorithms perform for a number of structures presented in [8]. The exper-
iments indicate that the CASET algorithm is able to find in general a good
structure in a small amount of effort. On the other hand, the SLCP algorithm
has always found a global optimal structure for the model. Furthermore the
computational effort required by the SLCP algorithm tends to become much
smaller than the one needed by an integer program code as the dimension of
this problem increases.

The organization of the paper is as follows. In Section 2 the structural
model and its formulation are introduced. Section 3 is devoted to the equiv-
alence between a zero-one mixed integer program and an MPEC. The algo-
rithms CASET and SLCP are briefly described in sections 4 and 5. Finally
computational experience with these algorithms on a set of structural prob-
lems and some conclusions are included in the last two sections.

2 A topological optimization model

The admissible structural domain is referenced by a bidimensional cartesian
system Ouzy, in which the various alternative solutions for the problem under
consideration can be developed. A discretisation [26] of this domain is then
considered in which the mesh is composed by bar elements joined at the nodal
points.

The structural domain is submitted to the various actions defined in the
safety code [6] such as the structural self-weight, wind, earthquake and so on.
These actions lead to different ! loading conditions, each of them is represented

by nodal point loads
!
i _ fx
=7

Some of these loads are reactions r!, when the associated nodes are connected
to the exterior. The nodal displacements

are associated to these nodal forces. The stress field within each bar element
¢ for loading condition [ can be determined from its axial load e!, while the
strain field is given by the axial deformation d..
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The fundamental conditions to be satisfied in the serviceability limit states
are equilibrium, compatibility, boundary conditions and elastic constitutive
relations of the structural material.

Equilibrium has to be verified at a nodal level and relates the elastic axial
bar forces e, with support reactions ! and applied nodal loads f* by

CTe, — Bre— ' =0, (2)

where C' and B are matrices depending on the structural topology.
The compatibility conditions imply equal displacement for all the bar ends
joining at the same node and can be expressed as

d, = Cu', (3)

where d., is the bar deformation vector, u' is the nodal displacement vector
and C is the connectivity matrix already used in (2).

The forces €., in the structural bars are related to the bar deformations df
by linear elastic constitutive relations given by the so-called Hooke’s Law

ele = KDAdfe’ (4)

where D4 = diag{A;}, with A; a discrete variable associated to the cross-
sectional area of bar ¢ and K = diag{E;h;'}, with E; > 0 the Young’s
modulus of bar ¢ and h; its length . It follows from (2), (3) and (4) that

CTKDsCul — Brl — fl = 0. (5)
The structural boundary conditions are given by
ul, =0 (6)

for the nodes m connected to supports with zero displacement.
The nodal displacements should comply with the upper and lower bounds
defined in the safety codes

Umin < Ul < Umag- (7)

The ultimate limit states can be considered on the basis of the Plasticity
Theory. According to the Static Theorem, the fundamental conditions to be
fulfilled are equilibrium, plasticity conditions and boundary conditions.

The equilibrium conditions are given in a similar form to (2) by

C’TefD — BT‘; - Aflt=0, (8)

where e; is the plastic force vector, rﬁ, the plastic reaction vector and A is
a partial safety majoration factor for the nodal forces corresponding to the
applied actions, prescribed in structural safety codes [6, 7].

The plasticity conditions can be expressed as
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emin < 62, < €maz, . (9)

where e,,i, and e,,q; are the minimum and maximum admissible values for
the element forces defined in the code [7].

The conditions (5), (6), (7), (8) and (9) considered so far are satisfied
by many solutions in which some bars have zero force. A vector x is further
introduced in the model such that each variable z; is associated with bar ¢
and takes value 1 or 0, depending on the bar i to be or not to be included in
the solution.

The force in a generic bar 7 can then be replaced by the product a:,-eﬁ,i
yielding a null force in non-existing bars. So the axial bar force must verify
the following conditions

Dmemz’n S ei; S Dzemaz, (10)
where
D, = diag(z;). (11)

Furthermore the diagonal matrix D4 takes the form D4D,. The model
seeks an optimal solution corresponding to the minimum use of structural
material V. If A; is the cross-sectional area of bar ¢ and h; is its length, then
the objective function takes the form

V = inAihi. (12)

The optimization problem described by the equations (2-11) consists of
minimizing a bilinear function in variables x; and A; on a set of linear and
bilinear constraints. Furthermore z; are zero-one variables and the variables
A; can only assume values in a discrete set of positive fixed numbers A,
k=1,...,N;. These variables can be transformed into a set of zero-one vari-
ables 7;; by using traditional manipulations, as described in [8]. On the other
hand, bilinear terms such as z;y;x can be transformed into variables by exploit-
ing the so-called Reformulation-Linearization Technique RLT [8, 24]. These
transformations lead into a zero-one mixed-integer program, as shown below.

Unfortunately optimal structures associated to the optimization problem
may be not kinematically stable. In order to avoid such type of structures the
so-called Grubler’s Criterion [11] is exploited. As discussed in [8], this criterion
can be analytically presented by some further linear constraints.

All these considerations lead into the following formulation of the struc-
tural model [8] under study in this paper.
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OPT: Minimize

subject to

nb N; ‘
V= Z (Z Aikyz‘k) hs
i=1 k=1

nb N; na
ZMJ‘.,' (Z Aikqgk) - Z BjmTim - f]l = (13)
i=1 k=1 m=1

d = Ccu
i
Umin S u S Umazx

dmini Yik < qfék S dma,z:,- Yik

Ni N-i
dmini (1 - Zyik) < di - Zqék
Ni Ni
di - quk < dma:x:z- (1 - z yik)

k=1

k=1
ut =0
=

— Teﬁ,+Br§)+/\fl:0

N; N;
tminz‘ Z Aiky'ik < ei)i < tmazi Z-Aikyik

k=1 k=1
N;
< DY yik < [(n)] zn
icl(n) k=1
nn nb N; nn
2% 2= D k=) Sn2n <0
n=1 =1 k=1 n=1

—CTey+ Bro+ fuZ =0

Ni Ni
tmini Z A'i.lcy'ik S Cay; S tmazg Z Aikyik
k=1 k=1

Yik € {01 1}

N;
Z Yik < 17
k=1

where l = 1,...,n¢c, 7 =1,...,2nn, jm = 1,...,na, k = 1,.
1,...,nnand i=1,...,nb.
The meanings of the parameters in this program are presented below:

(14)
(15)
(16)

(17)

(18)

(19)
(20)

(21)

(22)

(23)
(24)
(25)
(26)

(27)

..,Ni, n =
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nb
na
nn

hi
j
I(n)
A
[1(n)]

Z

Ja

tmin,: 3 tmaxq;

dmini b dmazi

Umingy Umax;

number of bars;

number of simple supports;

number of nodes;

number of loading conditions;

number of discrete sizes available for cross-sectional area
of bar 1;

k-th discrete size for bar i;

nb x 2nn matrix of direction cosines relating bar forces
with nodal directions;

2nn x nae matrix of direction cosines relating nodal di-
rections with nodal supports directions;

matrix [CTdiag (%)},

T
Young’s modulus of bar 4;
length of bar i;
applied nodal loads in direction j for loading condition
L
set of bars indices which occur in node n;
safety factor;
cardinal of set I(n);
number of simple supports associated with node n;
2nn x 2nn diagonal matrix, with z;; equal to z, of the
node n associated to the direction j;
perturbed nodal load applied in all directions;
minimum and maximum stress in compression and ten-
sion, respectively, of bar i;
minimum and maximum elongation of bar i;
minimum and maximum nodal displacement in direction

e

The variables have the following meanings:

Yik;

5, 3.0

IS

0 — 1 variable stating whether the k-th discrete size for
bar i is or not the cross-sectional area of bar ¢;

bar force of bar i for loading condition [;

plastic reaction in supports m for loading condition /;
elastic reaction in supports m for loading condition [;
deformation of bar i for loading condition ;

nodal displacement in the direction j for loading condi-
tion I;

elongation of bar i corresponding to each discrete size k
for bar 4 in loading condition ;

0 — 1 variable stating whether the node n exists or not;
bar force of bar i for the perturbed nodal load;

plastic reaction in supports m for the perturbed nodal
load.
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Thus the mixed-integer linear program (OPT) has

i=1

nb
ne X (4nn+5nb+ ZZ Ni)+3nb+4nn+ 1
constraints and

nb nb
ne X (2nb+2nn+2na+z N,-)+Z N;+nn+nb+na

i=1 i=1

variables.

3 Reduction to a Mathematical Program with
Complementarity Constraints

In the previous section, the topological optimization model has been formu-
lated as a mixed-integer linear program, which can be stated as

PLL: Minimize Tz +dTu
subject to Az + Bu=g
Fu=~h
u>0, r;€{0,1}, i=1,...,n.

(28)

As discussed in [2], this mixed integer program can be shown to be equivalent
to the following Bilevel Program

BL: Minimize cTz + d¥u
subject to Az +Bu=g

0<z<e
u2>0
Fu=h (29)
eTv=0 v>0
Minimize —eTwv
subject to vz
v<e—u1x,

where e € R" is a vector of ones.

By exploiting the Karush-Kuhn-Tucker conditions of the follower’s prob-
_lem (29), it is possible to reduce the BL problem into the following Mathe-
matical Programming Problem with Equilibrium (or Complementarity) Con-
straints ’
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MPEC: Minimize Tz +dlu
subject to Az +Bu=g

0<z<e
u=>0
Fu=h
a+8=1
v+17—x=0
v+st+r=e
elv=0
o, B,v, 17,520
alr=pTs=0

L GLCP.

/

The constraints of this MPEC constitute a Generalized Complementarity
Problem (GLCP), which can be written in the form

Ew=q+Mz+ Ny

w>0, 220
y € Ky (30)
2Tw =0,
where
K,={y: y>0, Cy=50}. (31)

GLCP can be processed by a direct or an iterative method provided the
matrices E and M satisfy some nice properties. In particular [17], if E is the
identity matrix and M is a Positive Semi-Definite (PSD) matrix, then the
GLCP can be solved by finding a stationary point of the following quadratic
program

QP: Minimize zTw
subject to Ew=q+ Mz+ Ny
z>0,w>0
y € Ky.

(32)

Unfortunately, the GLCP under consideration does not satisfy this prop-
erty, as the matrices E and M are not even square. An enumerative method
[15, 21] is then required to process the GLCP. The algorithm searches for a
solution of the GLCP by exploiting a binary tree that is constructed based on
the dichotomy presented in the complementarity conditions z;w; = 0. At each
node k, the algorithm computes a stationary point of a quadratic program
QP(k) that is obtained from QP by adding the constraints

z; =0, 1 € Lg
w; =0,j€Wk,

where Lj and Wy, are the set of the fixed variables at this node. The incorpo-
ration of such QP solver enables the enumerative algorithm to find a solution
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of the GLCP in a reasonable effort, even for large problems. In fact, a solution
of the GLCP is exactly a stationary point of QP(k) such that zTw = 0.

The enumerative algorithm faces difficulties when the GLCP is feasible
(the linear constraints are consistent) but has no solution. In this case the
last property does not hold and the method requires an exhaustive search in
the tree to terminate.

As a final remark, it is important to add that the enumerative method can
be implemented by using an active-set code such as MINOS [18]. A compari-
son of such an active-set implementation of the enumerative method with a
reduced-gradient based version [15], shows that the former is in general more
efficient to find a solution to the GLCP [21].

4 A Complementarity Active-Set Algorithm

The Complementarity Active-Set Algorithm [16] uses an active-set strategy
[19] to find a stationary point of MPEC, that is, a solution satisfying the
necessary first-order KKT conditions of the nonlinear program (NLP), that
is obtained from MPEC (1) by considering the complementarity conditions
zw; =0,17=1,...,n as constraints. Thus this NLP has the following form

NLP: Minimize cTz+dTy
subject to Fw=qg+ Mz+ Ny

Cy=5b
230, w>0, y>0 GLCP (33)
zw; =0,i=1,...,n.

where g € R?, c,w,z € R?, d,y € R™, E, M € RP*®, N € RPX™, C e R*™
and b € R

The algorithm consists essentially of using an active-set technique on the
set of solutions of the GLCP given by the constraints of the MPEC. Thus at
each iteration k, the iterates (w, z,y) satisfy the constraints of (1), and the
set of the active constraints is given by

Fw-Mz-Ny=gq

Cy=5b
w; =0,i€ L, C{l,...,n} (34)
% =0,i€ L, C{1,...,n}

y; =0,i€ L, C{l,...,m}

where L, , Ly, and L,, are the sets of the currently active constraints corre-
sponding to the nonnegative constraints on the variables z, y, and w, respec-
tively and L, U L,, = {1,...,n}.

The active constraints (34) constitute a linear system of the form

Dz = gka
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where ¢ = (wT,27,y7)T and Dy, € R&*C+™) witht = I4+p+ | Lw | +| L2 |
+ | Ly | and | H | is the cardinality of the set H, where that p and [ are the
number of rows of the matrices A and [E — M — N] respectively.

The first-order optimality conditions for the problem

Minimize { f(z) : Drx =g"}
can be written in the form
Vf(z) = Din
Dka: = gk.
In order to facilitate a unique set of Lagrange multipliers 4, the following
condition is assumed to hold throughout the proposed procedure:

Nondegeneracy Assumption: ¢<2n-+m and rank(Dy) =t.

This hypothesis is not restrictive under the usual full row rank of the
matrices C and [E, —M, —N]. Consequently, the active-set is always linearly
independent. Furthermore, let us partition the Lagrange multipliers vector p
into three subvectors denoted by

B — subvector associated the first set of equality constraints in (34)

9 — subvector associated the second set of equality constraints in (34)

A¥ — subvector associated with z; =0 in the last three sets of equality
constraints in (34).

The main steps of the complementary active-set algorithm are described
below.

COMPLEMENTARITY ACTIVE-SET ALGORITHM - CASET

Step 0
Set k = 1 and find a solution z* of the GLCP associated with MPEC. Let
Dz = g* be the set of active constraints at z* and let L,, L,, and L,, be
the index sets associated with the nonnegative active constraints y; = 0,
z; = 0, and w; = 0, respectively.

Step 1 Optimality Conditions

If z* is not a stationary (KKT) point (see [4]) for the Equality Problem

EP: Minimize f(x)
subject to Dyzx = g*,

then go to Step 2. Otherwise, there exists a unique p such that
Dfp=Vf(a®),

and two cases can occur:
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1. If N>0forallie L,
A >0 forallie L, N Ly,
AP >0forallieL,NL,,

stop: =¥ is a stationary point for MPEC.
. 2. If there exists at least one i such that
M <0 forieL,
or A} <0 forieL,NL,
or \Y <0forie L,NL,,

remove an active constraint y; = 0, or 2z; = 0, or w; = 0, associated
with the most negative Lagrange multiplier. Let Dy,x = g* be the
row removed from Dyx = g*, and rearrange the rows of Dz = g* in

the following way
D =k
] 2

2

Find a direction d such that Vf(z*)Td < 0, Dxd = 0, and Dy,d > 0.
Replace Dy by Dy and go to Step 3.
Step 2 Determination of Search Direction

Find a descent direction for f in the set of active constraints, i.e, find d
such that

ViE¥)Td <0
Dyd = 0.

Step 3 Determination of Stepsize
1. Find the largest value aynq; of  such that

zF +ad >0,
from
zk
amaz=min{ ;l 1d; <0, i¢(LzUquLy)}.
—a;

2. Compute 0 < ap < @ypqes such that
:I)k + agd

provides a sufficient decrease for f using any line search technique [4].
If o = 400, stop; MPEC is unbounded.
Step 4 Update of iterate

Compute " = 2% 4 apd.

If o = ez, add to the active set the constraints z; > 0 for which
Oimaa Was attained such that the nondegeneracy assumption remains true.
Return to Step 1 with k:=k + 1.
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As it is shown in [16], this algorithm possesses global convergence to a Sta-
tionary Point of the MPEC under a nondegenerate condition. The algorithm
can also be extended to deal with degenerate cases and can be implemented by
using an active-set code, such as MINOS. Computational experience reported
in [16] on the solution of MPECs, taken from different sources, indicates that
the algorithm CASET is quite efficient to find stationary points for MPECs of
moderate and even large dimensions.

5 A Sequential Linear Complementarity Algorithm -
SLCP

In this section, we briefly describe a Sequential Linear Complementarity
(SLcp) algorithm [14] that finds a global minimum of the MPEC, by comput-
ing a set of stationary points with strictly reducing objective function values.
To do this, in each iteration &k of the algorithm the objective function is re-
placed by the cut

clz+dy < A,

where \; is a constant to be defined later. So in each iteration a GLCP(Ax)
of the form below is solved first:

EFw=q+Mz+ Ny

w=>0,220

y € K,y (35)
cTz+dTy < Mg

2Tw=0.

Let (@, %, %) be such a solution. Then algorithm CASET with this initial
point is applied to find a stationary point of the MPEC. To guarantee that
the algorithm moves toward a global minimum of the MPEC, the sequence of
step lengths {Ax} must be strictly decreasing. An obvious definition for A is
as below :

Mo = TRt — gl oy | (Toh=1 4 g1 |
where v is a small positive number and (w1, zF—1 y*—1)
point found in the previous iteration.

Now consider the GLCP();) given by (35). Then there are two possible
cases as stated below.

is the stationary

(i) GLCP(Ax) has a solution that has been found by the enumerative method
discussed before.
(ii) GLCP(A) has no solution.
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In the first case the algorithm uses this solution to find the stationary
point of the MPEC associated to this iteration. In the last case, the stationary
point (z¥~!, #*~1) computed in iteration (k — 1) is an e-global minimum for
the MPEC, where

e=7] Tz 4 dfgF1 | (36)

and v is a small positive tolerance.
The steps of the SLCP algorithm are presented below.

SEQUENTIAL LINEAR COMPLEMENTARY ALGORITHM - SLCP

Step 0 Set k = 0. Let v > 0 a positive tolerance and Ag = +00.

Step 1 Solve GLCP(\;). If GLCP(Ax) has no solution, go to Step 2.
Otherwise, let (w*, z*, %) be a solution of GLCP()\;). Apply CASET al-
gorithm with this starting point to find a stationary point of MPEC. Let

(w*, 2, 7*) be such a point. Let

Aep1=c" 2 +dTg —y | T+ dTE .

Set k = k + 1 and repeat the step.

Step 2 If k = 0, MPEC has no solution. Otherwise, (z5~1, 7*~1) is an e-global
optimal solution for the MPEC, where € is given by (36) (it is usually a
global minimum of the MPEC).

As discussed in Section 3, the enumerative method faces great difficulties to
show that the last GLCP has no solution. So the SLCP algorithm is able to
find a global minimum, but it has difficulties to establish that such a solution
has been found. Computational experience presented in [13, 14, 15| confirms
this type of behavior in practice. It is also important to add that the SLCP
algorithm can be implemented by using an active-set code such as MINOS. In
fact the SLCP algorithm only uses the enumerative and the CASET methods,
which are both implemented by using this type of methodology.

6 Computational experience

In this section some computational experience is reported on the solution of
some structural models introduced in [8] by exploiting the MPEC formulation
and using the algorithms CASET and SLcP. All the computations have been
performed on a Pentium IV 2.4GHz machine having 256 MB of RAM.

(I) Test Problems

In each test problem the corresponding initial structure comsists of nodal
points and bars and takes a similar form to the type mesh displayed in Figure
1.
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Fig. 1. Initial mesh

The main goal of this model is to find the set of included bars in the so—
called optimal shape of the structure, which is given by the values of the 0 —1
variables z; in the optimal solution of the problem. '

Different types of sizes of initial meshes, as well as of applied nodal forces
have been taken in consideration in the constitution of the test problems.
Four sizes of initial meshes, M;, ¢ = 0,...,3, have been considered whose
topologies are presented in Table 1 and that lead to five test problems PTO
to P14, according to the following definitions:

e PTO - mesh MO and only one nodal load is applied (f2, = 65, f;, = 0).

e Ptl, PT2 - mesh M1 and two types of applied nodal loads are applied. In
Pl is applied only one nodal load (f1, =0, f;s = —65), while two nodal
loads (fL, =0, fi, = —65, f3, — 40, 2 = —40) are applied in PT2.

e PT3 - mesh M2 and two nodal loads are simultaneously applied
(fL45.9619, fL, = —45.9619, fL, = 45.9619, f},, = 45.9619).

e Pr4 - mesh M3 and only one nodal load is applied (f1, =0, f),, = —65).

In these definitions the following parameters are used:
f._ mnodal load in (kN) applied in node 7 in direction Oz for loads combina-
tion [;
f;n nodal load in (kN) applied in node n in direction Oy for loads combina-
tion [.

In Table 1 are included the following notations:

nal dimension of the mesh in terms of number of nodal in Oz and Oy axes,
respectively (in Figure 1, nal =5 x 4)

hs total length (in m) to the Oz axis

hy total length (in m) to the Oy axis

nb number of bars

nn number of nodes

na number of simple supports

S, set of discrete sizes available for cross-sectional area of bar i (in cm?)

N; number of discrete sizes available for cross-sectional area of bar 2
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MESH||he|hy| nal [nblnn|nae|N; S;

MO 4 312x 2| 6| 4] 3| 1 3

Grour| M1 8 6|3 x3|20] 9] 3| 1 3

I M2 6 9|13 x4[29[12] 8| 1 3

M3 (|16]12|5 x 5(72[ 25| 3| 1 3

v SMm1 || 8| 63 x 3|20] 9| 3| 2| 0.5;3
GRouP| SM2 || 8| 6|3 x 3|20 9] 3| 3|0.5:1;2

II SM3 || 6] 93 x4]29112| 8] 2] 0.53

SM4 || 6] 93 x 4|29 12| 8| 3]0.5:2;3

Table 1. Test Problems Meshes

In the first group of test problems, structures have been considered for
which a unique discrete value is available for cross-sectional area of each bar.
In the second group it is allowed that each bar of the structure assumes one
of the values in a finite set S; of discrete sizes available for its cross-sectional
area. This last group leads to four additional test problems, assigned for ST1,
ST2, ST3 and ST4, and whose associated initial meshes are SM1, SM2, SM3
and SMm4, respectively. The meshes SM1 and SM2 have the same dimensions
of the M1 mesh, while SM3 and SM4 have the same dimensions of the ones in
M2. The nodal loads applied in ST1 and ST2 are the same as in P71, while
in ST3 and ST4 are the same as in PT3. The number of constraints (nr)
and the number of variables (nv) of formulation OPT associated to these test
problems are presented in Table 2.

OPT
ProsB|| nr| nv
Pr0 || 93| 51

Group| P11 (|273(136

I PT2 (|449(220
PT3 (|387(205
P74 (921|444

STl {|313|176
GROUP| ST2 |[353{216

1I ST3 ||445/263
St4 ||503]321

Table 2. Dimensions of test problems

In all test problems the displacements and bars stress limits considered
are Umaz = —Umin = 90cM, tmaez = —tmin = 355M Pa, respectively and the
partial safety factor A is equal to 1.5.

I
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(IT) Solution of MPECs

This section reports the computational experience performed with the algo-
rithms CASET and SLCP for the solution of MPECs associated with the integer
linear program (OPT).

The dimensions of the resultant MPEC problems are included in Table 3,
where nr, nv and nvc denote the number of constraints, number of variables
and pairs of complementary variables, respectively.

MPEC
ProB|| nr| nv|nve
PT0 || 124] 111; 30
Group| P11 || 361| 310 87
I P12 || 537 394 87
PT3 || 511| 451|123
Pr4 [|1213[1026[291

STl || 461| 470|147
Grovur| ST2 || 561 630(207

I ST3 || 656{ 683|210
St4 || 801 915(297

Table 3. Dimensions of MPEC test problems

Table 4 includes the performance of the integer program code OsL for
finding a global minimum to the test problems [8]. In this table, as well as in
the sequel, ND and NI are, respectively, the number of searched nodes and
the number of iterations (pivot steps) performed by the process, T is the total
CPU time in seconds for solving the optimization problem and OBJ. is the
objective function value obtained by the algorithm. Note that for problem
P74, OSL code has not been able to terminate after 25000000 pivots steps.

The first computational experience has been performed with the CASET
algorithm for finding a stationary point for the MPECs associated with the
structural optimization problems and analyzing if this solution is near to the
global optimal solution. Table 5 includes the performance of this algorithm
on the solution of these test problems.

The numerical results clearly indicate that CASET algorithm has been
able to find a structure with a volume close to the global optimal one. This is
particularly evident for the problems with exactly one possible cross area for
each bar. Furthermore this solution has been found in a quite small amount
of effort as compared to that of the OsL code.

Table 6 includes the computational results achieved by the Sequential
Complementary Algorithm on the solution of the test problems. In this ta-
ble, besides the previously used parameters, IT represents the number of
GLCP(\) solved by algorithm SLcP, while N1s, T's and NDS are the number
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/4

OsL
[ProB| Nr [ T | Nb [Osi(dm®)]
PT0 53 0.04 7 3.60
Pr1 3033 0.69 311 10.80
Pr2 5579 1.77 497 12.90
Pr3 891143| 325.64| 82075 11.92
P4 ||>25000000{15018.78| 347541 27.30
Stl 64943 22.80 8132 7.05
St2 57473 30.01| 10052 4.90
ST3 4788682( 3996.54| 411084 6.29
St4 20606789|61486.08|1496081 5.46

Table 4. Computation of Global Minimum of Integer Program OPT by using the
OsL code

CASET
[ProB[| N1 | T [OBJ

PT0 || 116]|0.03| 3.60
Prl || 522|0.24(11.10
P12 || 961|0.44|14.10
Pr3 || 922|0.44|12.66
Pr4 (/9859{9.00|27.90
ST1 || 726(0.36| 7.10
ST12 || 820(0.56| 8.75
St3 ||1819(1.03| 9.40
St4 (|1731(1.44] 9.80

Table 5. Computation of a stationary point of.MPEC by using the CASET algorithm

SLcp
[ProB[[IT] N1 | T [ Np ] Nis | Ts [Nbs]Osi.]
PTO || 2 249 0.05 46 128| 0.04 9|l 3.60
PT1 || 2 5572 2.30| 907 494| 0.17 27)(10.80
P2 || 3| 28281 14.73( 3828 1015 0.44| 44[[12.90
6
4

Pt3 63210; 30.78| 8278 23843i 12.16| 3417|/11.92
Pr4(*) 140015| 124.00f 3884| 39968| 35.25| 1073||27.30
STl || 2| 11370 5.09| 1177 691 0.28 27| 7.05
ST2 ||16| 35871 23.90| 4723|| 12698| 9.28] 1779] 4.90
ST3 (15| 498688| 279.89|34578|/160949| 86.52| 9719|| 6.29
ST4 |116/1602271|1171.91(99962(|421851|318.40(31144|| 5.46

Table 6. Application of SLcP algorithm to the structural problems

of pivot steps, the CPU time in seconds and the number of nodes searched
until the optimal solution is obtained, respectively. Moreover, the notation (*)
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is used in problem PT4 to indicate that the solution of the last GLCP was
interrupted because the maximum limit of 100000 pivot steps was exceeded.

A comparison between the SLCP algorithm and the code OSL shows that
the latter procedure performs better for problems of smaller dimensions. How-
ever, as the dimension increases the SLCP algorithm becomes more efficient
to obtain a global minimum. It is important to add that the SLcp algorithm
computes stationary points of the MPEC with strictly decreasing objective
function value. Since each one of these stationary points corresponds to a fea-
sible solution of the zero-one integer programming formulation of the struc-
tural model, then the engineer is able to receive a number of structures (equal
to the number of iterations of the algorithm SLCP) in a reasonable amount of
time. For instance for problem ST4 the algorithm SLCP requires only 421851
pivot steps to give the engineer 16 structures including the one given by the
CASET method and the global optimal structure.

7 Conclusions

In this paper we have investigated the solution of a zero-one integer pro-
gram associated with a structural model by using two MPEC techniques. A
Complementarity Active-Set (CASET) algorithm for finding a stationary point
of a MPEC and a Sequential Linear Complementarity (SLCP) algorithm for
computing a global minimum have been considered in this study. Numerical
results of some experiments with these techniques show that both procedures
are in general efficient for their purposes. We believe that the results shown
in this paper may influence the use of MPEC algorithms to process integer
programming problems. This is a subject of future research.
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